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Abstract

Activities of daily living are good indicators of the health sta-
tus of elderly. Therefore, automating the monitoring of these
activities is a crucial step in future care giving. However,
many models for activity recognition rely on labeled exam-
ples of activities for learning the model parameters. Due to
the high variability of different contexts, parameters learned
for one context can not automatically be used in another. In
this paper, we present a method that allows us to transfer
knowledge of activity recognition from one context to the
next, a task called transfer learning. We show the effective-
ness of our method using real world datasets.

Introduction

As the number of elderly people in our society increases
so do the costs associated with hospitalization and nursing
homes. We can reduce these costs by monitoring the health
status of the elderly at home, and thus enabling them to live
longer on their own. A good indicator of their health sta-
tus is the ability to perform activities of daily living (ADLs),
such as bathing, toileting and cooking (Katz et al. 1970).
Therefore, automating the monitoring of these activities is a
crucial step in future care giving.

In order to monitor activities a variety of sensors is avail-
able, particularly popular have been wireless sensor net-
works. Developments in sensing and network technology
allow us to use wireless binary sensing nodes that are easy to
install and run on batteries for several months. These nodes
can be equipped with different kinds of sensors, to measure
a door being opened, a toilet being flushed or the tempera-
ture above a stove rising. However, inferring the performed
activity from this data is challenging, since the output of
these sensors is noisy and ambiguous. The usual technique
to overcome this ambiguity involves machine learning algo-
rithms, which can model and recognize the sensor patterns
generated from the activities in question.

Although the performance of activity recognition models
is getting better and better, often models rely on labeled
examples of activities for learning the model parameters
(Tapia, Intille, and Larson 2004; van Kasteren and Kröse
2007). Due to the high variability in the layout of houses
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and the way different individuals perform an activity, param-
eters learned for one house can not automatically be used in
another. Ideally, we would have separate training data for
each individual and house, however, because we are work-
ing with elderly we cannot expect each one of them to an-
notate their own personal dataset. Therefore, we would like
a system which is able to use existing datasets from other
houses in order to learn the parameters of the model for a
new house. Using the knowledge gained in one problem
and applying it to a different but related problem is called
transfer learning (Mihalkova, Huynh, and Mooney 2007;
Raina, Ng, and Koller 2006).

In this work, we present a method which uses unlabeled
data from house A together with labeled data from house B,
to learn the parameters of a model for activity recognition in
house A. This involves two steps, first we need to find a way
to map the two sensor networks to each other. Because the
houses differ, the location of the sensors and the properties
they measure will also differ. To be able to use the data from
both houses we need to associate a sensor from house A to a
sensor in house B. Second, we need to learn the parameters
using the labeled and unlabeled data. We therefore use a
semi-supervised learning algorithm to find the parameters
of our model.

The remainder of this paper is organized as follows. In the
next section we discuss related work. After that, we describe
the various datasets that we used in this work. We then give
a description of our model for activity recognition and de-
scribe our method for transfer learning. Then we discuss the
experiments and results. Finally, we conclude by summing
up our findings.

Related work

Activity recognition has been performed using static sen-
sors (e.g. reed switches (Tapia, Intille, and Larson 2004),
motion detectors (Logan et al. 2007), cameras (Duong
et al. 2005)) and wearables (e.g. accelerometers (Lester
et al. 2005), wrist worn RFID reader (Patterson et al.
2005)). The technologies differ from each other in terms
of price, intrusiveness, ease to install and the type of data
they output (Schmidt 2002). Models used for recogniz-
ing activities can be probabilistic (Duong et al. 2005;
Patterson et al. 2005), logic based (Landwehr et al. 2007)
or hand-crafted (Fogarty, Au, and Hudson 2006). Proba-



bilistic models are popular because sensor readings are noisy
and activities are typically performed in a non-deterministic
fashion. Hidden Markov models were used to perform ac-
tivity recognition at an object usage level using a wrist worn
RFID reader (Patterson et al. 2005). Hierarchical hidden
Markov models were used to perform activity recognition
from video (Duong et al. 2005). And a comparison between
hidden Markov models and conditional random fields was
made to show the effectiveness of generative and discrimi-
native in activity recognition (van Kasteren et al. 2008).

All these models for activity recognition need labeled data
to learn their parameters. In work by Wilson a method is
proposed to make the collection of labeled data easier. In-
habitants of a house are shown a game-like environment on
a display, in which past sensor readings are shown using eas-
ily understandable icons. By letting the user manually anno-
tate each sequence of sensor readings, a personal dataset is
created which can be used for training (Wilson, Long, and
Atkeson 2005).

Previous work on transfer learning has been applied to
various domains. Transfer learning in general refers to the
problem of retaining and applying knowledge from one task
to a new related task. This knowledge transfer either con-
sists of the structure of a particular model being transfered,
the parameters of the model being transfered or both. For
example, in work by Mihalkova the structure in relation-
ships of individuals in an academic department are mapped
to the relationships in an international movie database (e.g.
a professor is mapped to a director) (Mihalkova, Huynh, and
Mooney 2007). While in work by Raina the prior over pa-
rameters in a text classification task was transfered by using
the co-occurance of words in a document (Raina, Ng, and
Koller 2006).

Datasets
The sensor network we used was chosen according to two
main criteria: ease of installation and minimal intrusion. It
consists of wireless network nodes to which simple off-the-
shelf magnetic reed switches were attached. The wireless
network node has an analog and digital input. It sends an
event when the state of the digital input changes or when
some threshold of the analog input is violated. Special low-
energy consuming radio technology, together with an en-
ergy saving sleeping mode result in a long battery life. The
node can reach a data transmission rate of 4.8 kb/s, which is
enough for the binary sensor data that we need to collect.

Two datasets were recorded using this sensor network.
Activities were chosen beforehand based on the Katz ADL
index, a commonly used tool in healthcare to assess cogni-
tive and physical capabilities of an elderly person (Katz et al.
1970). The activities were annotated by the subjects them-
selves while performing the activities, in one case a blue-
tooth headset was used, in the other an activity diary.

House 1

Using our sensor network, we recorded a dataset in the house
of a 26-year-old man. He lives alone in a three-room apart-
ment where 14 state-change sensors were installed. The sen-
sors were placed, amongst others, on doors, cupboards, the

refrigerator and in the toilet cistern (see fig. 1). Sensors were
left unattended, collecting data for 28 days in the apartment.
This resulted in 2120 sensor events.

Figure 1: Floorplan of house 1, red rectangle boxes indicate
sensor nodes.

Annotation was done by the subject himself at the same
time the sensor data was recorded. A bluetooth headset com-
bined with speech recognition software was used for anno-
tation (van Kasteren et al. 2008). Seven different activities
were annotated, namely: ’Out of house’, ’Toileting’, ’Show-
ering’, ’Sleeping’, ’Preparing breakfast’,’Preparing dinner’
and ’Preparing a beverage’. The timeslices at which nothing
is annotated is collectively grouped in an extra activity called
’other activities’. Table 1 shows the number of separate in-
stances of activities and the percentage of time each activity
takes up in the data set. This table clearly shows how some
activities occur very frequently (e.g. toileting), while others
that occur less frequently typically have a longer duration
and therefore take up more time (e.g. leaving and sleeping).
A total of 245 activity instances were annotated by the sub-
ject.

Number Percentage
of instances of time

Other acts. - 11.5%
Out of house 34 56.4%
Toileting 114 1.0%
Showering 23 0.7%
Sleeping 24 29.0%
Breakfast 20 0.3%
Dinner 10 0.9%
Drink 20 0.2%

Table 1: Number of instances and percentage of time activi-
ties occur in the house 1 dataset.



Figure 2: Floorplan of house 2, red rectangle boxes indicate
sensor nodes.

House 2

A second dataset was recorded in the house of a 72-year-old
woman. She lives alone in an apartment where 13 state-
change sensors were installed. Locations of sensors include
doors, cupboards, refrigerator and a toilet flush sensor (see
fig. 2). Sensors were left unattended, collecting data for 6
days in the apartment. This resulted in 1318 sensor events.

Activities were annotated by the subject herself maintain-
ing an activity diary. The start and end time of each activity
was noted on a piece of paper at a resolution of 5 minutes.
The same activities as in house 1 were annotated, table 2
shows the list of activities together with the number of sep-
arate instances and the percentage of time. A total of 124
activity instances were annotated by the subject.

Number Percentage
of instances of time

Other acts. - 35.6%
Out of house 55 28.8%
Toileting 39 2.0%
Showering 4 0.5%
Sleeping 5 31.2%
Breakfast 7 0.9%
Dinner 8 0.6%
Drink 6 0.4%

Table 2: Number of instances and percentage of time activi-
ties occur in the house 2 dataset.

Dataset comparison

Comparing the two datasets, we see the percentage of ’out
of house’ time in house 1 is higher than in house 2. In house
2 we see that the ’other activities’ time is higher, while ’out
of house’ time is lower than in house 1. In terms of layout,
house 1 only has a single door through which the house can
be exited. House 2 has both a front and back door both of
which the subject used to leave and enter the house. House 1
has the bathroom and toilet in a seperate rooms, while house
2 has them in one room which can be accessed through two
doors. The bedroom in house 1 only has one entry point,

while in house 2 there are two doors leading to the bed-
room. A complete list of the sensors together with the func-
tion group they belong to is giving in table 3. The function
group shows a grouping of similar sensors, this information
is later used by the transfer learning algorithm.

Because of the differences in layout of the houses and be-
havior of the inhabitants, it is not so straightforward to com-
bine the two datasets to get improved results. However, our
method for transfer learning allows us to use the labeled in-
formation from house 1 to improve the results on the unla-
beled data of house 2.

Function Group House 1 House 2

House Entrance Front door Front door
Back door

Bedroom Entrance Hall-Bed door Live-Bed door
Bath-Bed door

Bathroom Entrance Hall-Bath door Hall-Bath door
Bath-Bed door

Toilet Entrance Hall-Toilet door Hall-Bath door
Bath-Bed door

Toilet Flush Toilet flush Toilet flush
Kitchen Cooking Microwave Microwave

Kitchen Food
Fridge Fridge
Freezer

Cupboard #1
Kitchen Drinks Cupboard #2 Cupboard #1
Kitchen Plates Cupboard #3
Kitchen Utensils Cupboard #4
Kitchen Cleaning Cupboard#2
Clean Clothes Washmachine
Clean Dish Dishwasher

Various Study door
Live-Hall door

Table 3: List of sensors from house 1 and house 2, ordered
by their function. The ’Room-Room door’ sensors refer to
sensors on doors connecting the two rooms. The term ’Live’
refers to the living room. Some sensors are listed more than
once because they belong to multiple function groups.

Model for Activity Recognition

Before applying transfer learning we first discuss the model
used for activity recognition, the effectiveness of this model
was shown in (van Kasteren et al. 2008). In this model,
the time series data obtained from the sensors is first divided
in time slices of constant length Δt (fig. 3). We denote a
sensor reading for time t as xi

t, indicating whether sensor
i fired at least once between time t and time t + Δt, with
xi

t ∈ {0, 1}. In the experiment section we introduce some
other ways to represent sensor readings. In a house with
N sensors installed, we define a binary observation vector
�xt = (x1

t , x
2
t , . . . , x

N
t )T . Using K activities, yt denotes the

activity at timeslice t, with yt ∈ {1, . . . , K}. Our model
finds a sequence of labels y = {y1, y2, . . . , yT } that best
explains the sequence of observations x = {�x1, �x2, . . . , �xT }
for a total of T time steps.



Figure 3: Showing the relation between sensor readings xi

and time intervals Δt.

Because of the noisy and ambiguous nature of the sen-
sor readings, temporal probabilistic models are ideal for this
task. We use a generative, parametric probabilistic model
known as the Hidden Markov Model (HMM). The genera-
tive nature of this model allows us to incorporate unlabeled
data, while the use of parameters allows for a compact rep-
resentation.

Hidden Markov Model

The Hidden Markov Model (HMM) is a generative prob-
abilistic model for sequential data, consisting of a hidden
variable and an observable variable at each time step (fig.
4). In our case the hidden variable is the activity performed,
and the observable variable is the vector of sensor read-
ings. There are two independence assumptions that define
this model, represented by the directed arrows in the figure.

• The hidden variable at time t, namely yt, depends only
on the previous hidden variable yt−1 (Markov assumption
(Rabiner 1989)).

• The observable variable at time t, namely xt, depends
only on the hidden variable yt at that time slice.

With these assumptions we can specify an HMM us-
ing three probability distributions: the distribution over
initial states π = {πk}, with πk = p(y1 = k); the

Figure 4: The graphical representation of a HMM. The
shaded nodes represent observable variables, while the white
nodes represent hidden ones.

state transition probability distribution A = {akl}, with
akl = p (yt = l|yt−1 = k) representing the probability of
going from state k to state l; and the observation distribu-
tion B = {bil}, with bil = p

(
xi

t = 1|yt = l
)

indicating
the probability that the state l would generate observation
xi

t = 1. Observations are binary and modeled as indepen-
dent Bernoulli distributions.

Learning the parameters (π, A,B) of these distributions
corresponds to maximizing the joint probability p(x, y) of
the paired observation and label sequences in the training
data. We can factorize the joint distribution in terms of
the three distributions described above as follows (Bilmes
2006):

p (x, y) =
T∏

t=1

p (yt | yt−1) p (�xt | yt) (1)

in which we write the distribution over initial states p(y1) as
p(y1 | y0), to simplify notation. We use the Expectation
Maximization (EM) algorithm to estimate the maximum-
likelihood parameters (Bishop 2006). The details of the EM
algorithm and how we use it to perform transfer learning are
discussed in the next section.

Transfer Learning

Our objective is to learn the parameters of the HMM, to per-
form activity recognition in a house A. However, in learning
these parameters we only use unlabeled data from house A
and labeled data from an independent house B. For house
B we have a sequence of ground truth labels LB of length
TB and sensor data xB consisting of TB binary observation
vectors each of length NB . For house A we have no labels,
but have TA binary observation vectors xA of NA dimen-
sions. Note the length of the two data sequences is likely
to be different (TA �= TB) and so is the number of sensors
(NA �= NB).

To reach our objective we need to do two things. First,
we need to map the two sensor data matrices xA and xB .
Because the layout of the houses differ it is possible that
sensor xi

A measures a different property than sensor xi
B . Us-

ing the data as it is, would associate sensor xi
A and xi

B to a
single parameter, even though they measure different prop-
erties. Therefore, we need to find a mapping F (xA) and
F (xB) resulting in x′A and x′B respectively, so that x′iA and
x′iB can be consistenly associated to a single parameter. Al-
though a perfect mapping is most likely impossible, since
two houses differ, we can experimentally determine which
mapping works best.

Second, we need to learn the parameters using the labeled
and unlabeled data. Therefore, after applying the mapping
we combine the two datasets into a single dataset of labeled
and unlabeled data. A semi-supervised learning algorithm is
then applied to find the maximum-likelihood parameters for
the HMM.

Mapping the sensor data

We propose a number of manual mapping strategies
Fmapping based on the function groups shown in table 3.



Intersect: For each function group, similar sensors are
matched and sensors that have no comparable sensor in
the other house are disregarded. For example, of the
’house entrance’ group only the front door sensors are
mapped and the back door sensor in house 2 is disre-
garded.

Duplicate: For each function group, similar sensors are
matched and sensors that have no comparable sensor in
the other house use any other sensor that exists in the
same function group. For example, the back door sen-
sor in house 2 is matched with the front door sensor of
house 1.

Union: For each function group, the union of all the sen-
sors in the group is taken resulting in one sensor output
per group per house. For example, the front and back door
in house 2 are combined into a single sensor and matched
with the front door sensor in house 1.

Semi-supervised learning of the parameters

Using one of the mappings described above, we get x =
{Fmapping(xA), Fmapping(xB)} and L = {LB}. We can
now use the Expectation Maximization (EM) algorithm to
find the maximum-likelihood parameters (θ = {π, A,B})
for the HMM. This is an iterative process in which the
current parameter values θold are used to find the expec-
tation Q(θ, θold) (E-step) and the new parameter values
θnew are determined by maximizing the expectation θnew =
arg maxθ Q(θ, θold) (M-step).

This is a semi-supervised learning approach, in which we
combine labeled and unlabeled training data, therefore our
E-step is given by:

Q(θ, θold) =
∑

y

p(y | x, L, θold) log p(x, y | L, θ) (2)

where x is the sequence of observed data, y the sequence of
hidden variables and L the sequence of labeled ground truth.
The posterior distribution is calculated using Bayes’ rule:

p(y | x, L, θ) =
p(x | y, L, θ)p(y | L, θ)∑
y p(x | y, L, θ)p(y | L, θ)

(3)

where p(x | y, L, θ) is the conditional probability of the data
and p(y | L, θ) can be calculated by applying Bayes’ rule
once more:

p(y | L, θ) =
p(L | y, θ)p(y | θ)∑
y p(L | y, θ)p(y | θ)

(4)

where p(y | θ) is the probability given by the state transi-
tions and p(L | y, θ) is given by:

p(L | y, θ) =
T∏

t=1

p(Lt | yt, θ) (5)

p(Lt | yt, θ) =

⎧⎪⎨
⎪⎩

0 if label exists and L �= y

1 if label exists and L = y
1
|y| if label doesn’t exist

(6)

Propagating the values of (6) into (5-3), we obtain that
p(y|x, L, θ) = 1 if L = y; 0 if L �= y and p(y | x, θ) if
L is absent.

In the M-step we reestimate the parameters of the HMM,
the parameters that maximize the expectation Q(θ, θold) are
given by (Bilmes 1997):

πk = p(y1 = k | x, L, θold) (7)

akl =
∑T

t=2 p(yt = l, yt−1 = k | x, L, θold)∑T
t=2 p(yt−1 = k | x, L, θold)

(8)

bil(o) =
∑T

t=1 p(yt = l, | xi
t = o, L, θold)∑T

t=1 p(yt = l, | L, θold)
(9)

Experiments

In this section we present the experimental results acquired
in this work. We first describe our experimental setup, a
description of the experiments and a presentation of the ac-
quired results. Then we conclude the section with a discus-
sion of the acquired results.

Setup

In our experiments the sensor readings are divided in data
segments of length Δt = 300 seconds. Previous experi-
ments have shown that smaller segments result in the same
mean accuracy, but with smaller variance (van Kasteren and
Kröse 2007). Due to the resolution at which the house 2
dataset was annotated, we did not use segments of smaller
length.

The raw sensor representation gives a 1 when the sensor
is firing and a 0 otherwise (fig. 5a). However, in this work
we use the change point representation, which gives a 1 to
timeslices where the sensor reading changes (fig. 5b) and the
last sensor fired representation, gives a 1 for the sensor that
changed state last and 0 for all other sensors (fig. 5c). The
change and last sensor representation give the best results in
activity recognition (van Kasteren et al. 2008).

a)

b)

c)

Figure 5: Example of sensor firing showing the a) raw, b)
change point and c) last observation representation.

We evaluate the performance of our models by two mea-
sures, the time slice accuracy and the class accuracy. These
measures are defined as follows:

Time slice:
∑N

n=1[infered(n)=true(n)]

N

Class: 1
C

∑C
c=1

{∑Nc
n=1[inferedc(n)=truec(n)]

Nc

}



in which [a = b] is a binary indicator giving 1 when true and
0 when false. N is the total number of time slices and C is
the number of classes.

Measuring the time-slice accuracy is a typical way of
evaluating time-series analysis. However, we also report
the class average accuracy, which is a common technique
in datasets with a dominant class. In these cases classifying
all the test data as the dominant class yields good time-slice
accuracy, but no useful output. The class average though
would remain low, and therefore be representative of the ac-
tual model performance.

Experiment 1: Mapping comparison

In this experiment we wish to determine which mapping
technique gives the best results in transfer learning. We use
the labeled training data from house 1 combined with the
unlabeled training data from house 2 for training. Discritiz-
ing the data resulted in 8002 labeled timeslices from house
1 and 1628 unlabeled timeslices from house 2. All three
mapping techniques are tested and EM is performed using
randomly initialized parameters. The parameters obtained
through transfer learning are used by the HMM to perform
inference on the house 2 dataset. The hidden Markov model
used consists of a single hidden node taking one of eight
possible state values (one for each activity) and 16, 26 or 18
binary observation nodes for the intersect, duplicate or union
mapping, respectively.

Table 4 shows the resulting accuracies of all the map-
pings. We see that the ’union’ mapping outperforms the
other mappings.

Accuracy in % Timeslice Class
Mapping Mean Std Mean Std
Intersect 45.4 9.4 43.5 8.2
Duplicate 52.3 7.1 45.7 6.4
Union 66.8 10.2 58.2 9.7

Table 4: Timeslice and class accuracies using our transfer
learning method for the various kinds of mappings.

Experiment 2: Learning comparison

The goal of this experiment is to compare the performance
of our method with a fully supervised approach and with a
naive transfer learning approach. In the fully supervised ap-
proach we use labeled training data from house 1 and house
2 to learn the model parameters. We use a cross-validation
technique called leave-one-day-out, in which we use one day
for testing and the remaining days for training, cycling over
all the days of the house 2 dataset. In the naive transfer
learning approach we perform EM using only the house 1
labeled training data and use the learned parameters to per-
form inference on the house 2 dataset. In all approaches
union mapping was used.

By comparing our method with the fully supervised ap-
proach, we see how close we are to achieving the best pos-
sible results using this model and this dataset. While the
comparison with the naive approach shows us how much

our method improves the results over a straight forward ap-
proach.

Table 5 shows the accuracies for the various approaches.
We see that our method improves the results in comparison
with the naive approach.

Accuracy in % Timeslice Class
Mapping Mean Std Mean Std
Supervised 70.9 9.4 64.6 8.0
Our method 66.8 10.2 58.2 9.7
Naive 64.6 11.8 54.5 3.2

Table 5: Timeslice and class accuracies using supervised,
our method, or the naive approach.

The confusion matrix for the supervised approach can be
found in table 6, for our method in table 8 and for the naive
approach in table 7. We see that all three approaches com-
pletely fail to classify showering. Both our method and the
naive approach fail to classify preparing breakfast. Further-
more, we see that the increase in performance of our method
in comparison with the naive approach is mainly with re-
spect to the ’other acts’, ’prepare dinner’ and ’prepare drink’
activities.

Discussion

The experiments show that our method of transfer learning
for activity recognition can be succesfully applied using the
union mapping. By combining the sensors in a function
group we were able to effectively use all the sensors that
are of importance to the various activities. Furthermore, it
allowed us to transfer the knowledge of the correlations be-
tween the various sensors and the activities from one context
to the next. The other mappings were less succesful, because
either important sensors were excluded or because important
correlations were missed.

An important element of our method is that we use both
labeled and unlabeled data during the EM iterations. An al-
ternative approach would be to first learn the model param-
eters using only the labeled data from house 1 and then use
these parameters to perform EM using only the unlabeled
data from house 2. However, the problem with this approach
is that after the initialization there are no constraints in lead-
ing the algorithm to the activities we are interested in. It is
very well possible it will find a set of parameters that fit the
data better, but will cause the model to recognize meaning-
less activities such as going to the hallway.

The confusion matrices from experiment 2 show us that
our method mainly improved the recognition of the ’other
acts.’ activity. Because the ’other acts.’ activity is not a
clearly defined activity, but rather a collection of any activity
that we do not monitor, it is very person specific. By using
EM we are able to adjust the parameters to account for this
person specific behavior accordingly. The confusion matri-
ces also show us that the showering and the prepare break-
fast activity are not recognized correctly at all. This is due
to the high level of ambiguity in the sensor patterns of house
2. Showering is confused with toileting and ’other acts.’,
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Other acts. 37.0 34.7 4.3 0.6 17.6 2.8 2.4 0.6
Out of House 3.4 77.5 3.6 0.0 10.5 1.5 3.4 0.0
Toileting 0.0 0.0 95.7 2.9 0.0 0.0 1.4 0.0
Showering 7.7 0.0 92.3 0.0 0.0 0.0 0.0 0.0
Sleeping 0.0 0.0 2.0 0.0 98.0 0.0 0.0 0.0
Breakfast 26.1 0.0 17.4 0.0 0.0 34.8 21.7 0.0
Dinner 0.0 0.0 0.0 0.0 0.0 36.8 63.2 0.0
Drink 0.0 0.0 6.7 0.0 0.0 0.0 0.0 93.3

Table 6: Confusion Matrix for supervised approach using
cross validation. The values are percentages.

while preparing breakfast is mainly confused with prepar-
ing dinner. This is because the toilet and the shower are
shared in a single room, which makes the information from
the door sensors not enough to seperate the two activities.
However, installing a simple humidity sensor would most
likely solve this problem. The same applies to preparing
breakfast, house 2 had relatively few number of sensors in
the kitchen.

Conclusions

This paper introduces a method to use the knowledge about
activity recognition from one context and apply it in a new
context, so no labeled training data of the new context is
required. A number of mappings were proposed and the ef-
fectiveness of these mappings was compared. We showed
our method improves the performance of our activity recog-
nition model over a naive approach. Our evaluation was per-
formed using datasets recorded in two different houses. This
gives us early experimental evidence that our method works,
we are recording more datasets to evaluate our method in a
more settings.
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Out of House 0.8 76.1 4.4 0.0 10.5 0.0 7.6 0.6
Toileting 0.0 0.0 94.2 2.9 1.4 0.0 1.4 0.0
Showering 0.0 0.0 92.3 0.0 7.7 0.0 0.0 0.0
Sleeping 0.0 0.0 2.0 0.0 98.0 0.0 0.0 0.0
Breakfast 0.0 0.0 17.4 0.0 0.0 0.0 78.3 4.3
Dinner 5.3 0.0 10.5 0.0 0.0 26.3 52.6 5.3
Drink 0.0 0.0 6.7 0.0 0.0 0.0 0.0 93.3

Table 7: Confusion Matrix for the naive transfer learning
approach. The values are percentages.
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Other acts. 30.2 33.8 4.3 1.7 16.9 0.0 2.8 10.3
Out of House 0.2 71.9 3.1 0.0 10.5 0.0 0.4 13.9
Toileting 0.0 0.0 94.2 2.9 1.4 0.0 0.0 1.4
Showering 0.0 0.0 92.3 0.0 7.7 0.0 0.0 0.0
Sleeping 0.0 0.0 2.0 0.0 98.0 0.0 0.0 0.0
Breakfast 21.7 0.0 17.4 0.0 0.0 0.0 0.0 60.9
Dinner 0.0 0.0 15.8 0.0 0.0 5.3 68.4 10.5
Drink 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0

Table 8: Confusion Matrix for our transfer learning method.
The values are percentages.
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