Decidability and Complexity of
Model Checking Problems for
Infinite-State Systems

Richard Mayr

PRS (G,G)

)

PAD (S,G) PAN (P,G)

<

Pushdown

Proceses (S5 PA (1LG) Petri Nets(P,P)

)

BPA (1,9 BPP (1,P)

(

Finite-State Systems (1,1)

Lehrstuhl fur Theoretische Informatik und Grundlagen der KI
Institut fur Informatik
der Technischen Universitat Munchen

Decidability and Complexity of Model Checking
Problems for Infinite-State Systems

Ruchard Mayr

Vollstandiger Abdruck der von der Fakultat fur Informatik der Technischen
Universitat Munchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. T. Nipkow, Ph.D.
Prifer der Dissertation:
1. Univ.-Prof. Dr. J. Esparza
2. Univ.-Prof. Dr. E. Mayr

Die Dissertation wurde am 22.12.1997 bei der Technischen Universitat Munchen
eingereicht und durch die Fakultat fir Informatik am 16.4.1998 angenommen.

Abstract

There are many different formal models for systems with infinite state spaces.
Among them are context-free processes, Basic Parallel Processes, PA-processes,
pushdown processes and Petri nets. They are used to build abstract models of
programs and to verify their correctness with respect to a formal specification.

We present a unified view of all these models by describing them as subclasses
of a very general term rewriting formalism, that we call Process Rewrite Systems
(PRS). We define the PRS-hierarchy of these subclasses and show that it is strict
with respect to bisimulation equivalence. Similar hierarchies of rewrite systems
have already been defined by Stirling, Caucal and Moller, but only for systems
with either only sequential composition or only parallel composition. The PRS-
hierarchy subsumes these hierarchies and additionally contains systems that use
both sequential and parallel composition. This unified view also yields natural
generalizations of several models, i.e. a common generalization of Petri nets and
pushdown processes.

We use temporal logics to specify properties of systems. We consider standard
temporal logics like computation tree logic (CTL), the modal p-calculus, linear-
time temporal logic (LTL), the linear-time p-calculus and several fragments of
CTL. The model checking problem is, if a system described in a formal model
satisfies a property encoded as a formula in a temporal logic. We study the
decidability and the computational complexity of model checking problems for
these temporal logics and the models in the PRS-hierarchy.

We prove several new results about the decidability of model checking problems.
These results close the last gaps and so we can present a complete picture of the
decidability of the model checking problem for all these logics and all models in
the PRS-hierarchy.

We also solve some open problems about the computational complexity of model
checking. These results can be combined with the results of other authors, and
so we get an almost complete picture of the complexity of the model checking
problem for all these logics and all models in the PRS-hierarchy. The only major
open problems that remain are the exact complexity of the reachability problem
for Petri nets and the complexity of model checking finite-state systems with the
full modal p-calculus.

Furthermore, we present a tableau system that solves the model checking problem
for Petri nets and the interpretation of the linear-time p-calculus on infinite runs.
Tableau methods are particularly useful for semiautomatic verification.

Finally, we study several models in the PRS-hierarchy that arise as natural com-
mon generalizations of mutually incomparable models like Petri nets, pushdown
processes and PA-processes. Some of these models (called PAN and PRS) are
strictly more expressive that Petri nets. They can be interpreted as an extension
of Petri nets with subroutines, since they can describe both parallelism and re-

cursion. We show that the reachability problem is decidable for PAN and PRS.

Thus they are more general than Petri nets, but not Turing-powerful.

Contents

1 Introduction

2 Formal Models

2.1
2.2
2.3

2.4
2.5

3.1

The PRS-Hierarchy
The Intuition o o
The Models in Detail 000
2.3.1 (1,1)-PRS = Finite-State Systems.

2.3.2 (1, P)-PRS = Basic Parallel Processes (BPP)
233 (P,P)-PRS=PetriNets
2.3.4 (1,9)-PRS = Basic Process Algebra (BPA).
2.3.5 (5,5)-PRS = Pushdown Processes
2.3.6 (1,G)-PRS = PA-Processes
237 (S,G)PRS=PAD .« oo oo
238 (P,G)-PRS = PAN . . .\ oo

2.3.9 (G,G)-PRS = Process Rewrite Systems.
Intended Applications
The PRS-Hierarchy is Strict

Temporal Logics and Model Checking

Branching-Time Logics o0
3.1.1 Hennessy-Milner Logic
3.1.2 The Logic EF o
3.1.3 The Logic EGo oL

10
10
15
17
17
17
21
22
22
24
25
26
26
27
30

CONTENTS

314 ThelLogicUB 46
3.1.5 Computation Tree Logic (CTL) 46
3.1.6 The Modal g-Calculus 47
3.2 Linear-Time Logics o 48
3.2.1 Weak Linear-Time Logic (WL) 48
3.2.2 Linear-Time Logic (LTL) 49
3.2.3 The Linear-Time py-Calculus 50
Tableau Systems 52
Finite-State Systems 56
Basic Parallel Processes (BPP) 58
6.1 Model Checking BPP with EF 58
6.1.1 General Properties of Communication-free Nets 59
6.1.2 Model Checking Communication-free Nets 72
6.2 Model Checking BPP with LTL 79
6.3 Conclusion L 82
Pushdown Processes and BPA 84
PAD and PA 92
8.1 Model Checking PAD with FF5. 93
8.1.1 The Temporal Logic EF5. 93
8.1.2 Decomposition Lo 98
8.1.3 The Tableau System 106
8.1.4 Decidability 109
8.1.5 Complexity 114
8.2 Reachability for PAD oo 116
8.3 Simple Verification Problems for PA 117
8.3.1 Partial Deadlock 0000 117
83.2 Livelock 120
84 Conclusion L 122

CONTENTS 3
9 Petri Nets 125
9.1 Branching-Time Logics 125
9.2 Linear-Time Logics o oL 127
9.2.1 The Complexity of the Problem 127

9.2.2 Preliminaries Lo 129

9.2.3 The Sequents L oo 131

9.2.4 TheBasicRules. 132

9.2.5 Paths and Internal Paths 133

9.2.6 The Special Rules 0. 134

9.2.7 Soundness and Completeness 137

9.2.8 Examples 0 143

9.29 Extensions Lo 147

9.2.10 Related Work o oo 148

9.3 Conclusion L 149

10 PRS and PAN 150
10.1 The Reachability Problem 151
10.2 The Reachable Property Problem 155
10.3 Application oL 165
10.4 Conclusion 167

11 Summary 168
11.1 Branching-Time Logics 168
11.1.1 Reachability and Reachable Property 168

11.1.2 EF oo 170

11.1.3 EG . o oo o 172

11.1.4 UB . o o0 o 172

11.1.5 CTL ..o o 173

11.1.6 Alternation-free Modal p-Calculus. 173

11.1.7 Modal p-Calculus oo 173

11.2 Linear-Time Logics 176

CONTENTS

12 Conclusion and Final Remarks
Bibliography
List of Figures

Index

178

181

189

190

Chapter 1

Introduction

An important problem in software engineering is to ensure the correctness of
programs. Correctness means that the program fulfills the task for which it was
designed. The correctness is defined with respect to a formal specification that
characterizes the desired behavior of the program in an abstract way. The process
of checking whether an implementation (a program) satisfies the requirements
described by the specification is called verification.

The first and still the most common method of verification is testing. In testing,
one observes the behavior of the program in different situations with different
inputs and checks if it matches the specification. A difference between them
indicates an error, which can then be localized and (hopefully) corrected. For the
majority of programs nowadays, testing is the only verification technique applied.

The problem is, that it is incomplete. By testing one might find errors, but
(except in very special and rare cases) one never gets a guarantee that a program
is correct. Fven if extensive testing reveals no errors, this doesn’t mean that
there are none. This is due to the fact that most programs have an extremely
large state space. This means that there is a large number of different reachable
states in each of which the program can behave differently. If this state space is
finite, it would be theoretically possible to test the behavior of the program in
every reachable state. In practice however, this often cannot be done, since even
very small programs can well have a state space that is larger than the number
of atoms in the universe. Thus it is impossible to test every situation that can
possibly occur in the execution of such programs. So, except for programs with
very small state spaces, testing can only reduce the probability of errors, but it
can never give certainty.

Often the problem is even harder, because many programs have infinite state
spaces. This can be due to the use of real numbers, arbitrarily large data struc-

6 CHAPTER 1. INTRODUCTION

tures, unbounded buffers or stacks, or the possibility to create arbitrarily many
child-processes. In these cases complete testing is even theoretically impossible.

With parallel computer architectures and concurrent systems, the problem gets
even worse. When several components of a program run in parallel the number
of different possible execution sequences increases exponentially, even for finite-
state systems. This problem is known as the state explosion problem. 1t is due to
the fact that there are so many ways the components can influence each other,
and many cases that depend on which event happens first in which component.
For example if m copies of a process with n states run in parallel, then the whole
system has n™ states.

Also concurrent systems more often have infinite state spaces, because the cre-
ation of arbitrarily many new parallel processes can be possible. Due to these
additional problems, testing becomes even more unreliable for concurrent sys-
tems.

On the other hand, verification is even more important for concurrent systems,
because, as experience has shown, it is more difficult for programmers to write
error-free code for parallel programs and mistakes occur more often than in se-
quential systems. Therefore better verification techniques for both finite-state
and infinite-state concurrent systems are needed. The approaches to develop
such techniques can roughly be divided into two categories: theorem provers (for

example [ORSv95, Pau94]) and model checkers (for example [Hol91, CGLI4]).

With theorem provers one attempts to find a formal proof that the implemen-
tation satisfies some property expressed in the specification. This is essentially
a semiautomatic technique where the theorem proving system and the user in-
teract in the search for a proof. Normally, the user has to guide the system and
do the crucial steps of the proof, while the theorem prover can do some simple
subproblems automatically. While this technique is very powerful in principle,
its applicability in practice is hindered by the fact that it is often cumbersome
and requires a lot of knowledge, skill and practice from the user. Still it has been
used successfully for the verification of safety-critical systems.

Model checkers are another approach to solve the verification problem. No full
specification languages are used in model checking, but properties of systems are
described in temporal logics (see Chapter 3). An instance of the model checking
problem is then given by a description of a system (a program) and a temporal
logic formula. The question is, if the system satisfies the property described by
the formula. Unlike theorem provers, model checkers operate completely auto-
matically and are thus very easy to use. Model checking has been used with
considerable success in the verification of finite-state systems. To conquer the
state explosion problem, techniques have been developed to reduce the size of the

state space by finding equivalence classes of states that have the same (or a very
similar) behavior, as far the verification is concerned. Verification can then be
done by examining every equivalence class.

The problem with model checking is that such automatic techniques cannot be
applied to arbitrary programs with infinite state spaces, because these are Turing-
powerful and even simple questions like “Is a certain state reachable?” are unde-

cidable.

The idea to extend model checking techniques to infinite-state systems was mo-
tivated by formal language theory [HU79]. In formal language theory infinite
languages are finitely described and some problems about them (for example
equivalence of regular languages) are decidable. So not every problem about infi-
nite systems is undecidable. In analogy to formal language theory new formalisms
to describe infinite-state systems were introduced.

A classical example for this are pushdown automata. In formal language theory
they are used to describe Chomsky-2 languages, but they can also be seen as
models for infinite-state systems. Every state of the finite control together with
the content of the stack describes a state. Since the stack is unbounded, there
can be infinitely many different states. The state changes when the automaton
accepts a terminal symbol. However, this can also be interpreted as performing
an action and changing the state by it.

Other models, like Petri nets [Pet81], can also describe concurrent systems. These
formal models can describe the important aspects of the behaviors of programs
by using a formalism that is less powerful than Turing-machines (or program-
ming languages) and therefore easier to analyze. Being not Turing-powerful,
these models cannot fully describe every aspect of the behavior of a program.
However, they can often describe the aspects of the programs’ behaviors that are
important for the verification. Formal models are used for verification, because
they are normally smaller and more easily handled than full programs. As they
are not Turing-powerful some verification problems are decidable for them. For-
mal models should be simple enough to allow automated verification, or at least
computer-assisted verification. On the other hand they should be as expressive
as possible, so that most aspects of real programs can be modeled.

Petri nets and process algebras are two popular kinds of formalisms used to build
abstract models of concurrent systems. In this thesis we present a unified view of
Petri nets and several simple process algebras by representing them as subclasses
of a general rewriting formalism. We call this formalism Process Rewrite Systems
(PRS). We also define a hierarchy of subclasses of this rewriting formalism. Such
hierarchies have already been defined by Stirling, Caucal and Moller [Cau92,
Mol96], but only for either purely sequential- or purely parallel systems. Here we

8 CHAPTER 1. INTRODUCTION

generalize this to systems with both sequential and parallel composition. We call
our hierarchy of rewrite systems the PRS-hierarchy.

We study the decidability and computational complexity of model checking prob-
lems for the models in the PRS-hierarchy and most standard temporal logics
[MB96, Eme94, Bra92]. These logics include for example linear-time temporal
logic (LTL), the linear-time g-calculus, the modal p-calculus, computation-tree
logic (CTL) and several natural fragments of CTL. The aims of this thesis are
the following:

1. The primary aim is to establish the decidability and computational com-
plexity of all model checking problems for the models in the PRS-hierarchy.

For the decidability we have achieved this and so we can present a complete
picture of the decidability of model checking. For the complexity we solve
several problems s.t. only few open problems remain. So we can give an
almost complete picture of the complexity of model checking.

The main new results are in three different areas:

o The decidability and complexity of model checking with the branching-
time temporal logic EF. EF is a simple but very natural fragment of
computation-tree logic (CTL). We show that for almost all formal
models, model checking with EF has a significantly lower complexity
than model checking with any other branching-time logic.

o We also show strict lower bounds for the model checking problems
for linear-time temporal logic (LTL) and some simple process algebras
like Basic Parallel Processes or context-free processes. These prob-
lems were already known to be decidable, but only much weaker lower
bounds were known.

o The unified view of formal models yields natural generalizations of
Petri nets by subroutines and recursion. We show that these new
models are strictly more expressive than Petri nets, but not Turing-
powerful.

2. The secondary aim is to develop methods that make verification of infinite-
state systems more feasible in practice.

Since the complexity of model checking infinite-state systems is often very
high, automatic methods cannot always be applied. Basically, there are two
ways to counter this problem:

e In practice it is not always necessary to use the full power of a temporal
logic for the verification. Therefore it is important to find efficient

algorithms for simple verification problems. In Section 8.3 we present
polynomial algorithms for some simple verification problems in process
algebras.

e In some cases automatic methods cannot be applied, because the model
checking problem is undecidable or the complexity is too high. In these
cases semiautomatic methods (i.e. theorem provers with human inter-
action) can be very useful. Tableau systems provide a theoretical basis
for these semiautomatic methods. We develop such a tableau system
in Chapter 9. This tableau system solves the model checking problem
for Petri nets and the interpretation of the linear-time p-calculus on
infinite runs. Tableau systems are particularly useful for semiauto-
matic verification, because they give the user a better intuition and
complete control over the verification process.

In order to give a complete picture of the decidability and complexity of model
checking problems for infinite-state systems, many results by other authors are
cited. Therefore some parts of this thesis look like a survey. However, results by
other authors are only cited, but not proved. So every proof in this thesis is due
to the author. Some chapters of this thesis are very short, since they only contain
citations and no proofs.

We assume that the reader is familiar with formal languages [HU79] and the basics
of complexity theory, like Turing-machines, counter machines, reductions, oracles
and the complexity classes P, NP, the polynomial time hierarchy, PSPACE,
EXPTIME and EXPSPACE [v1.90]. The reader should also be familiar with
Petri nets [Pet81]. Knowledge of temporal logics [Bra92, MB96, Eme94] and
CCS [Mil89] is helpful, but not necessary.

Chapter 2 presents a unified view of many common- and several new formal
models for infinite-state systems. Chapter 3 defines the temporal logics that are
used to specify properties of systems. In Chapter 4 we give a brief introduction to
tableau systems, an important method for model checking infinite-state systems.
In Chapters 5 — 10 we study the decidability and complexity of model checking
problems for the various process models. Chapter 11 summarizes the results and
in Chapter 12 we draw some general conclusions.

Chapter 2

Formal Models

In this chapter we introduce the formal models used to describe infinite-state sys-
tems. We present a unified view of many widely known models like Basic Parallel
Processes (BPP) [Chr93], context-free processes (BPA), pushdown processes, PA,
Petri nets and others. We show that all these models can be seen as subclasses
of a general term rewriting formalism.

Such unified representations have already been used by Stirling, Caucal and
Moller [Cau92, Mol96], but only for either purely sequential- or purely paral-
lel systems. Here we generalize this to systems with both sequential and parallel
composition.

In Section 2.1 we present this formalism and define a hierarchy of subclasses with
respect to their expressiveness. In Section 2.2 we explain the intuition behind
the definition of the various subclasses. In Section 2.3 we show that popular
models like Petri nets and process algebras correspond to certain subclasses in
this hierarchy and in Section 2.4 we give an example. In Section 2.5 we show that
this hierarchy is strict with respect to bisimulation equivalence.

2.1 The PRS-Hierarchy

Programs and their possible execution sequences can be formally described by
labeled transition systems (LTS).

Definition 2.1.1 (LTS)
A labeled transition system is a (possibly infinite) directed graph, whose nodes
represent states and whose arcs are labeled with atomic actions from a predefined

10

2.1. THE PRS-HIERARCHY 11

set Act = {a,b,c,...}. One special state is called the initial state. It is often
denoted by sq.

An arc leading from a node sy to a node s, that is labeled with an action ¢ means
that if the system is in state s;, then it can do action a and will be in state s,
afterwards. This is denoted by s1 — s,.

Figure 2.1 shows an example of a LTS.

So a b

Figure 2.1: A labeled transition system

If a LTS is finite then it can be finitely described. However, as most programs
have infinite state spaces, they yield infinite transition systems. Formal models
like Petri nets, pushdown automata and process algebras are ways of finitely
describing certain classes of infinite transition systems.

We present a unified view of many common formal models by showing that every
single one can be seen as a special subclass of rewrite systems. Basically, the
rewriting formalism is first-order prefix-rewrite systems on process terms without
substitution and modulo commutativity and associativity of parallel composition
and modulo associativity of sequential composition. The most general class of
these systems is called Process Rewrite Systems (PRS). In the following we
describe this formalism.

12 CHAPTER 2. FORMAL MODELS

Many classes of concurrent systems can be described by a (possibly infinite) set of
process terms, representing the states, and a finite set of rewrite rules describing
the dynamics of the system.

Definition 2.1.2 Let Act = {a,b,...} be a countably infinite set of atomic
actions and Var = {X,Y,Z,...} a countably infinite set of process variables.
The process terms that describe the states of the system have the following form:

P§§:6|X|P1.P2|P1HP2

where € is the empty term, X is a process variable (used as an atomic pro-
cess in this context), “||” means parallel composition and “.” means sequential
composition. Parallel composition is associative and commutative. Sequential

composition is associative. Let 7 be the set of process terms.

Convention 1: We always work with equivalence classes of terms modulo com-
mutativity and associativity of parallel composition and modulo associativity of
sequential composition. Also we define that e.P = P = P.c and Plle = P.

Convention 2: We defined that sequential composition is associative. However,
when we look at terms we think of it as left-associative. So when we say that a
term ¢ has the form #;.15, then we mean that t, is either a single variable or a
parallel composition of process terms.

The size of a process term is defined as the number of variables in it.

size(e) = 0
size(X) 1
size(P1.Py) = size(Py) + size(Py)

)
size(P1||Py) = size(Py) + size(Ps)

For a term ¢ the set Var(t) is the set of variables that occur in t.

= {}

= {X}

= Var(Py) U Var(P)
= Var(Py) U Var(P)

Var(e
Var(X
Var(Py.Ps
Var(Py|| Py

N N N

The dynamics of the system is described by a finite set of rules A of the form
(t N ty) where t; and t5 are process terms and a € Act is an atomic action. The
finite set of rules A induces a (possibly infinite) labeled transition system with

2.1. THE PRS-HIERARCHY 13

relations = with @ € Act. For every a € Act, the transition relation = is the
smallest relation that satisfies the following inference rules.

(1 5 ty) €A T ty 5t T

t =1, bllte = Ity tillts =][ty tide = 1y

where ty,1,1],t, are process terms.

Since A is finite, the generated LTS is finitely branching !. Also every single A
uses only a finite subset

Var(A) := U (Var(ty) U Var(ty))
(tli>t2)eA

of variables and only a finite subset

Aa(A) = |J {a}
(t1i>t2)€A

of atomic actions. Thus for every A only finitely many of the generated transition
relations =5 for a; € Act are nonempty. (Those for which a; € Act(A)). Still the
generated transition system can be infinite. (Consider the analogy: Every labeled
Petri net has only finitely many transitions and uses only finitely many different
atomic actions, but the state space can be infinite.)

The relation = is generalized to sequences of actions in the standard way. Se-
quences are denoted by o. Normally, o stands for a sequence of actions, but
sometimes we also consider sequences of applications of rules. In these cases o
stands for a sequence of rules and not only for the actions associated to these
rules. (Note that different rules can be marked with the same action.)

Without restriction we can assume that the initial state of a system is described
by a term consisting of a single variable.

Remark 2.1.3 There is no operator “+7 for nondeterministic choice in the pro-
cess terms, because this is encoded in the set of rules A!' There can be several
rules with the same term on the left hand side. It is also possible that several
rules are applicable at different places in a term. The rule that is applied and the
position where it is applied are chosen nondeterministically.

Also there is no such thing as action prefives in the process terms. The atomic
actions are introduced by the rules.

1For some classes of systems (e.g. Petri nets) the branching-degree is bounded by a constant
that depends on A. For other classes (e.g. PA) the branching-degree is finite at every state,
but it can get arbitrarily high.

14 CHAPTER 2. FORMAL MODELS

Many common models of systems fit into this scheme. In the following we char-
acterize subclasses of rewrite systems. The expressiveness of a class depends on
what kind of terms are allowed on the left hand side and right hand side of the
rewrite rules in A.

Definition 2.1.4 (Classes of process terms)
We distinguish four classes of process terms:

1 Terms consisting of a single process variable like X.

S Terms consisting of a single variable or a sequential composition of process

variables like X.Y.Z.

P Terms consisting of a single variable or a parallel composition of process

variables like X||Y||Z.

G General process terms with arbitrary sequential and parallel composition like

(X.(Yf2)w.

Also let ¢ € S, P, G, but ¢ ¢ 1. It is easy to see the relations between these classes
of process terms: 1 C S, 1 C P, S C G and P C G. S and P are incomparable
and SN P =1U/{e}.

We characterize classes of process rewrite systems (PRS) by the classes of terms
allowed on the left hand sides and the right hand sides of rewrite rules.

Definition 2.1.5 (PRS)

Let o, 8 € {1,5,P,G}. A («a,)-PRS is a finite set of rules A where for every
rewrite rule (I = r) € A the term [is in the class a and [# ¢ and the term r
is in the class 3 (and can be €). The initial state is given as a term tg € a. A

(G, G)-PRS is simply called PRS.

Remark 2.1.6 W.l.o.g. it can be assumed that the initial state ty of a PRS is a
single variable. There are only finitely many terms ti, ..., t, s.t. to — t;. If to is
not a single variable then we can achieve this by introducing a new variable Xq
and new rules Xo =5 t; and declaring Xo to be the initial state.

(a, 3)-PRS where « is more general than /3 or incomparable to 5 (for example
a = G and f = 5) do not make any sense. This is because the terms that are
introduced by the right side of rules must later be matched by the left sides of
other rules. So in a (G, 5)-PRS the rules that contain parallel composition on

2.2. THE INTUITION 15

the left hand side will never be used (assuming that the initial state is a single
variable). Thus one may as well use a (59,5)-PRS. So we restrict our attention

to (o, 3)-PRS with o C .

Many of these (o, 5)-PRS correspond to widely known models like Petri nets,
pushdown processes, context-free processes and others. In Section 2.3 this will
be explained in detail. Figure 2.2 shows a graphical description of the hierarchy
of (a, #)-PRS models. This figure contains all (o, 3)-PRS with o C 3. We give
both the common name and the specific (a, 3) for every model. A line from a
lower model to a higher one means that the higher one is more general than the
lower one.

2.2 The Intuition

In Section 2.3 we look at each («, 3)-PRS in detail and examples are given.

However, in this section we explain the general intuition behind the definition of
(o, 3)-PRS. What does it mean that parallel/sequential/arbitrary composition
is allowed in terms on the left /right hand sides of rules?

If parallel composition is allowed on the right hand side of rules, then there can
be rules of the form ¢ % #;]|t5. This means that it is possible to create processes
that run in parallel. The rule can be interpreted that, by action a, the process ¢
becomes the process t; and spawns off the process ¢, or vice versa.

If sequential composition is allowed on the right hand side of rules, then there are
rules of the form ¢ = #1.%,. The interpretation is that process ¢ calls a subroutine
t; and becomes process t,. It resumes its execution when the subroutine #;
terminates.

If arbitrary sequential and parallel composition is allowed on the right hand side
of rules then both parallelism and subroutines are possible.

If parallel composition is allowed on the left hand side of rules, then there are rules
of the form ¢, ||t = ¢. This can be interpreted as synchronization/communication
of the parallel processes t; and t5. This is because this action can only occur if
both #; and t5 change in a certain defined way.

If sequential composition is allowed on the left hand side of rules, then there
= . The intuition is that a
process t called a subroutine ¢; and became process t; by a rule t = #1.t5. The
subroutine may in its computation reach a state t{ or #]. Now one of these rules
is applicable. This means that the result of the computation of the subroutine

affects the behavior of the caller when it becomes active again, since the caller

can be rules of the form /.1, = ' and t/.1,

16 CHAPTER 2. FORMAL MODELS

PRS (G,G)

PAD (S,G) PAN (P,G)
Pushdown (S pa(1,6) Petri Nets (PP)
BPA (1,9) BPP (1,P)
Finite-State Systems (1,1)

Figure 2.2: The PRS-hierarchy.

2.3. THE MODELS IN DETAIL 17

can become t’ or t”. The interpretation is that the subroutine returns a value to
the caller when it terminates. (See the example in Section 2.4.)

If arbitrary sequential and parallel composition is allowed on the left hand side
of rules then both synchronization and returning of values by subroutines are
possible.

2.3 The Models in Detail

(o, 3)-PRS were introduced to provide a unified view of many models of infinite-
state systems. Most of these models have been used for a long time and are
known under other names (e.g. Petri nets, pushdown processes, Basic Parallel
Processes, ...). Here we look at these models in detail. We start at the bottom
of the hierarchy and proceed upwards.

2.3.1 (1,1)-PRS = Finite-State Systems

Every PRS has only a finite number of rules, so it uses only finitely many different
variables. In a (1,1)-PRS all rewrite rules only have single variables on both sides.
So all reachable states are single variables and the state space is finite, since it is
bounded by |Var(A)| < 2|A|. Every variable in Var(A) corresponds to a state
and every rule in A corresponds to an arc in the LTS. In the same way every finite
LTS can be represented by a (1,1)-PRS. So there is a one-to-one correspondence

between finite LTS and (1, 1)-PRS.

Chapter 5 shows some results about model checking finite-state systems.

2.3.2 (1, P)-PRS = Basic Parallel Processes (BPP)

In a (1, P)-PRS all rules have single variables on the left hand side and arbitrary
parallel composition on the right hand side. (1, P)-PRS are equivalent to “Ba-
sic Parallel Processes” (BPP), a simple process algebra that was introduced by

Christensen [Chr93].

The choice of this name is unfortunate, since the complexity class BPP of the
problems that can be solved in polynomial time with high probability [vL.90], was
defined much earlier. However, the name BPP for this process algebra has become
very common in the concurrency community. The complexity class BPP does
not play a role here, and thus in this thesis BPP always means “Basic Parallel
Processes”.

18 CHAPTER 2. FORMAL MODELS

There are several different representations of BPP: As a subclass of CCS, as
(1, P)-PRS and as communication-free nets (a subclass of Petri nets). In the
following pages we show that all these representations are equivalent.

Originally (in [Chr93]) BPP where defined as a natural subclass of Milner’s Cal-
culus of Communicating Systems (CCS) [Mil89]; they are CCS without restriction
and relabeling and without the rule for communication. Of course CCS is a much
more expressive model since it is Turing-powerful [Mil89] (while BPP is not).

Assume a countably infinite set of atomic actions Act = {a,b,¢c,...} and a count-

ably infinite set of process variables Var = {X,Y,Z,...}. The class of BPP
expressions is defined by the following abstract syntax [Chr93, CHM93a]:

def.
ES | X |aE | Ey+ By | By Es

where ¢ is the empty process, X is a process variable, aF is an action prefix
(meaning: first do action @ and then process F), “+” is nondeterministic choice

and “||” is parallel composition.

A BPP is defined by a finite family of recursive equations {X; := E; | 1 <i < n}
where the X; are distinct and the F; are BPP expressions at most containing the
variables {X7,..., X, }. It is assumed that every variable occurrence in the F;
is guarded, i.e. appears within the scope of an action prefix. The variable X7 is
singled out as the leading variable and X; := F; is called the leading equation.
Any finite family of BPP equations determines a labeled transition system. For
every a € Act the transition relation = is the least relation satisfying the following
inference rules:

EL B A

akb 5 F - -
E+F =S F E4+F =S FY

ESE F45F ESE
E|F S E\F E|FSE|FT X SE

(X:=F)

BPP processes generate finitely branching transition graphs, i.e. {F | E % F}
is finite for each E and a. This would not be true if unguarded expressions
were allowed. For example, the process X := a + a|| X generates an infinitely
branching transition graph. Let F;, 2 € IN be terms consisting of an arbitrary
parallel composition of variables. A BPP is in normal form, if every expression
E; at the right hand side of an equation is of the form a1 P, + --- + a, P,. It is
shown in [Chr93] that every BPP is semantically equivalent (strongly bisimilar)
to a BPP in normal form.

2.3. THE MODELS IN DETAIL 19

Any BPP in normal form can be represented by a (1, P)-PRS: For every recursive
equation X := a1 P + --- + a, P, introduce n new rules X 2 P, X &p.
The reverse translation is analogous.

Remark 2.3.1 Note that in PRS-rules there is no operator for nondeterministic
choice anymore. The nondeterminism has been encoded in the set of rules in A.
Nondeterministic choice now occurs when rules are applied, because more than
one rule may be applicable at a time.

Another view of BPP (and (1, P)-PRS) is to see them as a special class of Petri
nets.

Definition 2.3.2 (Petri nets)

A labeled Petri net N is described by a fourtuple (5,7, W,[) where S is a finite
set of places, T is a finite set of transitions, W : (S xT)U(T x S) — IN is a weight
function and [: T" — Aect is a function that assigns actions to the transitions.

A marking of N is a mapping M : S — IN. A marking M enables a transition
tif M(s) > W(s,t) for every place s. If t is enabled at M then it can occur. If
this happens, then the action I(#) occurs and the resulting successor marking is
M’, which is defined for every place s by

M'(s):= M(s)+ W(t,s) — W(s,t)
See [Pet81] for more details about Petri nets.

Definition 2.3.3 A communication-free netl is a labeled Petri net where every
transition has exactly one place in its preset. Formally, this is defined by

VieT. (Jise S W(s,t)=1A Vs #£s.W(s,t)=0)

A (1, P)-PRS can be translated into a communication-free net and vice versa.

The translation of a (1, P)-PRS A into a communication-free net goes as follows:
We work with equivalence classes of terms modulo commutativity and associa-
tivity of parallel composition, so the order of variables in a term doesn’t matter.
Every term stands for a marking of the net and every variable in Var(A) stands
for a place in the net. The number of occurrences of a variable in the term cor-
responds to the number of tokens on this place. Every rule in A corresponds
to a transition in the net. For a rule X % Y ... Y™ introduce a transition ¢
labeled by a, an arc labeled by 1 leading from place X to the transition ¢ and

20 CHAPTER 2. FORMAL MODELS

arcs labeled by m; leading from ¢ to places Y;. It is important to note that in
these nets every transition has exactly one input place with an arc labeled by 1.
The reverse translation is analogous.

We now give an example of a BPP and describe it in the three different formalisms:
first as a system of recursive equations, then as a (1, P)-PRS and finally as a
communication-free net.

The system is defined by the following recursive equations:
X = a.(Y|YV)+0b.(Y]|Z)
Y = e¢+d X
Z = a.(X]||Y)

The initial state (the leading variable) is X.

An equivalent representation can be given as a (1, P)-PRS.

X 5 vy
X % vz
Yy 5 ¢
vy 4 X
7 L X|Y

The initial state is X.

Finally, this system can also be described by a communication-free net. The
variables X, Y, Z now correspond to places and the transitions are labeled with
atomic actions.

The initial state is the marking that contains only one token on place X.

2.3. THE MODELS IN DETAIL 21

BPP has received considerable attention, because it is one of the few models
for which semantic equivalences like bisimulation [Jan94, Mil89, HJM94, CHS92,
CHM93a, Jan95, CHM93b, HIM96, JE96, BCS95, May96a, May96c, May97d]

are decidable.

Model checking BPP has also been intensively studied [Esp97, Esp96, May96c¢,
EK95, Hab97]. Chapter 6 shows results about the complexity of model checking
BPP.

2.3.3 (P, P)-PRS = Petri Nets

In (P, P)-PRS all rewrite rules have arbitrary parallel composition on both sides,
but no sequential composition. So all rules have the form X[X3 ... || X; N
Yi||Ya]| - .. ||[Ye. There is a 1-to-1 correspondence between (P, P)-PRS and Petri
nets. Remember that in transition systems described by PRS every state is
represented by a process term. Every process variable used in a (P, P)-PRS
corresponds to a place in the Petri net, and every process term corresponds to a
marking. The number of occurrences of a variable in a term corresponds to the
number of tokens on the place in the net. This is because we work with classes
of terms modulo commutativity and associativity of parallel composition. Every
rewrite rule in A corresponds to a transition in the net. It can only be applied if
there are enough variables in the term (tokens on places in the net) and replaces
a multiset of variables (tokens) by another one.

In Definition 2.1.5 we defined that the left hand sides of rules of a PRS cannot be e.
Thus we have the condition that every transition in the Petri net has at least one
place in its preset. This is no restriction, since every Petri net can be transformed
into an equivalent one that satisfies this condition. In this transformation we just
add an extra place to the preset of each transition and arcs from this place to the
transition and back.

Petri nets are more general than BPP (see Subsection 2.3.2), because Petri nets
are more general than the subclass of communication-free nets. See [Pet81] for a
general book on Petri nets.

The following definitions also apply to BPP. They are used in Chapters 6 and 9.

Definition 2.3.4 Every Petri net N with n places and m transitions can be
described by a (n,m)-matrix C' of integers. The entry h;; at row ¢ and column
J defines how many tokens a firing of transition ¢; adds to place s;. h;; can
be negative. Every marking M is described by a vector of natural numbers of
dimension n. The i-th component of this vector is M(s;).

22 CHAPTER 2. FORMAL MODELS

Let o be a sequence of transitions. The Parikh-vector P(o) of o is an m-
dimensional vector of natural numbers. The j-th component of P(c) is the
number of times that the transition ¢; occurs in o.

E(o) := C - P(0) is called the effect-vector of o. Unlike for the Parikh-vector,

the elements of the effect-vector can be negative.

It follows that if M 2 M’ then M' = M +C - P(o) = M + E(0). Sometimes the
effect-vector (o) is seen as a function on the set of places. Then F(o)(s;) is the
i-th component of F(o).

Chapter 9 is about model checking Petri nets.

2.3.4 (1,5)-PRS = Basic Process Algebra (BPA)

In a (1, .5)-PRS all rules have single variables on the left hand side and arbitrary
sequential composition on the right hand side, like for example X = ¥;.Y,.Y5.
(1,.5)-PRS are equivalent to the class of Basic Process Algebra (BPA) processes of
Bergstra and Klop [BK85]. They are transition systems associated with Greibach
normal form (GNF) context-free grammars in which only left-most derivations
are permitted. BPA-processes are also called context-free processes.

In analogy to BPP, BPA-processes can be represented by recursive equations and
process terms that contain action prefixes and the operator “4+” for nondeter-
ministic choice. Just as for BPP, nondeterminism can be encoded in the set of
rewrite rules and thus the operator “+” is no longer necessary.

Chapter 7 contains results about model checking BPA.

2.3.5 (S5,5)-PRS = Pushdown Processes

Pushdown automata are a very common concept in formal language theory. They
are used to describe context-free languages (Chomsky-2 languages) [HU79]. How-
ever, they can also be used as a process model. The state of the finite control and
the stack content then describe a state of the process. The rules that define if a
terminal symbol is accepted now describe which atomic actions the process can
perform and how the state is changed by these actions. If pushdown automata
are used as a process model, then they are called pushdown processes or pushdown
systems.

To present such a pushdown process as a restricted form of a (5, 5)-PRS A, we
partition the set of variables Var(A) into disjoint sets @ (finite control states)

2.3. THE MODELS IN DETAIL 23

and ? (stack symbols). The rewrite rules are then of the form p.A % ¢.3 with
pog € Q, A€? and Fin 7" (8 is a sequential composition of variables in 7).
This represents the usual transition of pushdown automata which says that while
in control state p with the symbol A at the top of the stack, one can read the
input symbol a, move into control state ¢, and replace the stack element A with
the sequence 3. Caucal [Cau92] showed that any unrestricted (5,5)-PRS can
be presented as a pushdown process, in the sense that the transition systems are
isomorphic up to the labeling of states. Thus pushdown processes and (.5, 5)-PRS
are equivalent. The general idea of the proof is to introduce finitely many new
variables that are used as abbreviations for sequences (sequential compositions) of
normal variables that occur in the rules of the (.5, .5)-PRS. Only finitely many are
needed, because the set of rules is finite. Then the rules are modified by replacing
sequences of variables in the rules by the shortest possible abbreviations.

Consider the following (.5, 5)-PRS.

Xy &% W
XY.Z 5 XYW
XYw 5 7z

X N €

If we introduce an abbreviation K for X.Y then the system becomes

K % W
K7 5% Kw
KW 5 7

X N €

K 4 v

This is a pushdown process and it is equivalent to the (.5, 5)-PRS above.

Pushdown processes are used as a model for sequential systems with subroutines,
especially for dataflow analysis in recursive systems [BS95, Ste93]. There has
also been work towards a generalization of this to parallel systems by regarding
parallel compositions of pushdown processes [BS94]. Process rewrite systems are
a more general and more flexible approach to model concurrent systems with
recursion (see Subsection 2.3.9, Section 2.4 and Chapter 10).

Chapter 7 is about model checking pushdown processes.

24 CHAPTER 2. FORMAL MODELS

2.3.6 (1,G)-PRS = PA-Processes

In (1,G)-PRS every rule only has one variable on the left hand side and an
arbitrary process term on the right hand side. This class of processes is equivalent
to the so-called “PA-processes” (PA stands for “Process Algebra”) that were
introduced in [BW90] as a natural subset of ACP processes. Nowadays this name
hardly fits any more, because the term “Process Algebra” now has a much wider
meaning and includes much more general formalisms like CCS [Mil89]. These
processes have nondeterminism, sequential composition and parallel composition,
but no synchronization.

PA is not a syntactical subset of Milner’s Calculus of Communicating Systems
(CCS) [Mil89], because CCS does not have an explicit operator for sequential
composition. However, CCS is still much more expressive, since it is Turing
powerful and can simulate sequential composition by parallel composition and
synchronization.

Originally, PA-processes were presented in a different form by recursive equations.
However, it can be shown that the two formalisms are equivalent.

Assume a countably infinite set of atomic actions Act = {a,b,¢c,...} and a count-
ably infinite set of process variables Var = {X,Y, Z,...}. The class of PA ex-
pressions is defined by the following abstract syntax

E:=¢|X|aF|E+FE|E|E|EE

Convention: We always work with equivalence classes of terms modulo com-
mutativity and associativity of parallel composition and modulo associativity of
sequential composition. Also we define that e.f = F' = E.e and E|le = E.

A PA is defined by a family of recursive equations {X; := E; | 1 < ¢ < n},
where the X; are distinct and the E; are PA expressions at most containing the
variables {X7,..., X,,}. We assume that every variable occurrence in the F; is
guarded, i.e. appears within the scope of an action prefix, which ensures that PA-
processes generate finitely branching transition graphs. This would not be true
if unguarded expressions were allowed. For example, the process X := a + a|| X
generates an infinitely branching transition graph.

For every a € Act the transition relation - is the least relation satisfying the
following inference rules:
a ESE AR ESE
ol 5 B - - (X = E)
E4+F—FE FE+4F—=F XSV

ESE F R ES R
E|F % EB|F E|F-S E|F" EF S E.F

2.3. THE MODELS IN DETAIL 25

Definition 2.3.5 A PA-process is in normal form if all its equations are of the
form

g
Xi: E CLZ']‘EZ']‘
j=1

where 1 <12 < n, n; € N, a;; € Act and E; are process terms as used in PRS
(that means without “+” (choice) and action prefix).

It has been shown in [BEH95] that any PA-process is semantically equivalent
(up to bisimulation (see also Def. 2.5.1)) to a PA-process in normal form. This
PA-process in normal form can be effectively constructed.

A PA-process in normal form can be represented by a (1,)-PRS by transforming
each recursive equation

g
Xi: E CLZ']‘EZ']‘
j=1

into n; new rules

Aym,;
ey

a1

The reverse transformation is analogous.

Chapter 8 and especially Section 8.3 shows results on verification problems for
PA-processes.

2.3.7 (5,G)-PRS = PAD

PA-processes subsume context-free processes (BPA), but they do not subsume
pushdown processes. This observation has led to the definition of a more gen-
eral model that subsumes both PA-processes and pushdown processes. In the
framework of PRS the generalization is obvious: PA-processes are (1,(G)-PRS
and pushdown processes are (5, 5)-PRS, so the ‘smallest’ common generalization
is (5, G)-PRS. They have also been called PAD in [May97c]. This name is an
artificial construct; PAD = PA + PD.

Like PA-processes, PAD-processes do not allow synchronization between parallel
components, but, unlike PA, they can model a limited communication between a
subroutine and its caller. Consider the process t.X, where ¢ is a process term and
X is a variable. In PA the process ¢t may or may not terminate, but it can never

26 CHAPTER 2. FORMAL MODELS

affect process X. In PAD the process t may develop into a process described by
a single variable Y. There may be a rule Y.X % ¢/ that is now applicable. Thus
the behavior of process t can affect process X. In Section 2.5 we show that PAD
is strictly more general than PA w.r.t. bisimulation equivalence.

Now we show a small example of a PAD-process. It is described by the following
set of rules A and has the initial state X.

X = Y X).Z
Y KN €
X7 5 X

Chapter 8 is about model checking PAD.

2.3.8 (P,G)-PRS = PAN

(P, G)-PRS arise naturally as the ‘smallest’ common generalization of Petri nets
((P, P)-PRS) and PA-processes ((1,G)-PRS). They extend Petri nets with se-
quential composition, which can be seen as the possibility to invoke subroutines.
The name PAN has been introduced in [May97a] as a combination of PN (Petri
nets) and PA. Although PAN is more general than Petri nets (see Section 2.5), it
is not Turing-powerful. Chapter 10 describes this and other results about PAN.

2.3.9 (G,G)-PRS = Process Rewrite Systems

(G,G)-PRS are the most general class of process rewrite systems. They were
introduced in [May97¢c]. By definition they subsume all previously mentioned
models. Intuitively, they can be seen as an extension of Petri nets with subrou-
tines. Just like in PAD, a subroutine can return a value to the caller when it
terminates. PRS can be seen as a generalized approach to model concurrent sys-
tems with recursion, because they are more flexible than parallel compositions of
pushdown processes (see Subsection 2.3.5). One possible application is dataflow
analysis and the analysis of dependencies of subroutines on each other.

An interesting point about PRS is that they are strictly more expressive than
the other models (see Section 2.5), but not Turing-powerful. This is shown in

Chapter 10.

2.4. INTENDED APPLICATIONS 27

2.4 Intended Applications

Process Rewrite Systems are a formalism that can be used to model parallel
processes with recursion. We describe a small example of a system that can be
modeled with PRS. The system is a parallel program that recursively computes
a boolean value. First we write the program in a PASCAL-like pseudo-code.

function f(x : data) : boolean;
var xy, 9, r3 : data;
var by, by : boolean;

begin
if size(x) < 2 then return(Q(x)) fi; /* Q is some predicate */
xq:= Pi(x,1); /* Splitting into subproblems */
xq:= Pi(x,2); /* P somehow modifies x */
xs:= Pi(x,3);

by :=h(xy) || be:=h(xg); /* Parallel call */
if (b1 or by) /* if at least one was successful */
then

return(f(x3)); /* apply f to the new instance */
else

return(false);

ﬁ.

?
end;

function h(x : data) : boolean;
var xy, 9, r3 : data;
var by, by, b3 : boolean;
begin
xq:= Py(x,1); /* Splitting into subproblems */
xqg:= Py(x,2); /* P2 somehow modifies x */
x3 = Py(x,3);
/* parallel call with different instances */
b= f(a1) || b2 := f(a2) || bs := f(ws);
if (b1 and by and bs) /* if all are successful */
then
print(“Now processing ", @1, ¥2, €3);
return(true);
else
return(false);

ﬁ.

?
end;

28 CHAPTER 2. FORMAL MODELS

Of course we cannot model the whole program in PRS, because PRS is not
Turing-powerful. However, we can accurately model the basic control structure.
An instance of problem f(x) (function f, data x) will be described by the process
variable X. An instance of problem h(x) (function h, data x) will be described
by the process variable Z. We also have to describe how to handle booleans. Let
variable T' stand for true and F' for false. The rules for conjunction are

TI|T L4 7 T|F 24 F FT 2% F R F SR

In this context the variables T, F' are always interpreted conjunctively. In order
to be able to enforce a disjunctive interpretation we define new variables to stand
for the same boolean values. Let variable R (right) stand for true and W (wrong)
stand for false. The rules for disjunction are

RIR“>R R|W >R W|RR W|W LW

Now we describe the rules for the program:

X —m 7 (1)
0% false 12 (2)
R L e (3)
X Leomn . p(Z)|2).X (4)
W.X op F (5)
RX nextstep X (6)
P, PR L ¢ (7)
A Leome: L py (X|X)X)Y(8)
FY result no W (9)
TY et GR (10)
G actions c (11)

These rules have the following meanings:

(1) X describes the main program that solves an instance of the problem. If the
instance is small enough then the result is clear. In this case it is true.

(2) In this case it is false.

(3) Py stands for some computations that are necessary to decompose the prob-

lem X.

2.4. INTENDED APPLICATIONS 29

(4) In this case the problem is decomposed into smaller problems. First we
do some preparation P;. Then we solve two independent instances of a
problem (h(x1), h(x2)) described by Z. This can be done in parallel. The
two results are interpreted disjunctively. If one of them is true, then we
solve a (smaller) instance of the main problem X. Otherwise we return

false.

(5) If the previous result was W (wrong), then there is no reason to go on. The

result is F' (false).

(6) If the previous result was R (right), then the result only depends on the
smaller instance of the main problem X (f(x3) in the example).

(7) P, stands for some computations that are necessary to decompose the prob-

lem Z.

(8) The problem 7 is also decomposed into three independent (parallel) instances
of the problem X. The results are interpreted conjunctively.

(9) If the result was F' (false), then we terminate immediately and return the
value W (wrong).

(10) Ifthe result was true, then we first do some other actions (7, before returning
the value R (right).

(11) G stands for some actions that are necessary if an instance of the prob-
lem 7 was successful. It could be updating a lookup table (for dynamic
programming) or outputting a progress message (as it is done here in the
program).

Let A be the set of rules defined here. It is clear that A is a PRS, but no PAN,
PAD, PA or Petri net. This is because here the subroutines return values to
their callers when they terminate and there is synchronization between parallel
components.

In Chapter 10 we describe algorithms that can be used to verify this system.
There we show that the reachability problem is decidable for PRS. It is even
decidable if there is a reachable state that satisfies certain properties that can be
encoded in a simple logic.

30 CHAPTER 2. FORMAL MODELS

2.5 The PRS-Hierarchy is Strict

The question arises if this hierarchy of (a, #)-PRS is strict. In other words, are
the higher models in the PRS-hierarchy strictly more expressive than the lower
ones?

In order to define what it means to be more expressive, we first define what it
means to have the same expressiveness as another model. We use a semantic
equivalence called bisimulation [Mil89, Mol96]. Bisimulation equivalence has be-
come a very popular semantic equivalence in the formal verification community.

Definition 2.5.1 A binary relation R over the states of a labeled transition
system is a bisimulation iff

Y(s1,89) € RVYa € Act. (51 5 st = Jsy 5 s). s/ Rsh) A

a a
(s2 — s = ds; — s]. s Rs))

Two states s; and sg are bisimilar il there is a bisimulation R such that s; Rss.
This definition can be extended to states in different transition systems by putting
them ‘side by side’ and considering them as a single transition system. It is easy
to see that there always exists a largest bisimulation which is an equivalence
relation. It is called bisimulation equivalence or bisimilarity and it is denoted by

~,

The main reason why we use bisimulation is that bisimilar processes satisfy ex-
actly the same set of temporal logic formulae. The converse also holds: Two
processes are bisimilar if they cannot be distinguished by Hennessy-Milner Logic
(see Subsection 3.1.1). See [Mol96] for a survey on decidability and complexity
of bisimilarity for most process models in the PRS-hierarchy. More results on
bisimulation can be found in [Jan94, Mil89, HJM94, CHS92, CHM93a, Jan95,
CHM93b, HIM96, JE96, BCS95, May96a, May96c, May97d].

Definition 2.5.2 A class of processes A is more general than a class of processes
B with respect to bisimulation iff the following two conditions are satisfied:

1. For every B-process there is a semantically equivalent A-process.

VieB.I e A t' ~ 1t

2. There is an A-process that is not bisimilar to any B-process.

Jte AV e Bt At

2.5. THE PRS-HIERARCHY IS STRICT 31

It has already been established in [BCS96, Mol96] that the classes of finite-state
systems, BPP, BPA, pushdown systems, PA and Petri nets are all different with
respect to bisimulation. For PAD, PAN and PRS this remains to be shown.

The proof has two parts: First we show that there is a pushdown process that is
not bisimilar to any PAN-process. Then we show that there is a Petri net that is
not bisimilar to any PAD-process.

Definition 2.5.3 Consider the following pushdown system:

UX % UAX UA 5 UAA UA % UBA
UX 2 UBX UB X UB.B UB % UARB
UX 5 VX UA 5 VA UB 5 V.B
UX 4 wx UA % WA UB % W.B
VA 5V V.B X Vv VX 5V
WA 5 W W.B % w wx L ow

with the initial state . X. The execution sequences of this system are as follows:
First it does a sequence of actions in {a,b}* and then one of two things:

1. A “¢”, the sequence in reverse and finally a “¢”.

2. A “d”, the sequence in reverse and finally a “f”.

Now we show that this pushdown system is not bisimilar to any PAN-process.
First we need several definitions and lemmas.

Definition 2.5.4 Let ¢ be an arbitrary process and o a sequence of actions. The
runs of ¢ are its computations of maximal length (see Def. 3.0.15). We define that
only(t, o) is true iff the following conditions are satisfied:

o All runs of ¢ are finite.

o All these runs do the sequence of actions o.
The following general lemma was proved by Dickson in [Dicl3].

Lemma 2.5.5 (Dickson’s Lemma)
Given an infinite sequence of vectors My, My, M, ... in IN* there are i < j
s.t. M; < M; (< taken componentwise).

32 CHAPTER 2. FORMAL MODELS

Remember this: P is the class of process terms that contain only parallel
composition; see Def. 2.1.4.

Lemma 2.5.6 For every PAN A there is a sequence o € {a,b}* s.t. no a € P
satisfies any of the following two conditions:

Cond1 Ja.. a = a, A only(a.,o€)
Cond?2 Jag. a % ag A only(ayq, of)

Proof We assume the contrary and derive a contradiction. Let A be the PAN.
Consider an infinite sequence of sequences oy,09,--- € {a,b}* s.t. for all 7 < j
o; is not a prefix of o;, for example o; := a'.b for 1 € IN. Let o' € P be
the term that belongs to o; and satisfies Condl or Cond2. There must be an
infinite subsequence of ay, s, ... where Condl is always satisfied or an infinite
subsequence of aq, s, ... where Cond?2 is always satisfied. W.r. we assume that
there is an infinite subsequence where Condl is always satisfied. Now we only
regard this infinite subsequence. Since A is finite, there are only finitely many
different rules in A that are marked with the action c. Let (t; = #,),..., (t, = 1)
be those rules. (Note that ¢; € P for every ¢, because A is a PAN. However, ¢/
need not be in P.) It follows that one of these rules must be used infinitely often
to obtain ol from «'. Let this rule be (t; — t}) for some k& € {1,...,n}. Thus
there is an infinite subsequence of the sequence ay, ay, ... where only this rule is
used to obtain o from a'. Now we consider only this infinite subsequence.

We regard the sequence o' of the a that satisfy Condl. Var(A) is finite and
a' € P. Moreover, all a; only contain variables from the finite set Var(A).
Thus we can apply Dickson’s Lemma. By Dickson’s Lemma there are 7,5 € IN
s.t. j' > j and o/ > a7 (this means o/ = o7||3 for some 3 € P.)

For both o/ and o’ the rule (¢; < ;) is used to obtain aZ, /. Thus af = ||y
for some v € P and ol = t,|ly. Also we have o/ = o/||3 = t;|7]|3 and of =
V18 = &l]|3. By Condl we have only(al,o;e). However, o also enables
the sequence oje. This is a contradiction, because only(al’, oje) and o; is not a
prefix of 0. [

Lemma 2.5.7 For every PAN A there is a sequence ¥ € {A, B}* s.t. no process
term t (w.r.t. A) is bisimilar to the pushdown system U.X.X of Def. 2.5.5.

Proof We assume the contrary and derive a contradiction. Assume that there
is a PAN A s.t. for every sequence ¥ € {A, B}* there is a term #(¥) s.t.

H(Y) ~ U.S.X

2.5. THE PRS-HIERARCHY IS STRICT 33

For every ¥ let #(X) be the smallest term that has this property.

For any sequence ¥ € {A, B}* let o(X) be the sequence of actions a and b that
is obtained by converting ¥ to lowercase letters.

It follows from the definition of bisimulation that no process that has only finite
computations can be bisimilar to a process that has an infinite computation.
Thus by Def. 2.5.3 it follows that for every sequence ¥ € {A, B}* and every state
t(X) the following properties hold:

C There is a state #.(X) s.t. #(¥) = t.(X) and t.(¥) ~ V.¥.X and thus
only(1.(5),o(S)e)

D There is a state 4(X) s.t. t(X) 4 ta(¥) and t4(¥) ~ W.E.X and thus

only(ty(X),0(X)f).

For every #(X) the action ¢ disables the action d and vice versa. Thus the actions
¢ and d must both occur in the same subterm « of {(¥) and o € P must be a
parallel composition of process variables in Var(A). This is because for a PAN
and a term of the form #;.£5||t3 (where 1, t2 and ¢3 are not €) no single action can
change both ¢; and 3.

Now we show that #(X) can not have the form ¢(¥) = (¢;.47)]] . .. ||(¢s.t,)]|c where
a is a parallel composition of variables and #;,#/, 1 < ¢ < n are process terms.
We assume the contrary and derive a contradiction.

Let t(X) = (t1.4))] - .- ||(tn-t))]|c where « is a parallel composition of variables
and t;,t, 1 < ¢ < n are process terms. W.r. we can assume that ty,...,1, are

not deadlocked. We have @ = a, and « A ag 8.t 1.(X) = (G t)| - (et] e
and t4(X) = (t.)| .- || (£n-1),)||ca. Tt follows from the conditions C' and D that
only(t.(X),0(X)e) and only(ty(X),o(X)f). Now there are two cases:

1. Assume that ¥ starts with A. Thus V.2.X can do action a, but not action
b. (t1.1)] .- ||(2n-t)) is not deadlocked and cannot synchronize with «a..
Thus it must be able to do action a, but not action b. As t(¥) ~ U.X. X

and U.X. X KN U.B.X.X there must be a t' s.t. ¢(X) b and ¢ ~ UBY.X.

The action b must occur in «, because (#1.t})||...[|(t,.t,) cannot do b.

Thus a = o and (t.4)]]...||(tet))|la’ ~ U.B.X.X. Now U.B.X.X =
V.B.X.X and thus o/ 5 o s.t. (t1.19)]] ... ||(ta-t))||@” ~ V.B.X. X, because
(t1.)] - - - ||(tn-t)) cannot do action e¢. But now (1.))]|...||(¢..t))]|¢” can
do action a, because (t1.1})]...||(¢,.t") can do action a. This is a contra-
diction, because V.B.X. X cannot do action a.

34 CHAPTER 2. FORMAL MODELS

2. Now assume that X starts with B. The proof is similar to the previous case.
Just exchange A and B and a and b. Again we get a contradiction.

It follows that #(X) can never have the form (£1.t))||. .. [|(t,.1))|lc.
Therefore t(X) = (a.t)||t’ where a € P is a parallel composition of variables and
t,t" are process terms. (It is possible that ¢,# are ¢.) We have a = a. and

o ag s.t. 1.(X) = (act)||t and 14(X) = (aq.t)][t’. By conditions C and D we
have only(t.(X),0(X)e) and only(t4(X),0(X)f). By Lemma 2.5.6 there exists a

sequence Y s.t. no o € P that satisfies any of the following two conditions:
e Ja.. a5 a. A only(a., o(X)e)
o Jag. a L ag A only(aq,o(X)f)

Thus o must always terminate by a sequence of actions that is a prefix of o(X).
Thus there must be a suffix ¥/ of ¥ s.t. only(t]|t’,0(¥X')e) and another suffix 3"
of ¥ s.t. only(t||t’,o(X”) f). This is a contradiction. |

Lemma 2.5.8 The pushdown system U.X of Def. 2.5.3 is not bisimilar to any
PAN A with initial state tg.

Proof We assume the contrary and derive a contradiction. Assume that there
is a PAN A with initial state #g s.t. tg ~ U.X. Let ¥ be the sequence from
Lemma 2.5.7. (Note that ¥ depends on A.) The process U.X can reach the state
U.X.X. Thus ty must be able to reach a state ¢ s.t. ¢ ~ U.2X.X. However, by

Lemma 2.5.7 such a term ¢ does not exist. Thus we have a contradiction.]

It follows directly that the pushdown system from Def. 2.5.3 is not bisimilar to any
PA-process either. However, as PAD and PRS subsume pushdown processes, it is

a PAD and PRS-process. Thus PAD is strictly more general then PA and PRS is
strictly more general than PAN. PAD subsumes BPP and BPP is incomparable
to pushdown systems. Thus PAD is also more general than pushdown processes.

Now we show that there is a Petri net that is not bisimilar to any PAD-process.

Definition 2.5.9 Consider the following Petri net, which is given as a (P, P)-
PRS.

X 4 X|A|B XS5y YA LY Y|BLY
X|AL 2z X|B % 7z Y|AL Z Y|B % 2

The initial state is X|| Al B.

2.5. THE PRS-HIERARCHY IS STRICT 35

Lemma 2.5.10 [f there is a PAD-process that is bisimilar to the state X||A||B of
the Petri net of Def. 2.5.9, then there is also a pushdown process that s bisimilar
to X||A||B.

Proof Let A be a PAD and @) the initial state s.t. Q ~ X||A||B. W.r. we can
assume that () is a single variable (see Def. 2.1.5). Now we construct a pushdown

process (an (.9,5)-PRS) A’ that is also bisimilar to X||A||B.

Now we show that in every state of A the form (#1]|t2).t5 (5 can be €) #; or t3
must be deadlocked.

Assume that there is a state (#1]|f2).t3 that is reachable from). Then a state M
must be reachable from X ||A||B s.t. t1]|t2 ~ M. There are two cases:

1. If M is deadlocked then t; and #5 must be deadlocked.

9. If M is not deadlocked then there is an M’ s.t. M < M’ and M’ is dead-
locked. By the definition of PAD a single action d can only change t; or ¢5,
but not both. Thus either #; or 5 must be deadlocked.

Thus in every state t1|[t2 that is reachable from) at least one ¢; is deadlocked.
Since () is a single variable, parallel composition can only be introduced by PAD-
rules. If such a rule has the form (u N uql|ug) € A for some action x, then
uy or up; must be deadlocked. W.r. let u; be deadlocked. However, the term
uy.t for some term ¢ is not necessarily deadlocked. Thus in A’ we replace the
rule (u = wuyllug) by the rule rule u = wug.up. (We assume w.r. that uy cannot
influence uy. This means that there is no rule in A’ whose left hand side is v4.v¢
where vy 1s a nonempty suffix of uy and vy is a nonempty prefix of u;. This can
be achieved by renaming of variables in uy and A’ if necessary.)

The other case where parallel composition occurs in a rule in A is when a rule
X
has the form v — wy.(uz||us).us, where uy or uy can be €. There are two cases:

L. If uy can terminate then the term (uz||us) can become active. Therefore
uy or us must be deadlocked. W.r. let uy be deadlocked. Then in A’ we
replace this rule by the rule u = wuq.us.us.us. Note that u, is deadlocked,
but wy.uy is not necessarily deadlocked. (We assume w.r. that u; cannot
influence us and w3 cannot influence uy. This can be achieved by renaming
of variables in u; and us and A’ if necessary.)

2. If uy cannot terminate then in A’ we replace this rule by the equivalent rule
u i) Uq.

36 CHAPTER 2. FORMAL MODELS

It follows that no parallel composition occurs in the rules in A’. Thus, if the
preconditions are correct, the (5,.5)-PRS A’ with initial state @) is bisimilar to
X||A||B. This is the pushdown process that we are looking for. |

Definition 2.5.11 Let A be a («, 5)-PRS for o, € {1,5,P,G} and t, the
initial state. The language generated by this system is the set of all sequences o
s.t. At to = ¢ and t is deadlocked.

Lemma 2.5.12 If a process P is bisimilar to a pushdown process then the lan-
gquage generated by P is a context-free language.

Proof Directly from Def. 2.5.1 and the definition of pushdown processes. [

Lemma 2.5.13 The Petri net of Def. 2.5.9 is not bisimilar to any PAD-process.

Proof We assume the contrary and derive a contradiction. If there is a PAD-
process that is bisimilar to the Petri net of Def. 2.5.9, then by Lemma 2.5.10 there
is a pushdown process that is bisimilar to this Petri net. Then by Lemma 2.5.12
the Petri net of Def. 2.5.9 generates a context-free language L. By the definition
of this Petri net L is

{g"co | m>0ANoe{ab}* N #Ho=m+1ANF#Ho=m+1} U

{gmd | m =0} U

m>0Ao¢e{abl*A

Ho<m+1ANFo<m+1A F#,04+FH,0<2m+1

g"ead |

For every m € IN the word ¢"ca™ 6™ is in L. Now we apply the Pumping-

Lemma for context-free languages [HU79]. There is a constant n s.t for every

m+1 bm—l—l

m > n the word ¢™ca can be written as wvwzy s.t. |[vwz| < n and

lvz| > 1 and for every 1 > 0 uviwa'y € L. There are several cases:

1. v contains ¢ or x contains ¢. This is a contradiction, because no word in L
contains ¢ more than once.

2. vwaz is part of ¢". This is a contradiction, because g™ **ca™t1bm+ ¢ [for
any k> 0.

3. v is part of ¢™ and x is part of ¢™*!. This is a contradiction, because there

are no k, k' > 0 s.t. gt g8 p(m+1) §gin [,

2.5. THE PRS-HIERARCHY IS STRICT 37

4. Neither v nor x contains the symbol g. This is a contradiction, because
there are no k, k' > 0 s.t. ¢"eca" TR pm+1+8) jg i [, [

It follows that PAD and PAN are incomparable and PRS is strictly more general
than PAD. By combining these results with the other results above we get the
following theorem.

Theorem 2.5.14 The PRS-hierarchy is strict with respect to bisimulation.

Chapter 3

Temporal Logics and Model
Checking

Temporal logics play an important role in formal verification. They are used to
specify properties of processes. Such properties are for example “The process
is deadlock-free. (A deadlocked state is not reachable)” or “In every infinite
execution of a process action b must occur infinitely often”.

The Model Checking Problem is the problem if a process, which is described by
a (possibly infinite, but finitely described) labeled transition system, satisfies a
property encoded in a formula in a temporal logic.

MoDEL CHECKING

Instance: A finite description of a (possibly infinite) labeled transition system,
a state s in this system and a temporal logic formula ®.
Question: Does the state s satisfy the formula ® (denoted s = @) 7

The size of an instance of a model checking problem depends on two parameters:

1. The size of the description of the labeled transition system and the state s.
Let x be this size.

2. The size of the formula ®. Let y be this size.
We study the decidability and the computational complexity of model checking

problems. Since the size of an instance is described by two parameters = and y
there are three different complexities to analyze.

o In the most general case we consider the complexity of the model checking
problem in the size of the whole instance (2 4 y).

38

39

e In practice, the formula is normally very small, while the description of the
transition system is often very large. Thus y is often very small, while «
can be large. Therefore the complexity of the problem in the parameter x
is very important. Thus we also consider the complexity of the problem in
the parameter x for a fixed formula (and thus fixed y). However, we assume
the worst case for this fixed formula.

e It is also possible to consider the complexity of the problem in the parameter
y. For this one assumes the worst case of a fixed system (fixed x) and studies
the complexity in the size of the formula (parameter y). In practice however,
x is often large while y is almost always small. Therefore the complexity
of the problem in y is not relevant in practice. Thus this question is not
considered in this thesis.

The property that a state in a transition system satisfies a temporal logic formula
is defined separately for every temporal logic in the rest of this chapter. In this
thesis («, #)-PRS are used to describe labeled transition systems, but of course
this is not the only possibility.

Temporal logic formulae are described by an abstract syntax and interpreted over
the computations (runs) of processes. The following definitions apply to all model
checking problems.

Definition 3.0.15 (Paths and Runs)

Let sg,$1,82,... be states of a labeled transition system. A path of a labeled
transition system is a finite or infinite sequence sg = s; = s5... such that every
triple s; = s;41 belongs to the set of transitions. A run is a maximal path, i.e.,
a path that is either infinite, or terminates in a state without successors.

For a given transition system let paths(s) be the set of paths starting at state s
and runs(s) the set of runs starting at state s. For any path = € paths(s) let
prefs(m) be the set of finite prefixes of =.

ag a1

For any path 7 = sp — s1 — $2... we write 7(¢) for s; and 7' for the path

a; Q41
Si = Sip1 — -

Let firstact(w) := ag. Thus a; = firstact(x").

There are two main classes of temporal logics which differ at how their interpreta-
tions are defined. Branching-time logics are interpreted over the computation-tree
of the process being analyzed.

40 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKING

Definition 3.0.16 (Computation-tree)

The computation-tree of a process is a (possibly infinite) tree whose nodes are
labeled with states and whose arcs are labeled with atomic actions. The root
node is marked with the initial state sy. If a node is marked with a state s and
s 25 s, i=1,...,n then the node has n child-nodes si,...,s,. The arc from s
to s; is labeled with a,.

Note that («, 3)-PRS generate finitely branching transition systems. Thus their
computation-trees are finitely branching. The truth of a branching-time logic
formula at a state of a process depends on the state and the subtree below it in
the computation-tree. Linear-time logics are interpreted over the set of all runs
of a process. A formula holds at a state iff all runs starting at this state satisfy
the formula.

There are many temporal logics which have more or less expressive power. We
consider the most commonly known temporal logics and some interesting frag-
ments. Some logics are more expressive than others, but there are also cases where
two logics are incomparable. Figure 3.1 shows a classification of the temporal log-
ics we are going to introduce, with respect to their linear-time or branching-time
nature and their expressive power. In this figure a line from a logic to another
logic above it means, that the logic above is strictly more expressive than the logic
below. The dotted line from the linear-time p-calculus to the modal p-calculus
has the same meaning, but in this case the transformation is not as cheap as
in the other cases. For every linear-time p-calculus formula there is a modal
p-calculus formula that expresses the same property, but the modal p-calculus
formula is exponentially larger (see Section 3.2). All logics in Figure 3.1 have
a different expressive power. For a thorough treatment of temporal logics see

[MB96, Eme94, Bra92].

Before we describe the various temporal logics in detail we give the motivation
for their definition. Hennessy-Milner Logic and weak linear-time logic are very
weak logics and can hardly express any interesting properties. Thus they are
almost never used in formal verification. Historically, linear-time temporal logic
(LTL) [Pnu77] and computation-tree logic (CTL) [CE81] were defined as exten-
sions of these logics by new operators that increase the expressiveness consider-
ably. Thus it became possible to express interesting properties. Nowadays LTL
and CTL are widely known and are often used in formal verification. The logics
EF and EG are both very natural fragments of CTL. However, the motivations
for their definition are quite different. EF is considered to be a simple but useful
logic, because it can still express many interesting properties that are important
for the verification of systems. For example EF can express the property ‘From
every reachable state there is a terminating computation’. The logic EG was not

41

Branching-time logics Linear-time logics

Modal p-Calculus

Alternation-free R \ Linear-time
Modal p-Calculus - p-Calculus
CTL LTL
UB
EG EF

Hennessy-Milner Logic Weak Linear-time Logic (WL)

Figure 3.1: Linear and branching-time logics

defined because it is useful, but because it so simple and still so hard. It has been
used mostly to prove lower bounds for the decidability and complexity of model
checking problems. Some of these results are quite surprising given the limited
expressive power of EG. The logic UB is just the smallest common generalization

of EF and EG.

The modal p-calculus [Koz83] and the linear-time p-calculus are fixpoint logics.
They gain their expressive power from minimal and maximal fixpoint operators.
In some way they are much more natural than CTL and LTL, because fixpoints
are a very elementary concept. The linear-time p-calculus is only slightly more
expressive than LTL. Therefore it is seldom used, because LTL is well-established
and many people see no reason to switch to the linear-time p-calculus. The
situation is different for the modal p-calculus, because it is much more expressive
than both CTL and LTL. In fact, the modal p-calculus is almost too expressive,

42 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKING

because the full power of it is almost never needed in practice. Furthermore, it is
very hard to understand the meaning of modal p-calculus formulae with a high
nesting-depth of minimal and maximal fixpoint operators. Therefore it has been
called ‘the machine language of temporal logics’, because everything else can be
reduced to it, but hardly anyone really understands it completely.

In the most general sense temporal logic formulae are interpreted over the com-
putations of processes given as arbitrary (possibly infinite) labeled transition
systems. They can be given a state-based or action-based semantics, or a com-
bination of the two. In state-based semantics formulae are built out of atomic
propositions and interpreted according to a valuation that assigns each atomic
proposition a set of states in the transition system (the states that satisfy this
proposition). The information on top of the arrows is ignored, so it is actually
interpreted over an unlabeled transition system. In action-based semantics, the
only atomic sentence is true, and the information carried by the states is ignored.
In this semantics, logics have relativised next operators, one for each possible
label (which is an atomic action). In branching-time logics simple atomic propo-
sitions of the form ‘action a is enabled’ can be expressed with these relativised
next operators. This is not the case for linear-time logics.

In the following we will mostly use action-based semantics, for the following rea-
sons: Firstly, it is more natural for our models, which are labeled transition
systems. Secondly, atomic propositions of the form ‘action a is enabled’ are de-
fined for every labeled transition system. This is not the case for stronger atomic
propositions which are only defined for some models. For example, propositions
of the form ‘there are at least k& tokens on place p’ are only defined for Petri
nets and subclasses of Petri nets, but not for other models like context-free pro-
cesses or PA-Processes. Finally, the decidability of model checking for a temporal
logic depends heavily on the set of atomic propositions used. Thus by default
we use the minimal action based semantics. However, sometimes (in Chapter 6
and Chapter 8) we use more general sets of atomic propositions, because in these
cases this is possible without losing decidability.

3.1 Branching-Time Logics

In branching-time logics, formulae are interpreted on states of a (possibly infinite)
labeled transition system. Let €2 be the set of all states. In the framework of
(a, 3)-PRS, Q corresponds to the set of process terms 7, but for the definition
of the logics we stay as general as possible.

3.1. BRANCHING-TIME LOGICS 43

3.1.1 Hennessy-Milner Logic

The weakest branching-time logic is Hennessy-Milner logic. The formulae have
the following syntax:

O =true | 0 | APy | (a)P

The denotation [®] of a formula ® is a subset of Q that is defined inductively as
follows:

[true] = Q
[-®] = Q-[9]
[®1 A D] = [®1]N[Ps]
[(a)®] = {s€Q | I €O s 55 € [D]}

The one-step next operator (a) is also denoted by (O),. The operator () means a
one-step next with any action.

Disjunction can be expressed by conjunction and negation. The atomic propo-
sition ‘action «a is enabled’ can be expressed by the formula (a)true. We also
denote this proposition simply by the term “a”.

For any formula ® and any state s € €2, the property s € [®] means ‘s satisfies
¢’ and is also denoted by s = ©.

Hennessy-Milner Logic can also be represented without explicit negation. To do
this, we need the predicate false, disjunction and a second universal one-step next
operator. They are defined by

uise] = {)
[,V &3] = [®1]U[P:]
[[a]®] = {s€Q | Ve s5s = s c[o]}

We can transform every Hennessy-Milner Logic formula into a formula without
negation by pushing the negations inwards. This is possible, because

~(a)® = [a](—®)

Definition 3.1.1 The size of a formula ® is defined as the number of atomic
propositions in ® plus the number of operators in ®.

size(true) = 1
size(=®) = size(P)+ 1
size(Py A Dy) = size(Py) + size(Py) + 1

size({a)®) := size(®)+1

44 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKING

For this simple logic the truth or falsity of s = ® only depends on the prefixes
of all paths starting at state s that have a length of at most size(®). This
is because there are at most size(®) occurrences of the next-operator (a) in
®. Therefore, model checking with Hennessy-Milner logic is decidable for any
class of finitely generated transition systems, even for those described by Turing-
machines. Hennessy-Milner logic will not play a role in this thesis.

3.1.2 The Logic EF

The branching-time temporal logic EF is an extension of Hennessy Milner logic by
the modal operator EF', meaning ‘for at least one path eventually in the future’.
This operator is often denoted by < and defined as follows:

[C@] :={s€Q | Jo,s. 55 [P}
where o is a sequence of actions of arbitrary length.

Another modal operator O (meaning “always”) can be defined as O := =0, OO
means that ® holds in every reachable state. The modal operator < significantly
increases the expressive power of the logic, because it quantifies over infinitely
many sequences of actions of arbitrary length. It has been shown in [JKM98a,
JKM98b] that decidability of EF suffices to decide weak bisimulation equivalence
between infinite-state processes and finite-state processes. Some other well-known
problems can be expressed in fragments of EF.

The reachability problem is the problem if a given state is reachable from the
initial state.

REACHABILITY

Instance: A finite description of a (possibly infinite) labeled transition system,
an initial state sg and a given state s in this system.

Question: Is the state s reachable from sy 7 Formally: Is there a sequence of
actions o s.t. sg — s 7

The problem is not completely expressible in EF with an action-based semantics.
However, it is expressible if stronger atomic propositions are introduced. Consider
for example propositions of the form “s”, where s €) is a state, which are defined

by
[s] := {s}

With these atomic propositions the reachability problem is equivalent to the
problem

so E O(s)

3.1. BRANCHING-TIME LOGICS 45

In action-based semantics a different, but closely related problem is expressible.

Definition 3.1.2 (State Formula)
A state formula ¥ is an EF-formula that contains conjunction, disjunction, nega-
tion and atomic propositions @ (meaning action “a” is enabled), but no modal

operators < or {(a).

They are called state formulae, because the truth of these formulae at a state
only depends on the state and the arcs leading away from this state, but not on
the rest of the transition system.

The reachable property problem is the problem if there is a reachable state that
satisfies certain properties encoded in a state formula.

REACHABLE PROPERTY

Instance: A finite description of a (possibly infinite) labeled transition system,
an initial state sy and a state formula W.
Question: [s there a reachable state that satisfies U 7 Formally: sq = OV ?

If strong atomic propositions are allowed, then (as shown above) the reachability
problem can be expressed by the reachable property problem. However, in a sim-
ple action based semantics this is not the case, since in general there is no state
formula whose denotation is a single state. On the other hand in action-based
semantics the reachable property problem cannot be expressed by the reachabil-
ity problem, since there are state formulae whose denotation contains infinitely
many states. Thus in a general action-based semantics the two problems are
incomparable.

This is different for certain models, especially for Petri nets. Here the reachability
problem can be expressed by the reachable property problem, even in a simple
action-based semantics. Let A be a (P, P)-PRS (which is equivalent to Petri
nets; see Chapter 2), ¢y the initial state and ¢ the given state. Let a,b be two new
actions (not in Act(A)) and A’ := AU {t St} U {t|| X 2, t|X | X € Var(A)}.
Then ty = O(a A —b) with respect to A’ iff ¢ is reachable from ¢y in A. The
reachable property problem is not expressible by the reachability problem, but
by the submarking reachability problem.

It will turn out in the following chapters that both problems have the same
decidability and complexity for all models in the PRS-hierarchy. (See Chapter 11
for a summary.)

As mentioned earlier, we use simple action based semantics by default, but we use
stronger atomic propositions whenever this is possible without loosing decidability
(see Chapters 6 and 8). In Chapter 8 we use a slightly generalized version of EF.

46 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKING

3.1.3 The Logic EG

The branching-time temporal logic EG is the extension of Hennessy Milner logic
by the modal operator F(, meaning ‘for some path always in the future’. EF
and EG are incomparable.

This operator FG' is defined as follows:

[EG®] :={s€Q | Ir € runs(s) V' € prefs(n). s s =€ [®]}

3.1.4 The Logic UB

The logic UB (for “uniform branching-time”) is the extension of Hennessy-Milner
Logic by the operators FF and EG. It can be seen as the smallest common
generalization of the logics EF and EG. Since these are incomparable, UB is
strictly more expressive than both of them.

3.1.5 Computation Tree Logic (CTL)

Computation Tree Logic (CTL) [CE81] is a very popular logic and it is widely used
for the verification of finite-state systems. There are several different definitions of
it that use different operators. All these definitions have the same expressiveness
[MBY96]. Here we use a version with a minimal number of operators. It is defined
as the extension of Hennessy Milner logic by two operators, the strong until
operator U and the weak until operator wif. The syntax and semantics of these
operators is defined as follows:

s | 3r € paths(s). s 5 s’ € [@2] A
Vr'(#£ 7)) € prefs(w). s LI = s € [P4]

[E[®U D] := {

Intuitively, this means that there is a path that leads to a state s’ that satisfies
®, and all intermediate states on this path satisfy ®;. So ®; holds until ®, holds,
but ®, must hold eventually.

s | (37 € paths(s). s = s' € [®3] A
[E£[P wld §5]] := Vr'(#£ 7)) € prefs(x). s T s s € [®4]) vV
dr € runs(s).Vr' € prefs(x). s LGP = [®4]

The meaning of wi{ is similar to U, except that it allows for the possibility that
the path never reaches a state that satisfies 5.

3.1. BRANCHING-TIME LOGICS 47

The operators KF and FG can be expressed with these until-operators.
EG & = E[® wld false]
and
EF & = E[trueld ®]

Thus CTL subsumes the logic UB.

3.1.6 The Modal u-Calculus

The modal p-calculus [Koz83] is a fixpoint logic. It is the extension of Hennessy-
Milner logic by variables and fixpoint operators. The semantics of formulae is
defined w.r.t. a valuation V : Var — 2% that assigns every variable X in the logic
a set of states which satisfy it.

[X]y = V(X)

The syntax and semantics of the minimal fixpoint operator is defined as follows:

[1X. 2], = ﬂ{S cQ | [[(I)]]V[X::S] c S}
where

V(X'), if X #£X’
s, if X =X/

In model checking we use only closed formulae. These are the formulae where
every variable is bound by a fixpoint operator. Also there is the restriction that
every variable occurs within the scope of an even number of negations.

The maximal fixpoint operator v can be expressed by v X.® := =pX.~®[-X/X]
or defined directly as

[vX.@], = U{S cQ | S¢c [[(I)]]V[X::S]}

The modal p-calculus is often presented in a form without explicit negation. In
this form the negations are pulled inward to the atomic propositions. Formulae
then contain conjunction, disjunction, maximal fixpoint and minimal fixpoint,
but no negation. In order to achieve this, it is necessary to introduce a second
one-step next operator, the so-called “universal one-step next” defined by

[[a]®] :={s | Vs'. s> s = s c[®]}

48 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKING

A p-formula is defined as a formula ¢ X.® that starts with the minimal fixpoint
operator. A v-formula is defined analogously. The alternation-free modal -
calculus 1s defined as the fragment of the modal p-calculus that satisfies the
following two restrictions:

o For every formula ¢ X.®, the variable X does not occur in any v-subformula

of ®.

o For every formula v X.®, the variable X does not occur in any p-subformula

of ®.

It is easy to see that CTL is a fragment of the alternation-free modal p-calculus.

E[®U By = puX.(By V (01 A OX))

E[®; wld &3] = uX.(PV (P A OX)) V v X(P1 A (OX V=) true))

3.2 Linear-Time Logics

Formulae in linear-time logics are interpreted over runs of labeled transition sys-
tems. A state satisfies a formula if all runs starting at it satisfy the formula.

3.2.1 Weak Linear-Time Logic (WL)

Weak linear-time logic (WL) has the same syntax as Hennessy-Milner logic. How-
ever, the interpretation is different. For a transition system with states € let
runs(€2) be the set of all runs (starting at any state).

[true] = runs(Q)
[-®] := runs(Q) —[P]
[®1 A D] = [P1]N[Ps]
[(a)®] := {x € runs(Q) | firstact(z)=a A =" € [®]}

Disjunction can be expressed by conjunction and negation. Unlike in branching-
time logics the atomic proposition ‘action a is enabled’ can not be expressed.
Here the formula (a)true only means ‘action « is the next action in this run’.

It is possible to add atomic propositions by defining

[a] := {7 € runs(2) | #(0) enables action a}

3.2. LINEAR-TIME LOGICS 49

These atomic propositions make linear-time logics strictly more expressive. For
example LTL (see Subsection 3.2.2) with these propositions is undecidable for

Petri nets [Esp97], while normal action based LTL is decidable. Thus by default
we use only simple action based linear-time logics.

For any formula ® and any state s € € the property runs(s) C [®] means that
s satisfies @. It is also denoted by s = ®.

Just like for Hennessy-Milner Logic, the truth or falsity of s = ® only depends on
the prefixes of all paths starting at state s that have a length of at most size(®).
Thus model checking with WL is decidable for any class of finitely generated
transition systems, even for those described by Turing machines. WL will not
play a role in this thesis.

3.2.2 Linear-Time Logic (LTL)

Linear-Time Logic (LTL) [Pnu77] is the extension of WL by the “until”-operators,
which are defined in analogy to CTL.

[®1U D] = {7 | Fi. 7" €[] A Vj<i.m €[d]}

Intuitively, this means that the path has a suffix that satisfies 5 and all prefixes
satisfy ®.

[@ wld @3] := {7 | (Fi. 7" €[] A Vj<i.wl€[P]) V Vi.r' €[]}

sE® < runs(s) C [®].

It is possible to express the negation of the reachable property problem in LTL
with atomic propositions. Let ® be a state formula (using only atomic proposi-
tions, negation and conjunction) and so the initial state. A state that satisfies @
is not reachable iff

s0 = (=) wld false

In the same way the negation of the reachability problem is expressible, but only
if stronger atomic propositions are used. These stronger atomic propositions are

defined by
[s] := {x € runs(Q) | =(0) = s}
The state s is not reachable from the initial state sg iff

S0 = (—s) wl false

50 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKING

However, these stronger propositions are not normally used for linear-time logics.

Sometimes abbreviations are used for some LTL formulae:

G® = Ouwl false
Fo = trueld ®

GG ® means that ® always holds on a path, and F'® means that ® eventually
holds on a path.

3.2.3 The Linear-Time u-Calculus

The linear-time p-calculus is a fixpoint logic that is defined in analogy to the
modal p-calculus. It is the extension of WL by variables and fixpoint operators.

[pX @]y, := ({5 S runs() | [®]y5.—g € 5}

Just like the modal p-calculus it can be presented without negation if, in addition
to the normal (strong) next operator, the weak next operator is used.

1O, @] :={r | (firstact(zx)=1aA ' € [®]) V firstact(r) # a}

If the subscript is omitted, then it means ‘by any action’. Intuitively, ()® means
‘there is a next moment in time and ® is true at this moment’, whereas (-) ®
means ‘if there is a next moment in time, then ® is true at this moment’.

As always in linear-time logics,

sE® < runs(s) C[?]

Roughly speaking, the intuition for the minimal and maximal fixpoints is the
following:

e The minimal fixpoint g is used to express properties of finite parts of a run.
For example the formula pX.(P V (OX) means that property P must hold
eventually (after a finite number of steps).

e The maximal fixpoint v is used to express properties that depend on the
whole infinite run. For example the formula v X.(P A (OX) means that
property P always holds.

3.2. LINEAR-TIME LOGICS 51

Of course the two fixpoints can also be combined. For example the formula
v X.pY.((e)X V QOY) means that the action ¢ occurs infinitely often.

LTL is expressible in the linear-time p-calculus in the same way that CTL is
expressible in the modal p-calculus.

Oy wld Oy = pX. (B3 V (B A OX)) V v X. <<I>1 A @X)

The linear-time p-calculus can be expressed in the full modal p-calculus, but only
at the cost of an exponential increase in the size of the formula [Bra92].

The fragment of the linear-time p-calculus that uses only the weak next operator,
but not the strong next operator is called the weak linear-time p-calculus. It will
be used in Chapter 9.

Sometimes the interpretation of LTL and the linear-time p-calculus is defined
differently. In this other interpretation only the infinite runs of the transition
system are considered. Thus the definition is changed to

sE® < {r € runs(s) | = isinfinite} C [®]

We call this the weak interpretation, because it is weaker than our definition
where both finite and infinite runs are considered. For example the reachability
problem cannot be expressed in the weak interpretation. The weak interpretation
is equivalent to the weak linear-time p-calculus, the fragment of the linear-time p-
calculus that uses only the weak next operator, but not the strong next operator.
This is because in the weak interpretation [() @] = [© ®]. The weak linear-time
p-calculus is used in Chapter 9.

The main difference between the weak linear-time p-calculus and the normal
linear-time p-calculus is that the negation of the reachability problem cannot be
expressed in the weak one. This is smaller restriction than it might seem, because
normally the linear-time p-calculus is only used to verify liveness-properties of
systems. These are mostly fairness-properties like ‘In every infinite run action
a occurs infinitely often’. Such properties only make sense for infinite runs and
thus reachability is not needed. Therefore the weak linear-time p-calculus often
suffices.

Chapter 4

Tableau Systems

Tableau systems are a common tool in mathematical logic. The application of
tableau systems to temporal logics and verification problems has been initiated by
Colin Stirling and Julian Bradfield [BS90, SW90, SW91, BS92a, St192, Sti95]. For
an overview the reader is referred to [Bra92, Sti96]. Later, tableau systems have
been applied to verification problems in order to find structured proof techniques
[BEM96, May96b, May97e, BS97] or to achieve decidability results [May97b,
May97c].

In this thesis tableau systems will be used in Chapter 8, 9 and 10. The tableau
systems of Chapter 8 and Chapter 10 are used in decidability proofs of model
checking problems. The tableau system of Chapter 9 is used as a proof method for
model checking Petri nets with the weak linear-time p-calculus. In this chapter
we give a brief introduction to tableau systems. For a more thorough treatment

see [Bra92] and [Sti96].

Definition 4.0.1 A tableau is a proof-tree whose nodes are marked with logical
expressions or sets of logical expressions which are called sequents. The proof-
tree has a unique root-node that is marked with the root-sequent. The goal of
the tableau is to prove the correctness of the root-sequent. The proof-tree is
generated by a finite set of tableau rules that can be applied to sequents and
produce child-nodes that are marked with new sequents.

Tableau rules have the form

A
B, By ... B,

where A is called the antecedent and the B; are called the succedents.

52

33

Sometimes the applicability and result of a tableau rule also depends on the
sequents at several earlier nodes of the same branch in the proof tree. Some
tableau rules also have side conditions that must be satisfied. The construction
of the tableau can be nondeterministic and thus the tableau for a given root-
sequent is not necessarily unique.

Termination conditions are defined on sequents. A node in the tableau whose
sequent satisfies a termination condition is a terminal node. The construction of
the tableau stops at terminal nodes and thus terminal nodes are leaves in the
proof-tree.

There are success conditions that mark terminal nodes as successful or unsuccess-
ful. The whole tableau is successful if it succeeds in proving the root-sequent. In
general the success of the tableau is defined by a function on the success or failure
of the terminal nodes. The two most common success conditions for tableaux are
the following:

e The tableau is successful iff all terminal nodes are successful. In this case
the sequents are often sets of expressions that are interpreted disjunctively,
while the branches of the tableau are interpreted conjunctively.

e The tableau is successful iff at least one terminal node is successful. In this
case the sequents are often sets of expressions that are interpreted conjunc-
tively !, while the branches of the tableau are interpreted disjunctively.

A tableau system consists of the tableau rules, the termination conditions and
the success conditions. It is called sound if it can only be successful if the root-
sequent is correct. Thus sound tableau systems don’t give wrong answers. A
tableau system is called complete if, for a given correct root sequent, it can al-
ways construct a successful tableau. As mentioned earlier the tableau-rules are
sometimes nondeterministic. In such cases many different tableaux can be con-
structed for a given root. In a sound and complete tableau system the root-node
is true if and only if at least one of the possible tableaux is successful.

It follows that a tableau system which is sound and complete and for any given
root-sequent produces only finitely many different tableaux which are all fi-
nite yields a decision procedure. Just construct all the (finitely many) different
tableaux for the root-sequent and check if one of them is successful.

In the context of temporal logics the sequents are often sets of expressions of the
form s = ®, where s is a state and ® is a temporal logic formula. The symbol “F”

1A set of subgoals that should be proved.

54 CHAPTER 4. TABLEAU SYSTEMS

is used instead of “|="

. This is because the property s = @ is defined semantically
while s = ® only means that an attempt is made to find a syntactical proof of

the property s = ®.

Now we show a simple example of a tableau system. We define a tableau system
for Hennessy-Milner Logic and arbitrary finitely-branching transition systems (see
also Section 3.1.1). The sequents are sets of expressions of the form s - ® where
s is a state and ® is a formula. Let 7 stand for sets of such expressions. These
sets are interpreted conjunctively, i.e. as sets of subgoals that must be proved.
The root-sequent is {sg = ®q}.

The tableau rules are as follows:

{S|_(I)1/\(I)2}U?

a {S|_(I)1,S|_(I)2}U?

v {SI—CI)I\/CI)Q}U7
{5|—(I)1}U7 {SF@Q}U?

(a) {st{a)P}U? (55 51)
{s1F®}U? {saFQ}U? ... {s,FP}U? '

{st[a]®}U? a

lo] (o F @, 55 @, ... 5, F D U? (s =)
{st true} U?

true

7

A node is a terminal if its sequent is either

1. The empty set.
2. {st false} U?

3. {sF (a)®} U ? and there is no s s.t. s — s'.

A terminal of type 1 is successful, but terminals of type 2 or 3 are unsuccessful.
In this tableau system the branches are interpreted disjunctively and thus the
tableau is successful iff at least one terminal is successful.

It is easy to see that a tableau constructed by these rules is always finite and
S0 |E @g iff a tableau with root {so F ®q} is successful.

35

Remark 4.0.2 Note that it is also possible to construct a different (dual) tableau
system for this problem where the sequents are interpreted disjunctively and the
branches are interpreted conjunctively. A tableaw that is constructed with this
other system would be successful if and only if all terminals are successful.

Example 4.0.3 The following (1,1)-PRS defines a finite-state system.
X5y vYSY X572 257 725X
Let X be the initial state. The graphical representation looks like this:

C
a
Y, .z
c ®

Let @ := (a)[b|false A [a](c)true be a formula in Hennessy-Milner logic. Intu-
itively, it means that firstly, there is a state reachable by action a where action
b is not enabled and secondly, all states that are reachable via action a enable
action ¢. We now construct the tableau that proves that X satisfies this formula.

{X F (a)[b]false A [a]{c)true }
{X F (a)[b]false, X F [a]{c)true}

{Y F [b]false, X + [a](c)true} {Z F [blfalse, X F [a]{c)true}
{X F [a){c)true} {Z F false, X F [a]{c)true}
{Y F(e)true, Z + (c)true} failure, (cond. 2)

{Y & true, Z F {(¢)true}
{Z F {(c)true}

{X F true}
{

success, (cond. 1)

This tableau is successful, because it has one successful leaf. Thus the transition
system with initial state X satisfies the formula ®.

Chapter 5

Finite-State Systems

Model checking finite-state systems is an important field in both software ver-
ification and hardware verification. Since this thesis is about model checking
infinite-state systems, we mention the results for finite-state systems only for the
sake of completeness. First we describe the results for branching-time logics and
then for linear-time logics.

Model checking finite-state systems with the full modal u-calculus is in NP N
co-NP [EJS93, SW90, SWI1, Mad97], but no polynomial algorithm is known so
far. The best known algorithms have a complexity of O(n™) where n is the size
of the transition system and m is the size of the formula !. Thus the complexity
is polynomial in the size of the system for every fixed formula. Model checking
with a fragment, the alternation-free modal p-calculus (see Section 3.1), can be
decided in linear time [SC93, SW90, SW91]. Thus model checking with CTL,
UB, EG and EF is polynomial too. The model checker SMV (Symbolic Model
Verifier) [CGL94] is a practical tool for model checking finite-state systems with
CTL.

Model checking finite-state systems with LTL and the linear-time p-calculus is
PSPACE-complete [SC85, Var88]. However, the problem is polynomial in the
size of the system for every fixed formula. The model checkers SPIN [Hol91] and
PROD [Val92] are practical tools for model checking finite-state systems with
LTL. A sound and complete tableau system for finite-state systems and the
linear-time p-calculus is presented in [BEM96].

The following table summarizes the results on the complexity of model checking
finite-state systems. We consider two different versions of the model checking

'More precisely the complexity is O(n?) where d is the alternation-depth of the minimal and
maximal fixpoints in the formula

56

57

problem (see the definition of the model checking problem in Chapter 3 and the
definition of reachability in Subsection 3.1.2):

1. The general case, where the system and the formula are the input.

2. The special case where the formula is fixed and only the system is the input.
However, we assume the worst case for the fixed formula.

Finite-state systems general fixed formula
reachability /reachable property || € P S
EF ePpP ePpP
EG ePpP ePpP
UB cP cP
CTL ePpP ePpP
alternation-free modal p-calc. S cP
modal p-calc. e NPNcoNP cP
LTL PSPACE-complete | € P
linear-time p-calc. PSPACE-complete | € P

Chapter 6

Basic Parallel Processes (BPP)

In this chapter we study model checking problems for Basic Parallel Processes
(BPP). As shown in Subsection 2.3.2, BPP are equivalent to communication-
free nets, a subclass of Petri nets. Model checking BPP with the logic EG is
undecidable [EK95], even for a fixed EG-formula. Thus it is also undecidable for
all branching-time logics except for EF (see Section 6.3). In Section 6.1 we show
that model checking BPP with the branching-time logic EF is PSPACFE-complete.
In Section 6.2 we show that model checking BPP with LTL and the linear-time
p-calculus is decidable, but at least as hard as the reachability problem for Petri
nets. In Section 6.3 we cite other results on BPP and present the general picture.

6.1 Model Checking BPP with EF

As shown in Subsection 2.3.2, BPP are equivalent to communication-free nets, a
subclass of Petri nets. While model checking with EF is undecidable for general
Petri nets [Esp94, Esp97] (see Chapter 9), it is still decidable for communication-
free nets [Esp97]. The proof of the decidability for communication-free nets relied
on the fact that for communication-free nets the set of reachable states is effec-
tively semilinear. Thus the model checking problem can be expressed in Pres-
burger arithmetic, which is decidable. The problem with this was that the algo-
rithm relying on Presburger arithmetic requires doubly exponential time, while
the problem was only known to be PSPACE-hard [Esp97, Fsp96]. PSPACE-
hardness is relatively easy to show, since it holds even for finite-state BPP (notice
that the size of the problem is the size of the formula plus the size of the BPP, and
not the size of its associated transition system), but the exact complexity of the
problem remained open. It was shown in [May96¢| that the problem only requires
polynomial space, even for infinite-state BPP. Thus it is PSPACFE-complete.

38

6.1. MODEL CHECKING BPP WITH EF 59

We present this proof in the terminology of communication-free nets. In fact, this
is a somewhat stronger result than for BPP. This is because in communication-
free nets of size n we allow arc-weights of up to O(2"), while in BPP (or (1, P)-
PRS) the right hand sides of rules must have size O(n). This corresponds to
arc weights of only O(n). However, all hardness results also hold for this weaker
version.

6.1.1 General Properties of Communication-free Nets

First we prove some general properties of communication-free nets. These results
are used later for the model checking problem in Subsection 6.1.2.

Definition 6.1.1 For labeled Petri nets NV there is a labeling function L : T —
Act that assigns actions to the transitions. The labeling function L is extended
to sequences of transitions in the standard way. M < M’ means that a sequence
of transitions o is fireable at a marking M and leads to a new marking M’.

Let o be a sequence of transitions. Then P(o) is the Parikh-vector of o and F(o)
is the effect-vector of o (see Def. 2.3.4). Let 0,0’ be sequences of transitions and
P(0), P(¢') the corresponding Parikh-vectors. Let P(o); be the i-th component
of the Parikh-vector P(o). Let m be the number of transitions in the net. Then
the sequence ¢’ is called a smaller sequence than o iff

Vie {l,...,n}. P(c'); < P(o);

o is then called a greater sequence than o’.

o' is called a subsequence of o if it is a smaller sequence and the transitions occur
in the same order. This means that ¢’ can be constructed from o by removing
some occurrences of transitions. Note that ¢’ is not a single piece of o, but
possibly a composition of many pieces of 0. However, these pieces must be in the
same order as in o. If ¢’ is a subsequence of ¢ then o is called a supersequence
of o',

Definition 6.1.2 Let N = (5,7, W) be a communication-free net with places S,
transitions 7" and a function W that assigns weights to the arcs in the net. The
size of N is the space needed to describe it with the numbers in binary coding.

n = size(N) := Z log(W(z,y))+ 1

(z,y)EDom (W)

It follows that |[S| < n, |[T| <nand Vit €T Vs S. W(t,s) < 2".

60 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

For a marking M of N, tokens(M) := 3 s M(s) is the number of tokens in the
marking M. The space needed to describe M is O(n - log(tokens(M))).

For two markings M and M’ of N we define

M <M < VseS M(s)< M(s)
Now we define interleavings of sequences of transitions.

Definition 6.1.3 Let o, o7 and o3 be sequences of transitions. We define that
o € interleave(oy, 0y) means that o is an arbitrary interleaving of oy and o4. The
formal definition is as follows: Let A be the empty sequence.

interleave(X, o) = {o}
interleave(o, \) = {o}
interleave(tio1,1209) = {ti0 | o € interleave(oq,t202)} U

{t20 | o € interleave(tio1,02)}

The generalization of the function interleave to n arguments is straightforward.

In communication-free nets tokens can move independently of each other. In
the following definitions and lemmas we show that this has many interesting
consequences. The following definition is somewhat unusual, because it gives
tokens a limited individuality. This is contrary to the normal definitions in Petri
net theory, but in this special case it does not violate the standard semantics of
Petri nets.

Definition 6.1.4 Let N be a communication-free net with initial marking Mj.
If a transition fires then it takes one token from the place in its preset and puts
several tokens on the places in its postset. We interpret this so that the transition
chooses arbitrarily one of the tokens on the place in its preset and then uses this
token. We call this token the parent-token. The new tokens that the transition
puts on the places in its postset are called the children of the parent-token. We
distinguish these children from the other tokens on the places in the postset that
were already there before the transition fired. In this sense the tokens have a
limited individuality. Each time a transition fires a nondeterministic choice is
made which of the tokens on the place in the preset is used. We call this choice
the token-choice.

The formal definition is as follows: We assign each token a pair of labels (I, al)
where [is a unique label for this token and al is its ancestor-label. A marking M

6.1. MODEL CHECKING BPP WITH EF 61

of N is then a mapping s.t. M(s) = {(I1, aly), ..., (Ig, aly)}, if there are k tokens
on place s. In the initial marking M, every token is its own ancestor and thus
[= al for every token in M,. However, this is not the case for other markings.
When a transition ¢ with preset s fires, then it chooses nondeterministically one
of the tokens (/;, al;) and removes it from the place s. Then (I;, al;) is the token-
choice made by this occurrence of the transition ¢. ¢ possibly puts several tokens
on the places in its postset. These tokens all have their own unique label, but
their ancestor-label is al;, the same as the ancestor-label of the parent-token.
Thus the ancestor-label is inherited by the children.

A sequence of transitions o then represents many different possible sequences of
token-choices made by the transitions in o. If My % then let choices(My, o) be
the set of possible sequences of token-choices for o. choices(My, o) is finite, but
it depends on M.

Let My be the initial marking, M’ a marking and o a sequence of transitions s.t.
My % M'. Now we fix a possible sequence of token-choices s¢ € choices(My, o).
Then for every token in M’ one of the following cases holds:

e The token was already there in My, or

e The token was created as a child-token by a transition. Then it has a unique
parent-token. This parent-token was either already present in My or was
created as a child-token from another parent-token, and so on.

Thus every token in M’ has a unique ancestor-token in My (possibly itself). This
ancestor-token is uniquely determined by the ancestor-label. Every occurrence of
a transition ¢ in o uses exactly one token. We label this occurrence of ¢ with the
ancestor-label of this token. We call this label the ancestor-label of this occurrence
of t 1. Every occurrence of a transition has a unique ancestor-label. The ancestor-
label is only defined for occurrences of transitions. Different occurrences of the
same transition may have different ancestor-labels.

Let My % and let sc € choices(My, o) be a sequence of possible token-choices. If
all occurrences of transitions in ¢ have the same ancestor-label then we call the
pair (o, s¢) a uniform sequence. We call o a I-token initiated sequence if there is
a sequence of token-choices s¢ € choices(My, o) s.t. (o, sc) is a uniform sequence.

Now let o be a 1-token initiated sequence. We say that a place s is the start
of o if the ancestor-label of all transitions in the uniform sequence (o, sc) is a
token on place s. The start s of ¢ is uniquely determined and does not depend

Do not confuse the ancestor-label with the action-label that assigns an atomic action to a
transition.

62 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

on the choice sc¢ € choices(My, o), because s is the place in the preset of the
first transition of o. It is clear that a 1-token initiated sequence o with start s
is enabled by every initial marking that has at least one token on s. o is called
removing if the effect-vector of o is (0,...,0,—1,0,...,0) where the —1 works on
place s. So the effect of a removing sequence o is just to remove one token from
its start s.

Example 6.1.5 Consider the following communication-free net.

There are two ways to interpret the sequence abe. It depends on the token-choice
made by the transition b.

1. It can be seen as 1-token initiated sequence abc with start A.

2. It can also be seen as an interleaving of the 1-token initiated sequence ac
with start A and the 1-token initiated sequence b with start B.

Lemma 6.1.6 Let N be a communication-free net with initial marking My and
o a 1-token initiated sequence with start s s.t. My .

Then E(o)(s) > —1 and Vs' # s. E(o)(s) > 0.

Proof Let M be the marking that is defined by M(s) = 1 and Vs’ # s. M(s") = 0.
Then o is fireable at M. The result follows directly. [

Now we show that every sequence can be decomposed (not uniquely) into 1-token
initiated sequences.

Lemma 6.1.7 Let (N, My) be a communication-free net with initial marking M.
Every fireable sequence of transitions o is an interleaving of finitely many 1-token
initiated sequences.

6.1. MODEL CHECKING BPP WITH EF 63

Proof Choose an arbitrary sequence of token-choices s¢ € choices(My, o). There
are only finitely many tokens in M. So there are only finitely many different
ancestor-labels [y, ..., [, for the occurrences of transitions in . (k = tokens(Mo)).
For every ancestor-label [; let o; be the maximal subsequence of ¢ where all
transitions are labeled with /;. (This means that the ancestor-label ; only occurs
in o; and not in the rest of o.) Then every o; is a 1-token initiated sequence that
is fireable at My and o € interleave(oq,. .., o).]

Thus every sequence o can be decomposed into 1-token initiated sequences, but
this decomposition is not unique, because it depends on the choice of sc. However,
the decomposition is unique for every fixed sc. Now we show that the parts of a
decomposition are independent of each other.

Lemma 6.1.8 Let (N, My) be a communication-free net with initial marking My

and o € interleave(oy,...,0,) a fireable sequence where each o; is a I-token
initiated sequence. Let {o},... 0l } C{oy,...,0,}.
Then every sequence o' € interleave(oy,...,o0) is also fireable at My.

Proof For everyi € {1,...,n} the ancestor-label /; of ; is a token in My. Thus
every o; is fireable at My. The different sequences o; cannot influence each other,
since NV is a communication-free net. Thus every interleaving of these sequences
is fireable at M. [}

A special case of a 1-token initiated sequence is a cycle.

Definition 6.1.9 (Cycles/spin-offs)

In communication-free nets every transition ¢ has exactly one place in its preset.
Let Pre(t) be the one place in the preset of ¢ and Post(t) the postset of . A
sequence of transitions o = t.15..... t, is a cycle iff

L.Ve#g. t, #t;
2. Vie{l,...,n—1}. Pre(t;y1) € Post(t;)
3. Pre(ty) € Post(t,,)

It follows that a cycle is a 1-token initiated sequence with start Pre(t;). If M %
M' with a cycle o, then M’ > M. We can arbitrarily choose any decomposition
of M’ into M and (M’ — M). The tokens in the marking (M’ — M) are called
spin-offs. When a cycle is possible it can be repeated an arbitrary number of
times, because the resulting marking is bigger than the original one. A cycle does
not change a marking, except that it generates some new tokens (the spin-offs).

64 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

The intuition is that in a communication-free net tokens can move freely through
the net, because every transition has only one place in its preset and the arc
leading from this place to the transition is labeled by 1. When a transition ¢; in
a cycle fires, then it takes a token from Pre(t;) and puts some tokens on places
in Post(t;). One regards one token on Pre(t;41) as the continuation of the token
that was on Pre(;). The other tokens that were put on the places in Post(t;) are
the spin-offs. So, informally speaking, a cycle moves a token around and then
back to its original place and generates some spin-offs on the way.

We show that sequences that do not contain any cycles have bounded length.

Lemma 6.1.10 Let (N, M) be a communication-free net with marking M. Let
n be the size of N and v := tokens(M). Let o be a firing sequence starting in M
that does not contain any cycle o' as subsequence. Then

nl—n _ 1

oy o)

length(c) < x

Proof Let m be the number of places in N. Then m < n. Consider an arbitrary
marking M’ that is reached from M by a prefix of 0. Every token in M’ was
either already present in M or it was created by a transition in this prefix of o.
Any path in the net N that does not contain any place twice has a length of at
most m — 1. No subsequence of o is a cycle. Thus no token can move more than
m — 1 steps. The firing of a transition increases the number of tokens in the net
by at most 2" — 1. When a transition fires it replaces a token that can move k
steps by < 2" tokens that can only move < k — 1 steps. So only a finite cascade
of tokens is possible. Thus the sequence o has a maximal length of

-2

3

) 1 — (2n)m—1 gnm=—n _ | 2n2—n -1
rx(2") = « =z < r—
1 -2 2" —1 2" —1

.
Il
=]

Now we define a partial order on markings of nets. Later it’ll be used to show
that certain classes of smaller markings have the same properties as larger ones.

Definition 6.1.11 First we define a partial order on natural numbers. Let
x,y,y € IN, then

y<.y e (y<yY)AN(y<y =y>ax)

6.1. MODEL CHECKING BPP WITH EF 65

For every x relation <, is a partial order on IN. Now we define this order on
markings of Petri nets. Let N be a Petri net and S the set of its places. For
every © € IN the relation <, on the set of markings of V is defined by

M<, M & Vse S M(s) <, M'(s)

For every x the relation <, is a partial order on the set of markings of V.

25
20

15 -

M1

10

5

M1 M2
S1 S2 S3

Figure 6.1: M1 SIO MQ, but not M1 SQO MQ.

Example 6.1.12 Let there be a net with three places sy, s9, 53 and two markings
M1 and M2 s.t. Ml(Sl) == 3, Ml(SQ) == 12, Ml(Sg) == 21, MQ(Sl) == 3, MQ(SQ) =23
and Ms(s3) = 25. Then My <i9 My, but not My <59 M,. Figure 6.1 illustrates
this.

The following definitions and lemmas play a central role in the model checking
problem. They show that smaller markings can simulate the behavior of larger
ones, at least for a limited number of steps.

66 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

Definition 6.1.13 Let N = (5,7, W) be a communication-free net and s € S.
Then reach(s) is the set of places s’ s.t. there is a path in N from s to s'. This
can also be defined as a smallest fixpoint.

reach(s) := ﬂ{Sl CS | s€S8 A Post(Post(S) C S’}

Definition 6.1.14 Let © € R, > 0. Then

2] = mar{y e N |y <z}
[] = min{fy e N |y >z}

The following lemma is used in the proofs of Lemma 6.1.16 and Lemma 6.1.17.

Lemma 6.1.15 Let N = (S, T, W) be a communication-free net, s € S, m :=
|S], # € IN and My the initial marking with Mo(s) > x. Let there be a k € IN
s.t. Mo(s) > k > ax— |x/m]|. Let there be k [-token initiated sequences vy, ...,k
with start s s.t. ¥Yi € {1,...,k}. E(v)(s) = —1. For every ¢ € {1,...,k} let
O =1 e Yi—1Yit1 - Vk

Then there is a j € {1,...,k} s.l.

VS € S (B()(s) > 0 = E(ay)() = [e/m])

Proof We assume the contrary and derive a contradiction. For every j €
{1,...,k} there is a place s'(j) s.t. E(v;)(s'(y)) > 0 and E(«;) < |z/m]. We
know that s'(j) # s for all j, because F(v;)(s) = —1. Thus there are only m — 1
different choices for s'(j). So there must be a place s” # s s.t. 8" = s(j) for at
least [k/(m — 1)] different j. We have

[LW _x—Lx/mJ—l-l—‘

m— 1

mwm—wmwuw

m — 1

_ 1
R [CE—
m—1
= [z/m] +1
Therefore there are at least |#/m] + 1 different v; with FE(v;)(s”) > 0. Thus by

Lemma 6.1.6 for every ¢ we have F(a;)(s”) > |x/m]|. We take one j for which
s(y) = ¢” and have a contradiction, because E(a;)(s”) < [2/m]. |

6.1. MODEL CHECKING BPP WITH EF 67

Now we show that smaller markings can, in a limited way, simulate the behavior
of larger markings.

Lemma 6.1.16 Let N be a communication-free net with m places and two mark-
ings My and My s.t. My <, My for an x € IN. Then for any sequence of tran-
sitions oy with My 53 M), there is a smaller sequence oy s.t. M, AN M and

My <(opm) M.

Proof We fix a sequence of token-choices sc € choices(Mz, 03). By Lemma 6.1.7
we can decompose o3 into 1-token initiated sequences. By Lemma 6.1.6 there are
two kinds of 1-token initiated sequences with start s. For every place s let

® 7{,...,7,. be the l-token initiated subsequences of oy with start s s.t. for
1 < ¢ < ng we have E(7f)(s) = —1 and Vs # s. E(y7)(s") > 0. Let
Vs TN T

® 67,...,6; be the l-token initiated subsequences of oy with start s s.t.

B(825) >0 for 1 <i < m,. Let &, :=6;...8, .

It follows that

My =M+ E(y)+ > E(5)

By Lemma 6.1.6 no sequence 47 can have a negative effect on a place s’ # s.

Now we construct o; by choosing a subset of these sequences. For every s we
choose a subsequence 7, of v, and add this v to 0. Furthermore all sequences
05 are added to oy. 65 is added before 4., because the effect of 6, is non-negative
on every place. We start with the empty sequence for o;. Then for every place s
we do the following. As M; <, M, there are two cases:

L. If Mi(s) = Mz(s) then let v := v, and we add ¢ and . to o1. The only
place on which this sequence can have a negative effect is s. Thus it is

fireable at M, because it is fireable at My and M (s) = Ms(s).

2. If My(s) < Ms(s) then M;(s) > x. Only the sequences 47, ...,75 can have
a negative effect on s. There are two cases:

(a) Ifn, < a—|x/m] then let 4/ := 7, and we add ¢ and ~. to 1. We have
E(¥)(s) > |x/m]| —x. Thus the sequence is fireable at M; and leaves
at least |#/m] tokens on the place s. Thus we have M| (s) > [x/m].

68 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

(b) Now we assume n, > x — |@/m]. We show that the preconditions of
Lemma 6.1.15 are satisfied. & := n, corresponds to k in Lemma 6.1.15
and the ~{,...,v; correspond to the 7,...,9 in Lemma 6.1.15.
Then we repeatedly apply Lemma 6.1.15 to remove sequences ;7 from
Y ..., until there are only @ — [x/m] left. Let 4, be the concate-
nation of those 47 that are left. By Lemma 6.1.15 we have for every
place s’ # s either E(7!)(s") = E(vs)(8') or at least E(~2)(s") > |x/m].
Since 4 consists of only @ — |2/m] 1-token initiated sequences v we

also have E(~!)(s) = |2/m] —x. We add 6 and 7/ to o7.
Altogether we have the following cases:

L. Mi(s) = Mz(s) and E(vs) = E()).
2. My(s) > Mq(s) > x and F(+.)(s) > |¢v/m]| — « and

Vs' % 5. E(Y)(8") Sopm) £(7:)(s")
It follows that for every place s

Vs' # s. B(v)(8") Slaymy E(75)(8)

The sequences 6; have a non-negative effect on every place. We define oy :=
5517;1 ...5Sn’y;n. By Lemma 6.1.8 and the above conditions oy is fireable at M;

and we get M, 25 M.

It remains to show that M| <,/ M;. We show that M{(s) <|o/m] Mj(s) for
every place s. There are two cases:

L. If My(s) = Mx(s) then

Mi(s) = Ml(S)+E(7§)(8)+%:E(7§/)(8)+ZE(5sf)(8)
= My(s)+ E(y)(s) +§E(7§/)(8) +i:E(5sf)(8)
Slafm Ma(s) + E(7)(s) + SiE(%f)(S) + i:E(&I)(S)

= M(s) 7 S

6.1. MODEL CHECKING BPP WITH EF 69

2. If My(s) > Mq(s) > x then

Mi(s) = M(s)+ E()(s)+ Y E()(s) + Y E(6)(s)
s'#s s
> ot B
> x4 (lz/m] —x)
— la/m]
Thus Mj <|e/m] M. [|

Now we show a dual property for larger markings.

Lemma 6.1.17 Let N be a communication-free net with m places and two mark-
ings My and My s.t. My <, M, for an @ € IN. Then for any sequence M, KN M
there is a greater sequence oy s.t. My 2 M} and M| <,/ M}.

Proof We fix a sequence of token-choices sc € choices(My,01). By Lemma 6.1.7
we can decompose oy into 1-token initiated sequences. By Lemma 6.1.6 there are
two kinds of 1-token initiated sequences with start s. For every place s let

® 7{,...,7, be the l-token initiated subsequences of oy with start s s.t. for
1 < ¢ < ng we have E(7f)(s) = —1 and Vs # s. E(y7)(s") > 0. Let
Vs TN T

e 07,...,0> be the 1-token initiated subsequences of oy with start s s.t.

E(62) > 0for 1 <i<m,. Let § :=68...6 .

It follows that

M =M+ E(v)+ > E(5)

By Lemma 6.1.6 no sequence 7 can have a negative effect on a place s’ # s.

Now we construct oy by choosing a multiset of these sequences (i.e. some se-
quences ¢ occur in oz more than once). For every s we construct a sequence 7/
s.t. 4L is a supersequence of 75 and add 4 to o;. Furthermore all sequences &
are added to oy. 6, is added before 4., because ¢ has a non-negative effect on
every place. We start with the empty sequence for o,. Then for every place s we
do the following. As M; <, M, there are two cases:

L. If Mi(s) = Mx(s) then let 4/ := ~, and we add 6, and ! to o,.

70

CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

2. If My(s) < My(s) then M;(s) > x. Only the sequences +7,...,75 can have

a negative effect on s. There are two cases:

(a) If ny <2 — [x/m] then let 4/ := 75 and we add 6, and 7, to o;. We

have E(~1)(s) = E(vs)(s) > |x/m] — x. Thus the sequence is fireable

at My and leaves at least |x/m] tokens on the place s.

(b) Now we assume n, > x — |@/m]. We show that the preconditions of

Lemma 6.1.15 are satisfied. & := n, corresponds to k in Lemma 6.1.15
and the ~{,...,v; correspond to the 7,...,9 in Lemma 6.1.15.
Thus by Lemma 6.1.15 there is a 7 s.t. Vs’ # s. (E(y3)(s) >
0 = EMs)(s) > By v ---7m.) = l#/m]). The intu-
ition is that we have too many tokens on place s in the marking M,.
So we move these surplus tokens away to a place where they do no
harm, i.e. to places that contain at least |@/m] tokens in the mark-
ing M{. We can do this by adding several extra copies of 77 to o,.
Let w 1= My(s) — My(s). We define v, := ~,(7f)”. Then we have
B(!)(s) = B(3)(s) — (Ma(s) — My(s)) and V' £ 5. B(,)(&) <oy
E(+¥)(s"). We add 6, and ~! to o;.

Altogether we have the following cases:

L. Mi(s) = Mz(s) and E(vs) = E()).

2. My(s) > Mq(s) > x and FE(vs) = E(v.) and E(~,)(s) > |a/m] — x.

3. My(s) > Mi(s) > x and E(7.)(s) = E(vs) — (Mz(s) — Mi(s)) and

Vs' % 5. E(v)(8") <pofm) E(v2)(S)

It follows that for every place s

Vs' # 5. B(v)(s") <(opm) £(72)(s)

The sequences 6; have a non-negative effect on every place. We define oy :=

051V, + - -

0s,7. - By Lemma 6.1.8 and the above conditions o, is fireable at M,

and we get My 53 M),

It remains to show that M| <|,/,| Mj. We show that M{(s) <|p/n Mj(s) for
every place s. We have the same three cases as above:

6.1. MODEL CHECKING BPP WITH EF 71

L. If Mi(s) = Mx(s) then

Mi(s) = M(s)+ E(7:)(s) +%:E(vsf)(8) +ZE(55/)(3)

= Ma(s)+ E(v9)(s) + SZ:;E(vsf)(S) + Z E(6s)(s)

Sle/m) Ma(s) + E(v5)(s) + SZ:SE(VQ)(S) + Z E(6s)(s)
o ey ;

2. If My(s) > My(s) > @ and FE(vs) = E(~%) and E(~,)(s) > |#/m] — x then

Mi(s) = Mi(s)+ B(3)(s)+) Bly)(s) + Y E(6x)(s)
s'#s s!
= @+ B(3)(s)
> e+ (le/m] —2)
= |z/m]

3. Now we consider the third of the cases described above.
Mi(s) = M(s)+E(v)(s)+ > Elya)(s)+ Y E(6s)(s)
s'#s s!

= Mi(s) + E(3))(s) + (Ma(s) = My(s)) +
D E()(s) + Y Blou)(s)
s'#s s!

= My(s)+ E(U(s) + Y E(u)(s) + Y B(6s)(s)
s'#s s!

Spom) Ma(s) + E()(s)+ Y E(vl)(s) + > E(8w)(s)
s'#s s!

= M(s)

Thus Mj <|e/m] M. [|

Now we show that if M % M’ then one can reach a marking M” with M" <, M’
by a subsequence of bounded length.

72 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

Lemma 6.1.18 Let N be a communication-free net of size n, M a marking of
N and x := tokens(M). If M % M' then for every k € N there is a subsequence

o of o s.t. MM and M <, M' and
A

length(c) < n’k + (x4 (2" — l)an) * 5

= 02" (¢ + k)

Proof The sequence & is the same as o, except that it possibly contains fewer
cycles. What is the maximal number of Cycles in ¢ that are needed to reach such
a M with M <; M’ ? Cycles just generate new tokens, and at most k£ new tokens
need to be produced per place in N. The number of places in N is < n. So at
most n x k cycles are needed in &. In every cycle < n transitions are fired, so
< (2"—1)n?k new tokens are produced. So at most z+(2"—1)n*k tokens are in the

n2—n
net for moves without cycles. By Lemma 6.1.10 at most (z+ (2" —1)n’k)* 27—==1

non-cyclic moves are possible 2. By adding the numbers of moves belonging to
cycles and the non-cyclic moves we get length(6) < n*k + (z + (2" — 1)n?k) *

2ol 027 (4 k). n

27 -1

6.1.2 Model Checking Communication-free Nets

The basic structure of the temporal logic EF (see Chapter 3) is fixed, but the
possible atomic propositions can depend on the process model that is analyzed.
In this context we use propositions of the form s > k/s < k, meaning ‘there are
at least/at most k& tokens on place s’. It is easy to express the normally used
predicates like ‘action a is enabled’ by these. To do this, just find all places that
are in the preset of any transition marked with the action a. As every transition
has exactly one place in its preset, action «a is enabled iff at least one of these
places contains at least one token.

We repeat the syntax of the logic here.
Pu=s>k | s<k | 20 | APy | ()P | OO

where s ranges over the places of the net N and £ € IN. The modal operator O
can be added by defining O := =,

Let F be the set of all formulae. Let ©Q be the set of all markings of N. The
denotation [®] of a formula @ is the set of markings of N inductively defined as

2This does not necessarily mean that the cycles are done first, and the non-cyclic moves
afterwards. Moves belonging to cycles and non-cyclic moves can occur in any order. We
consider the worst case where the cycles are done first.

6.1. MODEL CHECKING BPP WITH EF 73

follows:
[s > k] = {M | M(s) >k}
[s < k] = {M | M(s) <k}
o] = 0-[9]
[[(I)l /\ (I)Q]] — [[(I)l]] ﬂ [[(I)Q]]
[@o] = {M|3M % e[}
[CP] = {M|Jo. M S M < [0]}

M € [®] is also denoted by M |= ®.

The model checking problem consists of deducing if M = & holds for a given
communication-free net N with marking M and formula ®.

Definition 6.1.19 The nesting-depth nd(®) of an EF-formula ® is defined by

nd(s > k) := 0
nd(s <k) := 0
nd(-®) = nd(P)
nd(®y A ®2) = mar{nd(®y), nd(P2)}
nd({(a)®) = nd(®)+1
nd(O®) = nd(®)+1

Definition 6.1.20 F; C F is defined as the set of all formulae with a nesting
depth of modal operators < or (a) of at most d.

Fi={0eF | nd(®) < d)

It follows that formulae in Fy contain no modal operators.

We show that certain classes of smaller markings satisfy the same EF-formulae
as larger ones, provided that these formulae have a limited nesting depth.

Lemma 6.1.21 Let N be a communication-free net of size n > 2 and My and
M, two markings of N. Let ® € F; and k be the mazimal k occurring in «
subterm of ® of the form s > k or s < k. If M; §(,;_|_1)nd M, then

M1 |:(I) A= M2|:(I)

Proof By induction on d.

74 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

1. If d = 0 then ® doesn’t contain any modal operators and M; §(,;_|_1) M,.
Thus for all places s and any & <]%, Mi(s) > k< My(s) > k and M;(s) <

k < Ms(s) < k. By induction on the structure of ® the result follows.
2. Now d > 0. We do an induction on the structure of ®.

e In the base case ® = s >k or ® = s < k. Just like in case 1 we have
M1 |:(I) A= M2 |:(I)
o If & = =®’ then by induction hypothesis. M; E & & M, £ &' It
follows directly that M; & & M; E .
o If & = &; A @, then by induction hypothesis M; = ¢, & M, = 9,
i =1,2. It follows that M; & & M; = .
e Now & = (a)p for a ¢ € Fy_;.
= If M, |= (a)p, then there is a M! s.t. M; = M} and M| |= ¢. Fire
the same transition in M, and get M, N M}, with M §(,;+1)nd_1
M;. As n = 2 it follows that M{ <), M;. By induction
hypothesis M) = ¢ and therefore My | (a)ep.
< If My |= (a)p then there is a M} s.t. My 5 M} and M} |= . The
same transition is fireable in M; and so we get M, N M| with
M <t 1)nd—1 M. As n > 2 it follows that M <t 1ynla=1) M.
By induction hypothesis M| | ¢ and therefore M; = (a)¢.
o Now & = Oy fora ¢ € Fy_q.
= If M, = Oy then there is a sequence o s.t. M; = M| and M! |= .
The number of places in N is < n. Thus by Lemma 6.1.17 there
is a greater sequence o' s.t. My 5 M} and M| (it 1yati-n M3
By induction hypothesis M, |= ¢ and therefore M, = Op.
< If My = Oy then there is a sequence o s.t. My = M} and M} |= .
By Lemma 6.1.16 there is a smaller sequence o' s.t. M, “ M,
and M{ <(i1y,@-y M;. By induction hypothesis M{ |= ¢ and
therefore M; | Op. |

We show that in order to decide M = O@ it suffices to check M’ = @ for those
M’ that can be reached from M by sequences of a certain bounded length.

Lemma 6.1.22 Let N be a communicalion-free net of size n, M a marking,
x := tokens(M), ® € Fy and k be the maximal k in a subterm of ® of the form
s>k ors<k. Then

MEOCY & 35. M S MAME® A length(5) < O((x + k) 27 +n?)

6.1. MODEL CHECKING BPP WITH EF 75

Proof There must be a sequence o s.t. M = M’ and M’ |= ®. By Lemma 6.1.18

there is a smaller sequence ¢ s.t. M 7, M, M < (et 1)nd M’ and

~ R 2n2—n -1
length(3) < n + ((k+) + (o + (2 = 1) xn® s (b4 D)+ =5

A~

So M 2 M, length(5) = O((x + k) * 27" % n?) and by Lemma 6.1.21 M = ®. m

Esparza [Esp95] showed that for communication-free nets it is decidable in poly-
nomial time if there is a fireable sequence of transitions with a given Parikh-vector.

Lemma 6.1.23 Let N be a communication-free net with marking M and K «a
Parikh-vector.

It can be decided in O(n®) time if there is a fireable sequence of transitions o

(M 2) with Parikh-vector K (P(c) = K).
Proof By Esparza in [Esp95].]

Now we show that the model checking problem for EF-formulae of nesting depth
d is complete for the d-th order in the polynomial time hierarchy. (See [vL90] for
the definition of the polynomial time hierarchy.)

Lemma 6.1.24 Let N be a communication-free net, M a marking of N and

® € Fy. The problem M |= O® can be solved in X .

Proof By induction on d.

Let n be the size of the instance of the problem, as defined in the definition of
model checking in Chapter 3. So n is the size of (N, M) plus the size of OO
in binary coding. It follows that N has O(n) places and if f: is the maximal k
occurring in any subterm of ® of the form s < k or s > k, then e = O(2"). Also
x :=tokens(M) = O(2") and d = O(n).

1. If d = 0 then ® doesn’t contain any modal operators. By Lemma 6.1.22 it
suffices to look for a & with M 5 M s.t. length(c) = O((x +]%)2”2 * nd)
and M £ ®. As k= O(2") and = = O(2") and d = O(n) the Parikh-vector
of & can be written in polynomial space. Now guess a Parikh-vector of
polynomial size. By Lemma 6.1.23 it can be checked in polynomial time

if there is a sequence & with this Parikh-vector s.t. M iz M. It only
takes polynomial time to compute the resulting marking M and M can
be described in polynomial space. It can be checked in polynomial time if

M = ®. So the problem can be solved in NP = .

76 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

2. Now d > 0. Again by Lemma 6.1.22 it suffices to guess a Parikh-vector of
polynomial size. Then by Lemma 6.1.23 we can check in polynomial time

if there is a fireable sequence & with this Parikh-vector s.t. M > M and
compute M in polynomial time. As tokens(M) = x and length(5) = O((x+
]%)2”2 * nd) one can assume that tokens(M) = Oz +2"((x +];)2”2 * nd)).
It follows that tokens(M) = (’)(2”2) and M can be described in polynomial
space. It is possible to apply the induction hypothesis and to check if
M = @ in polynomial time with the help of a ¥/-oracle. The oracle is used
to solve the problem for the subformulae of ® that have the form ¢y with

¢ € Fyq_1. Therefore the problem can be solved in NPT = ZZH. []

The following lower bounds for the model checking problem were shown by Es-
parza in [Esp97].

Lemma 6.1.25 Let N be a communication-free net, M a marking of N and
® c Fy. The problem M |= O® is X -hard.

Proof (by Esparza in [Esp97])

The problem of the validity of bounded quantified boolean formulae (BQBF) can
be reduced to the model checking problem. Example 6.1.27 describes the idea. m

Lemma 6.1.26 Let N be a communication-free net, M a marking of N and

¢ € F. The problem M |= O is PSPACE-hard.

Proof (by Esparza in [Esp97])
The problem of the validity of quantified boolean formulae (QBF) can be reduced
to this model checking problem. Example 6.1.27 describes the idea. [

These hardness results even hold for communication-free nets with a finite state
space. They remain true if the logic is restricted to atomic propositions of the
form s > 0 or ‘action a is enabled’ instead of s > k/s < k.

Example 6.1.27 For the formula Ju;Vasdes.(xq1 A —ag A —a3) V (22 A 23) the
communication-free net of Figure 6.2 is constructed. It is easy to see that

Elxl‘v’xzflxg.(xl A X2 A _‘1’3) vV (1'2 A $3)
<~
<>($N2 >0/\D($N3:0\/<>(($1 >0A T >0A 23 >0)\/($2 >0/\$3>0))))

6.1. MODEL CHECKING BPP WITH EF 77
Ty \ -
. / \

N
e

Figure 6.2: Hardness of model checking BPP.

X2

Theorem 6.1.28 Let N be a communication-free net, M a marking of N and
® € Fy. The problem M |= O ds X -complete.

Proof Directly from Lemma 6.1.24 and Lemma 6.1.25. [

Theorem 6.1.29 Model checking BPP with FF is PSPACE-complete.

Proof BPP are equivalent to communication-free Petri nets. Let N be a
communication-free net, M a marking of N and ® € F. The question is if

M = .

Let n be the size of the instance of the model checking problem (the size of
(N, M) plus the size of ®). Let x := tokens(M), y := size(®), d := nd(P) the
nesting-depth of ® and J: the maximal k occurring in a subterm of ® of the form
s > kors <k Thusz =0(2"),y = On), d =0(n) and = O(2"). We
show by induction on d that the problem can be solved nondeterministically with

O(n® 4 d *n? +y + log x) space.

78 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

If d =0 then ® does not contain the operator <. By induction on the structure
of ® the problem can be solved in time O(y) and thus in space O(y).

If d > 0 then also use induction on the structure of ® until subformulae of the form
O are reached. This requires only O(y) time and space. The only difficult part
are the subproblems of the form M |= G, Then ¢ € Fy_; and by Lemma 6.1.22
it suffices to look for a M % M’ s.t. length(o) = (’)((:1:+]%)2”2 *nd_l) = (’)(:1;*2”2 *
nd=1) = O(x+27°Hd=Dlogn)y — O(£+2"") and M’ |= ¢. The Parikh-vector of & can
be written in space O(n(log x+n?)) = O(n®). We nondeterministically guess such
a Parikh-vector. By Lemma 6.1.23 it can be decided in time (and space) O(n?)
if there is a fireable sequence with this Parikh-vector. If yes, then the resulting
marking M’ can also be computed in polynomial time. Let 2’ := tokens(M’). It
follows that @’ < & 4 2" length(c) = O(x * 2”2"'”) = O(x * 2”2). By induction
hypothesis the problem M’ |= ¢ can be decided in space O(n® + (d — 1)n* +y +
loga’) = O(n® + (d — 1)n* +y + logz + n?) = O(n® + dn* + y + logz). There
are at most O(y) such subproblems and thus the whole problem can be solved
nondeterministically with O(n® + dn? + y + log x) space.

As d = O(n), y = O(n) and = O(2") the problem is in NSPACE(O(n?*)). By
the theorem of Savitch [vL90] it is in DSPACE(O(n®)) C PSPACE.

By combining this with Lemma 6.1.26 it follows that the problem is PSPACE-
complete. [

So far we have seen that the model checking problem for BPP and EF is PSPACE-
complete in the general case and ¥ -complete if the formulae are restricted to
nesting-depth d. (Note that formulae of a fixed nesting-depth can still be arbi-
trarily large.) The question about the complexity of the problem in the size of
the BPP for every fixed formula is still open. However, there is a linear time
algorithm for a slightly more restricted problem.

Theorem 6.1.30 Let N be a fived communication-free net and ® a fired EF-
formula. Then the problem if M = ® for a marking M can be solved in linear
time in the size of M.

Proof Let n be the size of N, f: the maximal k that occurs in ® in an atomic
proposition of the form s > k or s < k and let d be the nesting-depth of ®. So
n, k and d are fixed. Thus we can also assume that we already know if M' E @
for every M’ s.t. Vs. M'(s) < (l% + 1)n?, because the number of these markings
M’ is fixed.

Now the algorithm for deciding M |= @ is as follows: We construct a new marking
M’ by defining for every s

M'(s) := min{M(s), (k+1)n"}

6.2. MODEL CHECKING BPP WITH LTL 79

This can be done in linear time. We know already if M’ = ®, because M’ satisfies
the condition above. By Lemma 6.1.21 we have

ME® < ME®

The results on the complexity of model checking BPP with EF can be summarized

as follows.
Problem Complexity
general PSPACE-complete
formula restricted to nesting-depth d Yh-complete
fixed formula e xh
fixed formula and fixed structure of the BPP | € P

6.2 Model Checking BPP with LTL

In [Hab97] Habermehl solves the model checking problem for Petri nets and BPP
and a version of the linear-time p-calculus (and LTL). In this version only infi-
nite runs of the system are considered. This is weaker than our version (see Sec-
tion 3.2) where both finite and infinite runs are considered. Habermehl’s version
has the same expressiveness as the weak linear-time p-calculus, which is defined
in Section 3.2 and used in Section 9.2. He shows that for the weak linear-time
p-calculus the model checking problem is EXPSPACE-complete in the size of the
Petri net and PSPACE-complete in the size of the formula. He claims to prove
the same result for BPP, but this is only partially correct. It is correct that model
checking BPP with the weak linear-time p-calculus is EXPSPACE-complete, but
the proof in [Hab97] that the problem is EXPSPACE-hard in the size of the BPP
is incorrect. In this proof the size of the formula grows together with the size
of the BPP. So the complexity of model checking BPP with a fixed linear-time
p-calculus formula is an open question.

Now we consider normal LTL and the normal linear-time p-calculus as defined
in Section 3.2. Model checking with these logics is decidable for Petri nets (see
Chapter 9). However, it is at least as hard as the reachability property problem
for Petri nets, because reachability of a deadlocked state can be expressed in LTL
(see Section 3.2). This is a (potentially) stronger result, because the complexity

80 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

of reachability for Petri nets is an open question, and it may be harder than

EXPSPACE.

Since BPP are a subclass of Petri nets, model checking with LTL and the linear-
time p-calculus is decidable. However, reachability for BPP is only N"P-complete
[Esp95]. This is a much weaker lower bound than the EXPSPACFE-hardness
proved by Habermehl in [Hab97]. The question is now if model checking BPP
with full LTL and linear-time p-calculus is also EXPSPACE-complete or harder.
The following theorem shows that it is at least as hard as the reachability problem
for Petri nets. Note that for this result not even weak atomic predicates (of the
form ‘action a is enabled’) are needed. Only relativised next-operators and the
predicate true are used.

Theorem 6.2.1 Model checking BPP with LTL is at least as hard as the reach-
ability problem for Petri nets.

Proof The reachability problem for Petri nets has the same complexity as the
Zero-Reachability Problem [Pet81]. This is the problem, for a Petri net, if the
empty marking is reachable. This problem is equivalent to the Deadlock Reach-
ability Problem, the question if a deadlock is reachable. (The reduction is as
follows: For every place add a transition that takes a token from this place and
puts it back.)

Let (N, My) be the Petri net with initial marking My. The question is if a dead-
lock is reachable. We consider a modified deadlock reachability problem where the
initial marking My is not a deadlock. This is equivalent to the deadlock reacha-
bility problem without restriction. We reduce this modified deadlock reachability
problem to the model checking problem for BPP and LTL. We assume w.r. that
every transition in N has at least one place in its preset. Note that N is an
unlabeled Petri net.

Now we construct a BPP that weakly simulates the net (N, My). Replace any
transition ¢ in N with preset {pi,...,pn, } (a multiset) and postset {p},....p, }
(a multiset) by a set of new transitions as follows. These new transitions are
labeled with atomic actions. We describe them as rules in (1, P)-PRS notation.

t1

P — ¢

P2 — €

ps —— ¢

tnt—l
Pn—1 7 ¢

t"t /

pn — Bl llp,

6.2. MODEL CHECKING BPP WITH LTL 81

The ¢; are new atomic actions. Let N’ be the new net. All transitions in N’ have
exactly one place in their preset and thus N’ is a communication-free net (which
is equivalent to a BPP). M, is also a marking of N’, since N’ has the same places

as V.

Now we define an LTL formula such that the runs of (N, M) that satisfy this
formula are exactly those runs that faithfully simulate the behavior of (N, My).
Let 7 be the set of all LTL-formulae ® of the form

O = (1) (tiq1)true
for transitions ¢t of N and 1 <1 < ny; — 1, or of the form
= (t,,)(t])true

where ¢ and ¢’ are transitions of N. Let A be the set of all actions {5. A run of

N’ (see Def. 3.0.15) has length 0 iff it satisfies the LTL-formula

Y= (\/ <a>true>

a€A

Then a run of the system (N', My) is a faithful simulation of N if it satisfies the
following LTL-formula.

(e s

This formula ensures that the run of N’ simulates every transition ¢ of N in ny
steps. It also ensures that the run cannot stop during such a simulation series,
but only between them.

A run is infinite if it satisfies the following formula.
Uy i= (=) wld false

A deadlock is not reachable in NV if and only if all faithful simulation runs in N’
are infinite. Thus a deadlock is reachable in N iff

(N, Mo) = (91 = Uy))

82 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)

6.3 Conclusion

Basic Parallel Processes are a weak model of concurrent computation. It can
be argued that any decent model of concurrent computation should be at least
as powerful as BPP. What makes them interesting is that they are a model
for infinite-state concurrent systems that seems to lie just on the “border of
decidability”. Some problems that are undecidable for more powerful models of
concurrent systems are still decidable for BPP. For example strong bisimulation
equivalence [CHM93a] and weak bisimulation equivalence to a finite-state LTS
[May96¢] is decidable for BPP. On the other hand BPP are powerful enough to

make some properties undecidable, for example language equivalence [Hir93].

Model checking BPP with most branching-time logics is undecidable. This follows
from the result by Esparza and Kiehn [EK95] that model checking BPP with the
logic EG is undecidable. Although Esparza and Kiehn do not mention it explicitly,
this undecidability result even holds for a fixed EG formula. We briefly explain
the idea how to show this.

In [EK95] the undecidability is shown by a reduction of the halting problem for
Minsky 2-counter machines where the counters are initially zero, to the model
checking problem for BPP and EG. However, in this construction the size of the
EG formula is proportional to the size of the finite control of the counter machine.
This problem can be overcome by doing the same reduction for the universal 2-
counter machine, which has a fixed finite control, but whose counters initially
contain arbitrary values. (Any control program can be encoded in these values.)
In this case the constructed EG formula is fixed, but the initial state of the BPP
represents the initial values in the counters. Thus model checking BPP with EG
is undecidable, even for a fixed EG formula.

EF is the only decidable branching-time logic for BPP. It has been shown in
Section 6.1, that model checking BPP with EF is PSPACE-complete. However,

the problem is only ¥)-complete for formulae whose nesting-depth is bounded by
d.

Model checking BPP with linear-time logics is decidable and EXPSPACE-hard.
As shown in Section 6.2, the problem is FXPSPACE-complete for the interpre-
tation on infinite runs, but in general it depends on the reachability problem for
Petri nets. The complexity for a fixed formula is an open question.

The following table shows the complexity of model checking BPP.

6.3. CONCLUSION

83

BPP general fixed formula
Feuchabe roperty NP-complete | € NP

EF PSPACE-complete | € ¥

EG undecidable undecidable
UB undecidable undecidable
CTL undecidable undecidable
alternation-free modal p-calc. || undecidable undecidable
modal p-calc. undecidable undecidable
LTL %?ﬁ;ﬁfbf?—har d decidable
linear-time p-calc. decidable, decidable

EXPSPACE-hard

Chapter 7

Pushdown Processes and BPA

As shown in Section 2.3.5, pushdown processes are equivalent to (.5,5)-PRS.
Model checking pushdown processes has been studied in [BS94, BEM97a, Wal96a,
Wal96b]. The main idea in [BEM97a] is to describe sets of states (stack contexts)
of a pushdown system with finite (alternating) multi-automata. A polynomial-
time/(exponential-time) algorithm is presented in [BEM97a], that, given a set of
states described by an (alternating) multi-automaton, computes an (alternating)
multi-automaton describing the set of all possible predecessors of these states.
It takes only polynomial time to check if a given state is described (recognized)
by a given alternating multi-automaton. One does not need alternation for the
reachability problem and the reachable property problem. Thus they can be
solved in polynomial time.

The results on the complexity of model checking pushdown processes can be
classified into two groups: results on branching-time logics and results on linear-
time logics.

Model checking pushdown processes with branching-time logics is quite hard.
Even for the simple branching-time logic EF the model checking problem is
PSPACE-complete [BEM97a]. It gets even worse by the fact that even for a fixed
EF-formula the problem is PSPACFE-hard in the size of the pushdown system. For
the other branching-time logics the problem is even harder. Walukiewicz [Wal96a,
Wal96b] has shown that model checking pushdown processes with the modal -
calculus is EXPTIMFE-complete. Even for a fixed formula in the alternation-free
modal p-calculus the problem is FXPTIME-hard in the size of the pushdown

process.

For the other branching-time logics EG, UB and CTL the problem is still open.
No better algorithm than the exponential time algorithm of Walukiewicz [Wal96a,

84

85

Wal96b] is known for them, but the known lower bounds are not as strong as for
the alternation-free modal p-calculus.

It has been shown very recently that model checking with Hennessy-Milner Logic
is PSPACE-complete for pushdown processes [May98] (but only polynomial for
every fixed formula). For EG this is the only known lower bound. For UB and
CTL the known lower bound is the same as for EF, namely PSPACFE-hardness
(even for a fixed formula). Thus the exact complexity of model checking with
UB and CTL is somewhere between PSPACE and EXPTIME. Altogether it can
be said that model checking with branching-time logics is much more difficult for
pushdown processes than for finite-state systems. For all branching-time logics
(except for the full modal p-calculus) model checking finite-state systems is poly-
nomial, while it is at least PSPACFE-hard for pushdown processes (see Chapter 5
for results on finite-state systems). These results show that completely automated
verification of pushdown processes is very hard and thus semiautomatic methods
are developed. In [BS97] Burkart and Steffen describe a sound and complete
tableau system for pushdown processes and the full modal p-calculus.

The situation is quite different for linear-time logics. Model checking push-
down processes with LTL and the linear-time p-calculus is FEXPTIME-complete
[BEM97a]. However, the model checking problem for any fixed formula is poly-
nomial in the size of the pushdown process. The algorithm is only exponential in
the size of the formula. It follows that the problem is only slightly harder than
for finite-state systems, where it is PSPACFE-complete but polynomial for any
fixed formula (see Chapter 5).

86

CHAPTER 7. PUSHDOWN PROCESSES AND BPA

The following table summarizes the complexity results on model checking push-

down processes.

Pushdown processes

general

fixed formula

reachability,
reachable property

cP

cP

EF

PSPACE-complete

PSPACE-complete

€ EXPTIME,
EG PSPACE-hard e EXPTIME
UB € EXPTIME, € EXPTIME,
PSPACE-hard PSPACE-hard
CTL € EXPTIME, € EXPTIME,

PSPACE-hard

PSPACE-hard

alt.-free modal p-calc.

EXPTIME-complete

EXPTIME-complete

modal p-calc.

EXPTIME-complete

EXPTIME-complete

LTL

EXPTIME-complete

cP

linear-time p-calc.

EXPTIME-complete

cP

Now we consider a subclass of pushdown processes, the context-free processes.
Context-free processes were defined in Subsection 2.3.4. They are described by
a sequence of symbols which can be interpreted as a stack, but unlike pushdown
processes they have no finite control. They are equivalent to (1,5)-PRS. The
algebra of context-free processes is also called Basic Process Algebra (BPA). So
they are also called BPA-processes.

First we consider model checking context-free processes with branching-time log-
ics. Although context-free processes are a weaker model than pushdown processes,
the known upper bounds for the complexity of model checking are the same in
the general case where both the system and the formula are the input. However,
there is one important difference when one considers the complexity in the size of
the system. Burkart and Steffen showed in [BS92b] that for any fixed formula in
the alternation-free modal p-calculus the model checking problem is only polyno-
mial in the size of the context-free process. The algorithm is only exponential in
the size of the formula. More recently, Walukiewicz [Wal96a, Wal96b] has shown
that even for every fixed formula in the full modal p-calculus model checking
context-free process is decidable in polynomial time. Thus model checking BPA
is much easier than for pushdown processes where the problem is EXPTIMFE-hard

87

in the size of the process even for a fixed formula in the alternation-free modal
p-calculus. In practice, the formula is normally very small while the system
can be very large. Thus, in practice, model checking context-free processes with
branching-time logics is much easier than model checking pushdown processes.

Very recently, some lower bounds have been shown for model checking BPA
with branching-time logics. Model checking BPA with Hennessy-Milner Logic
is PSPACE-complete and model checking BPA with the alternation-free modal
p-calculus is EXPTIME-complete [May98]. (Of course these hardness results do
not hold for any fixed formula.)

Now we consider model checking context-free processes with linear-time logics.
As mentioned above, model checking pushdown systems with LTL and the linear-
time p-calculus is EXPTIME-complete, but only polynomial in the size of the
system for any fixed formula. The only question that remained was if EXPTIME-
hardness also holds for context-free processes.

We show now that model checking with LTL is FXPTIMFE-hard even for BPA.
We generalize the proof of EXPTIMFE-hardness for pushdown systems and LTL
of [BEM97a]. (This proof for pushdown systems is in the appendix of [BEM97a]
and can be found in [BEM97b].)

The proof of EXPTIME-hardness is done by a reduction of the acceptance prob-
lem for linearly bounded alternating Turing machines [vL.90]. An alternating
Turing machine (ATM) is described by a tuple (@, ¥, 0, go,!), where @) are the
states of the finite control, ¥ the tape symbols, é the transition relation, ¢g the
initial state and [is a function that labels states as existential, universal, accept-
ing or rejecting. The computation of an ATM is defined just like the computation
of a normal Turing machine, but the acceptance condition is more complex. Since
the machine is nondeterministic, the computation can be represented as a compu-
tation tree in which the branches represent different possible computations. The
states of the finite control of the ATM are assigned labels by the function [as
existential, universal, accepting or rejecting. Now the states in the computation
tree are labeled as accepting or rejecting by the following rules:

1. A leaf of the computation tree is labeled accepting (rejecting) if the finite
control of the ATM in this state is accepting (rejecting).

2. An internal node where the finite control is labeled universal (existential) is
accepting if any only if all (at least one) of its successor nodes is accepting.
Otherwise it is rejecting.

3. A node is labeled undefined if the label cannot be determined by the other
rules. (This only happens if there are infinite branches.)

88 CHAPTER 7. PUSHDOWN PROCESSES AND BPA

Without loss of generality let |6(¢, a)| = 2 for every universal state ¢ and symbol
a. We choose an arbitrary order on the two elements of 6(¢, a) and call them the
first and second successor configuration of (¢,a). An ATM M is called linearly
bounded if there is a constant k, such that for every word w in the language of
M, M has an accepting computation that uses at most k - |w| space. We only
consider linearly bounded ATMs and thus avoid the problem of infinite branches
and undefined labels.

The acceptance problem for linearly bounded alternating Turing-machines is
EXPTIME-complete [vL90]. Now we are ready to prove the hardness result
for the model checking problem.

Theorem 7.0.1 Model checking BPA with LTL is EXPTIME-hard.

Proof We reduce the acceptance problem of a linearly bounded ATM to the
model checking problem. Let M = (Q, X, 6, qo,[) be the ATM, w the input word
and n := k- |w| the length of the tape. Let M’s head be over the first cell of
the tape. We construct in polynomial time a BPA A with initial state [/ and a
LTL-formula ® s.t. M accepts w iff I E &, w.r.t. A.

First we describe the intuition for the construction, then we formally define the
BPA A and finally we construct the LTL-formula that characterizes exactly the
runs of the system that are faithful simulations of M.

The intuition is as follows. A configuration of M is described by words of X*Q)¥"
of length n. In a configuration agf, « is the content of the tape to the left of
the head, ¢ is the state of the finite control and 3 is the content of the tape
under the head and to the right of it. The configuration is accepting if ¢ is an
accepting state. The computation of the BPA is now defined as an attempt to
guess a computation of M. This is a finite or infinite tree of configurations in
which every node has at most two successors. The BPA attempts (by guessing
nondeterministically) to simulate a traversal of this tree in infix order. In the
sequence that describes its state it stores the sequence #ci#co# ... #cp of con-
figurations ¢y, ..., ¢ describing the path in this tree from the root to the actual
configuration. Of course, most of these guesses are wrong or not even meaningful.
Later we’ll use the LTL formula to enforce a faithful simulation of M.

Now we define the BPA A. As the tree is traversed in infix order the BPA always
does one of two things:

L. It outputs # fc#t, where ¢ is a configuration of M and f (meaning ‘forward’)
is a special action and writes #c# onto the stack. This symbolizes that we
enter a node from the parent node in the computation tree of M.

89

2. It outputs #bc"#, where ¢" is the reverse of the configuration ¢ and b
(meaning ‘backward’) is a special action, and pops #¢”# from the stack.

At the beginning of the execution the BPA outputs # fqow# and writes #qow#
onto the stack. A computation is successful if it leads to a state where the stack
1s empty.

The rules describing this are as follows: (We use a shorthand notation where the
rules can have strings as labels instead of single actions.)

€

N O
J i T w".qo
T FEL T4
T. -2 Tiy1.a forae ¥, 0<:<n—2
T, 4 Tlg forge@,1<i:<n
T! — Tl,a foraeX, 1<i<n-—1
;o #b
n — 7 €

LNy fora € ¥

2 ¢ for ¢ € @

#

/=

#*f

BUESN

To.#

It is easy to see that M accepts w if the BPA outputs a string #do#d1# . . . #d,, #
such that this string is a faithful simulation of the computation of M on w and
is in a state with empty stack (a deadlock) afterwards.

Now we define when a simulation is faithful and construct the LTL formula that
characterizes exactly the faithful simulations. The simulation is faithful if the
following properties hold for every 0 <: <m — 1

1. If d; = fc and ¢ is an existential configuration, then d;1; = fc’ and ¢ is a
successor configuration of c.

2. If d; = fc and ¢ is a universal configuration, then d;;1 = f¢’ and ¢ is the
first successor configuration of c.

3. If d; = bc” and d;11 = f¢, then ¢ is a universal configuration, and ¢’ is the
second successor configuration of c.

4. The configuration in d; is not a rejecting configuration.

90 CHAPTER 7. PUSHDOWN PROCESSES AND BPA

5. If the configuration in d; is an accepting configuration, then d;y; = bc” for
some c.

These properties can be encoded in LTL. For each symbol « € YUQU{ [, b, #} we
define a proposition p, := (O,true. We use the abbreviation (O)'® for O --- O ®
(i-times).

As defined in Subsection 3.2.2, G ® := & wl{ false and F & := trueld ®.
A run of the BPA is a faithful simulation of M if it satisfies the following LTL

formula:

fmthful = G((p# A On+3p#) = (\Ill A \IIQ A \Ilg A \I}4 A \I}5))
where py A ()" P py expresses that the current state is a #-position different from
the last, and Wy, Wy, U5, Uy, U5 encode parts (1)—(5) of the properties above. It is

n + 3, because n is the length of the configuration and the symbol #. the symbol
f (or b) and state ¢ count extra.

M accepts w if there is a run of the BPA that is faithful (satisfies the LTL formula
faithful) and leads to a state of deadlock. Let

¢ = faithful N F(= O true)

Therefore M accepts w iff there is a run of the BPA that satisfies ®. This is true
iff not all runs satisfy =®. Thus M accepts w iff

(T -)
We only show how to construct the formula ¥y, since ¥, — Uy are similar.

e “d; = fc¢” is encoded as Opy.

® “cis an existential configuration” is encoded as

n+2
\/ O](\/ Pq)
=1 JEQ.

where (). C () is the set of existential states.

e “diyy = fc” is encoded as ()" p;.

91

e “(’ is a successor configuration of ¢” is encoded as a disjunction of formulae,

one for each possible successor configuration of ¢. These formulae are in turn

a conjunction of formulae of the form

(O pay A OPpg A O py,) = OFF 3+,

where k € {—1,0,1},¢€ Q,a € X and x € QUX and 3 < j <n+1. They
are determined only by the transition relation of the ATM.

For example let a; = 0,a3 = 1, ¢ € @ and (¢',0,L) € 6(q,1).

Then, for

every j, there would be three such formulae with different right hand sides.

These right hand sides are

O]-I—(n-l-?))—lpq/

Oj+(n+3) P Oj+(n+3)+1 Do

The following table summarizes the complexity results on model checking BPA.

BPA general fixed formula

reachability /reachable property || € P S

EF PSPACE-complete ep
€ EXPTIME,

bG PSPACE-hard &P
€ EXPTIME,

ub PSPACE-hard &P
€ EXPTIME,

CTL PSPACE-hard &P

alternation-free modal p-calc. EXPTIME-complete | € P

modal p-calc. EXPTIME-complete | € P

LTL EXPTIME-complete | € P

linear-time p-calc. EXPTIME-complete | € P

Chapter 8

PAD and PA

The process model PAD is defined as (5, G)-PRS in the PRS-hierarchy. As de-
scribed in Subsection 2.3.7, it can be used to model systems with nondeterminism,
parallelism (but no synchronization) and subroutines that can return a value to
their caller. A special case of PAD is PA, which is defined as (1,G)-PRS in
Subsection 2.3.6. PA can model nondeterminism, parallelism and recursion, but,
unlike in PAD, the subroutines have no effect on their caller. PA is the smallest
natural common generalization of BPP and BPA.

Almost all model checking problems have the same complexity for PAD and PA
and thus we consider both of them in this chapter.

Model checking with linear-time logics like LTL and the linear-time p-calculus is
undecidable for PA [BH96], even for a fixed LTL-formula. Thus it is undecidable
for PAD too.

Model checking with most branching-time logics is undecidable too. This is be-
cause model checking with the logic EG is undecidable for BPP (see Chapter 6),
even for a fixed EG formula. The only possible exception is the logic EF. be-
cause it is the only branching-time logic that is not stronger than EG. Here we
show that model checking PAD with EF is indeed decidable. It has already been
shown by the author in [May97b] that model checking PA-processes with EF is
decidable. Here we prove the more general result for PAD. Note that the model
checking problem for EF is PSPACE-hard, because it is PSPACE-complete for
BPP (see Chapter 6 and [May96¢]).

In Section 8.1 we prove that model checking PAD with the logic EF is decidable.
In Section 8.2 we prove N'P-completeness of the reachability problem for PAD.
In Section 8.3 we give some examples of simple verification problems for PA that
can be solved in polynomial time. Section 8.4 contains other results and the

general picture for PA and PAD.

92

8.1. MODEL CHECKING PAD WITH EF5. 93

8.1 Model Checking PAD with EF}.

In this section we prove that model checking PAD with EF is decidable. We use
the logic EF5., a generalized version of EF, because the decidability proof for it
has a clearer structure and is easier to understand.

The proof is structured as follows: In Subsection 8.1.1 we define the logic EF5.
and reduce the model checking problem to a simpler form. In Subsection 8.1.2
we show how properties can be decomposed w.r.t. sequential and parallel compo-
sition. This is used in Subsection 8.1.3 to construct a tableau system that solves
the model checking problem. In Subsection 8.1.4 we show that this tableau sys-
tem is sound, complete and decidable. Subsection 8.1.5 is about the complexity
of the algorithm.

8.1.1 The Temporal Logic EF-

We use the logic FI'5., an extended version of the logic EF. It uses strong
atomic propositions of the form ‘The current state is term ¢” and can thus express
reachability. The “=" in the name stands for these strong propositions, because
they express that the current state is equal to a given state {. The logic EF5.
can also express weak constraints on sequences of actions. These constraints are

called decomposable constraints (thus the DC in the name).

Definition 8.1.1 (EF5.)
The syntax of the formulae is as follows:

D=1 | - | (I)l/\q)z | <>C(I)

where t € T is a process term and C' is a decomposable constraint (see Def. 8.1.3).

Let F be the set of all EF5 -formulae. Let 7 be the set of all processes terms
(as in Def. 2.1.2) in the process algebra. The denotation [®] of an FF5 -formula
® is the set of process terms defined inductively by the following rules:

[1] = {}

[-®] = T — [®]
[@1 A D] = [91] N [D:]
[Cc®] = {teT | ot ANt e[®] A Co)}

Disjunction can be expressed by conjunction and negation.

The property ¢ € [®] is also denoted by ¢ = ®.

94 CHAPTER 8. PAD AND PA

Definition 8.1.2 For any EF5.-formula ® let terms(®) be the set of process
terms used in ® as atomic propositions.

terms(t) = {t}
terms(—®) = terms(P)
terms(®y A @) = terms(Pq) U terms(®,y)
terms(Ce®) = terms(®)

The logic EF5. uses constraints on sequences of actions. These constraints are
called decomposable, because they can be decomposed with respect to sequential
and parallel composition of sequences of actions.

Definition 8.1.3 (Decomposable Constraints)
A set of decomposable constraints DC is a finite set of predicates on finite se-
quences of actions that satisfy the following conditions.

1. DC contains the predicates true (all sequences satisfy it) and false (no
sequence satisfies it).

2. For every predicate C' € DC it is decidable if (' is satisfiable.

3. For every C' € DC there is a finite index set [and a finite set of decompos-
able constraints {C}!,C? € DC | i € I} s.t.

Vo,01,05. 0109 =0 = (C(U) = \/ ClHor) A Cf(@))
i€l

4. For every C' € DC there is a finite index set [and a finite set of decompos-
able constraints {C! € DC | © € I} s.t.

Vo,0'. a0’ =0 = (C(U) = \/Cf(a’))
i€l

5. For every C' € DC there is a finite index set [and a finite set of decompos-
able constraints {C}!,C? € DC | i € I} s.t.

K3

Vo,01,09.Ya € Act. o1a0y =0 = (C(U) — \/ ClHay) A Cf(@))

el

8.1. MODEL CHECKING PAD WITH EF5. 95

6. For every C' € DC there is a finite index set [and a finite set of decompos-
able constraints {C},C2 € DC | i € I} s.t.

K3

Vo, oy. ((o € interleave(oy,09). C(0)) <— \/(C}(Ul) A Cf(aﬁ))

el

o € interleave(oy,04) means that o is an arbitrary interleaving of oy and
09. The formal definition of the function interleave is as follows: Let A be
the empty sequence.

interleave(X, o) = {o}
interleave(o, \) = {o}
{a10 | o € interleave(oy, azoz)}U

interleave(ay01, azon) = {ago | o € interleave(aioq,02)}

Lemma 8.1.4 If DC is a sel of decomposable constraints, then the closure DC'
of DC under the boolean operations of conjunction and disjunction is also a set
of decomposable constraints.

Proof The formulae in DC’ can be transformed into disjunctive normal form,
such that the formulae in DC are the atomic formulae. Since DC is finite, DC’ is

finite too.]

Remark 8.1.5 A set of decomposable constraints need not be closed under nega-
tion.

Now we give an example for a set of decomposable constraints. Let A C Act,
be a finite set of atomic actions. For any a € A let #,(co) be the number of
occurrences of action « in o. For u,v € IN let [u], denote u modulo v. We define
the following constraints:

L. length(o) > i or length(o) <1 for all ¢ < k for some fixed constant k.
2. #4(0) > 1 or #,(0) <iforall ¢ < n for some fixed constant n.
3. [#a(0)]x =1 for all ¢,k < m for some fixed constant m.

4. first(c) = a for any action a € A.

For any choice of A, k,n,m let Cq,m denote the closure of the set of these
constraints under conjunction and disjunction.

96 CHAPTER 8. PAD AND PA

Lemma 8.1.6 For any A, k,n,m, the set C4pm 5 a set of decomposable con-
straints. It is even closed under negation.

Proof Directly from the definitions. [

Example 8.1.7 The constraint [#,(c)]2 = 0 expresses that the number of oc-
currences of action a in o is even. Let o € interleave (o1, 02) be an interleaving of
two sequences. Then the number of occurrences of the action @ in o is even iff it
is either even in both oy and o3 or odd in both oy and o3. This can be expressed
by the following decomposition.

[#a(0)]a=0 <= ([#alo)l2=0 A [F#a(o2)]2
([#alo)lz =1 A [#a(02)]2

0) Vv
1)

We use these constraints to show that the usual definition of EF is a fragment of

EF5.. The usual < is just Oy The normal one-step nexttime operator EX is
often denoted by (a) and defined by

[(a)®@] := {t| Tt 5 ¢ € [@]}

It is clear that (a) = O¢ with C = [first(c) = a A length(o) = 1]. The normal
version of EF also does not have atomic propositions ¢ (meaning that the state is
equal to ; see Def. 8.1.1), but propositions “a” (meaning that the atomic action
a is enabled). This can be expressed by (a)true, where true =tV =t for any term

t.

It is also possible to express the modal operator O (meaning ‘always’) by defining
Op := =Cg. Oc® then means that ® holds in all states that are reachable via
a sequence of actions o s.t. C'(o).

Definition 8.1.8 The nesting-depth nd(®) of an EF5 -formula ® is defined by

nd(t) = 0
nd(—®) nd(P)
nd(®; A ®2) = maz{nd(P1), nd(P2)}
nd(Ce®) = nd(P)+1

Definition 8.1.9 F; C F is defined as the set of all KF5.-formulae with a
nesting-depth of modal operators e of at most d.

Fi={0eF | nd(®) < d)

It follows that formulae in Fy contain no modal operators.

8.1. MODEL CHECKING PAD WITH EF5. 97

In order to simplify the notation we use some abbreviations:
Let T'={ty,...,t,} €7 be a finite set of process terms, then

te-T < tE-tiA---AN-t,
For reasons of symmetry we also define
tET: <= tEHA AL,
Of course this cannot be true if n > 2.
Definition 8.1.10 We define a subset F; C F,; of formulae that do not con-
tain disjunction. Thus the formulae in F§ are called conjunctive formulae. Fj

is defined as the minimal set of formulae ®,; that are defined by the following
grammar.

Gy =TT AN-T"
for every finite T*, T~ C 7 and
P, = TN =T~ | Py N,y | Dy A =cdyy

for every finite 77,7~ C 7 and every decomposable constraint C' and every
G,y € Fy .

It follows that every formula in FJ has the form

THYA =T A /\chq& A /\ _'<>DJT]‘

€1 =

where 7%, T~ C T, and C;, D; are decomposable constraints and ¥, € F5 | and
T]‘ € fc?_l.

A formula ® is in normal form if & = \/iEI O,y s.t. the W, are conjunctive
formulae.

Lemma 8.1.11 Any EF5.-formula Oc® is equivalent to a formula in normal
form.

Proof By induction on the nesting-depth d of modal operators in ®. The
important property here is that O (@1 V @) = Ce®y V O Py, We transform
the subformulae into disjunctive normal form, and then push the disjunctions
outwards. [

98 CHAPTER 8. PAD AND PA

Lemma 8.1.12 FEvery model checking problem for FIF5. is decidable iff it is
decidable for all formulae Oo® with ® € o Fi-

Proof If it is decidable for formulae of the form Oc® with ¢ € F3, then it is
decidable for formulae in normal form and thus by Lemma 8.1.11 for all formulae
of the form CeW, with W € F. Simple boolean operations yield the decidability
of the whole model checking problem. The other direction is trivial. [

8.1.2 Decomposition

The key to the construction of the tableau system in Subsection 8.1.3 is that
properties of the form t;.t; | Ce® or t||t2 E Oc® can be decomposed into
properties of t; and properties of 3. First we give a small example how this is
done and then we do it in general.

Example 8.1.13 We show how to do the decomposition for the following simple
formula of nesting-depth two:

¢ :=O(—u A Ov) A =O(w))

where u, v, w are process terms. No decomposable constraints are used, except
for the constraint true (e = <). This formula means that there is a reachable
state different from wu, s.t. from this state the state v is reachable, but the state
w is not reachable.

Let t1,13 be process terms. Then the property
tlHtQ |: <>(—|u A <>(U) A _‘<>(UJ))
is equivalent to

Joy, o9, th . 1 B Aty Bt A

N (G # o viy# as) A Gt [Oo) A [t E =O(w)

atl||as=u

8.1. MODEL CHECKING PAD WITH EF5. 99

where a1, ay are process terms. This is equivalent to

Jov,oa bty DAL B A N () £ e Vi) # az) A

atl||as=u

\/ (EOB) At EO(B) A
B1||Ba=v
-1V A EOCM) AL EO()
Y [r2=w

This is equivalent to

Jo, o0ty L BN BN\ (1 F o Vi, #) A

atl||as=u

\/ (OB At = O(B)) A
B1||Ba=v

/\ (11 B ~O(n) Vi | =O()
M |lv2=w

Now we transform this expression into disjunctive normal form. We define the
set [of all functions f that assign to every pair (aq,as) s.t. aq]|az = wu,
a value in {1,2}. For every f € F let A} := {ay | f((a1,02)) = 1} and
A7 :={ay | f((a1,a3)) =2}. Then the expression is equivalent to

Jov, 00,0ty L AL DA\ (1) & AL Aty ¢ AF) A

Jer
V' L EOB) Aty EO(B)) A
B1||Ba=v
/\ () F=On) Vi E~O(y2)
Y1 ||v2=w

In the same way we define the set (¢ of all functions ¢ that assign to every pair
(71,72) st v = w, a value in {1,2}. For every ¢ € G let B} := {y |
9((71:72)) = 1} and B :== {52 | g((v1,%2)) =2}.

100 CHAPTER 8. PAD AND PA

Then the expression is equivalent to

Jov, o0t ty. DAL By AN\ (1 —A} Aty | —AT) A

feF
\/ (HEOB) At EO(B)) A
B1|Ba=v
\/ /\ 1 E=OMm) A /\ ty E =O(72)
9€G \meB} 12 €B}

This is equivalent to

(| Ole) Aty |z @)V
(D Aty | O(e) V

Joy, o0, Ut 1y Bt Aty Bt A

\ thE—Af A EOBA N\t E M)A
FEFB1||B2=v,9€G nEBL
tyE—AING OB A\ thlE=O(1)
726352]

Finally, this is equivalent to

\V b EO(=AFACBY A N —OMm) A
FEFp1||Pa=v,9€G mMEBy

= O(=AFAO(B) A\ ()

2
V2 €8]

This is a boolean combination of properties of #; and properties of #,.

Now we show how the decomposition is done in the general case. In order to
simplify the presentation, we define the following sets of expressions. Let DC be
a set of decomposable constraints, T' C 7 a finite set of process terms and d € IN.

8.1. MODEL CHECKING PAD WITH EF5. 101

Cform(d,T,DC) := (/\t = o @i A /\tj F _‘<>DJ\I}J') |

el ed
\V/Z,j ti,ﬂ - T, CZ',D]‘ - DC,(I)Z - 757\1}]‘ - 75_1

J

Cform'(d, T,DC) := like Cform(d, T, DC), except that ¥; € F§

Dform(d, T,DC) := {\/F | F; e Cform(d,T,DC)}

el

The next two lemmas show the decomposition of properties for sequential com-
position. The general idea is that properties of the form ¢;.t, = Cc® are decom-
posed into properties of ¢; and properties of t5. However, the details are more
complex. It does not always suffice to use properties of ¢; and properties of 5,
but sometimes also properties of other terms are needed. These other terms are
the terms that occur in ® as atomic propositions and the terms that occur in the
rules of the PAD-process. Fortunately, these are only finitely many.

We defined that sequential composition is left-associative, so if we write ¢.%,, then
the term ¢, is either a single variable or a parallel composition. The following
lemma describes the decomposition for the case that ¢ is a single variable.

Lemma 8.1.14 Let t be a process term, X a process variable, A a PAD, ®
a formula in F5 thal contains only constraints from a set DC of decomposable

constraints and C € DC. Let T := {e,t, X} Uterms(®)U {r | (I 5 r) € A}

Then an expression F' € Dform(d, T, DC) can be effectively constructed s.t.

X EOcd <— F

Proof by induction on d.

¢ = (T"’/\—T‘/\/\iel <>ci<I)i/\/\j€J ~Op,¥;) forsome I, T~ C T, ®;,¥; € Fy_,
and C;, D; € DC decomposable constraints. In the base case d = 0 the sets [
and J are empty and we solve the problem without referring to the induction
hypothesis.

If [TF] > 2 then t.X | Oc® is equivalent to false.

102 CHAPTER 8. PAD AND PA

If |T*] =1 s.t. the term in 77 is not ¢'.X for some ¢/, then t.X | Oc® is
equivalent to

V(O A X | Oy @)
iel
V

V. GEOR (A Op®)

a
JEJ, (l.X—>T) €A

where the C,i,D‘,i are the decompositions of C as defined in Def. 8.1.3 (cases 3
and 5). This expression is the F' that we are looking for. It is in Dform(d, T, DC).

Now we consider the case that Tt = {u.X} for some term w. If u.X € T~ then
t.X | Oc® is equivalent to false. Otherwise t.X = Co® is equivalent to

V(i Oci() A X | Oy ®)
iel
V

V' UE O AT EOp)
jel, (l.Xiw)eA
V
t |: <>0(u) A /\ u. X |: <>Clq)z A /\ u. X |: _‘<>D] \I/]‘
€1 =
where the C,i,D‘,i are the decompositions of C as defined in Def. 8.1.3 (cases 3
and 5). This is the expression F' that we are looking for. It is in Dform(d, T, DC).

Now we consider the case that 7T = {}. Then t.X | O ® is equivalent to

V(i Oci() A X | Oy ®)
iel
V

Vo (tEop AT E Ope)
jel, (l.Xiw)eA
V
t S UANC(o)A (V@ X)eT™. t' #a) A
ol ANV X EOq® A \ X | ~Op ¥,
i€l Jed
where the C,i,D‘,i are the decompositions of C' as defined in Def. 8.1.3 (cases 4
and 5).

8.1. MODEL CHECKING PAD WITH EF5. 103

If d =0 then [= J = {} and the induction hypothesis is not needed. If d > 0
then by induction hypothesis there are expressions F;, GG; € Dform(d — 1,(T —
{t})U{t'},DC) s.t. the above expression is equivalent to

V(| Ocy(e) AX | Oy @)

el
V

V. (EOp (AT Op)

jed, (l.Xiw)eA
V
Jot' t S AC(o)A(V(aX)eT™ 1 #a) A NF A\ -G,
€1 =
By transformation to disjunctive normal form there are finite index sets K, Ny,

N[, My and formulae ¢/, W' € F7 |, and decomposable constraints F;, k! € DC
and H; € Cform'(d —1,T — {t},DC) s.t. the above expression is equivalent to

V(= Oci(e) A X O @)
iel
V

V' RO AT EO,D)
jed, (l.Xiw)eA
Vv
tSEAC(o)A(V(a.X)eT™ ' #a) A

Jo, t'. \/ /\ e Op @ /\ 1 ~Op W, /\ H,
keK |{ENy iEN] JEMy

Note that the expressions H; do not contain the terms ¢ or ¢'. This is equivalent

to

V(= Oci(e) A X O @)
iel
V

V. (RO ArEOp®)

a
JEJ, (l.X—>T) €A

V
\/ t |: <>C —{Oé | a. X - T_} A /\ <>Ez®; /\ _'<>E{\I/; A /\ H]‘
keK 1€ N 1EN] JEM

This is the expression F' that we are looking for. It is in Dform(d, T, DC). [

104 CHAPTER 8. PAD AND PA

The following lemma does the same decomposition for the case that the second
component in the sequential composition is itself a parallel composition.

Lemma 8.1.15 Let 14,145,153 be process terms, A a PAD, ® a formula in F§ that
contains only constraints from a set DC of decomposable constraints and C' € DC.

Let T := {e, 1y, otz } U terms(®) U {r | (I 5 r) € A}
Then an expression F' € Dform(d, T, DC) can be effectively constructed s.t.
tl(tQHtg) |: <>C(I) < F

Proof The proof is similar to Lemma 8.1.14 with only the following differences:

1. Leave out the part
\ tEOp (AT O,
jed, (l.Xiw)eA
of the disjunction, and

2. Substitute (f3|t3) for X everywhere.]
Now we show an analogous property for parallel composition.

Lemma 8.1.16 Let 11,1y be process terms, A a PAD, ® a formula in FJ that
contains only constraints from a set DC of decomposable constraints and C' € DC.
Let T :={e,ty, 12} U terms(®).

Then an expression F' € Dform(d, T, DC) can be effectively constructed s.t.
tts | Cc® — F

Proof by induction on d.
® has the form (Tt A =T~ A\
and ®;,U; € Fy_,.

If |7%] > 2 then O ® is equivalent to false.

Now we consider the case that TT = {t} for some term ¢t. If ¢ € T~ then
t1]|t2 = Oc® is equivalent to false. Otherwise it is equivalent to

\/ ((tl |: 002(6) /\tz |: <>O;g/q)) V)
(t2 = G () At | Oop®)
vV
t £ Op(ar) Aty = Opplaz)A

V V NtECc®n N\t -0p Y,

leLay|lee=t \ eI jed

1 O @i A /\jeJ —|<>D]\I/j) for some TT, T~ C T

keK

8.1. MODEL CHECKING PAD WITH EF5. 105

where the C},C}, D}, D} are the decompositions of C' as defined in Def. 8.1.3
(case 6). This is the F' that we are looking for. It is in Dform(d, T, DC).

Now we consider the case that 77 = {}. Then #;]|tz E O ® is equivalent to

v<xhgo%@MWMZOWMV>
(t2 = oy (€) Aty = Oy @)
vV
ty =ty Ay Bt A Dj(on) A Dff(03) A
/\ (1] #£ an Vi, # az) A
\/ doy, o9, 1, 1. aillan €T
ter A1l E O ®: A N\ #it = =Op, T,

€1 =

keK

where the C},C}, D}, D} are the decompositions of C' as defined in Def. 8.1.3
(case 6). In the base case d = 0 we have [= J = {} and don’t need the
induction hypothesis. For d > 0, by induction hypothesis, there are formulae
Fi, G € Dform(d — 1,{t},t5} U terms(®), DC) such that #}]|t) = O¢, @, — F;
and 11|ty = Op,¥; <= ;. Now we transform the expression into disjunctive
normal form. We define the set Func of all functions

fiila,ag) [aiflae € T7} = {1,2}

that assign to every pair (ag,az) s.t. aqflag € T, a value in {1,2}. For every
f € Func let A} :={ay | f((an,02)) =1} and A7 := {ay | f((a1,02)) = 2}.

Then the expression is equivalent to

\/<uﬂ:0%@wwﬂzowéw>
(t2 | Ocy () Ay |E Ocn®)
Vv
t1 Bt ANty Bty A Do) A DY (o) A
\/ 3017027t/17t/2- fE\F/unc(tll ¢ A}f : t/2 ¢ Ai) :

leL NEA NG

€1 =

keK

By transformation to disjunctive normal form there must be finite index sets O
and M (o), M'(0), N(0), N'(0) for every o € O and formulae ®/ W', &" W', 6 ¢
Fi_i and decomposable constraints F,, E/, F, F', € DC s.t. the condition is

106 CHAPTER 8. PAD AND PA

equivalent to
\/ ((tr = Oeye) Az | Oop®) V)
(ta = Cor(e) Aty = Cen®)
vV
[t Bt Aty Bt A Di(oy) A D (og) A
\/ (¢ ALty ¢ A3 A
\/ oy, o9, 85, 15, | feFunc
leL \/ (/\neN(o) tll |: <>En (I);z /\n’EN’(o) tll |: ﬁQE;,‘I’%/)
Amertio)te E Orn®i Aprerso to | = W0,

keK

0€0

This is equivalent to

\/ ((tl |: 002(6) /\tz |: <>C;'J(I)) V)
(s b= Ocr(€) Aty = Oy ®)

V
\/ tl |: <>Dl/ <_A}c /\ /\nEN(O) <>Enq);1 /\n’EN’(o) _‘<>E;l/q};l/> /\
leL,f€Func,0€0 b2 |: <>Dl” <_A?f A /\meM(O) O P, /\m’GM'(O) _‘<>F7’n, \I};/”/>

This is the expression F' that we are looking for. It is in Dform(d, T, DC). [

keK

8.1.3 The Tableau System

We show the decidability of the model checking problem for PAD and EFj. by
induction on the nesting-depth d of the formula. We describe a tableau system
that solves the model checking problem for formulae O ® with & € FJ under
the condition that we can already solve the problem for formulae CeW with
U € FS |. This is because we use properties of the form ¢’ | OcW for U € F5 |
as side conditions in the construction of the tableau. By induction hypothesis we
can assume this. In the base case of d = 0 the condition is trivially satisfied, as
F¢, ={}. (See Chapter 4 for an introduction to tableau systems.)

Every node in the tableau is a set of expressions of the form ¢ - &, where ¢ is a
process term and ® an EFj -formula. We use the symbol I in the tableau in-
stead of |=. The expression ¢ - ® means that one attempts to prove the property
t = ®. The meaning of ¢t = ® is defined semantically (Def. 8.1.1). The sets of
expressions that form the tableau nodes are denoted by 7 and interpreted as sets
of subgoals that should be proved. These subgoals are interpreted conjunctively.
The branches in the tableau are interpreted disjunctively, so the tableau is suc-
cessful iff there is at least one successful branch. Every branch in the tableau can
be seen as an attempt to construct a proof.

8.1. MODEL CHECKING PAD WITH EF5. 107

The following tableau rules are meant to be applied to a problem of the form
t E Oc® with @ € F5. In the rules Inductl-Induct4d we apply the induction
hypothesis that we can already solve the problem for formulae of a smaller nesting-

depth.
{t.XF O U?

SEQ1 FIU7 where F'is from Lemma 8.1.14
t.(to||t3) F o ?
SEQ2 {t(flts) F Oc@} U where F'is from Lemma 8.1.15
{F}U?
.
PAR {ltz F Co®} U where F'is from Lemma 8.1.16
{F}uU?
.
STEPL {XEFOed}U?
{(XEQIU? {Vig, i FOp@u? o Vg tn E Opi @ U
if C'(\), where A is the empty sequence, (X 5 #,) € A, k=1,...,n
and the D{ are the decompositions of C' (Def. 8.1.3 (case 4)).
XEOcO}U?
STEP2 (X Oc®) U
Vien, b E Opi@PUT oo Vg ta b Opy @FUT
ifnot C(A\), (X B t)eA k=1,...,n
and the D} are decompositions of C' (Def. 8.1.3 (case 4)).
tEOcdtU?
Unsat {th Oc®}V if (' is unsatisfiable
{false}
o {tFOAV}U?
o ({Fo,(FUlu?
: {FANG}U?
9 ASARF Bl
con (F.GYU?
.
disj1 {tFoV U} U
{tFo}uU? {t-V}U?
F 7
disj2 v ey

{F}u? {G}U?

108 CHAPTER 8. PAD AND PA

Tnductl {“_ng}U? it W e Fo, and t = O0U
Induct? {tk§§iiU? it W e Fo, and not ¢ = oW
Tnduct3 {tkﬁ?fw}U? it W e Fo, and not ¢ = OpW
Induct4 {tFEEZZ}U? it W e Fo, and t £ 00U
Terml iitZ;iiLl T = (1) or TF = {)

Term? ﬁiﬁ%gﬁiz T LY AT £ (1)

Term3 L0 _?T_} R Y

Termd ‘”F&j;iU? ifter-

In order to avoid any unnecessary growth of the proof tree, we define that the
rules with names in capital letters (PAR, SEQ1, SEQ2, STEP1 and STEP2) have
a lower precedence than the other rules. So in the construction of a branch of
the proof tree we only use such a rule if none of the others is applicable.

Lemma 8.1.17 For any instance of a tableau-rule, the antecedent is true iff at
least one of the succedents is true.

Proof This follows immediately from the definition of the tableau-rules and
Lemma 8.1.14, Lemma 8.1.15 and Lemma 8.1.16. [|

Definition 8.1.18 (Termination conditions)
A node in the tableau consisting of a set of formulae 7 is a terminal node if one
of the following conditions is satisfied:

1. ?7=0

8.1. MODEL CHECKING PAD WITH EF5. 109

2. false € 7.

3. There is a previous node in the same branch that is marked with the same
set 7.

Terminal nodes of type 1 are successful, while terminal nodes of types 2,3 are
unsuccessful.

The construction of a branch of the tableau stops when a terminal node is reached.
The branch is successful if this terminal node is successful. The tableau is suc-
cessful if there is at least one successful branch.

The intuition is that every branch in the tableau is an attempt to construct a
proof. A terminal node of type 1 means that all subgoals have been solved. A
terminal node of type 2 means that this attempt to construct a proof failed. A
terminal node of type 3 means that the proof is ‘running in circles’. If there is a
proof, then it can be found elsewhere in the tableau by a shorter branch.

The construction of the tableau starts with a root-node of the form {t E Oc®}
where ¢ is a process term and ® € Fj. The tableau for a given root is not unique,
because the sequents are sets of expressions and the element to which a rule
is applied is chosen nondeterministically. However, all tableaux are equivalent
semantically, because the order in which subgoals are solved does not matter.

8.1.4 Decidability

In this section we show that the tableau system of the previous section is sound
and complete and produces only finite tableaux for any given root. Thus it yields
a decision procedure for the model checking problem for PAD and EFj.

Lemma 8.1.19 [f the root node has the form {t b Oc®}, for & € F5, then for
every node in a tableau with this root at least one of the following conditions is
satisfied:

1. A tableau rule is applicable
2. The node is a terminal node.

Proof The only problematic cases are the expressions of the form ¢ £ =On®.
If such an expression occurs, then it must be due to the rules SEQ1, SEQ2 or
STEP1. By definition of these rules and Lemma 8.1.14 and Lemma 8.1.15 we
know that ® € FJ_;. Then the rules Induct3 or Induct4 are applicable, because
we assumed (by induction hypothesis) that we can already solve the problem for
formulae of a smaller nesting depth. [

110 CHAPTER 8. PAD AND PA

Lemma 8.1.20 The tableau is finite for every instance of the model checking
problem.

Proof If only process terms of a bounded size are used as atomic propositions,
then there are only finitely many formulae in Fj for any fixed d. The tableau rules
and the proofs of Lemmas 8.1.14, 8.1.15 and 8.1.16 show that this precondition
is satisfied. Any set DC of decomposable constraints is finite. There are only
finitely many rules (#; - #) € A with only finitely many subterms of the terms
t3. So there are only finitely many different sets of expressions of the form ¢ = &
in the tableau. Therefore the branches of the tableau can only have finite length,
because of termination condition 3. Since the tableau is finitely branching, the
result follows. [

Now we prove the soundness and completeness of the tableau. The following
lemma shows the soundness.

Lemma 8.1.21 Let ® € Fj and C' € DC. If there is a successful tableau with
root {t = Oc®}, then t | O ®.

Proof A successful tableau has a successful branch ending with a node marked
by the empty set of expressions. Since these sets are interpreted conjunctively
this node is true. By repeated application of Lemma 8.1.17 all its ancestor-nodes
must be true and thus the root-node must be true. [

We need some new definitions to show the completeness. These definitions only
apply to this particular tableau system in this chapter.

Definition 8.1.22 A wvalid sequent 7 in a tableau is a set of expressions which
evaluate to true.

For example if (t F Cc®) € 7 then t = Oc®. If (FAG) € 7 then F and G

evaluate to true.

It follows from the construction of the tableau system that every expression in a
valid sequent is a disjunction of conjunctions of expressions of the form ¢t - C®

ort F —=Cad.

Now we define a total order on valid sequents.

8.1. MODEL CHECKING PAD WITH EF5. 111

Definition 8.1.23 For an expression t F Oc® with ¢ |= O ® we define
znorm(t E Oe®) := min{length(o) | t >t € [®] A C(0)}
and
ynorm(t F Co®) 1= size(t)

For an expression F'in a valid sequent we define

anorm(F) := max{znorm(t = Oc®) | t F O ® is subterm of F, nd(®) = d}
and

ynorm(F) := maz{ynorm(t = Oc®) | t = O ® is subterm of F, nd(®) = d}
and

znorm(F) := size(F')

where size(F') is just the number of letters/symbols needed to write F'. The norm
of F'is a triple, which is defined by

norm(F) := (znorm(F), ynorm(F), znorm(F))

These norms are ordered lexicographically. The order is well-founded.

For a valid sequent 7 let

Yew: = |{F €7 | norm(?) = (z,y,2)}|

Since 7 is valid and finite, there is a largest x s.t. 7,,.. # 0 for some y, z. This
largest = will be called x,,,,. It depends on 7. Also for every # < z,,,, there is
a largest y (called y(x)) s.t. 5, # 0 for some z. Finally, for every x,y there is

a largest z(x,y) s.t. Yz # 0.

We define a well-founded ordering on valid sequents. Let ? and 7’ be two valid
sequents and 7., . and 7, be defined as above. Then

P <t e @y D) Vew: < Yoy N V(@ YL E) 2 (2,4, 2). Yoy = Vo g

The intuition is that if a tableau-rule is applied to a valid sequent 7, then there is
at least one valid succedent sequent that is smaller. This is because an expression
I € 7 is replaced with several others with a lower norm. Since the ordering is
well-founded, the process must eventually terminate.

Note that these definitions do not apply to non-valid sequents.

112 CHAPTER 8. PAD AND PA

Lemma 8.1.24 Let 7 be a valid sequent. Then every tableau with root 7 has at
least one successful branch that ends with the empty sequent.

Proof By Lemma 8.1.17 every tableau with root 7 has at least one branch that
only contains valid sequents. Choose one such branch of minimal length. We
show that the order of the sequents on this branch must strictly decrease. We do
this by showing that every application of a tableau rule to a valid sequent yields
a smaller sequent.

SEQ1,SEQ2 It follows from the construction of the expressions in Lemma 8.1.14
and Lemma 8.1.15 that in these expressions one of two cases holds:

1. The remaining sequence is shorter (lower xnorm) or
2. The remaining sequence has the same length and the terms are smaller
(lower ynorm).

Thus the succedent sequent is smaller.

PAR It follows from the construction of the expression in Lemma 8.1.16 that the
terms are always smaller (since tq,%5 are smaller than #]|t3). The znorm
is the same or smaller and the ynorm is smaller. Thus the succedent is
smaller.

STEP1,STEP2 Here we have two sub-cases:

e In the first branch of the rule STEP1 the sequence has length 0. In
the succedent the znorm and ynorm are the same, but the znorm is
smaller.

e In the other branches of STEP1 and all branches of STEP2 we choose
the valid succedent that corresponds to the shortest sequence that
leads to a state that satisfies ®. In this succedent the sequence is
shorter and thus the xnorm is smaller.

In both cases the succedent is smaller.
Unsat This rule is never applied in this branch, because all sequents are valid.

conjl,conj2 For these rules the succedent is smaller, because the znorm de-
creases.

disjl1,disj2 For these rules the succedent is smaller, because the znorm decreases.

8.1. MODEL CHECKING PAD WITH EF5. 113

Induct,Term For the rules Inductl,Induct3 and Terml,Term3 the succedent
must be smaller, because expressions are removed from the sequent. The
rules Induct2,Induct4, Term2,Term4 are never applied in this branch, be-
cause all sequents are valid.

The construction of this branch cannot be stopped by termination condition 3,
because the order strictly decreases. Since the order of the sequents strictly
decreases on this branch, it must eventually end with the empty sequent and
thus it is successful. [

Corollary 8.1.25 [ft |= Oc® for ® € F] and C € DC then every tableau with
root {t = Oc®} is successful.

Proof The root-sequent is valid. By Lemma 8.1.24 every tableau must have a
branch that ends with the empty sequent. This branch is successful and thus the
tableau is successful. [

Lemma 8.1.26 Let t be a process term, A a PAD, ® € Fj, DC a set of decom-
posable constraints and C € DC. Then the following conditions are equivalent:

ot =Ccd
o A tableau with root {t = Oc®} is successful.

o Fvery tableau with root {t F O @} is successful.

Proof Directly from Lemma 8.1.21 and Corollary 8.1.25. [

Theorem 8.1.27 The model checking problem for EF5. and PAD is decidable.

Proof By Lemma 8.1.12 it suffices to prove decidability for formulae of the form
Oe® with @ in FY for any d. We prove this by induction on d. By Lemma 8.1.26
and Lemma 8.1.20 it suffices to construct a finite tableau. During the construction
we must decide problems of the form ¢ | OcW for W € F5 . In the base case
d = 0 this is trivial, since ¢, = (). For d > 0 this is possible by induction
hypothesis. [

Since EF is weaker than E 5., we get the following corollary.

Corollary 8.1.28 Model checking PAD with EF is decidable.

114 CHAPTER 8. PAD AND PA

8.1.5 Complexity

We have shown that the model checking problem for the branching-time temporal
logic EF and the process model PAD is decidable. The exact complexity of the
problem is an open problem. While for the special case of BPP the problem is
PSPACE-complete [May96a, May96c| (see Section 6.1), the algorithm for PA in
[May97b] and the one for PAD described here have superexponential complexity.
The algorithm described here is a generalization of the one in [May97b], but not
a generalization of the algorithm for BPP in [May96¢|. The PSPACFE-algorithm
for BPP in [May96c| uses a bounded search, while the algorithms for PA and
PAD work by decomposition. For a formula of nesting-depth d the complexity
of the algorithm derived from the tableau system is d-times exponential. This
is because there are d-times exponentially many different EF-formulae of nesting
depth d. The decompositions of Lemma 8.1.14, Lemma 8.1.15 and Lemma 8.1.16
introduce expressions of d-times exponential size. So the overall complexity of
the algorithm is O(tower(n)), where tower(0) := 0 and tower(: + 1) := gtower(i),

The best known lower bound for both PAD and PA is PSPACFE-hardness. This
lower bound is inherited from BPP, because PAD and PA subsume BPP. How-
ever, there is still a difference between PAD and PA. For PAD the problem is
PSPACE-hard in the size of the system for a fixed formula, because this holds
for pushdown processes and PAD subsumes pushdown processes (see Chapter 7).
PA does not subsume pushdown processes and the best known lower bound is
the same as for BPP: The problem is ¥f-hard for formulae of nesting depth d.
The interesting part is now the complexity of model checking PA with any fixed
formula. Unlike for PAD, there is no hardness result for this problem. In the
following we show that model checking PA with any fixed EF5 -formula Oo®,
where @ has nesting-depth d, is in X7, ,. So there is a real difference between
PAD and PA. It is an open question if model checking PA with a fixed formula
can be done in polynomial time.

Theorem 8.1.29 For cvery fired EF5.-formula Oc®, where ® has nesting-
depth d, the model checking problem for PA can be solved in X7, .
Proof We use the same tableau system as for PAD. However, it becomes simpler
for PA, because some cases can never occur. The most important difference
between PAD and PA is in the sequential decomposition in Lemma 8.1.14. In PA
the parts of the expression of the form

\ tEOp (AT O,

a
JEJ, (l.X—>T) €A

8.1. MODEL CHECKING PAD WITH EF5. 115

are empty, because in PA no rule in A has sequential composition on the left-
hand side. These expressions are the only ones where terms of rules in A are
introduced into the EFj -formulae, so this does never occur for PA.

Consider a tableau for a PA-process A with initial state {g and an EFj5 -formula
Oe®. The root node has the form {t - Ce®} and every sequent in the tableau
is a set of expressions of the form ¢ = ®' where ¢’ is a process term and @' is
a formula. For PA the size of these formulae ®' is bounded by a constant that
depends only on the size of Co® and does not grow with the size of A or t.
Thus there is constant ¢ that depends only on Cr® s.t. the number of different
formulae @’ that can occur in the tableau is bounded by ¢. Since we consider
the model checking problem for a fixed formula, ¢ is a constant. Every term #'
that occurs in a subgoal of the form ¢’ = @’ is either a subterm of ¢g or a subterm
of the right hand side of some rule in A. Thus ¢’ has size O(n). Furthermore,
Var(A) has size O(n). Thus there are only O(n) different subgoals of the form
XF 9.

By Lemma 8.1.26 it does not matter which of the possible tableaux we construct
for a given root. Thus we can safely restrict the nondeterminism in the construc-
tion of the tableau. We do this by the requirement that the most recently intro-
duced subgoal must be solved first. Thus we assign a priority to every subgoal
t'F @ in a sequent. The most recently created subgoals have the highest priority.
For every sequent ? let first(?) be the subgoal with the highest priority. Now we
can modify the tableau system by introducing a stronger version of termination
condition 3 (see Def. 8.1.18): A branch is unsuccessful if it ends with a sequent
7 s.t. there is a previous sequent 7’ with first(?) = X F &' = first(?') and the
subgoal X F @ in first(?’) was created (possibly in several steps) from first(?).
It is easy to see that such a branch must be unsuccessful, because the subgoal
first(?') has been attacked first and should have been solved already. Instead it
was reduced to itself, and the proof is running in circles. In a subgoal of the form
t' = @ the term t’ has size O(n). t' is decomposed in the tableau, and thus we
get a subgoal of the form X F @ after at most O(n) steps. There are only O(n)
different such subgoals. So one can assume that every subgoal can be solved in
O(n?) steps. In particular the one goal in the root sequent can be solved in O(n?)
steps. Thus if the root-sequent is true, then there must be a successful branch
of length O(n?). The branching degree of the tableau is < maz(2,n) = O(n),
because there are only O(n) rules in A. Every sequent in the tableau can be de-
scribed in O(n) space, because all the terms in the subgoals are disjoint subterms
of g or the right-hand sides of rules in A. Thus, if the root-sequent is true, then
there must be a successful branch that can be described in O(n?) space. The
instance of the model checking problem has answer ‘yes’ iff at least one branch is
successful. Thus it suffices to nondeterministically guess a branch of size O(n?).

116 CHAPTER 8. PAD AND PA

In order to verify that this branch is indeed a valid successful branch we need to
decide side consitions of the form t” = O ®” or 1 | ~Oc®” where 7 has a
smaller nesting-depth (at most d — 1). By induction hypothesis this can be done
in ¥, Therefore the validness and successfulness of the branch can be verified in
polynomial time with the help of a ¥}-oracle. Thus the problem isin ¥}, . =

8.2 Reachability for PAD

As shown in Chapter 3, the reachability problem can be expressed in the logic
EF by to E O(1). Since state formulae have nesting depth 0, the tableau system
of the previous section yields an exponential time algorithm. A more careful
analysis shows that the problem is A/P-complete.

Theorem 8.2.1 The reachability problem and the reachable property problem for
PAD are N'P-complete.

Proof The question is if ¢y = (). Consider the tableau system defined in the
previous section. In this special case the induction hypothesis is not needed an
the rules Inductl-Induct4 are never used. Every branch in the tableau stands
for an attempt to construct a proof of reachability. The branching degree of the
tableau may be exponential, but since the problem is decomposed into smaller
subproblems, any node can be described in polynomial space. (This is not true
for the general model checking problem. There the branching degree is d-times
exponential and any node can be described in (d — 1)-times exponential space.)

The important observation is now that if ¢q = O(t), then there is a successful
branch of polynomial length. (There may be other successful branches of expo-
nential length.) All (polynomially many) expressions in the set that constitutes
a node in the tableau have the form i = O(t) for terms ¢, ¢7, 1 <@ < k. Let the
size of a node be defined as the sum of the sizes of these terms. This size cannot
increase on a branch. It can decrease in some applications of the rules SEQ1 and
SEQ2 (where the ends of ¢ and t” match). There must be a successful branch
where such a decrease occurs every polynomially many steps. If this is not the
case, then the branch does unnecessary work (like too many applications of the
rules STEP1 and STEP2). Only polynomially many applications of STEP-rules
lie between each decrease, because there are only polynomially many right hand
sides of rules. Thus if more STEP-rules were applied, the branch would partly be
running in circles. So in a short successful branch the size of the nodes decreases
at least once every polynomially many steps. Thus the branch has polynomial
length and can be described in polynomial space.

8.3. SIMPLE VERIFICATION PROBLEMS FOR PA 117

The N'P-algorithm is now to guess a branch of polynomial length and to use
the tableau-rules to verify if it is indeed a valid successful branch. A“P-hardness
follows from the fact that PAD subsumes BPP and reachability is N"P-complete
for BPP (see Chapter 6).

The proof for the reachable property problem is similar. [

8.3 Simple Verification Problems for PA

As mentioned in Subsection 2.3.6, PA-processes are (1,(G)-PRS in the PRS-
hierarchy. They can describe nondeterminism, sequential- and parallel composi-
tion and recursion, but no communication between components. They are the
smallest natural common generalization of BPP and BPA. PA is a special case of
PAD. Intuitively, the only difference is that in PA the subroutines have no effect
on their caller (see also Section 2.2).

In this section we study two simple verification problems for PA-processes. They
can be seen as special cases of the model checking problem for PA-processes and
the logic EF. However, the algorithm in Section 8.1 has a very high complexity
(see also [May97b]). Thus it is useful to consider these subproblems here, because
they can be solved in polynomial time. In practice, it often suffices to check very
simple properties of systems, and it is not necessary to use a full temporal logic
to express them. The verification problems in this section have also been solved
with tableau methods in [May97e].

8.3.1 Partial Deadlock

The Partial deadlock problem is the problem if there is a reachable state where
certain given actions are disabled.

PARTIAL DEADLOCK

Instance: A labeled transition system with initial state sq and a finite set of
atomic actions A.
Question: Is it possible to reach a state s s.t. Aa € A, s". 5 = s ?

In the special case of A = Act this is the problem if a deadlocked state is reachable.

This problem can also be formulated in the logic EF. Let A = {ay,...,a,}, then
the question is equivalent to sg | O(—ay A --- A =ay,,). Of course this is much
simpler than general model checking with EF.

For general Petri nets the partial deadlock problem is equivalent to the problem of
deciding if a state is reachable where certain places are unmarked. This problem

118 CHAPTER 8. PAD AND PA

has the same complexity as the reachability problem. So the partial deadlock
reachability problem is decidable for Petri nets, but at least EXPSPACE-hard
[Lip76, May84].

The situation is different for PA. The reachability problem for PA is NP-
complete, because it is N'P-complete for BPP [Esp95] and for PAD (see Sec-
tion 8.2). However, the partial deadlock problem can be decided in polynomial
time.

First we define some predicates.

Definition 8.3.1 Let A C Act be a set of actions. Sequences of actions are
denoted by o.

R X
Dy(t) <= FJot. (t St AN Aac At D)
Sat) 1= Fot.(t >t #eN Bac At D)

It is clear that D4(1) <= Sa(t) V E(2).

Intuitively, £(f) means that the process ¢ can terminate, D4(f) means that ¢ can
reach a partial deadlock and S4(?) means that ¢ can get ‘stuck’, i.e. reach a

deadlock without terminating. The partial deadlock problem for a PA-process ¢
is to decide if D4(¢) holds.

Lemma 8.3.2 The following logical equalities follow directly from the definitions.
They are used to decompose the problem.

Da(1)
Saltyts)
Salti]t2)
E(ty.12)

)

E(t1||t2

111ty

Lemma 8.3.3 Let A be a set of PA-rules. It is possible to decide the property
E(X) for all variables X in O(n?) time.

Proof We use a marking algorithm. First mark all variables X s.t. there is a
rule (X 5 ¢) € A. This can be done in O(n) time.

8.3. SIMPLE VERIFICATION PROBLEMS FOR PA 119

The following step is repeated until no new variable is marked:

Consider every rule (Y 5 t) € A s.t. Y is unmarked so far. If all variables in ¢
are marked then mark Y.

Checking if all variable in ¢ are marked can be done in O(n) time. As there are
O(n) rules in A this must be done at most O(n) times in each step. There are
O(n) variables and thus we need at most O(n) steps. So the algorithm requires
at most O(n?) time.]

Lemma 8.3.4 [f £(X) is already known for every variable X then the property
E(t) for a term t can be decided in linear time in the size of t.

Proof £(1) holds if and only if £(X) for every variable X that occursin . =

Theorem 8.3.5 The partial deadlock problem for PA-processes is decidable in
O(n?) time.

Proof Let ty be the initial state, A the set of rules and A C Act. We can
assume w.r. that ¢y is a single variable Xy, because otherwise we could add a new

variable Xy and a new rule X % ¢5. The problem is if D4(Xo) holds.

1. First we decide (X)) for all variables X in time O(n®) with the algorithm
of Lemma 8.3.3.

2. Now we decide S4(X) for all variables X. First mark all variables X s.t.
Aa € A. X 5. This can be done in O(n?) time.

Repeat the following step until no new variable is marked:

For all rules Y % ¢1.t5 0or YV 5 t1]|t2 s.t. Y is unmarked use the equations
of Lemma 8.3.2 and the already acquired knowledge about £(7) and S4(7)
for other variables Z to prove S4(Y). In addition to the normal failure
cases this fails when we encounter unmarked variables. It it succeeds them

mark Y.

There are O(n) variables and thus this step is done at most O(n) times.
Each step can be done in O(n?) time and thus the whole procedure can be
done in O(r?) time.

3. As we know the values of £(X) and S4(X) for every variable X we can
decide D4(Xp) in constant time.]

120 CHAPTER 8. PAD AND PA

8.3.2 Livelock

The Livelock problem is the problem if a state can be reached, such that from
then on certain given actions can never become enabled again.

LIVELOCK

Instance: A labeled transition system with initial state sq and a finite set of
atomic actions A.

Question: Is is possible to reach a state s s.t. no state s’ that is reachable from
s enables any action in A 7

Note that in the special case of A = Act this is the same as the deadlock problem.

The livelock problem can be expressed in the logic EF. For A = {ay,...,a,}, the
question is if

S0 E OO(may A -+ A —ay,)

We show that the livelock problem for PA can be solved in polynomial time. First
we define some predicates.

Definition 8.3.6 Let A C Aect be a set of actions.

Et) 1= Fo.t D¢
Ena(t) 1= Jac A t>
Na(t) 1= Aot (t 5t A Enat))
Ra(t) 1+ do,t'. (t >t A Na(t))
RIA(t) <= ot (t St N No(H) A —E(H))

Intuitively, N4(?) means that ¢ will never be able to do any action from A, and
R4(t) means that a state t' is reachable from ¢ s.t. for ¢’ all actions in A are
disabled forever. RI4(t) means that a state ¢’ is reachable from ¢ s.t. ¢ has no
terminating computation and all actions in A are disabled forever. This can also
be expressed in EF. Let A := {ay,...,a,}.

Na(t) tEO(-ay A+ A —ay)
Ra(t) = tEOO(—ar A -+ A —ay)
RIA(t) = tEO(=O(e) A O(may A -+ A —ay,))

The livelock problem is to check if R4(%o) holds for a PA-process with initial state
to and set of rules A. W.r. we can assume that #, is a single variable X, because
otherwise we could just add a new variable Xy and a rule Xy — .

The algorithm proceeds in four steps:

8.3. SIMPLE VERIFICATION PROBLEMS FOR PA 121

1. Decide E£(X) for all variables X.
2. Decide N4(X) for all variables X using the previously collected information.

3. Decide R4(X) and RI4(X) for all X using the previously collected infor-

mation.

4. Decide R4(to) by using the previously collected information.

The first step uses the algorithm described in Lemma 8.3.3 It requires O(n?)
time.

For the second step we define P4(t) := = N4(t) and use a marking algorithm to
decide P4(X) for every variable X.

Start Mark all variables X s.t. Ja € A. X 5.

Step For every unmarked variable X and every rule (X — t) € A do the follow-
ing: If P)(t) then mark X.

P/ is defined by

Pa(tlltz) = Pi(t) V Pi(t2)
Py(X) := if X is marked then true else false

Repeat Step until no new variable is marked.

At the end P4(X) holds if X is marked. Thus N4(X) is true iff X is not marked
at the end. The evaluation of an instance of P}(t) can be done in O(n) time.
There are O(n) rules in A, and thus at most O(n) instances of P/ (¢) are called
in Step. The Step is done at most O(n) times and thus the algorithm requires
only O(n?) time.

The third step is a marking algorithm that uses two different markings R4 and
RI4. If a variable X is marked by R4 (RI4) then it means that it is already
known that Ra(X) (RI4(X)) is true.

Start If N4(X) then mark X with R4. If N4(X) and =€(X) then mark X with
RI4.

122 CHAPTER 8. PAD AND PA

Step For every variable X and every rule (X — t) € A do: If R(¢) then mark
X with R4. If RI';(t) then mark X with Rl4. The functions R'; and RI,

are defined as follows:

Ry(tllt2) = Riy(t) A Ry(t)
Ry (t1.t2) = RIL(t1) V (E(t1) A Ry (12))

R, (X) := if X is marked by R4 then true else false
RI(tillt2) == (RIG(0) A Ry (t2)) V (R(4) A R (1))
RI(t1.ty) = RIL(t)V (E(ti) A RI(1L,))

RIL(X) := if X is marked by RI4 then true else false

Repeat Step until no new variable is marked.

Every evaluation of an instance of Ry (¢) or RI(t) can be done in O(n) time,
because of Lemma 8.3.4. At most O(n) instances are called in every Step, because
there are only O(n) rules in A. The Step is done at most O(n) times because
there are only O(n) variables. Thus the algorithm requires at most O(n?) time.

The last step can be done in constant time, because we assumed that the initial

state X is a variable. R4(Xp) holds if X is marked by Ra4.

Theorem 8.3.7 The livelock problem for PA is decidable in O(n?) time.

Proof Each of the four steps of the algorithm can be done in O(n?) time. =

8.4 Conclusion

The reachability problem and the reachable property problem are AN"P-complete
for BPP (see Chapter 6) and for PAD (see Section 8.2). Thus they are also
NP-complete for PA.

Model checking with most branching-time logics is undecidable for PA and PAD,
since model checking with the temporal logic EG is undecidable for BPP, even for
a fixed EG-formula (see Section 6.3). The only exception is the logic EF, which
is incomparable to EG. It has been shown in [May97b] that model checking PA
with EF is decidable. This proof has been generalized to PAD in Section 8.1. The
exact complexity is open. The general complexity of the algorithm is O(tower(n))
and it is d-times exponential for formulae of nesting-depth d. The best known

lower bound is PSPACFE-hardness, but there is a difference between PA and PAD.

8.4. CONCLUSION 123

e PAD subsumes pushdown processes and inherits their lower bound (see
Chapter 7). Thus the model checking problem for EF and PAD is PSPACE-

hard in the size of the process even for a fixed EF-formula.

e PA does not subsume pushdown processes and only inherits the lower bound
from BPP (see Chapter 6). Thus model checking PA with EF is PSPACE-
hard, but only ¥f-hard for formulae of nesting-depth d. As shown in The-
orem 8.1.29 model checking PA is in ¥, for every fixed EF-formula C¢® of
nesting-depth d. Thus there is a real difference between PA and PAD.

Model checking PA with all linear-time logics (except for WL) is undecidable.
This has been shown by Bouajjani and Habermehl in [BH96]. In fact, not even
full PA is needed for this result. It suffices to take two context-free processes
and a finite-state process running in parallel. The two context-free processes
serve as counters and the finite-state system as a finite control. While PA itself
can not enforce a synchronization between these three components, this can be
achieved with an LTL formula. This LTL formula characterizes all faithful runs
of the system which synchronize correctly. So it is possible to reduce the halting
problem for Minsky 2-counter machines to the model checking problem, thus
proving its undecidability.

Although Bouajjani and Habermehl do not explicitly mention it in [BH96], the
model checking problem is even undecidable for two BPA processes that run
in parallel and a fixed LTL-formula. This is because the finite control of the
universal 2-counter machine can be encoded in a LTL-formula. The two BPA
processes serve as counters and their initial states represent the initial values in
the counters. The LTL-formula encodes the fixed finite control of the universal
2-counter machine and enforces the synchronization. The undecidability result
carries over to PAD, because it subsumes PA.

124

CHAPTER 8. PAD AND PA

The following table shows the complexity of model checking PAD.

PAD general fixed formula
Y ey | V7o |
EF € DTIME(tower(n)), | € d-EXPTIME
PSPACE-hard PSPACE-hard
EG undecidable undecidable
UB undecidable undecidable
CTL undecidable undecidable
alt.-free modal p-calc. || undecidable undecidable
modal p-calc. undecidable undecidable
LTL undecidable undecidable
linear-time p-calc. undecidable undecidable

The results on PA are almost the same. The only exception is the complexity of

model checking with EF.

PA general fixed formula
T ey | V7o |

T ST |

EG undecidable undecidable
UB undecidable undecidable
CTL undecidable undecidable
alt.-free modal p-calc. || undecidable undecidable
modal p-calc. undecidable undecidable
LTL undecidable undecidable
linear-time p-calc. undecidable undecidable

Chapter 9

Petri Nets

Petri nets are a very popular model for concurrent systems. As shown in Chap-
ter 2, they are equivalent to (P, P)-PRS. In Section 9.1 we show that (except for
reachability) no branching-time logic is decidable for Petri nets. Section 9.2 is
about model checking Petri nets with linear-time logics (LTL and the linear-time
p-calculus). While this is decidable, it is at least as hard as the reachability
problem for Petri nets.

9.1 Branching-Time Logics

The reachability problem and the submarking reachability problem (and thus the
reachable property problem) are decidable and FXPSPACE-hard for Petri nets
[May84, Lip76].

Petri nets are equivalent to (P, P)-PRS and thus they subsume BPP, which are
(1, P)-PRS (see Chapter 2). Since model checking with the logic EG is undecid-
able for BPP (see Section 6.3), it is undecidable for Petri nets too. This result
even holds for a fixed EG-formula.

Model checking Petri nets with EF is undecidable too. This was first proved by
Esparza in [Esp94]. The proof there contains a slight error, which was corrected
in [Esp97]. The idea is to prove undecidability by a reduction of the reachability
set containment problem to the model checking problem.

125

126 CHAPTER 9. PETRI NETS

REACHABILITY SET CONTAINMENT

Instance: Two Petri nets Ny and Ny having the same number of places and
a bijection f between the sets of places of N; and N;. f can be
extended to a bijection on markings in the obvious way. Let M3, M}
be the initial markings of Ny, Ns.

Question: Does the following property hold? For every reachable marking M
of N1, f(M) is a reachable marking of Ns.

Rabin showed that this problem is undecidable by a reduction of Hilbert’s 10th
problem. A proof by Janc¢ar [Jan94, Jan95] uses a reduction of the halting problem
for counter machines.

We sketch the reduction of the reachability set containment problem to the model
checking problem. It is similar to the one in [Esp97], but slightly simpler. We
assume that the transitions in Ny, Ny are not labeled with atomic actions.

1. Put N; and N, side by side.

2. Add a place A and arcs from A to every transition in /N; and back. Put
one token on A.

3. Add a new transition ¢ and a place B and arcs from A to ¢ and from ¢ to
B. The transition ¢ is labeled with the atomic action a. Place B is initially
unmarked.

4. Add arcs from B to every transition in Ny and back.

5. For every pair of places (s, f(s)) add a transition ¢, and arcs from s to s,
f(s) tots, B totsand t, to B.

6. For every place s in Ny add a transition ¢/ labeled with action b and arcs
from s to t, and back. Do the same for N,.

Figure 9.1 illustrates this construction.

Remember that the formula ‘a’ means that the atomic action a is enabled (see
Subsection 3.1.1).

Lemma 9.1.1 An instance of the reachability set containment problem has an-
swer ‘yes’ if and only if the newly constructed Petri net satisfies the EF-formula

O(a = O(~a A —b))

Proof Directly from the definition of the net and the interpretation of the
formula. [

9.2. LINEAR-TIME LOGICS 127

A N1
. b
s
tha \
.
B
] b

f(s)

N2

Figure 9.1: Reducing reachability set containment to model checking with EF

Theorem 9.1.2 Model checking with EF is undecidable for Petri nets, even for
a fired EF-formula.

Proof Directly from the undecidability of the reachability set containment prob-
lem for Petri nets and Lemma 9.1.1. [

9.2 Linear-Time Logics

9.2.1 The Complexity of the Problem

Model checking Petri nets with LTL and the linear-time p-calculus is decidable,
but at least as hard as the reachability problem for Petri nets [Esp94].

The hardness result is easy to prove. As shown in Section 3.2, the reachable
property problem can be encoded in LTL. It was also shown that for Petri nets
the reachable property problem subsumes the reachability problem. (This is not

128 CHAPTER 9. PETRI NETS

true for some other models.) This hardness result even holds for a fixed LTL-
formula, since the formula

(Otrue) wl false

expresses the property that no deadlock is reachable. For Petri nets this problem
has the same complexity as reachability [Pet81].

The decidability proof in [Esp94] uses the fact that every formula in LTL or the
linear-time p-calculus can be effectively transformed into a Biichi-automaton that
describes exactly the same w-sequences (possibly infinite sequences) of actions
[Var88]. (The reverse translation is also possible [Dam92].) So one constructs
the Biichi-automaton for the formula and synchronizes this automaton with the
Petri net. (Note that, unlike some other models, Petri nets are closed under
synchronization with finite-state systems.) For this new system one has to solve
finitely many instances of the following problems:

o Is it possible to reach a given state? This is the reachability problem.

o [s there an infinite path that visits a certain state in the Biichi-automaton
infinitely often. This problem can be reduced to the problem of the existence
of certain infinite runs in Petri nets. It has been show in [Yen92] that it
can be done in exponential space.

The problem with the algorithm in [Esp94] is that it has non-elementary complex-
ity and is therefore hardly useful in practice. (The problem is at least as hard as
the reachability problem for Petri nets and therefore at least FXPSPACE-hard).
Even more important is that the algorithm yields hardly any insight on why a
property holds. Thus it cannot be used as a proof method in semiautomatic
verification.

We consider the model checking problem for Petri nets and the weak linear-time
p-calculus. This logic is a version of the linear-time p-calculus that is interpreted
only on infinite runs. It is equivalent to the fragment of the linear-time p-calculus
without the strong nexttime operator (see Section 3.2 for details on this temporal

logic). This model checking problem is EXPSPACFE-complete [Hab97]. Thus it

is hard to solve with fully automated methods.

Here we present a tableau system for this model checking problem. While it
cannot provide a more efficient algorithm, it can serve as a basis for a semiau-
tomatic approach to solve this problem. This tableau system is a generalization
of the tableau system for the linear-time p-calculus and finite-state systems by

Bradfield, Esparza and Mader [BEM96] and Stirling and Walker [SW91]. It can

9.2. LINEAR-TIME LOGICS 129

be used as a proof method and gives the user much better insight why a prop-
erty holds. In semiautomatic verification this allows the user to apply his/her
knowledge about the system in the verification process.

9.2.2 Preliminaries

The linear-time pg-calculus and its interpretation are defined in Section 3.2. The
following definitions are important in the construction of the tableau system.

Definition 9.2.1 For all ordinals o € Ord, the fixpoint approximants u®Z.® and
v*7.® are defined by: u°Z.® = false and v°Z.® = true, o 7.0 = ®[c° 7.9/ 7],
2.0 =\ _\ p2.9, 2.0 =N_.,v*7.®, where A is a limit ordinal.

Proposition 9.2.2 (Knaster-Tarski) pZ.¢ =\/ p*Z2.®, vZ. 0=\ _v*Z.®

Definition 9.2.3 The p-signature p-sig(o,®) of a run o w.r.t. a formula @
(where o |= @) is the lexicographically least sequence (1,...,(; such that o |=
Qs Z;. ®;/uZ; . ®;] where puZ;.®; are the p-subformulae of ® in order of depth,
i.e. in some (fixed) order such that subformulae appear after any containing sub-
formulae. The containing formula is called higher and the contained subformula
is called lower.

Dually, the v-signature of o [~ ® is the least sequences.t. o & ®[v% Z,.®; /v Z;.®;].

The closure of a formula in the weak linear-time p-calculus is the set of its sub-
formulae modulo unfolding of fixpoint operators.

Definition 9.2.4 (Closure)
The closure CI(®) of a formula @ is defined as follows:

Q) = {Q}

Cl{oa®) = {040} U Cl(D)
Cl(Py A Dy) = {P1 AD} U CU(DPy) U CU(P2)
Cl(®yV Py) = {P1V D} U D) U CUP2)
ClloX.®) = {ocX. o} U Cl(PlcX. /X))

where () is an atomic proposition and o € {p,v}.

130 CHAPTER 9. PETRI NETS

These preliminary definitions apply to finite or infinite systems. For a thorough
treatment of finite systems we refer to [BEM96] and [SWO91]. Here we are inter-
ested in infinite systems described by general Petri nets.

Definition 9.2.5 (w-markings of Petri nets)

A labeled Petri net N = (5,7, W, L, Act) consists of a finite set of places 9, a
finite set of transitions T', a function W : S x T'UT xS — IN that assigns weights
to the arcs, a set of actions Act and a labeling function L : T'— Aect that assigns
actions to the transitions.

Markings of nets will be denoted by M. As a technicality markings will be
mappings S — (IN U {w}) instead of S — IN, where w is the first limit ordinal.
(It follows that for every k € IN we have k <w,w+k=wand w — k = w.)

In the rest of this section we will use the weak linear-time p-calculus (see Sec-
tion 3.2). It does not contain the strong nexttime operator (). This is done in
order to make it impossible to express the state of deadlock with the calculus and
to avoid having to solve the reachability problem for Petri nets in the tableau.
As mentioned earlier the model checking problem is decidable for the full linear-
time p-calculus [Esp94], but so far there exist no tableau methods for solving the
reachability problem for Petri nets.

This is not a big restriction, since normally the linear-time p-calculus is only used
to verify liveness-properties of systems. These are mostly fairness-properties like
‘In every infinite run action @ occurs infinitely often’. Such properties only make
sense for infinite runs and thus most systems that are verified with the linear-
time p-calculus are deadlock-free anyway. Therefore one can as well use the weak
linear-time p-calculus.

Definition 9.2.6 We only use the weak nexttime operator (-). As an abbrevia-
tion we use finite sets of actions as subscripts instead of single actions. For a set
of actions A = {ay,...,a,} let

e

We use atomic propositions in the calculus. Let M denote markings of nets. The
atomic propositions @) € Z¢ must satisfy two conditions. Let W(Q) be the set
of markings that satisfy @).

Q1 M eW(Q) = YM' <M. M e W(Q)

9.2. LINEAR-TIME LOGICS 131

Q2 (M +wM)gW(Q) = ke NVK >k (M+ kM) &WQ).

The conditions Q1 and Q2 imposed on the atomic propositions basically amount
to the condition that every atomic proposition has the form

P = {1’1 S kl,l’g Skg,...,l’n Skn}

where 1, ...z, are the places in the net and kq,...,k, € NU{w}. A marking
M satisfies the atomic proposition P iff Vi € {1,...,n}.M(x;) < k;. In Subsec-
tion 9.2.9 we show that the tableau system can be generalized to a larger class of
atomic propositions.

The following three subsections closely follow the presentation in [BEM96]. The
main new points are in in Subsection 9.2.6 and the rest of the chapter.

9.2.3 The Sequents

An important difference between the modal p-calculus and the linear-time pu-
calculus is the treatment of disjunction. In a tableau system for the modal
p-calculus (see [SW91]) the sequents have the form M F &, which means that
the state s satisfies the formula ®. So M = ® V ¥ means M € [®] U [¥] and
therefore implies either M = ® or M |= W. Thus the two rules

MEFOVY MEOVY
ME® MEY

are complete.

For the linear time g-calculus the situation is different, because here M = &V ¥
means {M|o(0) = M} C [®] U [¥]. As {o|c(0) = M} is a set of runs (that can
have more than one element) we can no longer infer M = [®] or M |= [¥]: some
runs starting at M may satisfy ® but not W, while others may satisfy ¥ and not
®. The solution is to allow sets of formulae in the right hand side of the sequent
that are interpreted disjunctively (see [BEM96]). This way, the rule

MEOVU
MFE o,

is sound and complete.

Now the tableau consists of nodes of the form M F ®4,...,®,, where the for-
mulae ®4,..., P, are interpreted disjunctively. The branches in the tableau are
interpreted conjunctively, so the tableau is successful iff all branches are success-
ful. (This is different from other tableau systems in Chapters 8 or 10 where the
branches are interpreted disjunctively.)

132 CHAPTER 9. PETRI NETS

9.2.4 The Basic Rules

The rules for the tableau can be divided into two groups: the basic rules and
the special rules. While the basic rules are sufficient for finite-state systems,
the special rules are needed for Petri nets. We will define and discuss the basic
rules first since they are more intuitive, and make the necessary adjustments
and extensions by the special rules later. To simplify the notation we define
that 7, A, ... denote sequences of formulae (i.e. 7 = ®1,®,,..., P, and ©47 =
OaP1,...,04P,).

N ME?, &AW
MF?7,0 MF?,¥

, Mrrovw
MF?, 0,0
MFE?,0Q

UE7 where M ¢ W(Q)

o MbEOAT, 04,7,
My A M FA

where A =74,...,7; and

(M, ..., M} = {M' | Za €N, A M5 M'}

MFE?,07.0

Z
7 M, 0[0Z.0/7]

Additionally we use the following ‘cleanup-procedure’ after each rule application:
If a formula ® occurs in a sequence 7 more than once, then delete all occurrences
but the first.

Lemma 9.2.7 The antecedent of a rule is true if and only if all its consequents
are true.

Proof Trivially from the definitions. [

For these basic rules the result of the application of a rule to a sequent is com-
pletely determined by the sequent. In other words, the child-nodes are completely

9.2. LINEAR-TIME LOGICS 133

determined by the parent-node. We’ll see later that this is not the case for the
special rules. There several ancestors (in the path from the root to the sequent)
must be taken into account.

9.2.5 Paths and Internal Paths

A proof tree is a tree of sequents constructed by the iterated application of rules,
starting with a root My F ®y. Associated with a path 7 in a proof tree is a
sequence o = ty,ty,...,1, of transitions arising from the applications of the (-
rule in 7. We denote this by o = trans(r).

In the tableau each node is assigned a unique label n;. Let n; : M; F ®; and
n; : M; F ®; be two nodes in the tableau. By n; ~ n; we mean that M; = M;
and ®; = ;. We write n; < n; if n; occurs earlier than n; in the path from the
root to n;. It follows that < is a partial order on the set of nodes in a tableau.

The price we pay for allowing sets of formulae in the right hand side of a sequent
is that a path in the proof tree has a more complex internal structure: a set of
internal paths describing the dependencies between formulae at different nodes.

The path

ny: MHE (Q{a,b}q) A \I/) vV @{aﬁ}ql

ng : M+ Q{a,b}q) AW, @{aﬁ}ql

nyg: M'EOAU W

ng: M'E® U
has the following internal paths:
(O @AYV OV nn (O AY)V Ope gV
! !

ng: On® AW Nyt Ofa,er ¥
! !
ny: AW ns: W
! !
ng:® ng: W

Intuitively, the truth of a sequent depends on the structure of the internal paths
starting at it, particularly on which g or v-variables are unfolded in those paths.

Definition 9.2.8 (Internal paths, internal circuits)
Let © be a path of the proof tree. An internal path of # is a finite or infinite

134 CHAPTER 9. PETRI NETS

sequence of triples (nq, My, ®1)(ng, Mz, ®2),... s.t. ®; appears in nq, and for any
two consecutive pairs (ny, M;, ®;), (niy1, Mit1, ®i41), one of the following cases

holds:

e 1,41 is a child of n;, no rule is applied to ®; and ®;,1 = ¢;, or

e 1,41 is a child of n;, some rule different from ¢ is applied to ®;, and
G, 1, My are the formula/marking given by the rule application.

An internal circuit of a finite path # = niny...ng such that ny : My F 7,
ng: M, 7 and M; < My, is a finite sequence of internal paths of =

((n1, My, @y) ... (g, My, @) (1, My, @pgr) - (g, My, @) -
---((n1,M1,(I)jk+1)---(nk,Mk,q)(j+1)k)) fOI’j €N

such that @41 = @, &1 = ®(;11), and My < My and &, € 7.

The characteristic of a finite internal path is the highest variable that is unfolded
(by the oZ-rule) or the symbol — if no variable is unfolded; the characteristic of
an infinite internal path is the highest variable that is unfolded infinitely often.
If the characteristic of an internal path is a v-variable (p-variable), then we say
that the path has v-characteristic (pu-characteristic). For a path n...n’ the set
Int(n,n')is defined as the set of triples (®, ®’, 7) such that there exists an internal
path (n,®)...(n/,®") with characteristic Z.

It is easy to see that if the formula at the root of the proof tree is guarded (every
variable occurs within the scope of a next-operator (-)), then the characteristic
of any internal circuit is always different from —.

9.2.6 The Special Rules

Before defining the special rules we must make some additions. We assign each
node a label consisting of a finite set of pairs € IN' x N, where [is the number
of places of the Petri net and N the set of nodes in the tableau. The label of the
root node is the empty set. For a node n with state M, label D and sequence
of formulae 7 we write n(D) : M F 7. If the label is of no concern then we just
write “7” for it.

Child-nodes that are created by basic rule applications do not inherit these labels;
they are only introduced by the special rules.

The special rules are introduced to deal with the problems arising from the fact
the Petri nets can have infinite state spaces. They ensure the finiteness of the
tableau. The intuition is as follows:

9.2. LINEAR-TIME LOGICS 135

Let M be a marking and M’ > M. If there is an unsuccessful run (one that
doesn’t satisfy the formula) starting at M, then the same run can also start at
M'. So the chance to find an unsuccessful run is better if the start-marking is
larger. A new marking that contains w on some places is introduced to represent
infinitely many reachable markings with arbitrarily high numbers of tokens in
some places. Note that the w does not mean that there are infinitely many
tokens on this place, but only that there are reachable markings with arbitrarily
high numbers of tokens on this place. So the w-rule is as follows:

ng(D) . M2 2
ng(D) . M2 —|—CU(M2 — Ml) F?

With the following side-condition: There is a previous node ny(?) : My F 7 s.t.
ne > ny, My > My and there is a place s s.t. Mq(s) < My(s) # w

A tableau can be seen as an attempt to construct an unsuccessful run. The M-
rule is introduced to cut off branches that don’t give any new information on the
problem if an unsuccessful run can possibly be constructed.

n(D): ME?

M n(DU{(6,n")}): M7

With the following side-condition: There are two ancestors n’(?) : M + 7 and
n'(7): M F 7 st n>n > n" and Int(n”,n') = Int(n”,n) and ¢ is the
effect-vector of the sequence of transitions fired between n’ and n (see Def. 2.3.4).

If the conditions for the M-rule are satisfied then the path from node n’ to
node n gives us no new information for the construction of an unsuccessful run.
This is because of the condition Int(n”,n') = Int(n”,n). The only thing worth
remembering are the changes ¢ in the marking of the net. By adding the vector
to the label of the node we remember that we could insert this piece of the branch
as often as we want, and change the marking by 6. This is necessary, because
later in the tableau it might turn out that we should have inserted this piece of
the branch between n’ and n a certain number of times in order to be able to
construct an infinite unsuccessful run. However, at the point where the M-rule
is applied we don’t know yet how often to insert this part of the branch.

Remark 9.2.9 The special rules only have one antecedent and one succedent.
Once the succedent is constructed the antecedent s no longer relevant. So the
tableau could be simplified by just replacing the antecedent by the succedent in the
case of the special rules. (See [May96b]).

136 CHAPTER 9. PETRI NETS

The basic rules are always applied at the end of the sequence of formulae which
form a sequent. We define that the special rules take precedence over the basic
rules and the w-rule takes precedence over the M-rule.

Lemma 9.2.10 The tableau for a given root is unique.

Proof Directly from the definition. [

Now we can define the terminal nodes.

Definition 9.2.11 A node n(?) : M F 7 is a terminal if any of the following
conditions is satisfied:

. 7=Q and M € W(Q)

2.7 =0411,...,04,7, and Aa € (L, Ai, M. M S M
3. Q€T and M € W(Q)

4. n has an ancestor n’ >~ n s.t. n’ < n and

e every internal circuit of the path »n’...n has g-characteristic, and

o Let 6y be the effect-vector of the sequence of fired transitions between
n’ and n. Let

{61,...,8}:={6 | In.n < (D)< n A J(6,7) € D. 7 >>n'}
There are xq,...,x; € IN s.t. o+ 2181 + - + 26, > 0.

5. There are nodes n”(?) : M F 7 and n'(D) : M F 7 s.t. n” < n’ < n. Let
71 be the path between n” and n’ and 7, the path between n’ and n. Let ¢

be the effect-vector of the sequence of transitions fired in 75. It must hold
that 7y = 79 and In. (6,7) € D.

Terminals of type 1 and 4 are unsuccessful, and terminals of type 2,3 and 5 are
successful.

The tableau is a finite proof tree whose leaves (and no other nodes) are terminals.
It is successful iff all its terminals are successful.

9.2. LINEAR-TIME LOGICS 137

The intuition behind the definition of the special rules and the terminals is the
following: Each path of the tableau can be seen as an attempt to construct a
false run of the system, i.e. a run that does not satisfy the formula at the root.
The terminals identify the points at which we have gathered enough information
either to construct such a run (unsuccessful terminal) or to give up searching the
continuations of the path (successful terminal), because either they all lead to
true runs, or a false run can be found in a different and shorter branch. Let 7 be
a path of the tableau ending in a terminal n, and let o = trans(x).

1. If n is of type 1 then it is of the form M F @), and no nun starting at M
satisfies (). Therefore any run of the form oo’ is false.

2. If n is of type 2 then any run of the form oo’ is a true run. This is due to
the definition of 4 since o has no continuations ¢’ starting with an action

in m?:l AZ
3. If n is of type 3 then any run of the form oo’ is true.

4. If n is of type 4 then an infinite false run can be constructed. Basically this
is because in any chain of dependencies corresponding to this run some p-
variable is unfolded infinitely often. If the highest variable that is unfolded
infinitely often is a p-variable then this run does not satisfy the formula (see
Subsection 3.2.3). The details will be explained in the proof in Section 9.2.7.

5. If n is of type 5 then nothing new has happened between n’ and n. This is
because the same path has already occurred earlier in the tableau between
n” and n’. Even the effect-vector of transitions fired between n’ and n has
already been recorded in the label of n’. Basically this means that if any
false run can be found, then it can be found elsewhere in the tableau in an
easier (shorter) way.

9.2.7 Soundness and Completeness

First we show that the tableau is always finite. The following general lemma is
very useful for decidability problems about Petri nets. It was proved by Dickson
in [Dicl3].

Lemma 9.2.12 (Dickson’s Lemma)
Given an infinite sequence of vectors My, My, M, ... in IN* there are i < j s.t.
M; < M; (< taken componentwise).

138 CHAPTER 9. PETRI NETS

Lemma 9.2.13 For any given root the tableau s finite.

Proof Let 7 be the tableau with root My F ®¢ and m the number of symbols in
®p. It is easy to see that the size of the closure Cl(®g) of ®q is bounded by m.
Therefore at most 2™ different sequents 7 can occur in nodes of the tableau and
there are at most 2™ different Int relations. Let ¢ be the number of transitions
in the Petri net. Then each node has at most maxz{2,¢} children.

Assume that there is an infinite path in the tableau. Because of the special rule
w and Dickson’s lemma (9.2.12) the number of different markings M occurring in
nodes of the tableau is finite. Thus there are only finitely many different paths
between different nodes with the same sequent M + 7.

Because of the special rule M all the effect-vectors of these paths will eventually
be stored in the labels of the nodes. So the path will end by termination condition
5, a contradiction.

Thus every path in the tableau has finite length. As each node has only finitely
many children the tableau is finite. [

Lemma 9.2.14 [f My |= @ then the tableau with root-node no({}) : Mo F ®q is
successful.

Proof Starting with the root-node no({}) : Mo F ®¢, apply the rules until the
tableau is constructed. The construction terminates by Lemma 9.2.13.

We will assume that there exists an unsuccessful terminal n(D) : M F 7 and
derive a contradiction. There are two cases:

1. nis of type 1. Then n is of the form n(D) : M F @ and M doesn’t satisfy
(). Therefore n is a false node. By condition Q1 and Q2 from Def. 9.2.6
it follows that we could construct another tableau without using the w-
rule that has a path leading to a node ny(?) : M’ F Q st. M < M
and Vs € S. M'(s) # M(s) = M(s) = w and M’ fails). This is a

contradiction, because by Lemma 9.2.7 the node ny should be true.

2. If n is of type 4 then because of condition Q1 and Q2 for any £ € IN it
is possible to construct another tableau without using the M- and w-rules
s.t. this tableau contains two nodes ny(?) : My F 7 < no(?): My b 7,
My > My, Vs € SM(s) =w = M(s) > k and every internal circuit of
the path ny ...ns has p-characteristic.

Let 0 = trans(ny...ny). By our assumption the run o¥ starting at M,
satisfies some formula of 7. Let {®q,..., ®;} be the satisfied formulae. Let

9.2.

LINEAR-TIME LOGICS 139

& be the effect-vector of o. We know that & > 0. An internal path starting
with @y of the form My F @, ... My = (My+0)F @, ... (My+i0) - D,...
must be periodic. Especially some formula ®; must occur infinitely often.
Now construct this periodic internal path 7 = My = @, ... (M; + 1 *ma) F
Q,...(My +j+md) F ®,.... The construction is guided by inductively
associating to each pair M + @ a suffix p; of 0¥ s.t. p;(0) = M and p,
satisfies . For the initial pair M; F ®; this is 0¥ itself. Now we define how
to select the (@ 4 1)-th element M’ = & and p,41, given the a-th element
M FE ® and p,.

o If & = () and the Q)-rule is applied, then M F & is the last node of
7. In the original tableau there is a corresponding marking M, s.t.
M < M, and Vs € S M,(s) # M(s) = My(s) =w AN M(s) > K.
Notice that &' € IN is finite, but we can choose it arbitrarily high,
because we can choose k arbitrarily high and & > 0. As M, K Q it
follows that M [~ @, because of condition Q2 defined in Def. 9.2.6.

o If ® = U AT and the A-rule is applied to ®, then M’ = M, ' is

either ¥ or T, according to the choice in the path from ny to ny, and

Pi+1 = Pi-
o If ® =¥ VT and the V-rule is applied to ®, then M’ = M, p;y1 = p;
and

otherwise

& — {\I/ if p-sig(pi, V) < p-sig(pi, 1)

o If ® = @4V then the ®-rule is applied and &' = W, p,yq = p(l) and

M’ is the state corresponding to p;11(0).
o If & = /.U the oZ-rule is applied and M’ = M, &' = V[oZ. ¥ /7]
and p;11 = p;.

There are two possible sub-cases:

(a) m is finite.
Then the last node must be of the form M F (), and the ()-rule
is applied. Therefore no run starting at M satisfies (). This is a
contradiction, as the node M () should be true.

(b) = is infinite.
Let Z be the characteristic of #. Then Z is also the characteristic of
some internal circuit of ny ... ny, and therefore a p-variable. Assign to
each element M + @ of = (with corresponding run p) a truncated pre-
fix of p-sig(p, ®) by removing all ordinals corresponding to p-variables

140 CHAPTER 9. PETRI NETS

lower than Z. Let T} be the sequence of truncated signatures associ-
ated with 7.

The sequence T is non-increasing, because no variable higher than 7
is ever unfolded, and because of the way we defined the internal path
where the V-rule was applied. As we have shown before an infinite
number of sequents of the form M, + 7 *mé F &, for ¢ = 1,2,...
occur in 7, s.t. each has the associated run ¢“. So the associated
truncated p-signatures are the same. This is a contradiction, because
the truncated p-signature should decrease as the variable Z is unfolded
between two occurrences of this sequent. [

Lemma 9.2.15 If the tableau with root no({}) : Mo & @y is successful, then
MO |: (I)().

Proof Assume that there is a successful tableau 7 for My = @, but My = Po.
We will derive a contradiction.

Assuming that My = ®g there must be a run g starting at Mg s.t. og € [®o]. We
will use this run to show the existence of an unsuccessful terminal, contradicting
the success of 7.

To do this, we first use oy to construct a (possibly infinite) path 7’ in a tableau 7/
that is constructed without using the special rules (i.e. by the basic rules only).
Using this path we will then prove the existence of a finite unsuccessful path =
in the tableau 7 that is constructed by all rules.

To serve as guide during the construction of the path ' = ngnins ..., we induc-
tively associate to each node n; a suffix p; of o¢ s.t. the state of n; is p;(0) and p;
fails every formula of n;. The suffix associated with the root ng is og. If n; is a
terminal of type 1, 2, 3 or 4 then (p;, n;) is the last element of 7. Otherwise its
successor n;yq and associated suffix p;11 are chosen as follows:

o If the (O-rule is applied to n;, then p;y; = pgl), and n;yq is the child of n;
having p;11(0) as state;

o [f the A-rule is applied to n;, then p,y1 = p; and n;y is a child of n; s.t. the
v-signature of p; is preserved (if p fails ® A U with v-signature £, then p
fails either ® or U with v-signature ¢).

o If one of the rules V, () or 07 is applied then p;1; = p; and n;y; is the only
child of n;.

As no special rules are used, the labels of all nodes are empty. It follows from
Lemma 9.2.7 that every node of 7’ is false. There are two cases:

9.2. LINEAR-TIME LOGICS 141

1. 7" is infinite.
As there are only finitely many subformulae of ®q, there are only finitely
many different sequents 7 in the tableau 7/. So 7’ must contain an infinite
subsequence Ny, Ninyy .o St N ({}) : Mo, B 7. Let 7 = ®q,...,®,. We

assign to each node n,,, a vector of signatures

Ti = (v-sig(P1, pony) - - -, v-519(P, P,)

By Dickson’s Lemma there are two indices ¢ < j s.t. z; < x; and M,,, <
M,,,. Note that the relation between z; and Z; is the pointwise order on
vectors, while the order on their components is the lexicographic order.

Now we prove that every internal circuit of n,,, ... n,, has y-characteristic.

Assume there is an internal circuit v of n,, ...n,; with v-characteristic Z.
Assign to each element (ny, ®;) of v a prefix of v-sig(Py, px) obtained by
removing all ordinals corresponding to v-variables lower than Z. Let T, be
the sequence of truncated signatures corresponding to ~. We claim that
T, is non-increasing. Let n; and ni4q be two consecutive nodes of . If
ng # Ny, then ngyy is a successor of ny, and the truncated signature cannot
increase when moving from ny to njyq, because no variable higher than 7 is
ever unfolded and because of the way the branch is chosen at the A-nodes.
If n, = ny,,, then ngy1 = npp, 41 and since 7; < &; the truncated signature
cannot increase as well.

Since Z is unfolded somewhere in 7, the last element of T, is lexicograph-
ically less than the first. This contradicts the assumption that z; < z;.
Therefore Z must be a p-variable.

Using these properties we will now construct a tableau 7" by using the
basic rules and the w-rule, but omitting the M-rule. The condition Q1 from
Def. 9.2.6 ensures that 7" contains two nodes ni({}) : M F 7 < ny({}) :
M F 7, s.t. every internal circuit between them has p-characteristic. (M
will possibly contain ws). (The condition Q1 ensures that the application of
the w-rule does not make atomic propositions true which were false before.)
There are two cases:

(a) Either the w-rule has been applied before n,,, and n; corresponds to
N, and ng t0 Ny

(b) Or the w-rule is applied at n,,,. Let 7, be the path from n,,, to n,,.
Then n; corresponds to the modified n,,, and ny corresponds to the
node that is reached from n; via 7.

Note that now both ny and ny have the same marking M (which can contain
ws).

142

CHAPTER 9. PETRI NETS

Let ¢ be the effect-vector of the sequence of transitions fired between n,
and ny. As M, < M, we know that 6 > 0.

Now we construct the tableau 7" using all rules and show that it must
contain a terminal of type 4 that occurs at the same place as n,, or even
before. Note that ny would be a candidate for such a terminal, were it not
for the M-rule and termination condition 5. We will start with the tableau
7" and successively cut out segments of the path leading from the root to
ny, thus obtaining a shorter path leading to a type 4 terminal. We repeat
this until termination condition 5 is not satisfied anywhere in this path.
Thus we obtain a path of the tableau that could have been constructed
from scratch by using all rules. Let n”, n’ and n be the nodes that satisfy
the conditions of the M-rule and =y be the path from the root to n; in 7”.
Note that no application of the w-rule takes place between n” and n, as well
as between ny and ny. There are four cases:

(a) n < ny
Let a be the path from n’ to n. In the path from n to n; we can cut
out all the subpaths equal to «, thus obtaining a shorter path. ny still
satisfies the conditions to be a type 4 terminal.

(b) " < ny < n
Let a be the path from n to ny and 3 the path from ny to n. Let nj
be the node that can be reached from n’ with the path af8. It follows
that ns < ny and ns is a type 4 terminal.

(c) " < ny < n'
Let a be the path from n to ny and 3 the path from ny to n. Let nj
be the node that can be reached from n” with the path af3. It follows
that ns < ny and ns is a type 4 terminal.

(d) ny < n”
Let « be the path from n’ to n. In the path from n to ny we can
now cut out all subpaths equal to a. All internal circuits of the path
ni...ny still have p-characteristic, because Int(n”,n') = Int(n”,n).
Let &' be the effect-vector of the sequence of transitions fired in a. ng
is still a type 4 terminal, because n now carries the additional label
(¢',n") and n” > n;.

So 7" must contain an unsuccessful terminal. Since the tableau for a given
root is unique it follows that 77 = 7. This is a contradiction, as 7 is
successful.

7’ is finite.
Let n be the last node of 7’. n cannot be a terminal of type 5, because all

9.2. LINEAR-TIME LOGICS 143

labels are empty in 7. n cannot be a terminal of type 2 or 3, because n is
false. So n must be a terminal of type 1 or 4.

(a) If n is of type 1 then it must have the form n({}) : M F @ s.t.
M € W(Q). There is a path 7 in 7 corresponding to a subsequence o,
of og s.t. ws last node is n/(7): M’ = Q and IM". M' = M +wM”. 1t
follows from condition Q1 in Def. 9.2.6 that M’ ¢ W(Q). So n’ is an

unsuccessful node in 7, a contradiction.

(b) If n is of type 4, then we have the same situation as in case 1. [

9.2.8 Examples

e

Figure 9.2: A simple Petri net

First we consider a very simple example. The weak linear-time p-calculus formula
pr. Oq

means that there is no infinite run that contains only actions a.

The Petri net in Figure 9.2 satisfies this formula. The tableau that proves this
has just one branch. A marking of the net is described by the number of tokens

144 CHAPTER 9. PETRI NETS

on the place.

(5) F px.O4x
22 (5) Do
HCIN (3) F px.O4x
27 (3) Do
9, (1) F px.Oqx
24 1) k oF
The last node is a successful terminal of type 2.

@_7

Figure 9.3: The modified Petri net

Now we modify this example. The Petri net in Figure 9.3 does not satisfy the
formula pz. @, . The tableau that proves this has just one branch. A marking
of the net is described by the number of tokens on the place.

ni:(5) B opx.Ogx

7 py (5) F oM
HCIN (6) F px.O4x
5 ngi(w) Fopr. Gz
oz, ns:(w) F T
HCI (W) b pr.Oux

The node ng is an unsuccessful terminal of type 4. This is because ny >~ ng,
the path between ny and ng has p-characteristic and the effect-vector of the
transitions that are fired between ny and ng is (41).

9.2. LINEAR-TIME LOGICS 145

Note that in the last two examples the M-rule was not used. Now we study a
more complex example where this rule must be applied. Consider the following
weak linear-time p-calculus formula.

va. Oq (T A py. Op (rz. Oc (2 A Oay)))

Intuitively, the meaning is that there are no constants n,m € IN s.t. a run

a"(bc™d)¥ is possible.
Does the system in Figure 9.4 satisfy this formula?

The answer is “No”. The tableau that proves this is quite large, so we only
describe one unsuccessful branch. Markings of this net are now described by
4-tuples that contain the number of tokens on places A, B,C. D. So the initial
marking M is M := (1,0,1,0). Let My := (1,1,1,1), M5 := (l,w,l,w), My :=
(1,w,0,w).

M F ve. O (@A py. Op (rz. ©c (2 A Oay)))
27, M F Ol A py. Op (vz. Oc (2 A Ogy)))
9, M, A py. Op (vz. O (2 A Ogy))
Ate Ms F ve. O (@A py. ©p (vz. O (2 A Oqy)))
7, My + Ol A py. Op (vz. Oc (2 A Ogy)))
9, My A py. Op (vz. O (2 A Ogy))
-5 ny: My F fy. Op (rz. Oc (2 A Oqy))
7, M; F Op(vz. @c (2 A Oay))
o, ne: My F vz. O (2 A Oqy)
2, M, F Oz A Oqy)
O M, F Z N\ Ogy
AN ns: My F vz. O (2 A Oqy)
oz, M, F Oe(z A Oay)
SO My + 2N\ Oy
M s ({((0,2,0, 1), n0)}) : My + vz. O, (2 A Oay)
4 M Oelz A Ouy)
SO My + 2N\ Oy
AN M, ©qy
o, Ms F py. Op (vz. O (2 A Ogy))

At the node ny the M-rule is applied, because ny,n3 and ny are the same and
Int(na,n3) = Int(na,ng). The effect-vector of the transitions fired between ns
and ny 1s just the effect of the transition that is labeled with the action c.

146 CHAPTER 9. PETRI NETS

A
a
B
11
, C
b 4—@47
10
2
D
N
C d

Figure 9.4: A more complex Petri net

9.2. LINEAR-TIME LOGICS 147

The last node in this path already occurred earlier at ny, and all internal paths
between them (only one in this case) have p-characteristic, because the highest
unfolded variable y is a p-variable. The only problem is that the effect-vector
of the sequence of transitions fired between node n; and the last node is not
positive. Let E(b) be the effect-vector of the transition labeled with the action
b, and similarly for the actions ¢ and d. The effect vector of the transitions that
are fired between ny and the last node is F(b) + 3 * E(¢) + £(d) = (0,-5,0,3).
Fortunately we have a label at ns with an entry marked with ns, which is below
ni (and thus we may use it). The question is now if there is a k& € IN s.t.
(0,-5,0,3) + k*(0,2,0,—1) > 0 7 We see that there is one (in this case only
one) solution, & = 3. Thus termination-condition 4 is satisfied and the branch is
unsuccessful. Thus the system does not satisfy the formula.

It can be verified that even a slight change of the system makes it satisfy the
formula. If the arc from B to b is labeled by 13 instead of 11, then no infinite
sequence of the form (be"d)“ is possible, although such sequences of arbitrary
length are possible if enough a’s are done first. Thus the above construction
is impossible. Any infinite path must contain infinitely many «’s and in the
tableau each a-action is accompanied by an unfolding of the outermost v-variable
x. Therefore the modified system satisfies the formula.

9.2.9 Extensions

The restrictions Q1 and Q2 imposed on the atomic propositions in Def. 9.2.6
basically amount to the condition that every atomic proposition has the form

P = {1’1 S kl,l’g Skg,...,l’n Skn}

where 1, ...z, are the places in the net and kq,...,k, € NU{w}. A marking
M satisfies the atomic proposition P iff Vi € {1,...,n}.M(z;) < k;.

A possible generalization is to allow conditions of the form s; = k; instead of
s; < k;. We cannot express reachability even with these new atomic proposition,
because they are not closed under complement. In order to express deadlock
reachability we would need propositions of the form s; > k;, which we don’t have.

The only problem with these new atomic propositions is the application of the
w-rule. We can no longer assume that if a marking M fails an atomic proposition
P, then every marking M’ > M also fails P. So we can no longer assume that
whenever the w-rule is applicable, an infinite path could be created leading to
markings with arbitrary high numbers of tokens in some places. This is because
now it might be possible to terminate this path by termination condition 3. The
solution is to modify the side condition for the w-rule appropriately. It is now:

148 CHAPTER 9. PETRI NETS

There is a previous node ny(?): My F 7 s.t. ny > ny and

e M, > M, and there is a place s s.t. M;(s) < Mz(s) # w and

o Let M{,..., M/ be the states of nodes in the tableau between n; and n,
where the ()-rule is applied and P, ..., P,, the corresponding atomic propo-
sitions. Ve € {1,...,m}.Yk &€ IN. M/ 4+ k(My — My) € W(F;).

Note that this condition is still decidable for these atomic propositions.

Now it can be seen that the tableau method can be generalized for atomic propo-
sitions satisfying the following weaker conditions:

Pl M &dW(Q) = M+wM ¢W(Q)

P2 Tt is decidable for a marking M and a vector 6 > 0 if there is an 7 € IN s.t.
M+ 16 e W(Q).

Q2 M+wM ¢W(Q) = Fke NVE >k (M+ kM) &WQ).

9.2.10 Related Work

We have presented a tableau system for model checking Petri nets with the weak
linear-time p-calculus, a fairly expressive fragment of the linear-time p-calculus.
It uses the technique of examining internal paths that was first used for finite-
state systems in [BEM96]. Our tableau system is only for the weak linear-time
p-calculus and Petri nets. However, it yields a tableau system for the full linear-
time p-calculus if only finite-state systems are considered. Now we describe this
idea.

Finite-state systems can be modeled by Petri nets by assigning a place to each
state and a transition to each arc. The initial marking puts only one token on the
place that corresponds to the initial state in the finite-state system. The net only
contains one token at every reachable marking. The only problem that remains
is that the weak linear-time p-calculus does not contain the strong nexttime op-
erator. However, in this special case, we can encode the strong nexttime operator
with the weak nexttime operator and atomic propositions. For any atomic action
a we define the atomic proposition P, s.t.

MeW(P,) & IM. M M'A BM" b#a. M2 M

These atomic propositions satisfy the conditions ()1 and ()2 from Definition 9.2.6,
because the net only contains one token at every reachable marking. Of course

9.3. CONCLUSION 149

this is not the case for general nets. Now we can express the strong nexttime
operator. For every formula ® and every marking M we have

MEQ® & ME®®AP,

The tableau system we presented is decidable. However, it is not intended to be
used as a decision procedure, but rather as a proof method. The advantage of the
tableau system is that it gives the user better insight and more control over the
proof. This allows the user to apply his/her knowledge about the system by guid-
ing the search in the tableau and helping to avoid unnecessary branches (see Sub-
section 9.2.8). Thus tableau systems are particularly useful for computer-assisted
verification, i.e. theorem provers with human interaction like PVS [ORSv95] or

“Isabelle” [Pau94].

9.3 Conclusion

The complexity of model checking problems for Petri nets is summarized in the
following table. Again we distinguish the general problem and the problem for
fixed formulae. Note that for Petri nets the problem if the empty marking is
reachable has the same complexity as the general reachability problem [Pet81].
The same holds for the problem if a deadlock is reachable [Pet81]. Thus the
complexity of the reachability problem for a fixed given marking is the same as
the complexity of the general reachability problem.

Petri nets general fixed formula

reachability, decidable, decidable,

reachable property EXPSPACE-hard | EXPSPACE-hard

EF undecidable undecidable

EG undecidable undecidable

UB undecidable undecidable

CTL undecidable undecidable

alternation-free modal p-calc. || undecidable undecidable

modal p-calc. undecidable undecidable

LTL decidable, decidable,
EXPSPACE-hard | EXPSPACE-hard

I ; | decidable, decidable,

HEATTHIne fitae EXPSPACE-hard | EXPSPACE-hard

Chapter 10

PRS and PAN

The most general and most expressive class of systems in the PRS-hierarchy is
(G,G)-PRS (here simply called PRS). PRS have been introduced in [May97c].
They subsume all the other models in the PRS-hierarchy and are strictly more
general (see Section 2.5).

PRS and PAN are both extensions of Petri nets by sequential composition, which
can be interpreted as the possibility to call subroutines. However, unlike in PAN,
PRS-subroutines can influence the behavior of their caller after their termination.
This can be interpreted as the possibility to return a value to the caller (see
Section 2.3 and Section 10.3), which makes PRS much more useful than PAN
for modeling real programs. The results on decidability and complexity of model
checking are the same for PAN and PRS and thus we consider only PRS in this
chapter.

Model checking PRS or PAN with any of the temporal logics defined in Chapter 3
is undecidable (except for the trivial logics WL and Hennessy-Milner logic). This
is because model checking Petri nets with EF is undecidable [BE97, Esp97] (see
Chapter 9), model checking BPP with EG is undecidable [EK95] (see Chapter 6)
and model checking PA with LTL or linear-time g-calculus is undecidable [BH96]
(see Chapter 8). The other logics (UB, CTL, modal g-calculus) are more general
than EF and EG, and thus also undecidable for PRS and PAN.

The only verification problems that are still decidable for PRS are reachability
and reachable property (see Subsection 3.1.2). Thus PRS are not Turing-powerful.
In Section 10.1 we show that the reachability problem is decidable for PRS.
Section 10.2 shows the decidability of the reachable property problem. Thus it
is decidable if there is a reachable state that satisfies certain properties that can
be encoded in a simple logic. In Section 10.3 we describe applications of these
algorithms.

150

10.1. THE REACHABILITY PROBLEM 151

10.1 The Reachability Problem

In this section we show that the reachability problem is decidable for PRS. Thus
PRS are not Turing-powerful.

For Petri nets reachability is decidable and EXPSPACE-hard [May84, Lip76].
Here we show that reachability is decidable for PRS by reducing the problem to
the reachability problem for Petri nets. As the atomic actions are not important
for reachability, we’ll ignore them for the rest of this section and write just ¢; — %,
instead of t; = 1.

We prove the decidability of reachability in two steps. First we show that it
suffices to decide the problem for a special class of PRS, the PRS in transitive
normal form (see below). Then we solve the problem for this subclass of PRS.

Definition 10.1.1 For a PRS A and process terms ¢,t" € T we define
t=21 ie= ot St
where o is a sequence of applications of rules in A. If A is fixed, then we just

write t > t'.

A is in normal form iff all rules in A have one of the following two forms:

Par-Rule X,|X,... || X; — Yi|[Yal...|Ys, i k€ N,

Seqg-Rule X;.X; Y or X - Y .Y0r X — Y.

where X, Y, X;, Y, are process variables.

The only rules that are both seq-rules and par-rules are of the form X — Y. The

A and =2 are only technicalities used in the proofs.

following relations > seq

t >$M t <= Jo.t 5 ¢ and all rules used in ¢ are par-rules from A

t=5,t 1< FJo.t 51 and all rules used in o are seq-rules from A

A PRS A is in transitive normal form iff it is in normal form and for all X,V €

Var

X=2Y = (X =Y)eA

152 CHAPTER 10. PRS AND PAN

Proposition 10.1.2 Let A be a PRS in transitive normal form and t1,15 process
terms that do not contain the operator for sequential composition. It is decidable
if ty =5, Lo

Proof This follows directly from the decidability of the reachability problem for
Petri nets [May84]. |

The reachability problem for PRS is reducible to the reachability problem for
PRS in normal form.

Lemma 10.1.3 Let A be a PRS using only variables from the finite set Var(A).
Let t1,t3 € T be two terms containing only variables from Var(A).

Then a PRS A" in normal form and terms] and t, can be effectively constructed
s.t. A, 1) and tly, use only variables from the finite set V' (with Var(A) C V' C
Var) and

S P

Proof Let k; be the number of rules (1; — ¢3) in A that are neither par-rules
nor seq-rules and size(ty) + size(ty) = ¢. Let n be the maximal ¢ s.t. k; # 0. (n
exists because A is finite). We define

Norm(A) := (kn, kn—1,..., k1)

These norms are ordered lexicographically. A is in normal form iff Norm(A) =
(0,...,0). Now we describe a procedure that transforms A into a new PRS A’ and
terms ¢, 1, into]t} s.t. Norm(A') <., Norm(A)and t; =2 1, < A th.

Remember that we assume that sequential composition is left-associative. So
when we write #;.t; then ¢; is either a single variable or a parallel composition. If
A is not in normal form, then there exists a rule in A that is neither a seq-rule
nor a par-rule. We call such rules “bad rules”. There are five types of bad rules:

1. The bad rule is v — uy.uz. Let Z, 7y, Z3 be new variables. We get A’ in
three steps. Initially A’ is A.

(a) Replace the bad rule by the following rules

u— 4 L — 1.0y L1 — u

(b) Then substitute Z; for ug in A, #; and ¢ (thus we get t7, #,).

10.1. THE REACHABILITY PROBLEM 153

(c¢) Finally add the rule Zy — uy to A

2. The bad rule is u — wuy||uz. Let 7y, Z; be new variables. We get A’ by
substituting Z; for uy and Z; for uy everywhere and then replacing the bad
rule by the following rules

u — Z1HZ2 Z1 — U1 Z2 — U2.

3. The bad rule is uq|[(uz.u3) — uy. Let 71, Z3 be new variables. We get A’
by replacing the bad rule by the following rules

Uy — Z1 Ug. U3 —> Z2 Z1HZ2 — U4
1] ==ty and t}, := 1.

4. The bad rule is uy.(us||us) — u4. Let Z be a new variable. A" and t, 1, are
constructed as follows:

(a) Substitute Z for (uz||us) in all rules and in #; and 5.

(b) Then add the rules Z — usl|us and us||us — Z.

5. The bad rule is u;.X — us, where u; is not a single variable. Let Z be a
new variable. We get A’ by replacing the bad rule with the following two
rules

Uy — £ X — us
1] ==ty and t}, := 1.

In all these cases Norm(A') <i, Norm(A) and t; =2 t, < A th.
Repeated application of this procedure yields a PRS in normal form. [

The following lemma will be used to prove the correctness of the algorithm in
Lemma 10.1.5.

Lemma 10.1.4 Let A be a PRS in normal form. If there are variables X,Y
st. X =2 Y and (X — Y) & A, then there are also variables X', Y' with
(X' = Y) ¢ Aand X' =2 Y or X' =3 Y.

Proof It follows from the preconditions that we can choose a pair of variables

XY st (X' — Y') ¢ Aand X' 5 Y’ for a sequence o of minimal length.

More precisely the length of o is minimal over the choice of X', Y’ and o.

Now we show that X’ =2 Y’ or X' =2 Y’'. We do this by assuming the
contrary and deriving a contradiction. We say that a rule is trivial if it has the
form (X" — Y"). We assume that o contains both seq-rules and par-rules that

are nontrivial. There are two cases:

154 CHAPTER 10. PRS AND PAN

1. The last nontrivial rule in o is a par-rule. If a seq-rule Z; — Z;.73 occurs

in o then there is a subsequence ¢’ of ¢ and a variable Z; s.t. Z,.7; L Za.
This contradicts the minimality of the length of o.

2. The last nontrivial rule in o is a seq-rule. This seq-rule must have the form
/1.7y — /. The first nontrivial par-rule that occurs in ¢ must have the
form 7' — Z{||...||Z]. Then there is a subsequence ¢’ of o and a variable

2" s.t. Z' %5 7", This contradicts the minimality of the length of o.

Thus o consists either only of applications of par-rules (and thus X’ =2 Y’) or

par

only of seq-rules (and thus X’ =2 _Y). |

seq

Lemma 10.1.5 Let A be a PRS in normal form. Then a PRS A’ in transitive
normal form can be effectively constructed s.t.

Vigta €T 1 =2ty = =21,

Proof It suffices to find all pairs of variables X,Y s.t. X =2 Y and to add
the rules (X — Y) to A. By Lemma 10.1.4 it suffices to check X }ﬁw Y and
X >5Aeq Y. This is decidable because of Proposition 10.1.2 and the decidability of
the reachability problem for pushdown processes (see Chapter 7). Lemma 10.1.4
basically says that while there are new rules to add we can find at least one to

add.

The algorithm is as follows:

A= A; flag := true;
While flag do
flag := false;
For every pair of variables X, Y with (X — Y) ¢ A’ do
If X >$a/T Y or X }fe/q Y then (A" := A’ U (X — Y); flag := true) fi;
od;

od:

?

Theorem 10.1.6 The reachability problem is decidable for PRS.

Proof Let A be a PRS and t1,1, € 7. The question is if #; =2 t,.

10.2. THE REACHABLE PROPERTY PROBLEM 155

We construct a new PRS A’ by adding new variables X7 and X, and rules X; — #;
and 75 — X,. It follows that

11 >-A 1, & X1 >-A/ X2

Then we use Lemma 10.1.3 and transform A’ into a PRS A” in normal form.
Normally the terms Xi, X3 would also change in this transformation, but since
they are single variables they stay the same . It follows that

11 >-A 1y & X1 >-A” X2

Then we use Lemma 10.1.5 to transform A’ into a PRS A" in transitive normal
form. It follows that

131 >-A t, & Xi >-Am X5
Since A" is in transitive normal form we have
131 >-A t, & Xi >-A/“ X, & (Xl — XQ) e A"

The condition (X; — X3) € A” is trivial to check. []

10.2 The Reachable Property Problem

In the previous section the problem was if one given state is reachable. Here we
consider the question if there is a reachable state that has certain properties. This
problem was defined in Subsection 3.1.2 as the “reachable property problem”.
Unlike for reachability, the atomic actions are important for this problem.

The denotation [®] of a state formula ® is a (possibly infinite) set of process
terms. To simplify the notation we use sets of actions. Let A := {ay,..., a1} C
Act, then

[Al = [add -0 far]
[-A] = [radn---0-a]

By transformation to disjunctive normal form every state-formula ® can be writ-
ten as

(Af A =AYV -V (AT A —AD)

Tt wouldn’t matter if they changed.

156 CHAPTER 10. PRS AND PAN

where AT, A7 C Act. The modal operator < is defined as usual.
[C®] := {t | o, t'. t S ' € [@]}

Let t € T be a process term. For t € [®] we also write ¢ = ®. The reachable
property problem is if {5 | O® for a state formula ® and a PRS A with initial
state tg.

We prove the decidability of the reachable property problem for PRS in two steps.
First we solve the problem for PRS in transitive normal form, and then we use
this result to prove the decidability in the general case.

Let there be a PRS A in transitive normal form with initial state g and ®
a state-formula. We now describe a tableau system that decides the problem
to | O®. (See Chapter 4 for the definition of tableau systems.) As ® can be

transformed into disjunctive normal form and
tEO(@Vd,y) < t EO(P) Vi E (D)

it suffices to show decidability for formulae of the form (AT A —A7). The
nodes in the tableau will be sets of expressions (subgoals), which will be inter-
preted conjunctively. 7 denotes sets of expressions. The branches are interpreted
disjunctively. The tableau is successful iff there is a successful leaf.

For technical reasons we introduce a new operator V that is defined by
[VO] :={t|Jo,t' £e. t >t € [0]}

Now we define the tableau-rules. Every node in the tableau consists of a finite
set of expressions. These expressions have either of the following forms:

o 1 O(AT A —A7), where ¢ is a process term and AT and A~ are finite sets
of atomic actions.

e {F V(AT AN —A7), where ¢ is a process term and AT and A~ are finite sets
of atomic actions.

e {1 = ty, where #; and 75 are process terms.

o (11 — t3) € A, where t; and 5 are process terms.

We describe the transformations of single elements of these sets. So the expression
“U?7 should be appended to every node, where 7 denotes a set of expressions.
We leave this out to simplify the notation. Because of space constraints in the

10.2. THE REACHABLE PROPERTY PROBLEM 157

following tableau-rules we write different branches below each other instead of
beside each other. So a rule of the form

A

By

B

B,
means

A
By By ... B,

where the B; stand for different branches.

Note that the following tableau-rules are only correct because A is in transitive
normal form.

{(t1-(talta)) s = O(AT A —AT)}

SP1
{tl > €, tg”tg”t;l |_ <>(A+ A —A_)}

{t1 V(Ai" N—=A"), 4 F <>(A;' AN—A")}
where AT = Ai" U A;’

{(t.Y)||t2 F O(AT A —A7)}
{ti = ¢, Y|t b O(A* A —A7)}
{tiF V(AT A —A7), o b O(AT A —A7)}
{ti= X, XY F (AF A—A7), thF O(AF A —A7))
(i = X, (XY S Z) €A, Z|tyF O(AY A —A7)}

with a separate branch for every AT, A} s.t. AT = AT U AT

P2 (X € Var(A))

{(t1-(taflts))lIta = V(AT A —A7)}

SP3
{tl > €, tg”tg”t;l |_ V(A—I— A —A_)}

(L F V(AT A —A7), tiF O(AF A —A7))

where AT = Ai" U A;’

158 CHAPTER 10. PRS AND PAN
{(t1.Y)|[t2 F V(AT A —A7)}
B TV V(AT A A (X & Var(4))
{th E V(AT A =A7), toF O(AF A —A7)}
{ty = X, XY F(AfA=A7), t2 - O(AT A —A7)}
{ti = X, (XY = 2Z)e A, Z|taF V(AT A—A")}
with a separate branch for every Af, AY s.t. AT = AT U Af
PARL {tEO(ATA=A7)}
Vke K. Yy F V(A A —A7),
Vke K.Y Zy b (AF A —A7),
Viel. U FV(=A7),
Vie I ULV, (=A7)
where t € P is a term without sequential composition
and (X; = V,.Z,)) € A, (1 =1,..., k) are seg-rules and
It € Pt sy (V)| X0 |- || Xk|[t”) with ¢/ | (AT A —A7)
and t" is a parallel composition of atomic terms in M = {Wy, ..., W,}
and (W, = U,.V;) € A, (1 =1,...,7) are seq-rules and
Tur'={1,...,5}
Viel' . U; » Ul
and At = AF UAT U U A, 0 <k <247
and KUK ={1,...,k}
and Vk e K'. Y, » Y/
PAR? {tE V(AT AN —-A7)}
Vke K.Yy b V(A A —A7),
Vke K.Y Zy b (AF A —A7),
Viel. U FV(=A7),
Vie I ULV, (=A7)
where t € P is a term without sequential composition
and (X; = V,.Z,)) € A, (1 =1,..., k) are seg-rules and
It € Pt sy (V)| X0 |- || Xk|[t”) with ¢/ | (AT A —A7)
and t" is a parallel composition of atomic terms in M = {Wy, ..., W,}

and (W, = U,.V;) € A, (1 =1,...,7) are seq-rules and
Tur={1,...,5

Viel. U, = Ul

and AT = AT U AT U---UAF, 0 <k <247

and KUK ={1,...,k}

and Vk e K'. Y, » Y/

and k> 0 or t'|[t" # €

10.2. THE REACHABLE PROPERTY PROBLEM 159

A ?
g Umfiu? F?}U it
XY » Z) € A}U?
pp XY 2D EAMUT vy ea

7

In the rules SP1,5P2,SP3,SP4 we have to consider all different (but only finitely
many) ways of partitioning AT into A} and AJ. In PAR1 and PAR2 the dots
symbolize all different ways of choosing k, the set M, the rules (X; — ¢;) and the
partitioning of AT into Af,..., Af. Again there are only finitely many.

Lemma 10.2.1 [f the side conditions of an instance of a rule are satisfied, then
the antecedent is true if and only if one of its succedents is true.

Proof Directly from the definitions and the condition that the PRS A is in
transitive normal form. The only difference between PAR1 and PAR2 is the
condition k # 0V ¢'||t” # e. This ensures that the reachable state that satisfies
(AT A —A7) is not e]

Definition 10.2.2 (Termination conditions)
A node marked with a set of expressions 7 is a terminal node iff one of the
following conditions is satisfied.

1. 7 is empty.
2.7 =7"U{t =1} for some t,t' € T and not t > t'.
3. 7=2U{(XY - Z)e A} and not (X.Y — Z) € A.

4. The same node 7 occurred earlier on the same branch.

Terminals of type 1 are successful, while terminals of types 2,3 and 4 are unsuc-
cessful.

Note that, since the sequents are sets, the tableau for a given root is not unique.
However, there are only finitely many for a given root.

The following definition and lemma by Janc¢ar [Jan90] are used to show that the
tableau can be effectively constructed.

Definition 10.2.3 For a given Petri net N the set Ly of formulae is defined as
follows:

160 CHAPTER 10. PRS AND PAN

o There is one variable M that stands for a marking of the net.
o A term is either

— a term M(p) where p is a place, or
— a constant ¢ € IN, or

— of the form t; + t,.
o A formula is either

— an atomic formula t; < t; or t; < ty, where 1, t, are terms, or

— of the form fi& f; where fi, fo are formulae.

For a concrete marking M, f(M) denotes the instance of f with this M. The
semantics is natural.

Lemma 10.2.4 ([Jan90))
For a Petri net N with initial marking My it is decidable if there is a reachable
marking M s.t. f(M).

Lemma 10.2.5 For a given root all possible tableaux can be effectively con-
structed.

Proof

1. The side conditions of the rules are decidable: For rule E1 this follows from

Theorem 10.1.6. For PAR1 and PAR2 this follows from Lemma 10.2.4.

2. The tableau is finitely branching: This is because there are only finitely
many different ways to partition AT into subsets and because A is finite.

3. The tableau is finite: Let ¢y be the state in the root-node. There are
only finitely many different subterms of t;. As A is finite there are only
finitely many different seq-rules. Only finitely many variables are used in
A, thus Var(A) is finite. Only finitely many different formulae of the form
O(AT A —A7) or V(AT A —A7) can occur in the tableau. Therefore there
are only finitely many different nodes in the tableau. Thus the construction
of the tableau must terminate, because of termination condition 4.

10.2. THE REACHABLE PROPERTY PROBLEM 161

4. There are only finitely many different tableaux for a given root: This is be-
cause all sequents in any tableau for a given root are sets whose cardinality
is bounded by a constant ¢ that depends only on the PRS A and the size of
the root. The only nondeterminism in the construction is in which subgoal
in a sequent is solved first. [

Now we prove the soundness and completeness of the tableau system.

Lemma 10.2.6 [f there is a successful tableau with root {t F O(AT A —A7)},
then t = O(AT A —A7).

Proof If the tableau is successful, then it has a branch that ends with a suc-
cessful (empty) node. This node is certainly true. By repeated application of
Lemma 10.2.1 the root-node must be true as well. [

Lemma 10.2.7 Let Op € {O,V}. Let there be a node of the form {t = Op(AT A
—AT)U?, st t|E Op(AT A —A7) and 7 is a set of subgoals that are all true.

Then every tableau with this root has a branch leading to a node 7' s.t. 7' is a
true set of subgoals that has developed from 7.

Proof First we describe the proof for a particular tableau where the most recently
created subgoals are solved first.

We do the proof by induction on lexicographically ordered pairs (z,y) s.t.

(x,y) := (length(o), size(t))

where o is a sequence of minimal length s.t. ¢+ 5 #' and ¢’ = (At A —A7) (and
t' # ¢ if Op = V). Such a sequence must exist, because ¢ | Op(AT A —A7).

If (z,y) = (0,0) then t = ¢ and A™ = {}. The rule PARI is applicable and the

one child-node is 7.

Otherwise we apply a tableau-rule to {t - Op(At A —A7)}. By Lemma 10.2.1 at
least one child-node must be true. Choose the true child-node that corresponds
to 0. The tableau-rule replaces the expression by several other expressions with
(' y") st (2, y") <iew (2,y). For the rules SP1, SP2, SP3 and SP4 in the child
node z is lower or equal and y is smaller. With the induction hypothesis and rules
E1,E2 we can solve all newly created subgoals and arrive at a node 7. For the
rules PAR1 and PAR2 the second component y may have increased in the child-
node, but the first component x is always smaller. Thus by induction hypothesis
we can solve all newly created subgoals and arrive at a node 7. This construction

162 CHAPTER 10. PRS AND PAN

cannot be interrupted by termination condition 4, because this would contradict
the minimality of the length of o.

The above construction is for a particular tableau where the most recently created
subgoals are solved first. In other tableaux we might have applications of tableau-
rules to other expressions in 7 between the steps we described above. However,
if we stay on a branch of true sequents (it must exist by the preconditions)
then our sequents have the form M U7’ where M are the subgoals created from
{t F Op(AT A—A7)} and 7’ is a true development of 7. Eventually we will solve
the subgoals in M and reach a node 7’ where 7’ is a true development of 7. =

Corollary 10.2.8 Ift = O(AT A —A7), then every tableau with the root-node
{t E O(AT A —A7)} is successful.

Proof We apply Lemma 10.2.7 for the special case of 7 = {}. Since 7' is
a development of 7 it must be empty too. Thus the tableau is successful by
termination condition 1. [

Lemma 10.2.9 Let A be a PRS in transitive normal form with initial state tg
and (AY N —A7) a state formula. Then the following properties are equivalent.

1 g EO(ATA—AT)
2. A tableau with root {t F O(AT A —A7)} is successful.
3. Every tableau with root {t = O(AT A —A7)} is successful.

Proof Directly from Lemma 10.2.6 and Corollary 10.2.8. [

So far we have only considered the reachable property problem for PRS in tran-
sitive normal form. For the general case more work is needed. It is not possible
to apply the same algorithms as in Lemma 10.1.3 and Lemma 10.1.5 to trans-
form a PRS into transitive normal form, because these transformations do not
preserve the properties we want to check. A generalized version of Lemma 10.1.3
1S necessary.

Lemma 10.2.10 Let A be a PRS that uses only variables from the finite set
Var(A) C Var and t € T a process term.

Then a PRS A" in normal form and a term t' can be effectively constructed s.t. for
every state formula ®, t |= OO with respect to A iff t' |= O(® A =) with respect
to A’. (v is a new action.)

10.2. THE REACHABLE PROPERTY PROBLEM 163

Proof Let k; be the number of rules (#; — ¢3) in A that are neither par-rules
nor seq-rules and size(ty) 4 size(ty) = ¢. Let n be the maximal ¢ s.t. k; # 0. (n
exists because A is finite). We define

Norm(A) := (kn, kn—1,..., k1)

These norms are ordered lexicographically. A is in normal form iff Norm(A) =
(0,...,0). Now we describe a procedure that transforms A into a new PRS A’
and ¢ into ', with the above properties. For this we introduce two completely
new atomic actions v and 7 that do not occur in A, ¢ and the state formula ®.

If A is not in normal form, then there exists a rule in A that is neither a seqg-rule
nor a par-rule. We call such rules bad rules. There are five types of bad rules:

1. The bad rule is u — uy.u2, where uy is either a single variable or a parallel
composition. Let Z, 71, Z, be new variables. We get A’ in three steps:

(a) First replace the bad rule by the following rules

us7Z 7507, 75w
(b) Then we substitute Z5 for ug in A’ and ¢ (obtaining).
(c¢) Finally, we add the rules 7, 2wy and uy — Zs.

2. The bad rule is u - uq||ug. Let Zy, Zy be new variables. We get A’ through
the following steps:

(a) Replace the bad rule by the following rule
u 5 71| Zy
(b) Then we add the rules
71wy Ty 5 oy

3. The bad rule is uy||(ug.u3) = uy. Let Zy, Zy, Z3 be new variables. We get
A’ in the following steps:

(a) First replace the bad rule by the following rules
uy 5 Xy ugus — Ly Zy||Zy D Zs Iy S Ty Ly Zy s oy

(b) Then for all actions b that are enabled by the term u]|(uq.us) with
respect to A add to A’ a rule Z3 LA Zs.

164 CHAPTER 10. PRS AND PAN

(c) For every rule (I % r) where the term wu||(uz.u3) occurs as a subterm
of [add a new rule (I’ 5 r) where [is obtained from [by replacing
all occurrences of uy ||(ug.usz) by Z3 %

(d) ¢ :=t.

4. The bad rule is uy.(uz||us) 2 uy. Let Z be a new variable. A’ and ¢’ are
constructed as follows:

(a) Substitute Z for (us||us) in all rules in A and in ¢ (thus obtaining t').
(b) Then add the rules 7 A Uslus and ugllus = Z.

5. The bad rule is u;. X — ug, where uy is not a single variable. Let Z;, Z, be
new variables. We get A’ by the following steps:

(a) First replace the bad rule with the following rules
w DI IS L XD 2y Zy S

(b) Then for all actions b that are enabled by the term uy.X with respect
to A add to A’ a rule 7, LN 7.

(¢) For every rule (I % r) where the term u;.X occurs as a subterm of [
add a new rule (I' 5 r) where I’ is obtained from [by replacing all
occurrences of u;.X by Z, 3.

(d) ¢ :=t.

In all cases Norm(A’) <. Norm(A) and the property of the state formulae is
preserved. Repeated application of this procedure yields a PRS in normal form.
|

Now we can prove decidability for the general case.

Theorem 10.2.11 The reachable property problem is decidable for PRS.

Proof Let there be a PRS A with initial state {; and ® a state-formula. The
question is if ¢y | OO.

First we apply Lemma 10.2.10 to get a PRS A’ in normal form and a t{ s.t. tg E
OO wart. A iff 1) E O(® A =) wart. AL Then we use the algorithm in

’Note that we keep the old rule (I 5 r).
3We keep the old rule (I 5 r).

10.3. APPLICATION 165

Lemma 10.1.5 to transform the PRS A’ into an equivalent PRS A” in transi-
tive normal form. All new rules that are added in this process are labeled with
the special new action 7. It follows that ¢, E O® w.rt. Aiff ¢ E O(® A =)
w.r.t. A”. Tt suffices to show decidability for formulae of the form OG(AT A —A7).
Since A” is in transitive normal form we can apply the tableau system. By
Lemma 10.2.5 all possible tableaux with root {tj - G(AT A —A7)} can be effec-
tively constructed. It follows from Lemma 10.2.9 that it suffices to construct one
tableau. The property holds if and only if it is successful. [

This result can also be used to decide the deadlock reachability problem. Let A
be a PRS with initial state to and Act(A) the (finite!) set of actions used in A.
A deadlock is reachable iff ¢y = O(—Act(A)).

10.3 Application

We consider the example from Section 2.4 again. With the algorithm from Sec-
tion 10.1 we can verify the system by checking the following properties. Let X
be the initial state.

1. It is possible to reach the state 1. This means that the computation can
terminate and return the result true.

2. It is not possible to reach the state X||Z. This means that process Z can
never run in parallel with process X. Of course this must hold, because
process 7 is always called as a subroutine of process X.

3. It is not possible to reach the state (W||T').X. Remember that we intro-
duced different symbols for boolean values to force a conjunctive or dis-
junctive interpretation. This property shows (partly) that the two inter-
pretations cannot get into conflict with each other. (Later we show this

fully.)

With the algorithm from Section 10.2 we can do further verification: Let Act(ex)
be the set of all actions used in the example. It is possible to reach a state where
decomp,, is the only possible action

X E O(decompy, N —(Act(ex) — {decomp,}))

but there is no reachable state where decomp, and decomp, are the only possible
actions.

X E =~O(decompy A decompy, N —(Act(ex) — {decomp,, decomp,}))

166

CHAPTER 10. PRS AND PAN

Now we show that the conjunctive and disjunctive interpretations of boolean
values can never get into conflict. To do this we add some new rules to the
system of the example from Section 2.4.

W F conflict
R||F conflict
W conflict
R|T conflict

Then the conjunctive and disjunctive interpretations of boolean values can get

into conflict if and only if the action conflict can ever become enabled. With
the algorithm from Section 10.2 we can show that for this modified system the

property

X FE O(conflict)

holds and thus action conflict can never become enabled.

The algorithms for the reachability problem and the reachable property problem
for PRS rely on the reachability problem for Petri nets and are thus not primitive
recursive. So it might seem that they are not applicable in practice because of
their very high complexity. However, there are three arguments in their favor:

1. In many examples the system is not very large and the structure of the

Petri nets that are contained in them is often simple.

In a large PRS there may be many Petri nets as substructures, but often
each of these Petri nets is quite small. These Petri nets are either not
connected with each other at all, or their influence on each other is very
limited. Thus they yield small subproblems that can be solved in acceptable
time.

Finally, the reachability problem for Petri nets has been studied for many
years and ways of dealing with it have been developed. There are semi-
decision procedures that give yes/no/don’t know answers in acceptable time
[CH78, Mur89, ME96]. These algorithms mostly use constraints to repre-
sent sets of states and approximate the behavior of the system.

Therefore the algorithms of Section 10.1 and Section 10.2 can still be useful in
practice to verify systems that are modeled with PRS.

10.4. CONCLUSION 167

10.4 Conclusion

The reachability problem and the reachable property problem are the only de-
cidable verification problems for PRS. Since PRS subsumes Petri nets, these
problems are at least as hard as the reachability problem for Petri nets and thus

EXPSPACE-hard. Like for Petri nets, this hardness result even holds for the

question if the empty state ¢ is reachable.

Model checking Petri nets with EF is undecidable [BE97, Esp97] (see Chapter 9),
model checking BPP with EG is undecidable [EK95] (see Chapter 6) and model
checking PA with LTL or linear-time g-calculus is undecidable [BH96] (see Chap-
ter 8). Thus model checking PAN or PRS with these logics is undecidable. The

other logics (UB, CTL, modal g-calculus) are more general than EF and EG, and
thus also undecidable for PAN and PRS.

PAN/PRS general fixed formula
reachability, decidable, decidable,
reachable property EXPSPACE-hard | EXPSPACE-hard
EF undecidable undecidable
EG undecidable undecidable
UB undecidable undecidable
CTL undecidable undecidable
alternation-free modal p-calc. || undecidable undecidable
modal p-calc. undecidable undecidable
LTL undecidable undecidable
linear-time p-calc. undecidable undecidable

Chapter 11

Summary

In the Chapters 5 — 10 the results about the complexity of model checking are
given individually for each process-model in the PRS-hierarchy. Now we present
a view on these results from the perspective of the logics.

We also show the limits of the decidability of model checking with each logic
in the PRS-hierarchy. In the Figures 11.1,11.2, 11.3, and 11.4 this is described
graphically.

11.1 Branching-Time Logics

11.1.1 Reachability and Reachable Property

As shown in Chapter 10, the reachability problem and the reachable property
problem are decidable for all models in the PRS-hierarchy, so none of these mod-
els is Turing-powerful. It has also turned out that, although the two problems
are not completely equivalent for every model, they have the same complexi-
ties for every model in the PRS-hierarchy. Interestingly, there are three groups
of models: For models with only sequential composition (BPA, pushdown pro-
cesses) reachability is polynomial. For models with parallel composition but no
synchronization (BPP, PA, PAD) it is A"P-complete. For the other models it is
decidable, but at least as hard as the reachability problem for Petri nets, and
thus KXPSPACE-hard. The reachability problem for a fixed given state might
be easier for BPP, PA and PAD, but not for Petri nets, PAN and PRS.

168

11.1. BRANCHING-TIME LOGICS

169

Reachability general fixed state

finite-state systems | € P S

BPA eP ePpP

pushdown processes || € P S

BPP NP-complete eENP

PA NP-complete eENP

PAD NP-complete eENP

Petri net decidable, decidable,

e e EXPSPACE-hard | EXPSPACE-hard

PAN decidable, decidable,
EXPSPACE-hard | EXPSPACE-hard

PRS decidable, decidable,
EXPSPACE-hard | EXPSPACE-hard

Pushdown (S,S)

Processes

BPA (1,9)

PAD (S,G)

PRS (G,G)

PA (1,G)

Finite-State Systems (1,1)

PAN (P,G)

ets (P,P)

decidable,
EXPSPACE-hard

~—

BPP (1,P)

NP-complete

polynomial

Figure 11.1: The complexity of reachability.

170 CHAPTER 11. SUMMARY

11.1.2 EF

EF is the branching-time logic with the easiest model checking problem. Model
checking with EF is decidable for several models (PAD, PA and BPP), where
model checking with any other branching time logic is undecidable. One of the
reasons for this is that the logic allows a limited decomposition: (@ V @y) =
O(Py) V O(Py). Such a decomposition is not possible in other logics (not even
in EG). The following table shows the complexity of the model checking problem
for EF. Like in the previous chapters we distinguish the general model checking
problem and the problem for a fixed formula.

EF general fixed formula

finite-state systems | € P S

BPA PSPACE-complete S

pushdown processes || PSPACE-complete PSPACE-complete

BPP PSPACE-complete e Xt

z AR

PAD € DTIME(tower(n)), | € d-EXPTIME,
PSPACE-hard PSPACE-hard

Petri nets undecidable undecidable

PAN undecidable undecidable

PRS undecidable undecidable

So far, there is no hardness result for any branching-time logic and BPA. The
known algorithms for PA and PAD have a very high complexity (O(tower(n))),
but this is mostly in the size of the formula.

Figure 11.2 shows the limits of the decidability of EF. Model checking with EF

is decidable for all models below the line and undecidable for those above it.

11.1. BRANCHING-TIME LOGICS 171

PRS (G,G)

PAD (S,G) PAN (P,G)

Pushdown (S,S) PA (1,G) \ Petri Nets(P.P)

Processes

N EF

BPA (1,9 BPP (1,P)

Finite-State Systems (1,1)

Figure 11.2: Limits of the decidability of model checking with EF.

172 CHAPTER 11. SUMMARY

11.1.3 EG

The logic EG is a simple fragment of CTL (and UB), but model checking with
EG is a lot harder than with EF. In the rest of this chapter we’ll see that for all
models in the PRS-hierarchy decidability of model checking with EG coincides
with decidability of model checking with the full modal p-calculus. (See Fig-
ure 11.3.) It is an open question if this also holds for computational complexity.
It is unlikely however, since the modal p-calculus is much more expressive than

EG.

EG general fixed formula
finite-state systems | € P S

€ EXPTIME,
BPa PSPACE-hard | €7
pushdown processes]63553)1(4]2%[—]\}145;1 € EXPTIME
BPP (and higher) undecidable undecidable

11.1.4 UB

The logic UB is a combination of EF and EG. The results on the complexity
of model checking reflect this. It seems that the operators KF and EG have no

strong interaction that increases the expressiveness.

UB general fixed formula
finite-state systems | € P S
c EXPTIME,
BPa PSPACE-hard | €7
" € EXPTIME, | € EXPTIME,
PHUSHEOWR PIOCESE || pgpACE-hard | PSPACE-hard
BPP (and higher) undecidable undecidable

11.1. BRANCHING-TIME LOGICS 173

11.1.5 CTL

The following table of complexities is the same as for UB. However, it is not
certain yet that UB and CTL always have the same complexity. Model checking
BPA with UB (or EQG) is possibly easier than model checking BPA with CTL.

CTL general fixed formula
finite-state systems | € P S
BPA € EXPTIME, cP

PSPACE-hard
€ EXPTIME, € EXPTIME,
PSPACE-hard PSPACE-hard

BPP (and higher) undecidable undecidable

pushdown processes

11.1.6 Alternation-free Modal p-Calculus

For the alternation-free modal p-calculus there is a stronger hardness result than
for CTL. Model checking pushdown processes with the alternation-free modal
p-calculus is EXPTIME-complete while for CTL it is only known to be between
PSPACE and EXPTIME.

Alt.-free modal p-cale. || general fixed formula
finite-state systems S S

BPA EXPTIME-complete | € P

pushdown processes EXPTIME-complete | EXPTIME-complete
BPP (and higher) undecidable undecidable

11.1.7 Modal p-Calculus

The full modal p-calculus is the only logic considered here for which model
checking finite-state systems is not known to be polynomial. However, it is in
NP N co- NP, which argues that a subexponential algorithm might exist.

174

CHAPTER 11.

SUMMARY

Modal p-calculus || general fixed formula
finite-state systems | € NP N co-NP S
BPA EXPTIME-complete | € P

pushdown processes

EXPTIME-complete

EXPTIME-complete

BPP (and higher)

undecidable

undecidable

Except for the logic EF, all branching-time logics have the same limits of decid-
ability in the PRS-hierarchy. Figure 11.3 illustrates this.

11.1. BRANCHING-TIME LOGICS 175

PRS (G,G)

PAD (S,G) PAN (P,G)

Pushdown (S,S)

Petri Nets (P,P)
Processes

PA (1,G)

\EF

BPP (1,P)

BPA (1,S)

EG, UB, CTL,
modal mu-calc.

Finite-State Systems (1,1)

Figure 11.3: Limits of the decidability of branching-time logics.

176 CHAPTER 11. SUMMARY

11.2 Linear-Time Logics

LTL and the linear-time p-calculus have the same decidability and complexity
for all models in the PRS-hierarchy. This is not too surprising, since they have
almost (but not quite) the same expressive power. Unlike for branching-time
logics, strict lower bounds are known for BPA.

LTL/Linear-time p-calc. || general fixed formula

finite-state systems PSPACE-complete ep

BPA EXPTIME-complete | € P

pushdown processes EXPTIME-complete | € P

BPP %‘}?ﬁ;ﬁ}f@_hm 4| decidable

PA undecidable undecidable

PAD undecidable undecidable

Petri nots decidable, decidable,
EXPSPACE-hard EXPSPACE-hard

PAN undecidable undecidable

PRS undecidable undecidable

These complexity results are quite different from those for any branching-time
logic. On the one hand model checking finite-state systems is harder and model
checking systems with both sequential and parallel composition (PA,PAD,PAN
and PRS) is undecidable. But on the other hand model checking Petri nets is
decidable, unlike for any branching-time logic. Another nice point is that model
checking purely sequential systems (BPA and pushdown processes) is polynomial
for every fixed formula.

Figure 11.4 shows the limits of the decidability of model checking with linear-time
logics. These limits are quite different from those for any branching-time logic.

11.2. LINEAR-TIME LOGICS 177

PRS (G,G)

PAD (S,G) PAN (P,G)

LTL,

linear -time mu-calc.

Pushdown (S,9) PA (1,G) Petri Nets (P,P)
Processes

BPA (1,9 BPP (1,P)

Finite-State Systems (1,1)

Figure 11.4: Limits of the decidability of linear-time logics.

Chapter 12

Conclusion and Final Remarks

There are five main conclusions from the results that are presented in this thesis.

1. None of the models in the PRS-hierarchy is Turing-powerful.

2. Model checking with EF is much easier than for any other branching-time
logic. It is decidable for many more models and often has a lower complexity.

3. All other branching-time logics are decidable for the same models in the

PRS-hierarchy.

4. Linear-time logics and branching-time logics are completely different with
respect to decidability and complexity of model checking.

5. Most model checking problems for infinite-state systems are PSPACFE-hard.
However, the complexity in the size of the system is often lower. It is even
linear in some cases.

The results on the complexity of model checking infinite-state systems look dis-
couraging at first. Many problems are PSPACE-hard, FEXPTIME-hard or even
EXPSPACE-hard. However, a closer look shows that the situation is not as bad

as it might seem. There are still many things that can be done in practice.

Firstly, it is not always necessary to use a full temporal logic to specify the prop-
erties that must be checked in order to verify a system. In practice it often suffices
to check simple properties of systems, which can be much easier. Some of these
simple verification problems are decidable in polynomial time (see Section 8.3).

Secondly, not even PSPACE-hard problems are always as bad as they seem. The
complexity of the model checking problem depends on two parameters: the size

178

179

of the system and the size of the formula. In practice, the system can be very
large, but the formula is usually very small. Thus the complexity in the size of
the system is the important part. In many cases the complexity in the size of
the system is much lower than the complexity of the general problem. Roughly
speaking, there are two classes of model checking problems:

1. Model checking problems that are hard in the size of the system even for a
small fixed formula. The model checking problems for pushdown processes
(and PAD) and branching-time logics belong to this class, since they are
PSPACE | EXPTIME-hard, even for small fixed formulae (see Chapter 7).

Model checking parallel systems like Petri nets with linear-time logics is also
in this class, since it is at least as hard as reachability for Petri nets and
thus EXPSPACE-hard, even for a small fixed LTL-formula (see Chapters 6
and 9).

Model checking BPP with EF is almost (but not quite) as hard. The model
checking problem is not PSPACFE-hard for any fixed formula, but complete
for the d-th order in the polynomial time hierarchy for formulae of nesting

depth < d. Of course this lower bound also holds for PA.

2. There are model checking problems that are only hard in the size of the
formula. Model checking BPA with all branching-time logics is polynomial
in the size of the system for any fixed formula (see Chapter 7). This shows
that BPA and pushdown processes are quite different in model checking,
although they describe the same class of languages (Chomsky-2).

The model checkers SPIN [Hol91] and PROD [Val92] work with finite-state
systems and LTL. This problem is also PSPACE-complete, but polynomial
in the size of the system for any fixed formula. Model checking BPA and
pushdown processes with linear-time logics (see Chapter 7) is also polyno-
mial in the size of the system for any fixed formula. So these problems
are tractable in practice and model checkers like SPIN [Hol91] and PROD
[Val92] could be generalized to handle them. Similar tools could be devel-
oped for BPA and the modal p-calculus.

Finally, verification doesn’t have to be completely automatic. Normally a sys-
tems designer knows quite a lot about the structure of the system that he/she
wants to verify. If the user can use his knowledge about the system in the ver-
ification process, then the problem becomes a lot easier. This is because fully
automatic verification algorithms often spend a lot of time proving (implications
of) properties that are trivial for the user, for example “process ¢; cannot have
any influence on the behavior of process t, before action b has occurred”. So

180 CHAPTER 12. CONCLUSION AND FINAL REMARKS

semiautomatic verification methods are a promising direction. They can be im-
plemented in theorem provers with human interaction, like PVS [ORSv95] and
“Isabelle” [Pau94]. In these semiautomatic methods it is necessary that the user
can understand and influence the verification process. Tableau systems like in
Section 9.2 and in [Bra92, BEM96, BS97, And94] provide the theoretical basis
for this.

Bibliography

[And94]

[BCSY5]

[BCSY6]

[BE9T]

[BEHO5]

[BEM96]

[BEMO97a]

[BEMO7b]

Henrik Reif Andersen. On model checking infinite-state systems. In
Logical Foundations of Computer Science — LFCS’9/, volume 813 of
LNCS. Springer Verlag, 1994.

O. Burkart, D. Caucal, and B. Steffen. An elementary bisimulation
decision procedure for arbitrary context-free processes. In MF(CS’95,

volume 969 of LNCS. Springer Verlag, 1995.

O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the
process taxonomy. In Ugo Montanari and Vladimiro Sassone, editors,
Proceedings of CONCUR 96, volume 1119 of LNCS. Springer Verlag,
1996.

O. Burkart and J. Esparza. More infinite results. Electronic Notes in

Theoretical Computer Science (ENTCS), 5, 1997.

A. Bouajjani, R. Echahed, and P. Habermehl. Verifying infinite state
processes with sequential and parallel composition. In Proceedings of

POPL’95, pages 95-106. ACM Press, 1995.

J. Bradfield, J. Esparza, and A. Mader. An effective tableau system for
the linear time p-calculus. In F. Meyer auf der Heide and B. Monien,
editors, Proceedings of ICALP 96, volume 1099 of LNCS. Springer
Verlag, 1996.

A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of
pushdown automata: application to model checking. In International
Conference on Concurrency Theory (CONCUR’97), volume 1243 of
LNCS. Springer Verlag, 1997.

A. Bouajjani, J. Esparza, and O. Maler. Reachabil-
ity Analysis of Pushdown Automata: Application to
Model Checking. Technical report, VERIMAG, 1997.

ftp://ftp.imag.fr/imag/SPECTRE/ODED /pda.ps.gz.

181

182

BIBLIOGRAPHY

[BH6]

[BKS85]

[Bra92]

[BS90]

[BS92a]

[BS92b]

[BS94]

[BS95]

[BS97]

[BW90]

[Cau92]

[CES1]

[CGLY4|

A. Bouajjani and P. Habermehl. Constrained properties, semilinear
systems, and Petri nets. In Ugo Montanari and Vladimiro Sassone,
editors, Proceedings of CONCUR 96, volume 1119 of LNCS. Springer
Verlag, 1996.

J. A. Bergstra and J.W. Klop. Algebra of communicating processes
with abstraction. Theoretical Computer Science (TCS), 37:77-121,
1985.

J. Bradfield. Verifying Temporal Properties of Systems. Birkhauser,
1992.

J. Bradfield and C. Stirling. Verifying temporal properties of pro-
cesses. volume 458 of LNCS, pages 115-125. Springer Verlag, 1990.

J. Bradfield and C. Stirling. Local model checking for infinite state
spaces. Theoretical Computer Science (TCS), 96:157-174, 1992.

O. Burkart and B. Steffen. Model checking for context-free processes.
In Proc. of CONCUR’92, volume 630 of LNCS, pages 123-137, 1992.

O. Burkart and B. Steffen. Pushdown processes: Parallel composition
and model checking. In CONCUR’94, volume 836 of LNCS, pages
98-113. Springer Verlag, 1994.

O. Burkart and B. Steffen. Composition, decomposition and model
checking optimal of pushdown processes. Nordic Journal of Computer

Science, 1995.

O. Burkart and B. Steffen. Model checking the full modal mu-calculus
for infinite sequential processes. In Proceedings of [CALP 97, volume
1256 of LNCS. Springer Verlag, 1997.

J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts
in Theoretical Computer Science, 18, 1990.

D. Caucal. On the regular structure of prefix rewriting. Journal of

Theoretical Computer Science, 106:61-86, 1992.

E.M. Clarke and E.A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. volume 131 of

LNCS, pages 52-71, 1981.

E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-
state concurrent systems, volume 803 of LNCS. Springer Verlag, 1994.

BIBLIOGRAPHY 183

[CHTS]

[CHM93a]

[CHM93b)]

[Chr93]

[CHS92]

[Dam92]

[Dic13]

[EJS93]

[EK95]

[Eme94]

[Esp94]

P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In 5th ACM Symposium on Principles
of Programming Languages. ACM-Press, 1978.

S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence
is decidable for Basic Parallel Processes. In E. Best, editor, Proceed-

ings of CONCUR 93, volume 715 of LNCS. Springer Verlag, 1993.
S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability, de-

cidability and axiomatisability for bisimulation equivalence on Basic
Parallel Processes. In Proceedings of LICS’93. IEEE Computer Soci-
ety Press, 1993.

S. Christensen. Decidability and Decomposition in Process Algebras.

PhD thesis, Edinburgh University, 1993.

S. Christensen, H. Huttel, and C. Stirling. Bisimulation equivelence
is decidable for all context-free processes. In W.R. Cleaveland, editor,
Proceedings of CONCUR 92, volume 630 of LNCS. Springer Verlag,
1992.

M. Dam. Fixed points of Buichi automata. In R. Shyamasundar,
editor, Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’92), volume 652 of LNCS, pages 39-50. Springer
Verlag, 1992.

L.E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with distinct factors. American Journal of Mathematics,

35:413-422, 1913.

E. Emerson, C.5. Jutla, and A. Sistla. On model checking for frag-
ments of p-calculus. In Proceedings of CAV’93, volume 697 of LNCS,
pages 385-396. Springer Verlag, 1993.

J. Esparza and A. Kiehn. On the model checking problem for branch-
ing time logics and Basic Parallel Processes. In CAV’95, volume 939
of LNCS, pages 353-366. Springer Verlag, 1995.

E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science : Volume B, FORMAL
MODELS AND SEMANTICS. Elsevier, 1994.

J. Esparza. On the decidability of model checking for several p-calculi
and Petri nets. In Trees in Algebra and Programming — CAAP’94.
volume 787 of LNCS. Springer Verlag, 1994.

184

BIBLIOGRAPHY

[Esp95]

[Esp96]

[Esp97]

[Hab97]

[Hir93]

[HJM94]

[HIMO96]

[Hol91]

[HU79]

[Jan90)]

[Jan94]

[Jan95]

J. Esparza. Petri nets, commutative context-free grammars and Basic
Parallel Processes. In Horst Reichel, editor, Fundamentals of Compu-

tation Theory, volume 965 of LNCS. Springer Verlag, 1995.

J. Esparza. More infinite results. In B. Steffen and T. Margaria,
editors, Proceedings of INFINITY 96, number MIP-9614 in Technical

report series of the University of Passau. University of Passau, 1996.

J. Esparza. Decidability of model checking for infinite-state concurrent
systems. Acta Informatica, 34:85-107, 1997.

P. Habermehl. On the complexity of the linear-time mu-calculus for
Petri nets. In Proceedings of the International Conference on Appli-
cation and Theory of Petri Nets, Toulouse, France, LNCS. Springer
Verlag, 1997.

Y. Hirshfeld. Petri nets and the equivalence problem. In Proceedings of
CSL’93, volume 832 of LNCS, pages 165—174. Springer Verlag, 1993.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm
for deciding bisimulation of normed context free processes. Technical
report, LFCS report series 94-286, Edinburgh University, 1994.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algo-
rithm for deciding bisimulation equivalence of normed Basic Parallel
Processes. Journal of Mathematical Structures in Computer Science,

1996.

G.J. Holzman. Design and validation of computer protocols. Prentice

Hall, Englewood Cliffs, NJ, 1991.

J.E. Hopcroft and J.D. Ullman. [Introduction to Automata Theory,
Languages and Computation. Addison Wesley, 1979.

P. Jan¢ar. Decidability of a temporal logic problem for Petri nets.

Theoretical Comuter Science, 74:71-93, 1990.

P. Jancar. Decidability questions for bisimilarity of Petri nets and
some related problems. In Proceedings of STACS’94, volume 775 of
LNCS. Springer Verlag, 1994.

P. Jancar. Undecidability of bisimilarity for Petri nets and some re-
lated problems. Theoretical Computer Science, 148:281-301, 1995.

BIBLIOGRAPHY 185

[JE96]

[JKMO8a)

[JKMO8b]

[Koz83]

[Lip76]

[Mad97]

[May84]

[May96a]

[May96b]

[May96¢]

[May97al

P. Jan¢ar and J. Esparza. Deciding finiteness of Petri nets up to
bisimulation. In F. Meyer auf der Heide and B. Monien, editors,
Proceedings of ICALP’96, volume 1099 of LNCS. Springer Verlag,
1996.

P. Janc¢ar, A. Kucera, and R. Mayr. Deciding bisimulation-like equiv-
alences with finite-state processes. In Proc. of ICALP’98, LNCS.
Springer Verlag, 1998. To appear.

P. Janc¢ar, A. Kucera, and R. Mayr. Deciding bisimulation-like equiv-
alences with finite-state processes. Technical Report 19805, TU-
Minchen, 1998.

D. Kozen. Results on the propositional p-calculus. TCS, 27:333-354,
1983.

R. Lipton. The reachability problem requires exponential space. Tech-
nical Report 62, Department of Computer Science, Yale University,
January 1976.

A. Mader. Verification of Modal Properties Using Boolean Fquation
Systems. PhD thesis, TU-Miinchen, 1997.

E. Mayr. An algorithm for the general Petri net reachability problem.
SIAM Journal of Computing, 13:441-460, 1984.

Richard Mayr. Some results on Basic Parallel Processes. Technical

Report TUM-19616, TU-Minchen, March 1996.

Richard Mayr. A tableau system for model checking Petri nets with a
fragment of the linear time p-calculus. Technical Report TUM-19634,
TU-Munchen, October 1996.

Richard Mayr. Weak bisimulation and model checking for Basic Par-
allel Processes. In Foundations of Software Technology and Theoreti-
cal Computer Science (FSTTCS96), volume 1180 of LNCS. Springer
Verlag, 1996.

Richard Mayr. Combining Petri nets and PA-processes. In Martin
Abadi and Takayasu Ito, editors, International Symposium on The-
oretical Aspects of Computer Software (TACS’97), volume 1281 of
LNCS. Springer Verlag, 1997.

186

BIBLIOGRAPHY

[May97b]

[May97c¢]

[May97d]

[May97e]

[May98]

[MBY6]

[ME96]

[Mil89]

[Mol96]

[Mur89]

[ORSV95]

[Pau94]

[Pet81]

Richard Mayr. Model checking PA-processes. In International Confer-
ence on Concurrency Theory (CONCUR’97), volume 1243 of LNCS.
Springer Verlag, 1997.

Richard Mayr. Process rewrite systems. Flectronic Notes in Theoret-
ical Computer Science (ENTCS), 7, 1997. Proceedings of Expressive-
ness in Concurrency (EXPRESS’97).

Richard Mayr. Semantic reachability. Flectronic Notes in Theoretical
Computer Science (ENTCS), 5, 1997.

Richard Mayr. Tableau methods for PA-processes. In D. Galmiche,
editor, Analytic Tableaux and Related Methods (TABLEAUX97), vol-
ume 1227 of LNAIL Springer Verlag, 1997.

Richard Mayr. Strict lower bounds for model checking BPA. May
1998.

F. Moller and G. Birtwistle, editors. Logics for Concurrency, volume

1043 of LNCS. Springer Verlag, 1996.

S. Melzer and J. Esparza. Checking system properties via integer
programming. In H.R. Nielson, editor, Proc. of ESOP’96, volume
1058 of Lecture Notes in Computer Science, pages 250-264. Springer
Verlag, 1996.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

Faron Moller. Infinite results. In Ugo Montanari and Vladimiro Sas-
sone, editors, Proceedings of CONCUR’96, volume 1119 of LNCS.
Springer Verlag, 1996.

T. Murata. Petri nets: Properties, analysis und applications. Proc.

of the IEEE, 77(4):541-580, 1989.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of PVS.

IEEE Transactions on Software Engineering, 21(2):107-125, 1995.

Lawrence C. Paulson. [Isabelle: A Generic Theorem Prover, volume

828 of LNCS. Springer Verlag, 1994.

J.L. Peterson. Petri net theory and the modeling of systems. Prentice-
Hall, 1981.

BIBLIOGRAPHY 187

[Pnu77]

[SC85]

[SC93]

[Ste93]

[5ti92]

[Sti95]

[Sti96]

[SW90]

[SW91]

[Val92]

[Var88|

[vL90]

A. Pnueli. The temporal logic of programs. In FOCS77. IEEE, 1977.

A.P. Sistla and E.M. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733-749, 1985.

B. Steffen and R. Cleaveland. A linear—time model-checking algo-
rithm for the alternation—free modal mu—calculus. International Jour-
nal on Formal Methods in System Design, 1, 1993.

B. Steffen. Generating data flow analysis algorithms from modal spec-
ifications. [International Journal on Science of Computer Program-

ming, 21:115-139, 1993.

C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay,
and T. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, pages 477-563. Oxford University Press, 1992.

C. Stirling. Local model checking games. In Insup Lee and Scott A.
Smolka, editors, Proceedings of CONCUR’95, volume 962 of LNCS,
pages 1-11, 1995.

C. Stirling. Modal and temporal logics for processes. In F. Moller and
G. Birtwistle, editors, Logics for Concurrency, volume 1043 of LNCS,
pages 149-237. Springer Verlag, 1996.

C. Stirling and D. Walker. CCS, liveness, and local model checking
in the linear time p-calculus. In Proceedings of the First Interna-
tional Workshop on Automatic Verification Methods for Finite State
Systems, volume 407 of LNCS, pages 166-178. Springer Verlag, 1990.

C. Stirling and D. Walker. Local model checking in the modal p-
calculus. Theoretical Computer Science, 89:161-177, 1991.

A. Valmari. A stubborn attack on state explosion. Formal Methods
in System Design, 1:297 — 322, 1992.

M.Y. Vardi. A temporal fixpoint calculus. In Conference Record of
the 15th Annual Symposium on Principles of Programming Languages
(POPL’88), pages 250-259. ACM Press, 1988.

J. van Leeuwen, editor. Handbook of Theoretical Computer Science:
Volume A, Algorithms and Complexity. Elsevier, 1990.

188 BIBLIOGRAPHY

[Wal96a] 1. Walukiewicz. Pushdown processes: games and model checking. In
International Conference on Computer Aided Verification (CAV’96),
volume 1102 of LNCS. Springer Verlag, 1996.

[Wal96b] 1. Walukiewicz. Pushdown processes: games and model checking.
Technical Report RS-96-54, BRICS, Aarhus, Denmark, 1996. Longer
version of a CAV’96 paper.

[Yen92] H. Yen. A unified approach for deciding the existence of certain Petri
net paths. Information and Computation, 96(1):119-137, 1992.

List of Figures

2.1
2.2

3.1

6.1
6.2

9.1
9.2
9.3
9.4

11.1
11.2
11.3
11.4

A labeled transition system 11
The PRS-hierarchy.o 0o 16
Linear and branching-time logics 41
M1 SIO MQ, but not M1 SQO M2 65
Hardness of model checking BPP. 7

Reducing reachability set containment to model checking with EF 127

A simple Petrinet 0o oo 143
The modified Petrinet 000 144
A more complex Petrinet o000 146
The complexity of reachability. 169
Limits of the decidability of model checking with EF. 171
Limits of the decidability of branching-time logics. 175
Limits of the decidability of linear-time logics. 177

189

Index

(o, 3)-PRS, 14
EF5,.. 93

Action-based Semantics, 42

Alternation-free Modal u-Calculus, 48,
173

ATM, 87

Basic Parallel Processes, 17, 58
Basic Process Algebra, 22, 84
Bisimulation, 21, 30, 37

BPA, 22, 86, 179

BPP, 17, 58

CCS, 18

Context-free Processes, 22, 84, 86
CTL, 40, 46, 173

Cycle, 63

EF, 40, 44, 58, 93, 125, 170, 178
Effect-vector, 22
EG, 40, 46, 125, 172

Finite-State Systems, 17, 56
Hennessy-Milner Logic, 30, 43, 54

Linear-Time p-Calculus, 41, 50, 127,
176, 178

Linear-Time Logic, 49

Livelock, 120

LTL, 40, 49, 79, 88, 123, 127, 176,
178, 179

Modal p-Calculus, 41, 47, 173
Model Checking Problem, 38

190

PA, 24, 92, 117

PAD, 25, 92

PAN, 26, 150

Parikh-vector, 22

Partial Deadlock, 117

Petri nets, 21, 125

Process Rewrite Systems, 11, 150
Process Terms, 12

PROD, 56, 179

PRS, 11, 26, 150

PRS-hierarchy, 10, 16, 30, 37, 178
Pushdown Processes, 22, 84, 179

Reachability Problem, 44, 116, 151,
168

Reachable Property Problem, 45, 155,
168

Semiautomatic Verification, 128, 149,
180

SPIN, 56, 179

State Formula, 45

State-based Semantics, 42

SVM, 56

Tableau system, 52, 106, 131, 157,
180

UB, 46, 172

Weak Linear-Time Logic, 48
WL, 48

