
INTRODUCTION

With the rapid advancement of technology,
complex work systems have evolved in which op-
erators must adapt their decision making and per-
formance in the face of dynamic, ever-changing
environments, concurrent task demands, time
pressure, and tactical constraints (Moray, 1997;
Sheridan, 2002). The assessment and prediction
of the mental workload associated with operating
such complex systems has long been recognized
as an important issue (e.g., Gopher & Donchin,
1986; Moray, 1979). Mental workload – or just
workload – is the general term used to describe
the mental cost of accomplishing task require-
ments (Hart & Wickens, 1990; Wickens, 1992).
Workload varies as a function of task demands
placed on the human operator and the capacity of
the operator to meet those demands (Gopher &
Donchin, 1986; Hopkin, 1995). High levels of

workload occur when task demands exceed oper-
ator capacity.

Research efforts in complex work systems such
as piloting (e.g., Wilson, 2002), unmanned aerial
vehicle control (e.g., Dixon, Wickens, & Chang,
2005), anesthesiology (e.g., Leedal & Smith, 2005),
railway signaling (e.g., Pickup et al., 2005), and
automobile driving (e.g., Recarte & Nunes, 2003)
have focused on identifying factors that influence
mental workload and techniques for measuring it.
In contrast, in the current paper we develop a the-
oretical model of operator strategic behavior and
workload management, within the context of en
route air traffic control (ATC), through which task-
related workload can be predicted within com-
plex work systems. The model we present takes
into account the changing task priorities and man-
agement of resources by operators as well as the
feedback that operators receive in response to their
input. In the next section, we explain the nature of
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the work performed by en route air traffic con-
trollers (ATCos) and provide an overview of our
approach.

OVERVIEW

Controlled airspace is divided into sectors. An
en route sector is a region of airspace that is typ-
ically situated at least 30 miles (~48 km) from an
airport for which an associated ATCo has respon-
sibility. ATCos have to accept aircraft into their
sector; check aircraft; issue instructions, clear-
ances, and advice to pilots; and hand aircraft off
to adjacent sectors or to airports. The radar screen
displays characteristics of the sector (e.g., bound-
aries and airways), the spatial position of aircraft,
and vital flight information (identifiers, altitude,
speed, flight destination). When the aircraft leaves
the airspace assigned to the ATCo, control of the
aircraft passes on to ATCo controlling the next
sector (or to the tower ATCo). As is typical in
many real-world complex systems, this environ-
ment imposes multiple concurrent demands on the
operator. As Gronlund, Ohrt, Dougherty, Perry,
and Manning (1998) described it, “In the en route
air traffic control environment (involving the high-
speed and high-altitude cruise between takeoff
and landing), the system that confronts the air traf-
fic controller comprises a large number of aircraft
coming from a variety of directions, at diverse
speeds and altitudes, heading to different desti-
nations. Like most complex, dynamic systems,
this one cannot be periodically halted while the
controller takes a brief respite” (p. 263).

ATCos have two main goals. The primary goal
is to ensure that aircraft under jurisdiction adhere
to International Civil Aviation Organization
(ICAO) mandated separation standards. For ex-
ample, one of the most common separation stan-
dards requires that aircraft under radar control be
separated by at least 1,000 feet vertically (2,000
feet above 29,000 feet, unless reduced vertical
separation minima apply) and 5 nautical miles
horizontally. The secondary goal is to ensure that
aircraft reach their destinations in an orderly and
expeditious manner. These goals require the ATCo
to perform a variety of tasks, including monitoring
air traffic, anticipating loss of separation (i.e., con-
flicts) between aircraft, and intervening to resolve
conflicts and minimize disruption to flow. (For an
extensive compilation of the tasks and goals of en
route control, see Rodgers & Drechsler, 1993.)

Total world airline scheduled passenger traffic
in terms of passenger-kilometers is projected to
grow at an annual average rate of 4.4% over the
period 2002 to 2015, according to forecasts pre-
pared by the ICAO (2004). In the United States
alone, the number of aircraft handled by ATC
centers is expected to increase from 46.2 million
in 2004 to more than 60.2 million in 2016 (Feder-
al Aviation Administration, 2005). To accommo-
date predicted traffic growth there is a need to
increase en route airspace capacity through the
introduction of new air traffic management sys-
tems (e.g., free flight) or the adaptation of existing
airspace designs (e.g., sector boundaries), con-
troller tools (e.g., conflict resolution), and proce-
dures (e.g., reduced separation minima). The
consensus among research and operational com-
munities is that it is important to understand the
factors that drive mental workload if they are to
improve airspace capacity (Christien, Benkouar,
Chaboud, & Loubieres, 2003; Majumdar, Ochieng,
McAuley, Lenzi, & Lepadatu, 2004).

Most research has focused on identifying char-
acteristics of the air traffic picture that create task
demand for ATCos (e.g., Grossberg,1989; Kirwan,
Scaife, & Kennedy, 2001; Manning, Mills, Fox,
& Pfleiderer, 2001). These characteristics include
the number of aircraft in transition though a sec-
tor, the number of aircraft changing altitude, and
the number of potential conflicts. Several research
groups have attempted to predict mental workload
on a moment-to-moment basis by using linear
combinations of task demand factors as predic-
tors. The resulting sets of task demand factors are
known as dynamic density metrics. Studies have
shown that the dynamic density of the airspace at
a given moment accounts for approximately half
the variance in workload at that point in time
(e.g., Kopardekar & Magyarits, 2003; Laudeman,
Shelden, Branstrom, & Brasil, 1998). In psycho-
logical terms, this represents relatively strong pre-
diction. In practical terms, however, a significant
proportion of variance remains unaccounted for.
Furthermore, one goal of workload modeling is
to allow ATC providers to predict workload levels
ahead of time in order to allow them to put work-
load management strategies in place. For example,
this may include splitting a sector or introducing
flow restrictions. However, to date, dynamic den-
sity metrics have been unable to accurately pre-
dict ATCo workload ahead of time (Kopardekar
& Magyarits, 2003; Majumdar & Ochieng, 2002;
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Masalonis, Callaham, & Wanke, 2003). Many re-
searchers argue that these limitations stem from
the fact that there is no simple linear relationship
between task demand and workload (e.g., Athènes,
Averty, Puechmorel, Delahaye, & Collet, 2002;
Chatterji & Sridhar, 2001). Moreover, these re-
searchers view workload as an emergent property
of the complex interaction between the ATCo and
the air traffic situation, rather than as a simple
outcome of task demand inputs at a single point
in time.

The approach to predicting ATCo mental work-
load that is presented in the current paper is in line
with these views. According to Sperandio (1971),
workload is not something imposed upon a pas-
sive ATCo but, rather, is something the ATCo
actively manages. He proposed a model in which
changes in strategy (primarily resource manage-
ment) allow ATCos to regulate how task demands
are transformed into workload, thus keeping
workload within acceptable limits. In a paper that
deserves to be better known, Rouse, Edwards, and
Hammer (1993) took a similar view, modeling
workload as a feedback control process driven by
subjective mental workload. Several current re-
search groups agree with Sperandio’s (1971) view
that a relationship between task demand and work-
load can be better understood by considering how
ATCos use strategies to manage their resources
and regulate their workload (Athènes et al., 2002;
Averty, Collet, Dittmar, Vernet-Maury, & Athènes,
2004; Cullen, 1999; Hilburn, 2004; Histon &
Hansman, 2002; Majumdar et al., 2004). Another
key aspect of Sperandio’s (1971) approach is that
the effect of ATCo control actions on the system
is fed back to the ATCo, such that future task de-
mands are actively regulated by the ATCo (Pawlak,
Brinton, Crouch, & Lancaster, 1996).

In the current paper, we present a model of
mental workload that puts ATCos in the loop with
air traffic events, reacting to the consequences of
their own proactive behavior. Without denying the
validity of the task demand approach, we argue
that the link between task demand and workload
is largely connected to the manner in which ATCos
manage their resources. We begin by outlining a
general model of workload in ATC and contrast
it with previous approaches. We then review task
demand research in ATC. A characteristic of this
research that limits its interpretability is the ex-
tremely large list of methods and task demand
factors that have been reported. (For exhaustive

reviews, see Hilburn, 2004; and Mogford, Gutt-
man, Morrow, & Kopardekar, 1995.) The model
presented in this paper provides a framework for
integrating this literature and studying its poten-
tial strengths and shortcomings. We then turn our
attention to the smaller body of research that has
focused on ATCo control strategies (e.g., Amaldi
& Leroux; 1995; Histon & Hansman, 2002) and
to task models that have been built to simulate the
performance of ATCos (e.g., Callantine, 2002;
Leiden, Kopardekar, & Green, 2003). Finally, we
review models in which researchers have attempt-
ed to integrate task demands with human perfor-
mance models in order to predict workload (e.g.,
Averty et al., 2004; Cullen, 1999).

MENTAL WORKLOAD MODELING
ARCHITECTURES

In this section we outline different modeling
architectures that have been used to understand
ATCo mental workload. At the end, we present the
architecture that guides our review of the litera-
ture that follows.

Common Architectures

Aprevalent model in ATC mental workload re-
search is that different properties, or task demands,
of the air traffic situation will pose problems of
different levels of complexity to the ATCo and,
depending on the ATCo’s skill, experience, and
strategy, will produce different levels of subjective
workload. This is effectively an open-loop model,
as shown in Figure 1. Variants of this general open-
loop architecture have been used to model sources
of ATCo workload. For example, Hilburn and
Jorna’s (2001) model shows system factors com-
bining to create task demand, which, in accordance
with operator factors such as skill, strategy, and
experience, will lead to some degree of workload.
Similarly, Mogford et al.’s (1995) model depicts
a relationship between source factors (objective
complexity, air traffic patterns, sector character-
istics) and workload being mediated by quality
of equipment, individual differences, and ATCo
strategies. Both these models acknowledge that
ATCo strategy can influence workload. Neverthe-
less, researchers using these models as frame-
works have tended to focus on whether individual
aspects of the ATC environment affect workload.
We argue that the tendency to seek input-output
relations (“does increasing the number of aircraft
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increase workload?” or “how does strategy influ-
ence the impact of the number of aircraft on work-
load?”) fails to take into account fully the goals
and management of resources by the ATCo and
feedback that the ATCo receives from the system
in response to his or her input.

Sperandio’s Architecture

It is interesting to contrast the aforementioned
models with that of Sperandio (1971), shown in
Figure 2. Again, task demand is on the left and
mental workload on the right. Consistent with the
previous two models, Sperandio (1971) proposed
that ATCo strategy is an intervening variable be-
tween task demand and the work achieved and that
the ATCo selects strategies to keep mental work-
load within acceptable limits. However, in contrast
to the models mentioned in the previous para-
graph, the Sperandio (1971) model includes two
feedback control loops. First, variation in mental
workload resulting from work methods has,
through feedback, a regulating effect on the choice
of work methods (Feedback Loop 1). Second, the
work method used in response to perceived task
demands regulates the task demand encountered

in the future (Feedback Loop 2). Sperandio (1971)
emphasized that it is the change in workload, not
the change in task demand, that explains the
change in strategy. The change in strategy changes
what information is extracted from the airspace
and thus affects workload. The relationship among
task demand, strategy, and workload is adaptive
and so can be shown only in a feedback control
diagram, as shown in Figure 2. This position is
consistent with that of Rouse et al. (1993) but is
in contrast to much subsequent research in which
mental workload is predicted from objectively
measured characteristics of the airspace, tuned by
strategy and other factors.

A Systems Approach to Modeling Mental
Workload

The basis of our approach is that the ATCo is
in a continuous relationship with a dynamic world
and is an adaptive element in that world (Athènes
et al., 2002; Pawlak et al., 1996; Sperandio, 1971).
As a result, mental workload cannot be a function
solely of task demands; it is also a function of the
strategy the ATCo uses to manage traffic and
whether the strategy, once invoked, has provided
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a comfortable level of control over task demands.
In the next section, we work through the ATC lit-
erature with the help of the model that is shown in
Figure 3. In an adaptation of Sperandio’s (1971)
model, our model represents two control loops that
govern ATCo activity: first, the management of
workload by the internal reorganization of prior-
ities leading to a different strategy; and second,
the management of workload by explicit control
of the airspace. The work of the ATCo occupies
the shaded part in the centre of Figure 3, where-
as the world that the ATCo controls is shown in
the perimeter.

The model in Figure 3 simplifies the world
that the ATCo controls. It shows two aircraft,
which is the minimum needed to indicate that the
ATCo is concerned with managing relationships
among aircraft rather than controlling single air-
craft in isolation. One aircraft is at the top of Fig-
ure 3 and the other at the bottom. Each aircraft
receives instructions from the ATCo (see plus
signs [+] on links into adder symbols at top right
and bottom right of Figure 3). The pilot considers
the difference between the instruction and the air-

craft’s current flight profile (see minus sign [–]
on feedback loops coming into rightmost adder
symbols) and makes an appropriate adjustment
to the aircraft’s flight profile. The aircraft’s new
flight profile is combined with the flight profile of
all other aircraft (see two + signs entering adder
at left) and becomes the task demand fed back to
the ATCo. The ATCo can take action to change fu-
ture task demand fed back through the system
(e.g., by accepting aircraft early or by putting air-
craft in a holding pattern) or he or she can change
future task demand with cognitive strategies (e.g.,
by considering a set of aircraft as one for purpos-
es of control).

The ATCo remains aware of work to be done
by monitoring present task demands (see left of
Figure 3). The work to be done is translated into
actual work done through the control activities
performed. As Figure 3 suggests, a set of control
activities can be classified as a strategy. A strategy
can be described as a specific class of air traffic
management that achieves one or more objectives
(e.g., safety, orderliness, expeditiousness) with a
certain investment of time and effort. Selection
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Figure 3. Model of ATCo activity in which strategy is controlled through feedback and feedforward information about
mental workload. Work to be done represents how objective task demands are mentally represented by the ATCo.
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among strategies is driven by the relative priority
of the ATCo’s objectives as the work to be done
evolves over time (Kallus, Van Damme, & Ditt-
man, 1999; Kirwan & Flynn, 2002; Niessen,
Eyferth, & Bierwagen, 1999). The strategy chosen
will lead to a certain quality of control over the
situation, which will often reflect subjective time
pressure. For example, the contextual control mod-
el (COCOM) of Hollnagel (2002) and Hollnagel
and Woods (2005) distinguishes strategic, tactical,
opportunistic, and scrambled control as the result
of an operator’s subjective judgment of the rela-
tionship between time available for action (Ta) and
the time required to evaluate the situation (Te),
select a response (Ts), and perform the response
(Tr). In their COCOM model, strategic and tacti-
cal control are mostly proactive, whereas oppor-
tunistic and scrambled control are mostly reactive.
An ATCo will work to achieve strategic control
and avoid scrambled control as much as possible.

Figure 3 indicates that prioritization drives
control activities/strategies. Prioritization refers
to the professional set of values that guide control
of air movements at any point, such as safety,
orderliness, and expeditiousness. Prioritization,
in turn, is driven by metacognitive factors such as
awareness of time available to perform tasks,
anticipation of future difficulties, and the ATCo’s
knowledge of his or her capacity. However, we do
not assume that this is a conscious process. In-
stead, prioritization is a consideration satisfied
directly or indirectly through control action. The
strategy may be a learned response that is not open
to introspection, and it may not require explicit
consideration of safety, orderliness, or expedi-
tiousness. However, this does not remove the fact
that strategies will always reflect some balance of
priority among safety, orderliness, and expedi-
tiousness. The selection of strategy will be logi-
cally guided by the appropriate priority even if the
priority is not consciously accessed.

Focusing in particular on time, Schmidt (1978)
predicted ATCo mental workload with a queuing
theory model based on the relationship between
the frequency of observable tasks that require de-
cisions/actions and the time required to make these
decisions/actions. More recently, Hendy, Liao,
and Milgram (1997) used a simulated ATC task and
modeled overall workload as a univariate function
of time pressure. Time pressure, in turn, was mod-
eled as the ratio of time available to time required,
also expressible as the ratio of the information-

processing rate demanded by a task and the max-
imum information-processing capacity of the
ATCo. Performance data were well matched by
the model. Most recently, Rantanen and Levinthal
(2005) demonstrated that an ATCo’s time to first
intervention in resolving conflicts was faster when
the ratio of time to act to the duration of a window
of opportunity for action was small – in other
words, when there was less discretionary time.

The dashed lines within the shaded ATCo part
of Figure 3 indicate that metacognition can be
influenced by both feedforward and feedback sig-
nals. Looking at feedforward (at left), the ATCo
may be aware that a large number of aircraft are
about to enter the sector and thus adjusts his or her
strategy for handling traffic already on frequency.
Looking at feedback (at right), the ATCo may be
aware that the quality of actual work done may
have been compromised by time pressure and thus
adjust priorities toward achieving safety at the
possible expense of expeditiousness (e.g., by rear-
ranging the trajectories of aircraft in order to min-
imize monitoring and coordination requirements).
The adder to the right of metacognition in Figure
3 shows that the ATCo may notice differences
between the work to be done and the actual work
that is getting done, which will also trigger a meta-
cognitive response. For example, the ATCo may
realize that a heavy communication load is mak-
ing him or her fall behind in dealing with work to
be done, yet an even heavier communication load
is anticipated. A rearrangement of priorities may
offer a control strategy that has a less intense com-
munications load. In these ways the model in Fig-
ure 3 represents the fact that ATCos behave and
react to the consequences of their behavior – in
respect both to the perceived discrepancy between
current goals and system state and to the ATCo’s
understanding of his or her own capacity – and
that these processes drive mental workload.

In the following sections we review research
on the relationships between task demand and
mental workload and between operator capacity
and mental workload. Then we review research
that combines the two in ways that are at least par-
tially consistent with the model in Figure 3.

TASK DEMANDS AND MENTAL 
WORKLOAD

Research concerning the relationship between
task demand and mental workload has had a long
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history, dating back more than 40 years (Arad,
1964; Couluris & Schmidt, 1973; Davis, Dana-
her, & Fischl, 1963; Hurst & Rose, 1978; Schmidt,
1976). This research has focused on uncovering
properties of the air traffic environment that con-
tribute to cognitive complexity and, via tuning fac-
tors such as skill, strategy and experience, result
in workload (see Figure 1). The task demand liter-
ature, in its own right, provides a solid basis from
which to model the complexity of task demands
(work to be done) in the ATC system. Researchers
have expended great effort in developing predic-
tive models based on task demand, and the fact
that these models have been able to account for
significant variance in ATCo workload warrants
a state-of-the-art review and synthesis. We main-
tain, however, that focusing only on task demand
overlooks the reciprocal interactions presented in
Figure 3. Subsequently, we examine whether the
task demand literature explicitly or implicitly mod-
els these aspects of control, and we outline con-
tradictions in the literature that result from the
failure to take a systems view.

Our review of task demand research is sum-
marized in Table 1. The material is drawn from
government and contractor technical reports, op-
erational reviews, journal articles, and book chap-
ters. Much material originates in the United States
and Europe, primarily from the Federal Aviation
Administration, the National Aeronautics and
Space Administration (NASA), and the European
Organisation for the Safety of Air Navigation
(EUROCONTROL). During the review process,
we found that several aspects of task demand
research limited its interpretability. Two valuable
surveys of research relating to task demand (Hil-
burn, 2004; Mogford et al., 1995) do not explicit-
ly address these issues. These constraints, and how
we dealt with them, will be briefly discussed next.

First, systematic comparison among studies
was complicated by the wide variety of research
methodologies reported. As presented in Table 1,
these methodologies include knowledge elicita-
tion techniques such as verbal protocol analysis
(e.g., Pawlak et al., 1996), experiments in which
researchers made predictions a priori about how
mental workload will vary with systematic manip-
ulation of task demand (e.g., Boag, Neal, Loft, &
Halford, 2006), and correlational studies in which
researchers extracted values for task demand fac-
tors from flight data and correlated these values
with workload on a post hoc basis (e.g., Kopar-

dekar & Magyarits, 2003). A second characteris-
tic of task demand research that limits cross-study
comparison is the wide variety of workload mea-
sures used. An evaluation of the advantages and
disadvantages of each approach is beyond the
scope of this paper (see Farmer & Brownson,
2003; Hilburn & Jorna, 2001). However, Table 1
categorizes studies according to the workload cri-
terion employed. As is evident from Table 1, the
measurement of workload is far from uniform.

Table 1 reveals that most studies have focused
on identifying traffic factors. Traffic factors re-
flect the instantaneous distribution of air traffic in
a sector in terms of both the number of aircraft and
the complexity of their relationships. However,
ATCos can actively regulate the mental workload
associated with traffic factors by using economi-
cal control strategies. Researchers such as Hilburn
(2004) and Histon and Hansman (2002) identified
two further factors that influence the choice and
effectiveness of ATCo control strategies and which
are generally independent from traffic factors.
Airspace factors reflect the underlying structural
properties of the airspace (e.g., number of cross-
ing altitude profiles). Airspace factors constrain
the relationship between traffic factors and work-
load by shaping the evolution of air traffic and
creating predictable air traffic patterns that can be
exploited by ATCos. Operational constraints re-
flect operational requirements (e.g., restrictions of
available airspace) that place restrictions on ATCo
strategy and control action.

Traffic Factors Predicting Mental
Workload

Task demand research has typically focused on
explicit properties of the distribution of aircraft
that predict mental workload and are computed in
real time using radar track data or derivations
thereof. Of all the traffic factors, the aircraft count,
or the number of aircraft under control, is the most
powerful predictor of workload (e.g., Hurst &
Rose, 1978; Kopardekar & Magyarits, 2003; Man-
ning et al., 2001). High aircraft count leads to an
increase in workload because it increases the mon-
itoring, communication and coordination required
to handle aircraft in a safe, orderly, and expedi-
tious manner.

Density factors are derivatives of traffic count
that measure the horizontal and vertical distances
between aircraft and the way in which these dis-
tances change with time. Various measures of
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traffic density have been developed, including the
average horizontal (or lateral) separation distances
between aircraft (Chatterji & Sridhar, 2001) and
aircraft counts divided by sector volumes (Kopar-
dekar & Magyarits, 2003). These density measures
assume, perhaps erroneously, that all aircraft in
close proximity are noticed by the ATCo and there-
fore exert some influence on mental workload. In
reality, the influence of aircraft density on work-
load will depend on what the aircraft are doing in
relation to each other – for example, whether they
are converging or diverging. For this reason, den-
sity factors based on the minimum separations be-
tween pairs of aircraft are more sensitive (Chatterji
& Sridhar, 2001). Close future minimum separa-
tion between an aircraft pair will undoubtedly cap-
ture ATCo attention because of the likelihood of
a separation violation, reducing the ATCo’s capac-
ity to attend to other control tasks.

Although traffic count and density adequately
reflect the number of routine aircraft-associated
tasks that an ATCo has to perform within a certain
time frame, the complexity of air traffic is impor-
tant in determining the difficulty of the tasks or
events handled and thus the resulting mental
workload. ATCos report that they can handle rel-
atively large volumes of traffic if the aircraft are
flying on regular routes and the flow is orderly
(e.g., Amaldi & Leroux, 1995; Mogford et al.,
1995). In contrast, small volumes of traffic can
lead to overload if aircraft interact in complex
ways (Kallus, Van Damme, & Dittman, 1999;
Mogford et al., 1995). Complexity factors fall
into two categories. The first are commonly re-
ferred to as aircraft transition factors and capture
changes in an aircraft’s state in any of the three
axes of altitude (e.g., Lamoureux, 1999), speed
(e.g., Kopardekar & Magyarits, 2003), or heading
(e.g., Laudeman et al., 1998). Performance mix
of aircraft is also an important aircraft transition
factor (Schaefer, Meckiff, Magill, Pirard, & Aligne,
2001). In order to calculate the minimum separa-
tion between two aircraft in altitude transition,
the ATCo needs to know how fast the aircraft will
climb (or descend) relative to each other. Pre-
sumably, this job would be made harder by in-
creased variability in performance profiles.

The second set of complexity factors relates to
the number and nature of potential conflicts with-
in a sector. Potential conflicts emerge from the
combination of density and transition factors pre-
sent at any time. The influence of potential con-

flicts on mental workload depends on their spe-
cific properties. For example, Boag et al. (2006)
developed a “transitions metric” for assessing the
difficulty of judging whether a pair of aircraft will
be in lateral and vertical conflict at the same time.
If two aircraft are on converging flight paths, and
are both maintaining the same level, then the
ATCo simply needs to assess whether they will
violate the lateral separation standard. This prob-
lem is relatively simple because the ATCo need
consider only one transition (the transition into lat-
eral conflict). However, if the aircraft are chang-
ing levels, then the ATCo must assess when the
aircraft will violate and regain separation in one
dimension and also whether the aircraft will be in
conflict in the other dimension at the same time.
Up to four transitions (into and out of lateral and
vertical conflict) may be possible. The Boag et al.
(2006) transitions metric accounted for signifi-
cant amounts of variance in ATCos’ ratings of
complexity and workload. Imminent violations
of separation also increase workload (Chatterji &
Sridhar, 2001). The time available for an ATCo to
detect and respond to a potential conflict affects
how difficult the conflict is to resolve. A conflict
that develops quickly gives the ATCo only a lim-
ited time to act, creating significant time pressure.
Conflicts in close proximity to sector boundaries
(e.g., Pawlak et al., 1996) and/or high numbers of
surrounding aircraft (e.g., Kopardekar & Magyar-
its, 2003) also constrain how conflicts can be
resolved, reducing the number of options for
maneuvering.

Combining Task Demand Factors Into
Dynamic Density Metrics

Several research groups (Kopardekar & Mag-
yarits, 2003; Laudeman et al., 1998; Masalonis
et al., 2003) have used regression models to iden-
tify sets of factors that best predict mental work-
load and have created algorithms by weighting
these different factors according to their predictive
power. The resulting algorithms are commonly
referred to as dynamic density metrics. Dynamic
density has been defined as “the collective effort
of all factors, or variables, that contribute to sector-
level air traffic control complexity or difficulty at
any point in time” (Kopardekar & Magyarits,
2003, p. 1). The Laudeman et al. (1998) metric is
perhaps the best known, describing dynamic den-
sity as the sum of the density of traffic weighted
by the number of changes in speed, heading, and
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altitude; the proximity of aircraft; and the time un-
til predicted conflicts. This metric accounted for
22% of the variance in ATCo activity (a proxy for
workload) not predicted by aircraft count. Kopar-
dekar and Magyarits (2003) incorporated 23 fac-
tors from four published dynamic density metrics
to form a composite metric. This unified dynam-
ic density accounted for 39% of the variance in
ATCo complexity ratings, significantly more than
aircraft count alone.

Airspace Factors and Operational
Constraints Predicting Mental Workload

Airspace factors and operational constraints
are key contributors to ATCo task demand and
mental workload (Histon & Hansman, 2002; Kir-
wan et al., 2001). Airspace factors refer to the un-
derlying structural properties of the airspace,
whereas operational constraints refer to temporary
variations in operational conditions within the air-
space. Airspace factors constrain the relationship
between traffic factors and workload by shaping
the evolution of air traffic and creating predictable
air traffic patterns. Knowledge of these patterns
lets the ATCo use information-processing stra-
tegies that simplify air traffic management. Fur-
thermore, temporary variations in operational
conditions, such as communications limitations
(Mogford, Murphy, Yastrop, Guttman, & Roske-
Hofstrand, 1993), can restrict ATCo control action
and strategy.

Studies examining airspace factors have found
that the size of a sector can influence the mental
workload imposed by traffic factors (Arad, 1964;
Histon & Hansman, 2002). On the one hand, a
larger sector size will typically increase the num-
ber of aircraft in the sector and the number of po-
tential events that require attention. On the other
hand, events evolve faster in smaller sectors, and
limited space in a sector can reduce the options
for conflict resolution. Increased number of avail-
able flight levels can reduce workload because
they allow ATCos to maintain separation using
vertical separation (Histon & Hansman, 2002;
Kirwan et al., 2001). Traffic events occurring close
to the outside of sector boundaries are important
further determinants of workload (Couluris &
Schmidt, 1973; Histon & Hansman, 2002) be-
cause they can cause the ATCo’s “area of regard”
to be greater than the official dimensions of the
sector. Aircraft events occurring outside sector
boundaries require attention because they can

affect aircraft currently in the sector, increasing
the complexity of coordination (handoffs, point
outs) with adjacent ATCos (e.g., Kirwan et al.,
2001; Mogford et al., 1993). However, the pres-
ence of well-defined ingress and egress points
(Histon & Hansman, 2002) lets ATCos anticipate
problems, thus reducing workload.

The number, orientation, and complexity of
standard flows also influence the mental workload
imposed by traffic factors (Histon & Hansman,
2002; Schaefer et al., 2001). Standard flows are
aircraft flow patterns that emerge from underly-
ing airway structure, standardized procedures,
and other regular constraints such as ingress and
egress points. ATCos use their knowledge of stan-
dard flows to create important structure-based
abstractions that simplify the management of air
traffic (Histon & Hansman, 2002). For example,
ATCos can simplify the search process involved in
conflict detection by focusing on known crossing
points and/or known crossing altitude profiles be-
tween standard flows (Histon & Hansman, 2002;
Pawlak et al., 1996). Knowledge of these “hot
spots” can reduce the workload associated with
managing air traffic (Amaldi & Leroux, 1995;
Kallus, Van Damme, & Dittman, 1999).

Several operational constraints place restric-
tions on ATCo control action. For example, re-
strictions on available airspace can result from
convective weather, activation of special-use air-
space, or aircraft in holding patterns (Kirwan et
al., 2001; Mogford et al., 1993). Restrictions on
available airspace increase the likelihood of sep-
aration violations. In addition, restricted airspace
requires more precisely planned conflict resolution
strategies. Procedural restrictions, such as miles-
in-trail spacing, can also constrain traffic flow and
conflict resolution strategies (Histon & Hansman,
2002; Pawlak et al., 1996).

Because of practical constraints, weightings for
task demand factors are typically validated against
one or only a few sectors (Histon & Hansman,
2002), limiting the variation observed in airspace
factors and operational constraints. As a result, dy-
namic density metrics developed using specific
sectors perform less effectively when extended to
other sectors. However, two research groups have
recently incorporated airspace factors into their
metrics (Kopardekar & Magyarits, 2003; Masa-
lonis et al., 2003). For example, the Kopardekar
and Magyarits (2003) unified metric was devel-
oped across four sectors, and the metric performs



differently across them. Nevertheless, comparisons
across the different sectors revealed the contri-
bution of airspace factors. Factors with significant
predictive value included the altitude level of the
sector (high vs. low), the structure of the airspace,
and the size of the sector. It seems that if research-
ers wish to predict mental workload across sectors,
then airspace factors and operational constraints
will be important because they mediate the effect
of traffic factors on workload. However, if re-
searchers wish to predict workload within sectors,
then the airspace factors and operational con-
straints become less important.

Summary and Assessment

Research focusing on task demand factors has
shown that task demand accounts for a significant
amount of variance in mental workload. We sought
to develop our model of workload by investigating
how different task demand factors might affect
ATCos’selection of strategies for control and thus
affect workload. However, this was made difficult
by the lack of research examining how airspace
structure and aircraft configuration relate to the
selection of strategies for control, as depicted by
the model in Figure 3. We argue that a significant
limitation of the task demand approach is that it
views the ATCo as a passive recipient of task de-
mand. It does not explicitly take into account the
fact that ATCos can actively take steps that change
task demand, so as to keep workload at an accept-
able level. Without denying the importance of
task demands, we believe that workload might be
more strongly connected to the ATCo’s ability to
manage his or her cognitive capacity, as described
in the next section.

It is difficult to assess which aspects of task
demand are most closely causally related to men-
tal workload. One reason is multicollinearity.
Ideally each traffic factor in a predictive model
should contribute to workload relatively indepen-
dently of other traffic factors, but this is seldom so.
For example, in the Korpardekar and Magyarits
(2003) unified metric, traffic count appears in sev-
eral forms, such as sector volume (allowing more
aircraft), number of aircraft, and aircraft count
squared. However, the causal connection between
traffic count and workload might be mediated by
a number of complexity factors. For example, fac-
tors such as traffic density, number of speed tran-
sitions, number of conflicts, and number of aircraft
near sector boundaries all depend on traffic count.

In addition, under some conditions traffic count
may carry the key causal connection because of
the increase in low-level activities needed, where-
as under other conditions complexity properties
emerging from traffic count may carry the key
causal connection because of the need to resolve
complex traffic situations. In addition, many fac-
tors measuring the complexity of traffic situations
are closely related. For example, the number of po-
tential conflicts may depend on the number of
speed, heading, and altitude variations. Overall,
problems of multicollinearity make it difficult to
determine how task demand affects workload.
The problem with taking each possible task de-
mand predictor and putting it in a regression equa-
tion is that the relative importance of each predictor
depends on what other predictors have been in-
cluded in the equation.

Even if the problem of multicollinearity can be
resolved, task demand is still insufficient to ac-
count for mental workload. First, combinations of
task demand factors rarely account for more than
half the variance in workload or complexity rat-
ings (Kopardekar & Magyarits, 2003; Majumdar
& Ochieng, 2002). Although there may be objec-
tive and measurable features of sectors and aircraft
flow, the difficulty of controlling traffic is the
ATCo’s subjective experience. If ATCos have al-
ternative work methods for meeting increases in
task demand, there will not necessarily be a lin-
ear relation between task demand and workload
(Chatterji & Sridhar, 2001; Hilburn, 2004). Fur-
thermore, task demand approaches do not take
into account the ATCo’s intent when extracting
task demand predictors from radar track data. For
example, changes in aircraft altitude are weighted
so that they vary directly with workload. However,
an ATCo could have various reasons for issuing a
change in flight level, many of which may actual-
ly reduce workload (e.g., by ensuring separation).

A second reason that task demand is an insuf-
ficient basis for modeling mental workload is the
need to predict mental workload ahead of time. It
would be helpful to be able to predict probable
aircraft trajectories from their flight plans and
estimate the workload that the probable trajecto-
ries will impose on the ATCo. The problem is that
task demands change dynamically; ATCos change
the trajectories of aircraft when they intervene to
ensure separation and establish arrival sequences.
Furthermore, ATCos can reduce task demands in
downstream sectors by carrying out tasks that
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would otherwise have to be done in that sector
(giving descent clearances, implementing speed
control, etc.). As has been found by Kopardekar
and Magyarits (2003) and Masalonis et al. (2003),
a workload model that does not take ATCo activ-
ity into account may not be able to predict work-
load accurately in the near future, such as 1 hr
ahead.

A third reason for concern with task demand-
driven models of mental workload is that such
models are intended to predict whether workload
will interfere with the performance or effective-
ness of ATCos. The term performance refers to the
ability of ATCos to carry out their tasks (maintain
situation awareness, resolve conflicts, manage
departure flows, etc.), whereas the term effective-
ness refers to the outcomes that the ATCo achieves
(i.e., the safety, orderliness, and efficiency of traf-
fic flows: Neal, Griffin, Neale, Bamford, & Boag,
1998). Performance and effectiveness do not al-
ways decline as workload increases. Observations
of ATCos in an operational environment suggest
that whereas their ability to maintain an orderly
and efficient flow of traffic does decrease as
workload increases, their ability to perform tasks
such as detecting and resolving conflicts and man-
aging departures flows does not decline (Griffin,
Neal, & Neale, 2000). It appears that the rela-
tionships among workload, performance, and
effectiveness are complex and, possibly, contex-
tually specific.

Human performance models provide a way of
addressing these important issues. By building a
human performance model that simulates how the
ATCo carries out control tasks, it may be possible
to generate more accurate predictions of aircraft
trajectories and, hence, of future task demands.
Furthermore, by taking into account strategies that
ATCos use to minimize the amount of control ac-
tivity required to meet their objectives, one can
more accurately predict the effects of demands on
both mental workload and performance.

OPERATOR CAPACITY, STRATEGIES,
AND MENTAL WORKLOAD

As noted previously, and as Figure 3 suggests,
mental workload emerges not only from task de-
mands but also from how control activity is as-
sembled to meet task demands. Understanding
workload therefore involves understanding the
strategies that ATCos use to meet task demands.

Research in this area focuses on identifying cog-
nitive tasks, eliciting controller strategies, and at-
tempting to build computational models of ATCo
activity. In the next section we provide a brief
review of human performance models in ATC and
note how ATCos manage time pressure. We focus
on three main control tasks identified in cogni-
tive task analyses: the higher level control task of
maintaining situation awareness and the control
subtasks of detecting conflicts and resolving con-
flicts (Kallus, Van Damme, & Dittman, 1999; Neal
et al., 1998; Rodgers & Drechsler, 1993). Research
that has examined ATCo strategies is summa-
rized in Table 2.

Human Performance Models

Several models of ATCo performance have
been developed over the past decade (Callantine,
2002; Kallus, Van Damme, & Barbarino, 1999;
Leiden et al., 2003; Niessen et al., 1999). In gen-
eral, these models identify the control tasks that
ATCos perform, the order in which they carry
them out, and the time required and time available
to do so. Such models offer insight into sources of
mental workload.

Some human performance models are fairly
high level, providing a verbal description of be-
havior (Kallus, Van Damme, & Barbarino, 1999).
Others are based on formal architectures such as
Adaptive Control of Thought-Rational (Anderson,
1993) and have been validated with empirical data
(Leiden et al., 2003; Niessen et al., 1999). For ex-
ample, the human performance model developed
by Leiden et al. (2003) specifically focuses on
arrivals streams. Leiden et al. (2003) modeled
mental workload using the concepts of “task uti-
lization” and “idle utilization.” They identified
ATCo tasks, obtained estimates for how long each
task took to perform, and predicted how much
time sets of tasks would take under different lev-
els of traffic load. Task utilization, therefore, re-
flects the time required to accept aircraft, resolve
conflicts, provide metering, issue descent clear-
ances, handoff aircraft, and transfer communica-
tions. Idle utilization is all remaining time. Leiden
et al. (2003) used idle utilization as an indicator
of available capacity. To our knowledge, howev-
er, no studies have directly compared the validity
of workload predictions generated by such human
performance models with that of predictions gen-
erated by dynamic density metrics. A further dif-
ficulty with the Leiden et al. (2003) approach is
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that it does not estimate the time that ATCos spend
building and maintaining situation awareness.
Such cognitive activity contributes to workload,
but it is unobservable.

Using a human performance model similar to
that of Leiden et al. (2003), Callantine (2002)
emulated ATCo cognitive activity with a simple
set of heuristics for planning and decision mak-
ing. At the beginning of a processing cycle, the
Callantine (2002) model scans the environment
to detect tasks that need to be carried out. This is
referred to as “maintain situation awareness.”
The model then selects the task with the highest
priority and carries it out. Possible tasks include
carrying out a plan that has been developed previ-
ously, developing a plan to resolve a conflict, and
issuing a descent clearance. Aset of rules describes
how each of these tasks is carried out. A prelim-
inary evaluation of the Callantine (2002) model
demonstrated that it could handle relatively sim-
ple spacing problems in high-altitude sectors but
performed less well when handling merging traf-
fic in low-altitude sectors. Nonetheless, the results
are encouraging because they show that a simple
model can control traffic in a plausible manner.
The next step is to operationalize the concept of
mental workload within this type of model, but
that step has yet to be taken.

Time Pressure

Cognitive task analyses demonstrate that
ATCos are required to complete many tasks, many
of which must be time-shared (e.g., Cox, 1994;
Rodgers & Drechsler, 1993). According to an
information-processing model developed by
Hendy et al. (1997), subjective estimates of men-
tal workload are driven by the ratio of (a) the time
needed to process the information necessary to
make a decision to (b) the time available before the
decision has to be put into action. The most impor-
tant human constraint, then, is the maximum rate
at which work can be done. The competent ATCo
generally knows the rate at which he or she can
complete tasks, and this knowledge is actively
managed by the ATCo to avoid overload. ATCos
maintain acceptable levels of workload under
heavy task demand by seeking control strategies
that minimize the amount of control activity (e.g.,
planning, monitoring, coordinating) required to
meet their objectives and, if necessary, reordering
work priorities. According to Hendy et al.’s (1997)
model, these changes help to reduce the amount

of information that has to be processed. In the next
sections we examine how ATCos manage the
mental workload associated with maintaining sit-
uational awareness.

Maintaining Situational Awareness

ATCos work to maintain a valid mental repre-
sentation of the current air traffic situation, which
is commonly referred to as situational awareness
(SA; Endsley, 1995; Endsley & Smolensky,
1998). As Dailey (1984) stated, “The central skill
of the controller seems to be the ability to respond
to a variety of quantitative inputs about several
aircraft simultaneously and to form a continuous-
ly changing mental picture to be used as the basis
for planning and controlling the courses of the
aircraft” (p. 134).

SAis usually understood to involve (a) the con-
tinuous perception of information in the environ-
ment, (b) the integration of this information with
prior knowledge to form a coherent understanding
or “mental picture” of the current situation, and (c)
the use of this mental picture to direct visual search,
guide perception, anticipate the future state of air
traffic, and plan required actions (Endsley, 1995).

SAis maintained through monitoring, which is
the continuous or intermittent comparison of an
anticipated versus an actual traffic situation. Mon-
itoring involves directing attention to external
sources of information (e.g., sector maps, a radar
screen, or flight plans) in order to determine if tra-
jectories of future aircraft movement and positions
are consistent with the mental picture. As long as
the mental picture remains consistent with actual
events, SAis maintained. Research indicates that
many operational errors can be attributed to SA
problems (e.g., Jones & Endsley, 1996) and, con-
versely, that scores on measures of SAcan predict
performance (e.g., Durso, Hackworth, Truitt,
Crutchfield, Nikolic, & Manning, 1998). Under
heavy task demand ATCos can be so busy dealing
with traffic events that they do not have time to
update their mental picture, cannot plan ahead, and
are forced to work reactively. ATCos refer to this
as “losing the picture.” However, as will be dis-
cussed shortly, ATCos have strategies that help
avoid this situation.

To assess ATCo SA, query techniques are
commonly used that tap ATCos’ ability to recall
information about the air traffic situation (Adams,
Tenney, & Pew,1995). Findings suggest that ATCos
can reduce the mental workload associated with
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monitoring by regulating the amount of attention
they give to individual aircraft (Bisseret, 1971;
Gronlund et al., 1998; Sperandio, 1971). Early
studies indicated that ATCos could recall more
about the positions and flight data of aircraft on
which they had performed control actions (Means
et al., 1988) or of aircraft that were in potential
conflict (Bisseret, 1971; Sperandio, 1971), as
compared with aircraft on which they had not
performed control actions or which were not in
potential conflict. More recently, Gronlund et al.
(1998) found that ATCos appeared to classify air-
craft into two categories – important versus non-
important – on the basis of how soon they would
lose separation with other aircraft. Although
there was no difference in ATCos’ability to recall
the two-dimensional position or heading of im-
portant versus nonimportant aircraft, ATCos were
more likely to recall the altitude and ground speed
of important aircraft. Gronlund et al. (1998) con-
cluded that ATCos assigned importance to aircraft
on the basis of relative spatial position to other
aircraft, and that information not presented spa-
tially (e.g., altitude, speed) was selectively attend-
ed on the basis of this importance weighting.

As noted previously, the underlying structure
of the airspace can become the basis for abstrac-
tions that simplify the ATCo’s cognitive work
(Histon & Hansman, 2002; Seamster, Redding,
Cannon, Ryder, & Purcell, 1993). Field observa-
tions conducted by Histon and Hansman (2002)
indicated that standard flows are one of the most
important structure-based abstractions. ATCos
classify aircraft into standard and nonstandard
classes according to their match with standard
flow, which would include the aircraft’s future
routing, ingress and engress points, coordination
requirements, and crossing routes/altitude pro-
files (Histon & Hansman, 2002; Seamster et al.,
1993). These factors allow the ATCo to form a
general expectation of how aircraft will move
through the sector, significantly reducing the
complexity of control. Aircraft classified as non-
standard increase the complexity of control be-
cause their trajectory and interactions with other
aircraft are more difficult to predict a priori.

In addition, structured interviews reveal that
ATCos process aircraft in groups to reduce the
information-processing requirements associated
with monitoring air traffic (Amaldi & Leroux,
1995; Histon & Hansman, 2002; Redding, Ryder,
Seamster, Purcell, & Cannon, 1991). For exam-

ple, if four aircraft are heading southbound and six
aircraft northbound, the ATCo might process and
monitor the four southbound aircraft as one stream
and the six northbound aircraft as another stream,
rather than monitor each individual aircraft.
ATCos report that such strategies let them focus
on the intersection of the two streams, rather than
requiring them to assess the conflict status of each
possible aircraft pair (Pawlak et al., 1996). Aircraft
separation within streams is maintained by speed
control (Sperandio, 1978), and separation between
streams at common intersection points is main-
tained by altitude control. Overall, establishing
streams simplifies the process of maintaining SA,
letting the ATCo work with more aircraft simul-
taneously and use fewer control actions.

Conflict Detection

One aspect of SA that is particularly critical is
conflict detection. Conflict detection research has
tended to focus on (a) factors that increase the
complexity of detecting conflicts or (b) strategies
that ATCos use to minimize this complexity. The
connection with mental workload is seldom ex-
plicitly addressed, although increases in the time
taken to detect conflicts have been associated with
greater mental workload ratings (e.g., Galster,
Duley, Masalonis, & Parasuraman, 2001; Metzger
& Parasuraman, 2001). In an operational context,
a delay in conflict detection imposes constraints
on the ATCo because it decreases the time avail-
able to intervene and ensure separation. Areduced
time to implement a conflict resolution plan can
force an ATCo into a situation in which he or she
has to create a disorderly flow of traffic, which has
the potential to cause problems in the future (Cox,
1994; Kallus, Van Damme, & Dittman, 1999). In
contextual control terms (e.g., Hollnagel, 2002),
this could represent one aspect of the shift from
tactical to a reactive control.

Several studies have examined how task
demand affects the accuracy and timeliness of
conflict detection (Boag et al., 2006; Galster et al.,
2001; Leplat & Bisseret, 1966; Metzger & Para-
suraman, 2001; Nunes & Scholl, 2004; Rantanen
& Nunes, 2005; Remington, Johnston, Ruthruff,
Gold, & Romera, 2000). For example, Remington
et al. (2000) found that conflict detection accura-
cy decreased, and conflict detection latency in-
creased, with higher traffic count and increasing
angles of convergence. Conflict detection latency
also increased as time to conflict increased. Higher



392 June 2007 – Human Factors 

traffic count presumably affects conflict detection
by increasing visual search requirements and re-
ducing the time available to make conflict status
decisions (Hendy et al. 1997). Boag et al. (2006)
showed that the number of aircraft transitions in
and out of conflict positively predicted detection
time. Similarly, Leplat and Bisseret (1966) found
that ATCos took longer to detect conflicts when
three variables needed to be processed to deter-
mine conflict status (e.g., altitude, heading, and
speed) than when only one variable needed to be
processed.

Nevertheless, ATCos may change their strate-
gy for conflict detection in response to these task
demands and anticipated mental workload. For ex-
ample, ATCos appear to prefer using altitude infor-
mation to heading and speed information when
determining the likelihood of aircraft conflict
(Amaldi & Leroux, 1995; Leplat & Bisseret, 1966;
Willems, Allen, & Stein, 1999). This finding is
supported by cognitive task analyses (Kallus, Van
Damme, & Dittman, 1999; Neal et al., 1998;
Seamster et al., 1993), interviews with controllers
(Amaldi & Leroux, 1995; Boudes, Amaldi, &
Cellier,1997), anecdotal reports (Roske-Hofstrand
& Murphy, 1998; Wickens, Mavor, & McGee,
1997), and experiments (Bisseret, 1971; Gronlund
et al., 1998; Rantanen & Nunes, 2005). Taken
together, this body of research suggests that ATCos
save attentional resources by extrapolating aircraft
trajectories for lateral separation only in circum-
stances where vertical separation is questionable.
Furthermore, ATCos prefer to use altitude and
heading information over speed information (Bis-
seret, 1971; Leplat & Bisseret, 1966; Rantanen
& Nunes, 2005; Willems et al., 1999). Presumably,
this is attributable to the greater cognitive effort
associated with processing speed information
(see Law et al., 1993).

Afurther strategy that ATCos use to detect con-
flicts, already touched upon, is to exploit airspace
structure and standard flows (Amaldi & Leroux,
1995; Histon & Hansman, 2002; Kallus, Van
Damme,&Dittman,1999; Neal et al.,1998; Roske-
Hofstrand & Murphy, 1998; Seamster et al., 1993).
Specific aircraft events occur routinely at specific
locations in a sector, and ATCos learn to recognize
specific air traffic configurations. Memory for past
experiences lets ATCos anticipate where conflicts
may occur (sector “hot spots” or “critical points”),
simplifying the cognitive work of detecting con-
flicts. By focusing on a finite number of critical

crossing points, ATCos do not need to evaluate
the likelihood of conflict between all aircraft pairs
in the sector, thus reducing task demands and,
presumably, mental workload.

Conflict Resolution

The ATC literature has provided some useful
insights into the strategies that ATCos use to
resolve conflicts under different levels of task
demand and thus regulate their mental workload.
On the basis of detailed interviews with ATCos,
several research groups have argued that the
workload associated with resolving conflicts de-
pends largely on sector-specific knowledge that
ATCos acquire over time (Kallus, Van Damme,
& Dittman, 1999; Neal et al., 1998; Seamster et
al., 1993). ATCos often report that they have the
equivalent of a “conflict resolution library” of
solutions to particular configurations of air traffic
(Kallus, Van Damme, & Dittman, 1999). When a
conflict is detected, ATCos “access” their library
to find a previous solution and then adapt and
apply that previous solution to the new case. If no
appropriate solution is found, ATCos must either
review their solution library for a suitable plan or
use problem-solving techniques to develop a new
solution. Retrieving a solution from memory re-
duces cognitive work and the associated workload.

ATCos also regulate mental workload by being
selective about when they intervene to ensure
separation. ATCos interviewed by Kallus, Van
Damme, and Dittman (1999) reported that under
low workload they tend not to solve conflicts im-
mediately because it can reduce the efficiency of
aircraft movement. They prefer to monitor the sit-
uation. Under high-workload conditions, howev-
er, they are reluctant to let potential conflicts run
unless intervening tasks leave them with enough
capacity to monitor the potential conflict. Under
high workload they tend to solve problems by tak-
ing immediate action in order to conserve atten-
tional resources. This strategy also reduces the
likelihood that they will forget to return to the un-
resolved situation because of distraction from
competing tasks (Loft, Humphreys, & Neal, 2003).

Interviews with ATCos conducted by Amaldi
and Leroux (1995; also see Weitzman, 1993) indi-
cate that a further factor determining when ATCos
intervene is their judgment of the probability that
the aircraft pair will violate separation. If they re-
spond to every possible conflict they are proactive
but overloaded, whereas if they respond only to
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definite conflicts they are reactive and may lose
the picture. Under high mental workload condi-
tions ATCos shift their criterion for classifying
conflicts, becoming more conservative so that
they intervene to ensure separation if there is any
uncertainty regarding future separation between
aircraft. Although such a change in conflict detec-
tion criterion may temporarily increase ATCo
control activity, it will significantly reduce the
amount of control activity required in the longer
term. Moreover, when intervening to ensure sep-
aration under conditions of high workload, ATCos
choose solutions that require minimum monitor-
ing and coordination. In this way, ATCos maintain
resilient control. For example, Kirwan and Flynn
(2002) identified various heuristics ATCos use to
resolve conflicts, such as (a) using as few control
actions as possible, (b) giving aircraft initial level
changes early and fine-tuning later, (c) using so-
lutions that require less coordination, (d) using
vertical separation for complex conflicts, and (e)
keeping solutions simple and safe.

Summary and Assessment

The key characteristic of the ATCo mental
workload model presented in Figure 3 is that the
ATCos do not passively react to events but, in-
stead, actively control workload by selecting stra-
tegies that have different demands on cognitive
resources. Operator capacity is therefore not a sta-
tic property of the ATCo but a dynamic one. In this
section we reviewed efforts to identify the con-
trol tasks that ATCos perform and the strategies
ATCos use to minimize the control activity asso-
ciated with these control tasks, in order to under-
stand workload.

Human performance models have been dev-
eloped that integrate ATCo control tasks into
computational frameworks, but such models gen-
erally do not include sophisticated sets of strate-
gies, model mental workload, or demonstrate how
mental workload might drive the selection of
strategies. Research on time pressure suggests that
one way workload might be modeled is as a func-
tion of the ratio of the time to perform a task to
the time available before the task must be com-
pleted. Task timing information for specific con-
trol tasks could be estimated via empirical data
(e.g., Cardosi, 1993), interviews (e.g., Amaldi &
Leroux,1995), cognitive task analyses (e.g., Kallus,
Van Damme, & Dittman, 1999) or observation
(e.g., Histon & Hansman, 2002). If mappings be-

tween workload – however it is measured – and
selection of strategies could be operationalized
within human performance models, a better under-
standing could probably be gained of the adaptive
nature of ATCo work and of workload itself.

Research on three principal ATCo activities –
maintaining SA, detecting conflicts, and resolving
conflicts – provides abundant evidence that ATCos
seek ways of minimizing mental workload. The
workload of maintaining SA can be reduced by
using standard flows and by grouping aircraft so
that many aircraft can be handled in one operation.
Moreover, by focusing on altitude information and
seeking resolution on that basis before considering
heading and speed, ATCos seek to reduce work-
load. The workload associated with the subtask of
conflict detection is also amenable to strategic con-
trol. For example, sector structure produces loca-
tions where conflicts are more likely or less likely.
The workload of resolving conflicts can be reduced
through development and use of a repertoire of
solutions mapped to the imminence, probability,
and geometry of potential conflicts, as well as the
timing of interventions. Overall, ATCos attend to
cues that give them the smallest amount of infor-
mation necessary for effective decision making
according to the priorities chosen for perfor-
mance.

All the these factors can in principle be mod-
eled computationally, leading to a better under-
standing of the relation among task demands,
ATCo activity, and ATCo mental workload, but
operationalization can be difficult. In the next sec-
tion we review models that reflect such modeling.

MODELS INTEGRATING TASK DEMANDS
WITH OPERATOR ACTIVITY

This review has focused on two broad deter-
minants of mental workload: task demands (the
amount and complexity of work) and operator
capacity (the resources the ATCo can marshal to
meet demand, including strategies). There have
been some relatively recent efforts by researchers
to develop techniques that integrate task demand
with operator capacity in order to predict workload
(Averty, Athènes, Collet, & Dittmar, 2002; Averty
et al., 2004; Chaboud, Hunter, Hustache, Mahlich,
& Tullett, 2000; Cullen, 1999; Stamp, 1992).

For example, Chaboud et al. (2000) developed
a model that describes the mental workload cor-
responding to different control tasks. First, the
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model describes workload for routine tasks, such
as flight data management, coordination, and radio
communications. The workload value is based on
the number of aircraft sector entries and is mul-
tiplied by the estimated time it would take ATCos
to complete the task (task duration). Second, a
value is assigned for the workload associated with
climbing and descending aircraft, defined as the
number of aircraft with a 6,000-foot vertical evo-
lution multiplied by task duration. Third, a value
is assigned based on the workload associated
with monitoring conflicts, defined as the number
of conflicts multiplied by task duration. This work-
load metric correlated well with ATCo activity
measures but was not validated with an indepen-
dent workload measure. Two significant limita-
tions of the work of Chaboud et al. (2000) are that
(a) the workload weights assigned to different con-
trol tasks were fixed and (b) the durations assigned
to tasks were fixed. These methods do not take
into account the fact that the workload associated
with different control tasks can be modulated by
the use of strategy.

Averty et al. (2002, 2004) developed a metric
called the traffic load index (TLI), which takes into
account the fact that, through their actions, ATCos
will regulate their own mental workload. The TLI
is calculated by assigning each aircraft under
jurisdiction a weight that contributes toward the
TLI for the sector. Aircraft under jurisdiction of
the ATCo are assigned a base weight of 1. Any air-
craft that need additional monitoring – for exam-
ple, because they are anticipated to be involved in
a conflict or will need vectoring on their descent
profile into an airport – accrue additional weight-
ing. The weighting is thus a measure of the amount
of monitoring each aircraft requires. This first
part of the TLI provides a simple measure of task
demand. The second part of the TLI assesses the
effects of ATCo activity. If the ATCo sees a poten-
tial conflict but waits a long time before resolving
it, then the so-called maturing time (MT) before
acting is protracted and workload associated with
monitoring is increased. In contrast, if the ATCo
resolves the potential conflict immediately, MT is
short and monitoring workload is removed. Even
if action is taken immediately, in some cases sep-
aration may not be ensured for quite a long time,
leading to a long MT because of the remaining
uncertainty. Acting earlier removes time pressure
to act but leaves some uncertainty as to whether
a conflict will be resolved as desired. In contrast,

acting later imposes time pressure when one does
come to act, but it provides greater certainty as to
whether the conflict will be resolved as desired.

Averty et al. (2002, 2004) have shown that the
correlation between the NASA Task Load Index
(NASA-TLX; Hart & Staveland, 1988) and TLI
was significantly higher than that between the
traffic count and NASA-TLX. This indicates that
TLI is a better predictor of ratings of mental work-
load than is traffic count. In addition, the TLI had
higher correlations with all physiological work-
load measures than did both traffic count and the
NASA-TLX. By modeling the timing of ATCos’
interventions, the TLI measure goes some way in
capturing the effect of different ATCo strategies
on workload.

In a further effort, Cullen (1999) built a mental
workload model in which she attempted to quan-
tify the sequences and durations of ATCo tasks.
Factors influencing the sequence and durations of
tasks included (a) environmental conditions that
initiated each task, (b) priorities assigned to tasks
(urgent, high, low), (c) rules specifying which
tasks could be interrupted by tasks of higher pri-
ority, and (d) rules governing task selection and
sequence. The task model soundly predicted task
durations. However, the model’s ability to predict
task sequence and workload was poor. In gener-
al, observed workload was higher than predicted
workload. Cullen (1999) concluded that work-
load was poorly predicted because the task model
could not accurately predict sequences of ATCo
activity. Acloser inspection of the model indicates
that it did not take into account the effects of
workload management strategies on the sequences
and durations of task behavior. In addition, the
model did not account for the fact that multiple
tasks are often completed concurrently or that
ATCos often monitor the progress of aircraft after
issuing instructions to ensure pilot compliance
and adequate separation. Overall, the predictive
validity of Cullen’s (1999) model was disappoint-
ing. Notably, the factors missing from the model
included factors modeled in Figures 2 and 3 and
discussed in preceding sections of this review.

A further and very important model that inte-
grates task demands with operator activity is the
Man-Machine Interaction Design and Analysis
System (MIDAS; Corker & Smith, 1993). MIDAS
is not a mental workload model per se but a hu-
man performance model used for the analysis of
human-machine systems design issues. MIDAS
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is a first-principles model of human performance,
built upon 35 primitive operator tasks such as vi-
sual monitoring, typing, grasping, and comput-
ing. Each of these tasks is assigned a workload
weight on each of the six channels from multiple
resource theory (Wickens, 1984): visual and audi-
tory input, spatial and verbal cognitive process-
ing, and manual and voice output. Additionally,
MIDAS has a dynamic mechanism for switching
between control strategies that is based on Holl-
nagel’s (2002) COCOM model. The model switch-
es among strategic, tactical, opportunistic, and
scrambled control depending on four control para-
meters: the event horizon (a measure of success of
previous control actions taken by the operator), an
estimate of the time available for the control activ-
ity, an estimate of the time required to complete
the control activity, and an estimate of competen-
cy (measured in the number of goals). The specif-
ic values of these control variables that will make
MIDAS switch between different control strategies
are domain dependent. For the ATCo model in Air
MIDAS, the aviation-specific version of MIDAS,
the event horizon is measured in number of aircraft
under control and the complexity of maneuvers
the aircraft have to perform (Corker, 2003). Eval-
uations of Air MIDAS have been performed, but
detailed reports are still forthcoming.

SUMMARY AND CONCLUSION

The most prevalent approach to studying the
mental workload of ATCos is to investigate traffic
factors that produce or influence task demand, on
the assumption that there is a relationship between
task demand and mental workload that is mediat-
ed by control strategy (see Figure 1). In this paper
we reviewed this and other modeling architectures
that have been used to understand workload in
ATC. Influenced by Sperandio’s (1971) emphasis
on the central role of alternative work methods,
or strategies, in controlling workload (Figure 2),
we developed a model expanding on the ATCo’s
role in selecting an appropriate strategy for meet-
ing task demands (Figure 3). The model shows
strategy being driven on a proactive/feedforward
basis as well as on a reactive/feedback basis. The
model also shows strategy being driven not only
by task demands but also by judgments about
work priorities  that is, by a hierarchy of standards
that ATCos aim to preserve.

In the body of this review, we organized the
vast literature on ATCo performance around two

major themes: research investigating the relation-
ship between task demands and mental workload,
and research investigating the relationship be-
tween ATCo capacity and mental workload. Much
of the latter work emphasizes the crucial role of
ATCo strategies in handling task demand. Toward
the end of the review we examined models in
which researchers have attempted to integrate
these two themes. The overall impression is that
there is still a long way to go before ATCo work-
load is fully understood, let alone modeled com-
putationally to a level that would support robust
organizational decision making about allocation
of ATCo work through sector sizes, rostering, 
and so on.

Much research still seeks relationships between
task demands and ATCo mental workload in the
open-loop manner illustrated in Figure 1. Howev-
er, simply “integrating” task demand and opera-
tor capacity in closed-loop models is unlikely to
help in modeling workload. Information is also
needed about strategies, performance priorities,
and an appropriate architecture to link all these
elements. Figure 3 represents an attempt to do so.
This approach may be more useful in understand-
ing ATCo workload than attempting to model the
relationship between isolated traffic factors and
ATCo speed or accuracy of responding. However,
an even more appropriate architecture may be one
that models – far more explicitly even than that in
Figure 3 – the fact that ATCos regulate their work-
load by selecting control strategies that meet task
demands, driven by the relative priority of their
objectives. Figure 4 shows the simplest form of
such a workload regulation model. In Figure 4, a
deviation from the desired level of workload leads
to an adjustment of control strategy, and the con-
trol strategy shapes the task demands that produce
actual workload. Actual workload is compared
with the desired level of workload, and the loop
repeats.

One strength of the mental workload models
presented in Figures 3 and 4 is that they use 
relatively domain-independent system-level para-
meters (e.g., task demand, metacognition, prior-
itization, strategy). Consequently, as outlined in
the introduction to this paper, operational models
of workload could be developed for a variety of
complex work systems (e.g., piloting, unmanned
aerial vehicle control, anesthesiology, railway
signaling, and automobile driving) using the con-
ceptual models presented in Figures 3 and 4.
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Moreover, it suggests quite a different way of
investigating workload in complex work systems.
First, instead of investigating the linear relation-
ship between task demand and workload at spe-
cific moments in time, one might investigate
dynamic properties of workload that could show
workload to lead or lag events (Rouse et al., 1993).
Second, one might investigate workload signals,
rather than task demand signals, that lead to a
switch in strategy. Third, one might investigate
how operators learn signals relevant for manag-
ing workload and developing essential skills (e.g.,
estimating time needed to execute plans, estimat-
ing when events will occur), and examine the
relationship between the two. Fourth, one might
investigate far more thoroughly than before how
strategies create specific patterns of task demands.
Fifth, one might study the impact of operators’
persistence with inappropriate strategies on both
workload and control quality and how any such
problems might be alleviated. This list is not
exhaustive – there are many further possible im-
plications of taking such an approach to concep-
tualizing both ATCo workload and workload in
other complex work systems.

Finally, taking a mental workload-centered
view rather than a task demand-centered view
may have longer term benefits. Globally, this is an
era of rapid changes in air traffic management
(EUROCONTROL, 1999; Federal Aviation Ad-
ministration, 2005). For example, “free flight”
refers to a wide variety of ATC regimens that all
share the following characteristics: an increase in
airspace capacity through new decision support
tools, increased automation to aid the ATCo, and
increased flexibility for airline and aircraft oper-
ations. Similarly, in modern aircraft, pilots are
provided with host of automated flight control sys-
tems that automate tasks such as status monitoring
and flight mode (e.g., climb, cruise descend;

Kantowitz, 1994; Wickens, 2002). Aviation pro-
viders and regulatory bodies need tools that are
capable of assessing the workload experienced by
operators under these proposed systems. Models
that focus primarily on the link between task de-
mand and workload are likely to have difficulty
generalizing to new automation systems because
operator control strategies will change. More fully
developed models that show how control strate-
gies regulate task demand and thereby workload
would be extremely useful because they would let
researchers explore the consequences of new con-
trol arrangements. Good progress has been made
in describing the empirical relationship between
task demand and workload in many complex work
systems. The next step is to develop and test dy-
namic models that explain the relationship among
workload, task demands, and strategy-driven ac-
tivity within current and future systems.
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