
Decidability and Complexity ofModel Checking Problems forIn�nite-State SystemsRichard Mayr

BPA (1,S)

PA (1,G)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Pushdown
(S,S)

Finite-State Systems (1,1)

Processes Petri Nets (P,P)

Lehrstuhl f�ur Theoretische Informatik und Grundlagen der KIInstitut f�ur Informatikder Technischen Universit�at M�unchenDecidability and Complexity of Model CheckingProblems for In�nite-State SystemsRichard MayrVollst�andiger Abdruck der von der Fakult�at f�ur Informatik der TechnischenUniversit�at M�unchen zur Erlangung des akademischen Grades einesDoktors der Naturwissenschaften (Dr. rer. nat.)genehmigten Dissertation.Vorsitzender: Univ.-Prof. T. Nipkow, Ph.D.Pr�ufer der Dissertation: 1. Univ.-Prof. Dr. J. Esparza2. Univ.-Prof. Dr. E. MayrDie Dissertation wurde am 22.12.1997 bei der Technischen Universit�at M�uncheneingereicht und durch die Fakult�at f�ur Informatik am 16.4.1998 angenommen.

AbstractThere are many di�erent formal models for systems with in�nite state spaces.Among them are context-free processes, Basic Parallel Processes, PA-processes,pushdown processes and Petri nets. They are used to build abstract models ofprograms and to verify their correctness with respect to a formal speci�cation.We present a uni�ed view of all these models by describing them as subclassesof a very general term rewriting formalism, that we call Process Rewrite Systems(PRS). We de�ne the PRS-hierarchy of these subclasses and show that it is strictwith respect to bisimulation equivalence. Similar hierarchies of rewrite systemshave already been de�ned by Stirling, Caucal and Moller, but only for systemswith either only sequential composition or only parallel composition. The PRS-hierarchy subsumes these hierarchies and additionally contains systems that useboth sequential and parallel composition. This uni�ed view also yields naturalgeneralizations of several models, i.e. a common generalization of Petri nets andpushdown processes.We use temporal logics to specify properties of systems. We consider standardtemporal logics like computation tree logic (CTL), the modal �-calculus, linear-time temporal logic (LTL), the linear-time �-calculus and several fragments ofCTL. The model checking problem is, if a system described in a formal modelsatis�es a property encoded as a formula in a temporal logic. We study thedecidability and the computational complexity of model checking problems forthese temporal logics and the models in the PRS-hierarchy.We prove several new results about the decidability of model checking problems.These results close the last gaps and so we can present a complete picture of thedecidability of the model checking problem for all these logics and all models inthe PRS-hierarchy.We also solve some open problems about the computational complexity of modelchecking. These results can be combined with the results of other authors, andso we get an almost complete picture of the complexity of the model checkingproblem for all these logics and all models in the PRS-hierarchy. The only majoropen problems that remain are the exact complexity of the reachability problemfor Petri nets and the complexity of model checking �nite-state systems with thefull modal �-calculus.

Furthermore, we present a tableau system that solves the model checking problemfor Petri nets and the interpretation of the linear-time �-calculus on in�nite runs.Tableau methods are particularly useful for semiautomatic veri�cation.Finally, we study several models in the PRS-hierarchy that arise as natural com-mon generalizations of mutually incomparable models like Petri nets, pushdownprocesses and PA-processes. Some of these models (called PAN and PRS) arestrictly more expressive that Petri nets. They can be interpreted as an extensionof Petri nets with subroutines, since they can describe both parallelism and re-cursion. We show that the reachability problem is decidable for PAN and PRS.Thus they are more general than Petri nets, but not Turing-powerful.

Contents1 Introduction 52 Formal Models 102.1 The PRS-Hierarchy . 102.2 The Intuition . 152.3 The Models in Detail . 172.3.1 (1; 1)-PRS = Finite-State Systems 172.3.2 (1; P)-PRS = Basic Parallel Processes (BPP) 172.3.3 (P;P)-PRS = Petri Nets 212.3.4 (1; S)-PRS = Basic Process Algebra (BPA) 222.3.5 (S; S)-PRS = Pushdown Processes 222.3.6 (1; G)-PRS = PA-Processes 242.3.7 (S;G)-PRS = PAD . 252.3.8 (P;G)-PRS = PAN . 262.3.9 (G;G)-PRS = Process Rewrite Systems 262.4 Intended Applications . 272.5 The PRS-Hierarchy is Strict . 303 Temporal Logics and Model Checking 383.1 Branching-Time Logics . 423.1.1 Hennessy-Milner Logic . 433.1.2 The Logic EF . 443.1.3 The Logic EG . 461

2 CONTENTS3.1.4 The Logic UB . 463.1.5 Computation Tree Logic (CTL) 463.1.6 The Modal �-Calculus . 473.2 Linear-Time Logics . 483.2.1 Weak Linear-Time Logic (WL) 483.2.2 Linear-Time Logic (LTL) 493.2.3 The Linear-Time �-Calculus 504 Tableau Systems 525 Finite-State Systems 566 Basic Parallel Processes (BPP) 586.1 Model Checking BPP with EF . 586.1.1 General Properties of Communication-free Nets 596.1.2 Model Checking Communication-free Nets 726.2 Model Checking BPP with LTL 796.3 Conclusion . 827 Pushdown Processes and BPA 848 PAD and PA 928.1 Model Checking PAD with EF=DC 938.1.1 The Temporal Logic EF=DC 938.1.2 Decomposition . 988.1.3 The Tableau System . 1068.1.4 Decidability . 1098.1.5 Complexity . 1148.2 Reachability for PAD . 1168.3 Simple Veri�cation Problems for PA 1178.3.1 Partial Deadlock . 1178.3.2 Livelock . 1208.4 Conclusion . 122

CONTENTS 39 Petri Nets 1259.1 Branching-Time Logics . 1259.2 Linear-Time Logics . 1279.2.1 The Complexity of the Problem 1279.2.2 Preliminaries . 1299.2.3 The Sequents . 1319.2.4 The Basic Rules . 1329.2.5 Paths and Internal Paths 1339.2.6 The Special Rules . 1349.2.7 Soundness and Completeness 1379.2.8 Examples . 1439.2.9 Extensions . 1479.2.10 Related Work . 1489.3 Conclusion . 14910 PRS and PAN 15010.1 The Reachability Problem . 15110.2 The Reachable Property Problem 15510.3 Application . 16510.4 Conclusion . 16711 Summary 16811.1 Branching-Time Logics . 16811.1.1 Reachability and Reachable Property 16811.1.2 EF . 17011.1.3 EG . 17211.1.4 UB . 17211.1.5 CTL . 17311.1.6 Alternation-free Modal �-Calculus 17311.1.7 Modal �-Calculus . 17311.2 Linear-Time Logics . 176

4 CONTENTS12 Conclusion and Final Remarks 178Bibliography 181List of Figures 189Index 190

Chapter 1IntroductionAn important problem in software engineering is to ensure the correctness ofprograms. Correctness means that the program ful�lls the task for which it wasdesigned. The correctness is de�ned with respect to a formal speci�cation thatcharacterizes the desired behavior of the program in an abstract way. The processof checking whether an implementation (a program) satis�es the requirementsdescribed by the speci�cation is called veri�cation.The �rst and still the most common method of veri�cation is testing. In testing,one observes the behavior of the program in di�erent situations with di�erentinputs and checks if it matches the speci�cation. A di�erence between themindicates an error, which can then be localized and (hopefully) corrected. For themajority of programs nowadays, testing is the only veri�cation technique applied.The problem is, that it is incomplete. By testing one might �nd errors, but(except in very special and rare cases) one never gets a guarantee that a programis correct. Even if extensive testing reveals no errors, this doesn't mean thatthere are none. This is due to the fact that most programs have an extremelylarge state space. This means that there is a large number of di�erent reachablestates in each of which the program can behave di�erently. If this state space is�nite, it would be theoretically possible to test the behavior of the program inevery reachable state. In practice however, this often cannot be done, since evenvery small programs can well have a state space that is larger than the numberof atoms in the universe. Thus it is impossible to test every situation that canpossibly occur in the execution of such programs. So, except for programs withvery small state spaces, testing can only reduce the probability of errors, but itcan never give certainty.Often the problem is even harder, because many programs have in�nite statespaces. This can be due to the use of real numbers, arbitrarily large data struc-5

6 CHAPTER 1. INTRODUCTIONtures, unbounded bu�ers or stacks, or the possibility to create arbitrarily manychild-processes. In these cases complete testing is even theoretically impossible.With parallel computer architectures and concurrent systems, the problem getseven worse. When several components of a program run in parallel the numberof di�erent possible execution sequences increases exponentially, even for �nite-state systems. This problem is known as the state explosion problem. It is due tothe fact that there are so many ways the components can inuence each other,and many cases that depend on which event happens �rst in which component.For example if m copies of a process with n states run in parallel, then the wholesystem has nm states.Also concurrent systems more often have in�nite state spaces, because the cre-ation of arbitrarily many new parallel processes can be possible. Due to theseadditional problems, testing becomes even more unreliable for concurrent sys-tems.On the other hand, veri�cation is even more important for concurrent systems,because, as experience has shown, it is more di�cult for programmers to writeerror-free code for parallel programs and mistakes occur more often than in se-quential systems. Therefore better veri�cation techniques for both �nite-stateand in�nite-state concurrent systems are needed. The approaches to developsuch techniques can roughly be divided into two categories: theorem provers (forexample [ORSv95, Pau94]) and model checkers (for example [Hol91, CGL94]).With theorem provers one attempts to �nd a formal proof that the implemen-tation satis�es some property expressed in the speci�cation. This is essentiallya semiautomatic technique where the theorem proving system and the user in-teract in the search for a proof. Normally, the user has to guide the system anddo the crucial steps of the proof, while the theorem prover can do some simplesubproblems automatically. While this technique is very powerful in principle,its applicability in practice is hindered by the fact that it is often cumbersomeand requires a lot of knowledge, skill and practice from the user. Still it has beenused successfully for the veri�cation of safety-critical systems.Model checkers are another approach to solve the veri�cation problem. No fullspeci�cation languages are used in model checking, but properties of systems aredescribed in temporal logics (see Chapter 3). An instance of the model checkingproblem is then given by a description of a system (a program) and a temporallogic formula. The question is, if the system satis�es the property described bythe formula. Unlike theorem provers, model checkers operate completely auto-matically and are thus very easy to use. Model checking has been used withconsiderable success in the veri�cation of �nite-state systems. To conquer thestate explosion problem, techniques have been developed to reduce the size of the

7state space by �nding equivalence classes of states that have the same (or a verysimilar) behavior, as far the veri�cation is concerned. Veri�cation can then bedone by examining every equivalence class.The problem with model checking is that such automatic techniques cannot beapplied to arbitrary programs with in�nite state spaces, because these are Turing-powerful and even simple questions like \Is a certain state reachable?" are unde-cidable.The idea to extend model checking techniques to in�nite-state systems was mo-tivated by formal language theory [HU79]. In formal language theory in�nitelanguages are �nitely described and some problems about them (for exampleequivalence of regular languages) are decidable. So not every problem about in�-nite systems is undecidable. In analogy to formal language theory new formalismsto describe in�nite-state systems were introduced.A classical example for this are pushdown automata. In formal language theorythey are used to describe Chomsky-2 languages, but they can also be seen asmodels for in�nite-state systems. Every state of the �nite control together withthe content of the stack describes a state. Since the stack is unbounded, therecan be in�nitely many di�erent states. The state changes when the automatonaccepts a terminal symbol. However, this can also be interpreted as performingan action and changing the state by it.Other models, like Petri nets [Pet81], can also describe concurrent systems. Theseformal models can describe the important aspects of the behaviors of programsby using a formalism that is less powerful than Turing-machines (or program-ming languages) and therefore easier to analyze. Being not Turing-powerful,these models cannot fully describe every aspect of the behavior of a program.However, they can often describe the aspects of the programs' behaviors that areimportant for the veri�cation. Formal models are used for veri�cation, becausethey are normally smaller and more easily handled than full programs. As theyare not Turing-powerful some veri�cation problems are decidable for them. For-mal models should be simple enough to allow automated veri�cation, or at leastcomputer-assisted veri�cation. On the other hand they should be as expressiveas possible, so that most aspects of real programs can be modeled.Petri nets and process algebras are two popular kinds of formalisms used to buildabstract models of concurrent systems. In this thesis we present a uni�ed view ofPetri nets and several simple process algebras by representing them as subclassesof a general rewriting formalism. We call this formalism Process Rewrite Systems(PRS). We also de�ne a hierarchy of subclasses of this rewriting formalism. Suchhierarchies have already been de�ned by Stirling, Caucal and Moller [Cau92,Mol96], but only for either purely sequential- or purely parallel systems. Here we

8 CHAPTER 1. INTRODUCTIONgeneralize this to systems with both sequential and parallel composition. We callour hierarchy of rewrite systems the PRS-hierarchy.We study the decidability and computational complexity of model checking prob-lems for the models in the PRS-hierarchy and most standard temporal logics[MB96, Eme94, Bra92]. These logics include for example linear-time temporallogic (LTL), the linear-time �-calculus, the modal �-calculus, computation-treelogic (CTL) and several natural fragments of CTL. The aims of this thesis arethe following:1. The primary aim is to establish the decidability and computational com-plexity of all model checking problems for the models in the PRS-hierarchy.For the decidability we have achieved this and so we can present a completepicture of the decidability of model checking. For the complexity we solveseveral problems s.t. only few open problems remain. So we can give analmost complete picture of the complexity of model checking.The main new results are in three di�erent areas:� The decidability and complexity of model checking with the branching-time temporal logic EF. EF is a simple but very natural fragment ofcomputation-tree logic (CTL). We show that for almost all formalmodels, model checking with EF has a signi�cantly lower complexitythan model checking with any other branching-time logic.� We also show strict lower bounds for the model checking problemsfor linear-time temporal logic (LTL) and some simple process algebraslike Basic Parallel Processes or context-free processes. These prob-lems were already known to be decidable, but only much weaker lowerbounds were known.� The uni�ed view of formal models yields natural generalizations ofPetri nets by subroutines and recursion. We show that these newmodels are strictly more expressive than Petri nets, but not Turing-powerful.2. The secondary aim is to develop methods that make veri�cation of in�nite-state systems more feasible in practice.Since the complexity of model checking in�nite-state systems is often veryhigh, automatic methods cannot always be applied. Basically, there are twoways to counter this problem:� In practice it is not always necessary to use the full power of a temporallogic for the veri�cation. Therefore it is important to �nd e�cient

9algorithms for simple veri�cation problems. In Section 8.3 we presentpolynomial algorithms for some simple veri�cation problems in processalgebras.� In some cases automatic methods cannot be applied, because the modelchecking problem is undecidable or the complexity is too high. In thesecases semiautomatic methods (i.e. theorem provers with human inter-action) can be very useful. Tableau systems provide a theoretical basisfor these semiautomatic methods. We develop such a tableau systemin Chapter 9. This tableau system solves the model checking problemfor Petri nets and the interpretation of the linear-time �-calculus onin�nite runs. Tableau systems are particularly useful for semiauto-matic veri�cation, because they give the user a better intuition andcomplete control over the veri�cation process.In order to give a complete picture of the decidability and complexity of modelchecking problems for in�nite-state systems, many results by other authors arecited. Therefore some parts of this thesis look like a survey. However, results byother authors are only cited, but not proved. So every proof in this thesis is dueto the author. Some chapters of this thesis are very short, since they only containcitations and no proofs.We assume that the reader is familiar with formal languages [HU79] and the basicsof complexity theory, like Turing-machines, counter machines, reductions, oraclesand the complexity classes P, NP, the polynomial time hierarchy, PSPACE ,EXPTIME and EXPSPACE [vL90]. The reader should also be familiar withPetri nets [Pet81]. Knowledge of temporal logics [Bra92, MB96, Eme94] andCCS [Mil89] is helpful, but not necessary.Chapter 2 presents a uni�ed view of many common- and several new formalmodels for in�nite-state systems. Chapter 3 de�nes the temporal logics that areused to specify properties of systems. In Chapter 4 we give a brief introduction totableau systems, an important method for model checking in�nite-state systems.In Chapters 5 { 10 we study the decidability and complexity of model checkingproblems for the various process models. Chapter 11 summarizes the results andin Chapter 12 we draw some general conclusions.

Chapter 2Formal ModelsIn this chapter we introduce the formal models used to describe in�nite-state sys-tems. We present a uni�ed view of many widely known models like Basic ParallelProcesses (BPP) [Chr93], context-free processes (BPA), pushdown processes, PA,Petri nets and others. We show that all these models can be seen as subclassesof a general term rewriting formalism.Such uni�ed representations have already been used by Stirling, Caucal andMoller [Cau92, Mol96], but only for either purely sequential- or purely paral-lel systems. Here we generalize this to systems with both sequential and parallelcomposition.In Section 2.1 we present this formalism and de�ne a hierarchy of subclasses withrespect to their expressiveness. In Section 2.2 we explain the intuition behindthe de�nition of the various subclasses. In Section 2.3 we show that popularmodels like Petri nets and process algebras correspond to certain subclasses inthis hierarchy and in Section 2.4 we give an example. In Section 2.5 we show thatthis hierarchy is strict with respect to bisimulation equivalence.2.1 The PRS-HierarchyPrograms and their possible execution sequences can be formally described bylabeled transition systems (LTS).De�nition 2.1.1 (LTS)A labeled transition system is a (possibly in�nite) directed graph, whose nodesrepresent states and whose arcs are labeled with atomic actions from a prede�ned10

2.1. THE PRS-HIERARCHY 11set Act = fa; b; c; : : :g. One special state is called the initial state. It is oftendenoted by s0.An arc leading from a node s1 to a node s2 that is labeled with an action a meansthat if the system is in state s1, then it can do action a and will be in state s2afterwards. This is denoted by s1 a! s2.Figure 2.1 shows an example of a LTS.
c

a

c

a b

b

d

b

a

c

...

...

S0

Figure 2.1: A labeled transition systemIf a LTS is �nite then it can be �nitely described. However, as most programshave in�nite state spaces, they yield in�nite transition systems. Formal modelslike Petri nets, pushdown automata and process algebras are ways of �nitelydescribing certain classes of in�nite transition systems.We present a uni�ed view of many common formal models by showing that everysingle one can be seen as a special subclass of rewrite systems. Basically, therewriting formalism is �rst-order pre�x-rewrite systems on process terms withoutsubstitution and modulo commutativity and associativity of parallel compositionand modulo associativity of sequential composition. The most general class ofthese systems is called Process Rewrite Systems (PRS). In the following wedescribe this formalism.

12 CHAPTER 2. FORMAL MODELSMany classes of concurrent systems can be described by a (possibly in�nite) set ofprocess terms, representing the states, and a �nite set of rewrite rules describingthe dynamics of the system.De�nition 2.1.2 Let Act = fa; b; : : :g be a countably in�nite set of atomicactions and V ar = fX;Y;Z; : : : g a countably in�nite set of process variables.The process terms that describe the states of the system have the following form:P ::= � j X j P1:P2 j P1kP2where � is the empty term, X is a process variable (used as an atomic pro-cess in this context), \k" means parallel composition and \:" means sequentialcomposition. Parallel composition is associative and commutative. Sequentialcomposition is associative. Let T be the set of process terms.Convention 1: We always work with equivalence classes of terms modulo com-mutativity and associativity of parallel composition and modulo associativity ofsequential composition. Also we de�ne that �:P = P = P:� and Pk� = P .Convention 2: We de�ned that sequential composition is associative. However,when we look at terms we think of it as left-associative. So when we say that aterm t has the form t1:t2, then we mean that t2 is either a single variable or aparallel composition of process terms.The size of a process term is de�ned as the number of variables in it.size(�) := 0size(X) := 1size(P1:P2) := size(P1) + size(P2)size(P1kP2) := size(P1) + size(P2)For a term t the set Var (t) is the set of variables that occur in t.Var(�) := fgVar (X) := fXgVar(P1:P2) := Var(P1) [Var (P2)Var(P1kP2) := Var(P1) [Var (P2)The dynamics of the system is described by a �nite set of rules � of the form(t1 a! t2) where t1 and t2 are process terms and a 2 Act is an atomic action. The�nite set of rules � induces a (possibly in�nite) labeled transition system with

2.1. THE PRS-HIERARCHY 13relations a! with a 2 Act. For every a 2 Act, the transition relation a! is thesmallest relation that satis�es the following inference rules.(t1 a! t2) 2 �t1 a! t2 t1 a! t01t1kt2 a! t01kt2 t2 a! t02t1kt2 a! t1kt02 t1 a! t01t1:t2 a! t01:t2where t1; t2; t01; t02 are process terms.Since � is �nite, the generated LTS is �nitely branching 1. Also every single �uses only a �nite subsetVar(�) := [(t1 a!t2)2�(Var (t1) [Var(t2))of variables and only a �nite subsetAct(�) := [(t1 a!t2)2�fagof atomic actions. Thus for every � only �nitely many of the generated transitionrelations ai! for ai 2 Act are nonempty. (Those for which ai 2 Act(�)). Still thegenerated transition system can be in�nite. (Consider the analogy: Every labeledPetri net has only �nitely many transitions and uses only �nitely many di�erentatomic actions, but the state space can be in�nite.)The relation a! is generalized to sequences of actions in the standard way. Se-quences are denoted by �. Normally, � stands for a sequence of actions, butsometimes we also consider sequences of applications of rules. In these cases �stands for a sequence of rules and not only for the actions associated to theserules. (Note that di�erent rules can be marked with the same action.)Without restriction we can assume that the initial state of a system is describedby a term consisting of a single variable.Remark 2.1.3 There is no operator \+" for nondeterministic choice in the pro-cess terms, because this is encoded in the set of rules �! There can be severalrules with the same term on the left hand side. It is also possible that severalrules are applicable at di�erent places in a term. The rule that is applied and theposition where it is applied are chosen nondeterministically.Also there is no such thing as action pre�xes in the process terms. The atomicactions are introduced by the rules.1For some classes of systems (e.g. Petri nets) the branching-degree is bounded by a constantthat depends on �. For other classes (e.g. PA) the branching-degree is �nite at every state,but it can get arbitrarily high.

14 CHAPTER 2. FORMAL MODELSMany common models of systems �t into this scheme. In the following we char-acterize subclasses of rewrite systems. The expressiveness of a class depends onwhat kind of terms are allowed on the left hand side and right hand side of therewrite rules in �.De�nition 2.1.4 (Classes of process terms)We distinguish four classes of process terms:1 Terms consisting of a single process variable like X.S Terms consisting of a single variable or a sequential composition of processvariables like X:Y:Z.P Terms consisting of a single variable or a parallel composition of processvariables like XkY kZ.G General process terms with arbitrary sequential and parallel composition like(X:(Y kZ))kW .Also let � 2 S; P;G, but � =2 1. It is easy to see the relations between these classesof process terms: 1 � S, 1 � P , S � G and P � G. S and P are incomparableand S \ P = 1 [f�g.We characterize classes of process rewrite systems (PRS) by the classes of termsallowed on the left hand sides and the right hand sides of rewrite rules.De�nition 2.1.5 (PRS)Let �; � 2 f1; S; P;Gg. A (�; �)-PRS is a �nite set of rules � where for everyrewrite rule (l a! r) 2 � the term l is in the class � and l 6= � and the term ris in the class � (and can be �). The initial state is given as a term t0 2 �. A(G;G)-PRS is simply called PRS.Remark 2.1.6 W.l.o.g. it can be assumed that the initial state t0 of a PRS is asingle variable. There are only �nitely many terms t1; : : : ; tn s.t. t0 ai! ti. If t0 isnot a single variable then we can achieve this by introducing a new variable X0and new rules X0 ai! ti and declaring X0 to be the initial state.(�; �)-PRS where � is more general than � or incomparable to � (for example� = G and � = S) do not make any sense. This is because the terms that areintroduced by the right side of rules must later be matched by the left sides ofother rules. So in a (G;S)-PRS the rules that contain parallel composition on

2.2. THE INTUITION 15the left hand side will never be used (assuming that the initial state is a singlevariable). Thus one may as well use a (S; S)-PRS. So we restrict our attentionto (�; �)-PRS with � � �.Many of these (�; �)-PRS correspond to widely known models like Petri nets,pushdown processes, context-free processes and others. In Section 2.3 this willbe explained in detail. Figure 2.2 shows a graphical description of the hierarchyof (�; �)-PRS models. This �gure contains all (�; �)-PRS with � � �. We giveboth the common name and the speci�c (�; �) for every model. A line from alower model to a higher one means that the higher one is more general than thelower one.2.2 The IntuitionIn Section 2.3 we look at each (�; �)-PRS in detail and examples are given.However, in this section we explain the general intuition behind the de�nition of(�; �)-PRS. What does it mean that parallel/sequential/arbitrary compositionis allowed in terms on the left/right hand sides of rules?If parallel composition is allowed on the right hand side of rules, then there canbe rules of the form t a! t1kt2. This means that it is possible to create processesthat run in parallel. The rule can be interpreted that, by action a, the process tbecomes the process t1 and spawns o� the process t2 or vice versa.If sequential composition is allowed on the right hand side of rules, then there arerules of the form t a! t1:t2. The interpretation is that process t calls a subroutinet1 and becomes process t2. It resumes its execution when the subroutine t1terminates.If arbitrary sequential and parallel composition is allowed on the right hand sideof rules then both parallelism and subroutines are possible.If parallel composition is allowed on the left hand side of rules, then there are rulesof the form t1kt2 a! t. This can be interpreted as synchronization/communicationof the parallel processes t1 and t2. This is because this action can only occur ifboth t1 and t2 change in a certain de�ned way.If sequential composition is allowed on the left hand side of rules, then therecan be rules of the form t01:t2 a! t0 and t001:t2 a! t00. The intuition is that aprocess t called a subroutine t1 and became process t2 by a rule t a! t1:t2. Thesubroutine may in its computation reach a state t01 or t001. Now one of these rulesis applicable. This means that the result of the computation of the subroutinea�ects the behavior of the caller when it becomes active again, since the caller

16 CHAPTER 2. FORMAL MODELS

BPA (1,S)

PA (1,G)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Pushdown (S,S)
Processes Petri Nets (P,P)

Finite-State Systems (1,1)Figure 2.2: The PRS-hierarchy.

2.3. THE MODELS IN DETAIL 17can become t0 or t00. The interpretation is that the subroutine returns a value tothe caller when it terminates. (See the example in Section 2.4.)If arbitrary sequential and parallel composition is allowed on the left hand sideof rules then both synchronization and returning of values by subroutines arepossible.2.3 The Models in Detail(�; �)-PRS were introduced to provide a uni�ed view of many models of in�nite-state systems. Most of these models have been used for a long time and areknown under other names (e.g. Petri nets, pushdown processes, Basic ParallelProcesses, : : :). Here we look at these models in detail. We start at the bottomof the hierarchy and proceed upwards.2.3.1 (1; 1)-PRS = Finite-State SystemsEvery PRS has only a �nite number of rules, so it uses only �nitely many di�erentvariables. In a (1; 1)-PRS all rewrite rules only have single variables on both sides.So all reachable states are single variables and the state space is �nite, since it isbounded by jV ar(�)j � 2j�j. Every variable in V ar(�) corresponds to a stateand every rule in � corresponds to an arc in the LTS. In the same way every �niteLTS can be represented by a (1; 1)-PRS. So there is a one-to-one correspondencebetween �nite LTS and (1; 1)-PRS.Chapter 5 shows some results about model checking �nite-state systems.2.3.2 (1; P)-PRS = Basic Parallel Processes (BPP)In a (1; P)-PRS all rules have single variables on the left hand side and arbitraryparallel composition on the right hand side. (1; P)-PRS are equivalent to \Ba-sic Parallel Processes" (BPP), a simple process algebra that was introduced byChristensen [Chr93].The choice of this name is unfortunate, since the complexity class BPP of theproblems that can be solved in polynomial time with high probability [vL90], wasde�ned much earlier. However, the name BPP for this process algebra has becomevery common in the concurrency community. The complexity class BPP doesnot play a role here, and thus in this thesis BPP always means \Basic ParallelProcesses".

18 CHAPTER 2. FORMAL MODELSThere are several di�erent representations of BPP: As a subclass of CCS, as(1; P)-PRS and as communication-free nets (a subclass of Petri nets). In thefollowing pages we show that all these representations are equivalent.Originally (in [Chr93]) BPP where de�ned as a natural subclass of Milner's Cal-culus of Communicating Systems (CCS) [Mil89]; they are CCS without restrictionand relabeling and without the rule for communication. Of course CCS is a muchmore expressive model since it is Turing-powerful [Mil89] (while BPP is not).Assume a countably in�nite set of atomic actions Act = fa; b; c; : : :g and a count-ably in�nite set of process variables V ar = fX;Y;Z; : : : g. The class of BPPexpressions is de�ned by the following abstract syntax [Chr93, CHM93a]:E def.= � j X j aE j E1 + E2 j E1kE2where � is the empty process, X is a process variable, aE is an action pre�x(meaning: �rst do action a and then process E), \+" is nondeterministic choiceand \k" is parallel composition.A BPP is de�ned by a �nite family of recursive equations fXi := Ei j 1 � i � ngwhere the Xi are distinct and the Ei are BPP expressions at most containing thevariables fX1; : : : ;Xng. It is assumed that every variable occurrence in the Eiis guarded, i.e. appears within the scope of an action pre�x. The variable X1 issingled out as the leading variable and X1 := E1 is called the leading equation.Any �nite family of BPP equations determines a labeled transition system. Forevery a 2 Act the transition relation a! is the least relation satisfying the followinginference rules: aE a! E E a! E 0E+F a! E 0 F a! F 0E+F a! F 0E a! E 0EkF a! E 0kF F a! F 0EkF a! EkF 0 E a!E 0X a!E 0 (X:=E)BPP processes generate �nitely branching transition graphs, i.e. fF j E a! Fgis �nite for each E and a. This would not be true if unguarded expressionswere allowed. For example, the process X := a + akX generates an in�nitelybranching transition graph. Let Pi, i 2 IN be terms consisting of an arbitraryparallel composition of variables. A BPP is in normal form, if every expressionEi at the right hand side of an equation is of the form a1P1 + � � � + anPn. It isshown in [Chr93] that every BPP is semantically equivalent (strongly bisimilar)to a BPP in normal form.

2.3. THE MODELS IN DETAIL 19Any BPP in normal form can be represented by a (1; P)-PRS: For every recursiveequation X := a1P1 + � � � + anPn introduce n new rules X a1! P1, : : : , X an! Pn.The reverse translation is analogous.Remark 2.3.1 Note that in PRS-rules there is no operator for nondeterministicchoice anymore. The nondeterminism has been encoded in the set of rules in �.Nondeterministic choice now occurs when rules are applied, because more thanone rule may be applicable at a time.Another view of BPP (and (1; P)-PRS) is to see them as a special class of Petrinets.De�nition 2.3.2 (Petri nets)A labeled Petri net N is described by a fourtuple (S; T;W; l) where S is a �niteset of places, T is a �nite set of transitions, W : (S�T)[(T�S)! IN is a weightfunction and l : T ! Act is a function that assigns actions to the transitions.A marking of N is a mapping M : S ! IN. A marking M enables a transitiont if M(s) � W (s; t) for every place s. If t is enabled at M then it can occur. Ifthis happens, then the action l(t) occurs and the resulting successor marking isM 0, which is de�ned for every place s byM 0(s) :=M(s) +W (t; s)�W (s; t)See [Pet81] for more details about Petri nets.De�nition 2.3.3 A communication-free net is a labeled Petri net where everytransition has exactly one place in its preset. Formally, this is de�ned by8t 2 T: (91s 2 S: W (s; t) = 1 ^ 8s0 6= s:W (s0; t) = 0)A (1; P)-PRS can be translated into a communication-free net and vice versa.The translation of a (1; P)-PRS � into a communication-free net goes as follows:We work with equivalence classes of terms modulo commutativity and associa-tivity of parallel composition, so the order of variables in a term doesn't matter.Every term stands for a marking of the net and every variable in V ar(�) standsfor a place in the net. The number of occurrences of a variable in the term cor-responds to the number of tokens on this place. Every rule in � correspondsto a transition in the net. For a rule X a! Y m11 � � � Y mnn introduce a transition tlabeled by a, an arc labeled by 1 leading from place X to the transition t and

20 CHAPTER 2. FORMAL MODELSarcs labeled by mi leading from t to places Yi. It is important to note that inthese nets every transition has exactly one input place with an arc labeled by 1.The reverse translation is analogous.We now give an example of a BPP and describe it in the three di�erent formalisms:�rst as a system of recursive equations, then as a (1; P)-PRS and �nally as acommunication-free net.The system is de�ned by the following recursive equations:X := a:(Y kY) + b:(Y kZ)Y := c+ d:XZ := a:(XkY)The initial state (the leading variable) is X.An equivalent representation can be given as a (1; P)-PRS.X a! Y kYX b! Y kZY c! �Y d! XZ a! XkYThe initial state is X.Finally, this system can also be described by a communication-free net. Thevariables X;Y;Z now correspond to places and the transitions are labeled withatomic actions.
X

Y Z

2

a b

c d aThe initial state is the marking that contains only one token on place X.

2.3. THE MODELS IN DETAIL 21BPP has received considerable attention, because it is one of the few modelsfor which semantic equivalences like bisimulation [Jan94, Mil89, HJM94, CHS92,CHM93a, Jan95, CHM93b, HJM96, JE96, BCS95, May96a, May96c, May97d]are decidable.Model checking BPP has also been intensively studied [Esp97, Esp96, May96c,EK95, Hab97]. Chapter 6 shows results about the complexity of model checkingBPP.2.3.3 (P; P)-PRS = Petri NetsIn (P;P)-PRS all rewrite rules have arbitrary parallel composition on both sides,but no sequential composition. So all rules have the form X1kX2k : : :kXi a!Y1kY2k : : : kYk. There is a 1-to-1 correspondence between (P;P)-PRS and Petrinets. Remember that in transition systems described by PRS every state isrepresented by a process term. Every process variable used in a (P;P)-PRScorresponds to a place in the Petri net, and every process term corresponds to amarking. The number of occurrences of a variable in a term corresponds to thenumber of tokens on the place in the net. This is because we work with classesof terms modulo commutativity and associativity of parallel composition. Everyrewrite rule in � corresponds to a transition in the net. It can only be applied ifthere are enough variables in the term (tokens on places in the net) and replacesa multiset of variables (tokens) by another one.In De�nition 2.1.5 we de�ned that the left hand sides of rules of a PRS cannot be �.Thus we have the condition that every transition in the Petri net has at least oneplace in its preset. This is no restriction, since every Petri net can be transformedinto an equivalent one that satis�es this condition. In this transformation we justadd an extra place to the preset of each transition and arcs from this place to thetransition and back.Petri nets are more general than BPP (see Subsection 2.3.2), because Petri netsare more general than the subclass of communication-free nets. See [Pet81] for ageneral book on Petri nets.The following de�nitions also apply to BPP. They are used in Chapters 6 and 9.De�nition 2.3.4 Every Petri net N with n places and m transitions can bedescribed by a (n;m)-matrix C of integers. The entry hi;j at row i and columnj de�nes how many tokens a �ring of transition tj adds to place si. hi;j canbe negative. Every marking M is described by a vector of natural numbers ofdimension n. The i-th component of this vector is M(si).

22 CHAPTER 2. FORMAL MODELSLet � be a sequence of transitions. The Parikh-vector P (�) of � is an m-dimensional vector of natural numbers. The j-th component of P (�) is thenumber of times that the transition tj occurs in �.E(�) := C � P (�) is called the e�ect-vector of �. Unlike for the Parikh-vector,the elements of the e�ect-vector can be negative.It follows that ifM �!M 0 then M 0 =M +C �P (�) =M +E(�). Sometimes thee�ect-vector E(�) is seen as a function on the set of places. Then E(�)(si) is thei-th component of E(�).Chapter 9 is about model checking Petri nets.2.3.4 (1; S)-PRS = Basic Process Algebra (BPA)In a (1; S)-PRS all rules have single variables on the left hand side and arbitrarysequential composition on the right hand side, like for example X a! Y1:Y2:Y3.(1; S)-PRS are equivalent to the class of Basic Process Algebra (BPA) processes ofBergstra and Klop [BK85]. They are transition systems associated with Greibachnormal form (GNF) context-free grammars in which only left-most derivationsare permitted. BPA-processes are also called context-free processes.In analogy to BPP, BPA-processes can be represented by recursive equations andprocess terms that contain action pre�xes and the operator \+" for nondeter-ministic choice. Just as for BPP, nondeterminism can be encoded in the set ofrewrite rules and thus the operator \+" is no longer necessary.Chapter 7 contains results about model checking BPA.2.3.5 (S; S)-PRS = Pushdown ProcessesPushdown automata are a very common concept in formal language theory. Theyare used to describe context-free languages (Chomsky-2 languages) [HU79]. How-ever, they can also be used as a process model. The state of the �nite control andthe stack content then describe a state of the process. The rules that de�ne if aterminal symbol is accepted now describe which atomic actions the process canperform and how the state is changed by these actions. If pushdown automataare used as a process model, then they are called pushdown processes or pushdownsystems.To present such a pushdown process as a restricted form of a (S; S)-PRS �, wepartition the set of variables V ar(�) into disjoint sets Q (�nite control states)

2.3. THE MODELS IN DETAIL 23and � (stack symbols). The rewrite rules are then of the form p:A a! q:� withp; q 2 Q, A 2 � and � in �� (� is a sequential composition of variables in �).This represents the usual transition of pushdown automata which says that whilein control state p with the symbol A at the top of the stack, one can read theinput symbol a, move into control state q, and replace the stack element A withthe sequence �. Caucal [Cau92] showed that any unrestricted (S; S)-PRS canbe presented as a pushdown process, in the sense that the transition systems areisomorphic up to the labeling of states. Thus pushdown processes and (S; S)-PRSare equivalent. The general idea of the proof is to introduce �nitely many newvariables that are used as abbreviations for sequences (sequential compositions) ofnormal variables that occur in the rules of the (S; S)-PRS. Only �nitely many areneeded, because the set of rules is �nite. Then the rules are modi�ed by replacingsequences of variables in the rules by the shortest possible abbreviations.Consider the following (S; S)-PRS.X:Y a! WX:Y:Z b! X:Y:WX:Y:W c! ZX d! �If we introduce an abbreviation K for X:Y then the system becomesK a! WK:Z b! K:WK:W c! ZX d! �K d! YThis is a pushdown process and it is equivalent to the (S; S)-PRS above.Pushdown processes are used as a model for sequential systems with subroutines,especially for dataow analysis in recursive systems [BS95, Ste93]. There hasalso been work towards a generalization of this to parallel systems by regardingparallel compositions of pushdown processes [BS94]. Process rewrite systems area more general and more exible approach to model concurrent systems withrecursion (see Subsection 2.3.9, Section 2.4 and Chapter 10).Chapter 7 is about model checking pushdown processes.

24 CHAPTER 2. FORMAL MODELS2.3.6 (1; G)-PRS = PA-ProcessesIn (1; G)-PRS every rule only has one variable on the left hand side and anarbitrary process term on the right hand side. This class of processes is equivalentto the so-called \PA-processes" (PA stands for \Process Algebra") that wereintroduced in [BW90] as a natural subset of ACP processes. Nowadays this namehardly �ts any more, because the term \Process Algebra" now has a much widermeaning and includes much more general formalisms like CCS [Mil89]. Theseprocesses have nondeterminism, sequential composition and parallel composition,but no synchronization.PA is not a syntactical subset of Milner's Calculus of Communicating Systems(CCS) [Mil89], because CCS does not have an explicit operator for sequentialcomposition. However, CCS is still much more expressive, since it is Turingpowerful and can simulate sequential composition by parallel composition andsynchronization.Originally, PA-processes were presented in a di�erent form by recursive equations.However, it can be shown that the two formalisms are equivalent.Assume a countably in�nite set of atomic actions Act = fa; b; c; : : :g and a count-ably in�nite set of process variables V ar = fX;Y;Z; : : : g. The class of PA ex-pressions is de�ned by the following abstract syntaxE ::= � j X j aE j E + E j EkE j E:EConvention: We always work with equivalence classes of terms modulo com-mutativity and associativity of parallel composition and modulo associativity ofsequential composition. Also we de�ne that �:E = E = E:� and Ek� = E.A PA is de�ned by a family of recursive equations fXi := Ei j 1 � i � ng,where the Xi are distinct and the Ei are PA expressions at most containing thevariables fX1; : : : ;Xng. We assume that every variable occurrence in the Ei isguarded, i.e. appears within the scope of an action pre�x, which ensures that PA-processes generate �nitely branching transition graphs. This would not be trueif unguarded expressions were allowed. For example, the process X := a + akXgenerates an in�nitely branching transition graph.For every a 2 Act the transition relation a! is the least relation satisfying thefollowing inference rules:aE a! E E a! E 0E + F a! E 0 F a! F 0E + F a! F 0 E a! E 0X a! E 0 (X := E)E a! E 0EkF a! E 0kF F a! F 0EkF a! EkF 0 E a! E 0E:F a! E 0:F

2.3. THE MODELS IN DETAIL 25De�nition 2.3.5 A PA-process is in normal form if all its equations are of theform Xi = niXj=1 aijEijwhere 1 � i � n, ni 2 IN, aij 2 Act and Ei are process terms as used in PRS(that means without \+" (choice) and action pre�x).It has been shown in [BEH95] that any PA-process is semantically equivalent(up to bisimulation (see also Def. 2.5.1)) to a PA-process in normal form. ThisPA-process in normal form can be e�ectively constructed.A PA-process in normal form can be represented by a (1; G)-PRS by transformingeach recursive equation Xi = niXj=1 aijEijinto ni new rules Xi ai1�! Ei1 : : : Xi aini�! EiniThe reverse transformation is analogous.Chapter 8 and especially Section 8.3 shows results on veri�cation problems forPA-processes.2.3.7 (S;G)-PRS = PADPA-processes subsume context-free processes (BPA), but they do not subsumepushdown processes. This observation has led to the de�nition of a more gen-eral model that subsumes both PA-processes and pushdown processes. In theframework of PRS the generalization is obvious: PA-processes are (1; G)-PRSand pushdown processes are (S; S)-PRS, so the `smallest' common generalizationis (S;G)-PRS. They have also been called PAD in [May97c]. This name is anarti�cial construct; PAD = PA + PD.Like PA-processes, PAD-processes do not allow synchronization between parallelcomponents, but, unlike PA, they can model a limited communication between asubroutine and its caller. Consider the process t:X, where t is a process term andX is a variable. In PA the process t may or may not terminate, but it can never

26 CHAPTER 2. FORMAL MODELSa�ect process X. In PAD the process t may develop into a process described bya single variable Y . There may be a rule Y:X a! t0 that is now applicable. Thusthe behavior of process t can a�ect process X. In Section 2.5 we show that PADis strictly more general than PA w.r.t. bisimulation equivalence.Now we show a small example of a PAD-process. It is described by the followingset of rules � and has the initial state X.X a! (Y kX):ZY b! �X:Z c! XChapter 8 is about model checking PAD.2.3.8 (P;G)-PRS = PAN(P;G)-PRS arise naturally as the `smallest' common generalization of Petri nets((P;P)-PRS) and PA-processes ((1; G)-PRS). They extend Petri nets with se-quential composition, which can be seen as the possibility to invoke subroutines.The name PAN has been introduced in [May97a] as a combination of PN (Petrinets) and PA. Although PAN is more general than Petri nets (see Section 2.5), itis not Turing-powerful. Chapter 10 describes this and other results about PAN.2.3.9 (G;G)-PRS = Process Rewrite Systems(G;G)-PRS are the most general class of process rewrite systems. They wereintroduced in [May97c]. By de�nition they subsume all previously mentionedmodels. Intuitively, they can be seen as an extension of Petri nets with subrou-tines. Just like in PAD, a subroutine can return a value to the caller when itterminates. PRS can be seen as a generalized approach to model concurrent sys-tems with recursion, because they are more exible than parallel compositions ofpushdown processes (see Subsection 2.3.5). One possible application is dataowanalysis and the analysis of dependencies of subroutines on each other.An interesting point about PRS is that they are strictly more expressive thanthe other models (see Section 2.5), but not Turing-powerful. This is shown inChapter 10.

2.4. INTENDED APPLICATIONS 272.4 Intended ApplicationsProcess Rewrite Systems are a formalism that can be used to model parallelprocesses with recursion. We describe a small example of a system that can bemodeled with PRS. The system is a parallel program that recursively computesa boolean value. First we write the program in a PASCAL-like pseudo-code.function f(x : data) : boolean;var x1; x2; x3 : data;var b1; b2 : boolean;beginif size(x) � 2 then return(Q(x)) �; /* Q is some predicate */x1 := P1(x; 1); /* Splitting into subproblems */x2 := P1(x; 2); /* P1 somehow modi�es x */x3 := P1(x; 3);b1 := h(x1) k b2 := h(x2); /* Parallel call */if (b1 or b2) /* if at least one was successful */thenreturn(f(x3)); /* apply f to the new instance */elsereturn(false);�;end;function h(x : data) : boolean;var x1; x2; x3 : data;var b1; b2; b3 : boolean;beginx1 := P2(x; 1); /* Splitting into subproblems */x2 := P2(x; 2); /* P2 somehow modi�es x */x3 := P2(x; 3);/* parallel call with di�erent instances */b1 := f(x1) k b2 := f(x2) k b3 := f(x3);if (b1 and b2 and b3) /* if all are successful */thenprint(\Now processing ",x1; x2; x3);return(true);elsereturn(false);�;end;

28 CHAPTER 2. FORMAL MODELSOf course we cannot model the whole program in PRS, because PRS is notTuring-powerful. However, we can accurately model the basic control structure.An instance of problem f(x) (function f, data x) will be described by the processvariable X. An instance of problem h(x) (function h, data x) will be describedby the process variable Z. We also have to describe how to handle booleans. Letvariable T stand for true and F for false . The rules for conjunction areTkT and�! T TkF and�! F FkT and�! F FkF and�! FIn this context the variables T;F are always interpreted conjunctively. In orderto be able to enforce a disjunctive interpretation we de�ne new variables to standfor the same boolean values. Let variable R (right) stand for true and W (wrong)stand for false . The rules for disjunction areRkR or�! R RkW or�! R WkR or�! R WkW or�! WNow we describe the rules for the program:X true�������! T (1)X false�������! F (2)P1 prepare1�������! � (3)X decomp1�������! P1:(ZkZ):X (4)W:X stop�������! F (5)R:X nextstep�������! X (6)P2 prepare2�������! � (7)Z decomp2�������! P2:(XkXkX):Y (8)F:Y result no�������! W (9)T:Y result ok�������! G:R (10)G actions�������! � (11)These rules have the following meanings:(1) X describes the main program that solves an instance of the problem. If theinstance is small enough then the result is clear. In this case it is true.(2) In this case it is false.(3) P1 stands for some computations that are necessary to decompose the prob-lem X.

2.4. INTENDED APPLICATIONS 29(4) In this case the problem is decomposed into smaller problems. First wedo some preparation P1. Then we solve two independent instances of aproblem (h(x1); h(x2)) described by Z. This can be done in parallel. Thetwo results are interpreted disjunctively. If one of them is true, then wesolve a (smaller) instance of the main problem X. Otherwise we returnfalse .(5) If the previous result was W (wrong), then there is no reason to go on. Theresult is F (false).(6) If the previous result was R (right), then the result only depends on thesmaller instance of the main problem X (f(x3) in the example).(7) P2 stands for some computations that are necessary to decompose the prob-lem Z.(8) The problemZ is also decomposed into three independent (parallel) instancesof the problem X. The results are interpreted conjunctively.(9) If the result was F (false), then we terminate immediately and return thevalue W (wrong).(10) If the result was true, then we �rst do some other actions G, before returningthe value R (right).(11) G stands for some actions that are necessary if an instance of the prob-lem Z was successful. It could be updating a lookup table (for dynamicprogramming) or outputting a progress message (as it is done here in theprogram).Let � be the set of rules de�ned here. It is clear that � is a PRS, but no PAN,PAD, PA or Petri net. This is because here the subroutines return values totheir callers when they terminate and there is synchronization between parallelcomponents.In Chapter 10 we describe algorithms that can be used to verify this system.There we show that the reachability problem is decidable for PRS. It is evendecidable if there is a reachable state that satis�es certain properties that can beencoded in a simple logic.

30 CHAPTER 2. FORMAL MODELS2.5 The PRS-Hierarchy is StrictThe question arises if this hierarchy of (�; �)-PRS is strict. In other words, arethe higher models in the PRS-hierarchy strictly more expressive than the lowerones?In order to de�ne what it means to be more expressive, we �rst de�ne what itmeans to have the same expressiveness as another model. We use a semanticequivalence called bisimulation [Mil89, Mol96]. Bisimulation equivalence has be-come a very popular semantic equivalence in the formal veri�cation community.De�nition 2.5.1 A binary relation R over the states of a labeled transitionsystem is a bisimulation iff8(s1; s2) 2 R 8a 2 Act: (s1 a! s01) 9s2 a! s02: s01Rs02) ^(s2 a! s02) 9s1 a! s01: s01Rs02)Two states s1 and s2 are bisimilar i� there is a bisimulation R such that s1Rs2.This de�nition can be extended to states in di�erent transition systems by puttingthem `side by side' and considering them as a single transition system. It is easyto see that there always exists a largest bisimulation which is an equivalencerelation. It is called bisimulation equivalence or bisimilarity and it is denoted by�.The main reason why we use bisimulation is that bisimilar processes satisfy ex-actly the same set of temporal logic formulae. The converse also holds: Twoprocesses are bisimilar if they cannot be distinguished by Hennessy-Milner Logic(see Subsection 3.1.1). See [Mol96] for a survey on decidability and complexityof bisimilarity for most process models in the PRS-hierarchy. More results onbisimulation can be found in [Jan94, Mil89, HJM94, CHS92, CHM93a, Jan95,CHM93b, HJM96, JE96, BCS95, May96a, May96c, May97d].De�nition 2.5.2 A class of processes A is more general than a class of processesB with respect to bisimulation i� the following two conditions are satis�ed:1. For every B-process there is a semantically equivalent A-process.8t 2 B:9t0 2 A: t0 � t2. There is an A-process that is not bisimilar to any B-process.9t 2 A:8t0 2 B: t 6� t0

2.5. THE PRS-HIERARCHY IS STRICT 31It has already been established in [BCS96, Mol96] that the classes of �nite-statesystems, BPP, BPA, pushdown systems, PA and Petri nets are all di�erent withrespect to bisimulation. For PAD, PAN and PRS this remains to be shown.The proof has two parts: First we show that there is a pushdown process that isnot bisimilar to any PAN-process. Then we show that there is a Petri net that isnot bisimilar to any PAD-process.De�nition 2.5.3 Consider the following pushdown system:U:X a! U:A:X U:A a! U:A:A U:A b! U:B:AU:X b! U:B:X U:B b! U:B:B U:B a! U:A:BU:X c! V:X U:A c! V:A U:B c! V:BU:X d! W:X U:A d! W:A U:B d! W:BV:A a! V V:B b! V V:X e! VW:A a! W W:B b! W W:X f! Wwith the initial state U:X. The execution sequences of this system are as follows:First it does a sequence of actions in fa; bg� and then one of two things:1. A \c", the sequence in reverse and �nally a \e".2. A \d", the sequence in reverse and �nally a \f".Now we show that this pushdown system is not bisimilar to any PAN-process.First we need several de�nitions and lemmas.De�nition 2.5.4 Let t be an arbitrary process and � a sequence of actions. Theruns of t are its computations of maximal length (see Def. 3.0.15). We de�ne thatonly(t; �) is true i� the following conditions are satis�ed:� All runs of t are �nite.� All these runs do the sequence of actions �.The following general lemma was proved by Dickson in [Dic13].Lemma 2.5.5 (Dickson's Lemma)Given an in�nite sequence of vectors M1;M2;M3; : : : in INk there are i < js.t. Mi �Mj (� taken componentwise).

32 CHAPTER 2. FORMAL MODELSRemember this: P is the class of process terms that contain only parallelcomposition; see Def. 2.1.4.Lemma 2.5.6 For every PAN � there is a sequence � 2 fa; bg� s.t. no � 2 Psatis�es any of the following two conditions:Cond1 9�c: � c! �c ^ only(�c; �e)Cond2 9�d: � d! �d ^ only(�d; �f)Proof We assume the contrary and derive a contradiction. Let � be the PAN.Consider an in�nite sequence of sequences �1; �2; � � � 2 fa; bg� s.t. for all i < j�i is not a pre�x of �j, for example �i := ai:b for i 2 IN. Let �i 2 P bethe term that belongs to �i and satis�es Cond1 or Cond2. There must be anin�nite subsequence of �1; �2; : : : where Cond1 is always satis�ed or an in�nitesubsequence of �1; �2; : : : where Cond2 is always satis�ed. W.r. we assume thatthere is an in�nite subsequence where Cond1 is always satis�ed. Now we onlyregard this in�nite subsequence. Since � is �nite, there are only �nitely manydi�erent rules in � that are marked with the action c. Let (t1 c! t01); : : : ; (tn c! t0n)be those rules. (Note that ti 2 P for every i, because � is a PAN. However, t0ineed not be in P .) It follows that one of these rules must be used in�nitely oftento obtain �ic from �i. Let this rule be (tk c! t0k) for some k 2 f1; : : : ; ng. Thusthere is an in�nite subsequence of the sequence �1; �2; : : : where only this rule isused to obtain �ic from �i. Now we consider only this in�nite subsequence.We regard the sequence �i of the � that satisfy Cond1. Var(�) is �nite and�i 2 P . Moreover, all �i only contain variables from the �nite set Var(�).Thus we can apply Dickson's Lemma. By Dickson's Lemma there are j; j 0 2 INs.t. j 0 > j and �j0 � �j (this means �j0 = �jk� for some � 2 P .)For both �j and �j0 the rule (tk c! t0k) is used to obtain �jc, �j0c . Thus �j = tkkfor some 2 P and �jc = t0kk. Also we have �j0 = �jk� = tkkk� and �j0c =t0kkk� = �jck�. By Cond1 we have only(�jc; �je). However, �j0c also enablesthe sequence �je. This is a contradiction, because only(�j0c ; �j0e) and �j is not apre�x of �j0.Lemma 2.5.7 For every PAN � there is a sequence � 2 fA;Bg� s.t. no processterm t (w.r.t. �) is bisimilar to the pushdown system U:�:X of Def. 2.5.3.Proof We assume the contrary and derive a contradiction. Assume that thereis a PAN � s.t. for every sequence � 2 fA;Bg� there is a term t(�) s.t.t(�) � U:�:X

2.5. THE PRS-HIERARCHY IS STRICT 33For every � let t(�) be the smallest term that has this property.For any sequence � 2 fA;Bg� let �(�) be the sequence of actions a and b thatis obtained by converting � to lowercase letters.It follows from the de�nition of bisimulation that no process that has only �nitecomputations can be bisimilar to a process that has an in�nite computation.Thus by Def. 2.5.3 it follows that for every sequence � 2 fA;Bg� and every statet(�) the following properties hold:C There is a state tc(�) s.t. t(�) c! tc(�) and tc(�) � V:�:X and thusonly(tc(�); �(�)e).D There is a state td(�) s.t. t(�) d! td(�) and td(�) � W:�:X and thusonly(td(�); �(�)f).For every t(�) the action c disables the action d and vice versa. Thus the actionsc and d must both occur in the same subterm � of t(�) and � 2 P must be aparallel composition of process variables in Var (�). This is because for a PANand a term of the form t1:t2kt3 (where t1, t2 and t3 are not �) no single action canchange both t1 and t3.Now we show that t(�) can not have the form t(�) = (t1:t01)k : : : k(tn:t0n)k� where� is a parallel composition of variables and ti; t0i, 1 � i � n are process terms.We assume the contrary and derive a contradiction.Let t(�) = (t1:t01)k : : : k(tn:t0n)k� where � is a parallel composition of variablesand ti; t0i, 1 � i � n are process terms. W.r. we can assume that t1; : : : ; tn arenot deadlocked. We have � c! �c and � d! �d s.t. tc(�) = (t1:t01)k : : :k(tn:t0n)k�cand td(�) = (t1:t01)k : : : k(tn:t0n)k�d. It follows from the conditions C and D thatonly(tc(�); �(�)e) and only(td(�); �(�)f). Now there are two cases:1. Assume that � starts with A. Thus V:�:X can do action a, but not actionb. (t1:t01)k : : :k(tn:t0n) is not deadlocked and cannot synchronize with �c.Thus it must be able to do action a, but not action b. As t(�) � U:�:Xand U:�:X b! U:B:�:X there must be a t0 s.t. t(�) b! t0 and t0 � U:B:�:X.The action b must occur in �, because (t1:t01)k : : : k(tn:t0n) cannot do b.Thus � b! �0 and (t1:t01)k : : :k(tn:t0n)k�0 � U:B:�:X. Now U:B:�:X c!V:B:�:X and thus �0 c! �00 s.t. (t1:t01)k : : : k(tn:t0n)k�00 � V:B:�:X, because(t1:t01)k : : :k(tn:t0n) cannot do action c. But now (t1:t01)k : : :k(tn:t0n)k�00 cando action a, because (t1:t01)k : : : k(tn:t0n) can do action a. This is a contra-diction, because V:B:�:X cannot do action a.

34 CHAPTER 2. FORMAL MODELS2. Now assume that � starts with B. The proof is similar to the previous case.Just exchange A and B and a and b. Again we get a contradiction.It follows that t(�) can never have the form (t1:t01)k : : : k(tn:t0n)k�.Therefore t(�) = (�:t)kt0 where � 2 P is a parallel composition of variables andt; t0 are process terms. (It is possible that t; t0 are �.) We have � c! �c and� d! �d s.t. tc(�) = (�c:t)kt0 and td(�) = (�d:t)kt0. By conditions C and D wehave only(tc(�); �(�)e) and only(td(�); �(�)f). By Lemma 2.5.6 there exists asequence � s.t. no � 2 P that satis�es any of the following two conditions:� 9�c: � c! �c ^ only(�c; �(�)e)� 9�d: � d! �d ^ only(�d; �(�)f)Thus � must always terminate by a sequence of actions that is a pre�x of �(�).Thus there must be a su�x �0 of � s.t. only(tkt0; �(�0)e) and another su�x �00of � s.t. only(tkt0; �(�00)f). This is a contradiction.Lemma 2.5.8 The pushdown system U:X of Def. 2.5.3 is not bisimilar to anyPAN � with initial state t0.Proof We assume the contrary and derive a contradiction. Assume that thereis a PAN � with initial state t0 s.t. t0 � U:X. Let � be the sequence fromLemma 2.5.7. (Note that � depends on �.) The process U:X can reach the stateU:�:X. Thus t0 must be able to reach a state t s.t. t � U:�:X. However, byLemma 2.5.7 such a term t does not exist. Thus we have a contradiction.It follows directly that the pushdown system from Def. 2.5.3 is not bisimilar to anyPA-process either. However, as PAD and PRS subsume pushdown processes, it isa PAD and PRS-process. Thus PAD is strictly more general then PA and PRS isstrictly more general than PAN. PAD subsumes BPP and BPP is incomparableto pushdown systems. Thus PAD is also more general than pushdown processes.Now we show that there is a Petri net that is not bisimilar to any PAD-process.De�nition 2.5.9 Consider the following Petri net, which is given as a (P;P)-PRS. X g! XkAkB X c! Y Y kA a! Y Y kB b! YXkA d! Z XkB d! Z Y kA d! Z Y kB d! ZThe initial state is XkAkB.

2.5. THE PRS-HIERARCHY IS STRICT 35Lemma 2.5.10 If there is a PAD-process that is bisimilar to the state XkAkB ofthe Petri net of Def. 2.5.9, then there is also a pushdown process that is bisimilarto XkAkB.Proof Let � be a PAD and Q the initial state s.t. Q � XkAkB. W.r. we canassume that Q is a single variable (see Def. 2.1.5). Now we construct a pushdownprocess (an (S; S)-PRS) �0 that is also bisimilar to XkAkB.Now we show that in every state of � the form (t1kt2):t3 (t3 can be �) t1 or t2must be deadlocked.Assume that there is a state (t1kt2):t3 that is reachable from Q. Then a state Mmust be reachable from XkAkB s.t. t1kt2 �M . There are two cases:1. If M is deadlocked then t1 and t2 must be deadlocked.2. If M is not deadlocked then there is an M 0 s.t. M d! M 0 and M 0 is dead-locked. By the de�nition of PAD a single action d can only change t1 or t2,but not both. Thus either t1 or t2 must be deadlocked.Thus in every state t1kt2 that is reachable from Q at least one ti is deadlocked.Since Q is a single variable, parallel composition can only be introduced by PAD-rules. If such a rule has the form (u x! u1ku2) 2 � for some action x, thenu1 or u2 must be deadlocked. W.r. let u1 be deadlocked. However, the termu1:t for some term t is not necessarily deadlocked. Thus in �0 we replace therule (u x! u1ku2) by the rule rule u x! u2:u1. (We assume w.r. that u2 cannotinuence u1. This means that there is no rule in �0 whose left hand side is v2:v1where v2 is a nonempty su�x of u2 and v1 is a nonempty pre�x of u1. This canbe achieved by renaming of variables in u2 and �0 if necessary.)The other case where parallel composition occurs in a rule in � is when a rulehas the form u x! u1:(u2ku3):u4, where u1 or u4 can be �. There are two cases:1. If u1 can terminate then the term (u2ku3) can become active. Thereforeu2 or u3 must be deadlocked. W.r. let u2 be deadlocked. Then in �0 wereplace this rule by the rule u x! u1:u3:u2:u4. Note that u2 is deadlocked,but u2:u4 is not necessarily deadlocked. (We assume w.r. that u1 cannotinuence u3 and u3 cannot inuence u2. This can be achieved by renamingof variables in u1 and u3 and �0 if necessary.)2. If u1 cannot terminate then in �0 we replace this rule by the equivalent ruleu x! u1.

36 CHAPTER 2. FORMAL MODELSIt follows that no parallel composition occurs in the rules in �0. Thus, if thepreconditions are correct, the (S; S)-PRS �0 with initial state Q is bisimilar toXkAkB. This is the pushdown process that we are looking for.De�nition 2.5.11 Let � be a (�; �)-PRS for �; � 2 f1; S; P;Gg and t0 theinitial state. The language generated by this system is the set of all sequences �s.t. 9t: t0 �! t and t is deadlocked.Lemma 2.5.12 If a process P is bisimilar to a pushdown process then the lan-guage generated by P is a context-free language.Proof Directly from Def. 2.5.1 and the de�nition of pushdown processes.Lemma 2.5.13 The Petri net of Def. 2.5.9 is not bisimilar to any PAD-process.Proof We assume the contrary and derive a contradiction. If there is a PAD-process that is bisimilar to the Petri net of Def. 2.5.9, then by Lemma 2.5.10 thereis a pushdown process that is bisimilar to this Petri net. Then by Lemma 2.5.12the Petri net of Def. 2.5.9 generates a context-free language L. By the de�nitionof this Petri net L isfgmc� j m � 0 ^ � 2 fa; bg� ^ #a� = m+ 1 ^ #b� = m+ 1g [fgmd j m � 0g [8<:gmc�d j m � 0 ^ � 2 fa; bg�^#a� � m+ 1 ^ #b� � m+ 1 ^ #a� +#b� � 2m+ 1 9=;For every m 2 IN the word gmcam+1bm+1 is in L. Now we apply the Pumping-Lemma for context-free languages [HU79]. There is a constant n s.t for everym � n the word gmcam+1bm+1 can be written as uvwxy s.t. jvwxj � n andjvxj � 1 and for every i > 0 uviwxiy 2 L. There are several cases:1. v contains c or x contains c. This is a contradiction, because no word in Lcontains c more than once.2. vwx is part of gm. This is a contradiction, because gm+kcam+1bm+1 =2 L forany k > 0.3. v is part of gm and x is part of am+1. This is a contradiction, because thereare no k; k0 > 0 s.t. g(m+k)ca(m+1+k0)b(m+1) is in L.

2.5. THE PRS-HIERARCHY IS STRICT 374. Neither v nor x contains the symbol g. This is a contradiction, becausethere are no k; k0 > 0 s.t. gmca(m+1+k)b(m+1+k0) is in L.It follows that PAD and PAN are incomparable and PRS is strictly more generalthan PAD. By combining these results with the other results above we get thefollowing theorem.Theorem 2.5.14 The PRS-hierarchy is strict with respect to bisimulation.

Chapter 3Temporal Logics and ModelCheckingTemporal logics play an important role in formal veri�cation. They are used tospecify properties of processes. Such properties are for example \The processis deadlock-free. (A deadlocked state is not reachable)" or \In every in�niteexecution of a process action b must occur in�nitely often".The Model Checking Problem is the problem if a process, which is described bya (possibly in�nite, but �nitely described) labeled transition system, satis�es aproperty encoded in a formula in a temporal logic.Model CheckingInstance: A �nite description of a (possibly in�nite) labeled transition system,a state s in this system and a temporal logic formula �.Question: Does the state s satisfy the formula � (denoted s j= �) ?The size of an instance of a model checking problem depends on two parameters:1. The size of the description of the labeled transition system and the state s.Let x be this size.2. The size of the formula �. Let y be this size.We study the decidability and the computational complexity of model checkingproblems. Since the size of an instance is described by two parameters x and ythere are three di�erent complexities to analyze.� In the most general case we consider the complexity of the model checkingproblem in the size of the whole instance (x+ y).38

39� In practice, the formula is normally very small, while the description of thetransition system is often very large. Thus y is often very small, while xcan be large. Therefore the complexity of the problem in the parameter xis very important. Thus we also consider the complexity of the problem inthe parameter x for a �xed formula (and thus �xed y). However, we assumethe worst case for this �xed formula.� It is also possible to consider the complexity of the problem in the parametery. For this one assumes the worst case of a �xed system (�xed x) and studiesthe complexity in the size of the formula (parameter y). In practice however,x is often large while y is almost always small. Therefore the complexityof the problem in y is not relevant in practice. Thus this question is notconsidered in this thesis.The property that a state in a transition system satis�es a temporal logic formulais de�ned separately for every temporal logic in the rest of this chapter. In thisthesis (�; �)-PRS are used to describe labeled transition systems, but of coursethis is not the only possibility.Temporal logic formulae are described by an abstract syntax and interpreted overthe computations (runs) of processes. The following de�nitions apply to all modelchecking problems.De�nition 3.0.15 (Paths and Runs)Let s0; s1; s2; : : : be states of a labeled transition system. A path of a labeledtransition system is a �nite or in�nite sequence s0 a0! s1 a1! s2 : : : such that everytriple si ai! si+1 belongs to the set of transitions. A run is a maximal path, i.e.,a path that is either in�nite, or terminates in a state without successors.For a given transition system let paths(s) be the set of paths starting at state sand runs(s) the set of runs starting at state s. For any path � 2 paths(s) letprefs(�) be the set of �nite pre�xes of �.For any path � = s0 a0! s1 a1! s2 : : : we write �(i) for si and �i for the pathsi ai! si+1 ai+1! � � � .Let �rstact(�) := a0. Thus ai = �rstact(�i).There are two main classes of temporal logics which di�er at how their interpreta-tions are de�ned. Branching-time logics are interpreted over the computation-treeof the process being analyzed.

40 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKINGDe�nition 3.0.16 (Computation-tree)The computation-tree of a process is a (possibly in�nite) tree whose nodes arelabeled with states and whose arcs are labeled with atomic actions. The rootnode is marked with the initial state s0. If a node is marked with a state s ands ai! si, i = 1; : : : ; n then the node has n child-nodes s1; : : : ; sn. The arc from sto si is labeled with ai.Note that (�; �)-PRS generate �nitely branching transition systems. Thus theircomputation-trees are �nitely branching. The truth of a branching-time logicformula at a state of a process depends on the state and the subtree below it inthe computation-tree. Linear-time logics are interpreted over the set of all runsof a process. A formula holds at a state i� all runs starting at this state satisfythe formula.There are many temporal logics which have more or less expressive power. Weconsider the most commonly known temporal logics and some interesting frag-ments. Some logics are more expressive than others, but there are also cases wheretwo logics are incomparable. Figure 3.1 shows a classi�cation of the temporal log-ics we are going to introduce, with respect to their linear-time or branching-timenature and their expressive power. In this �gure a line from a logic to anotherlogic above it means, that the logic above is strictly more expressive than the logicbelow. The dotted line from the linear-time �-calculus to the modal �-calculushas the same meaning, but in this case the transformation is not as cheap asin the other cases. For every linear-time �-calculus formula there is a modal�-calculus formula that expresses the same property, but the modal �-calculusformula is exponentially larger (see Section 3.2). All logics in Figure 3.1 havea di�erent expressive power. For a thorough treatment of temporal logics see[MB96, Eme94, Bra92].Before we describe the various temporal logics in detail we give the motivationfor their de�nition. Hennessy-Milner Logic and weak linear-time logic are veryweak logics and can hardly express any interesting properties. Thus they arealmost never used in formal veri�cation. Historically, linear-time temporal logic(LTL) [Pnu77] and computation-tree logic (CTL) [CE81] were de�ned as exten-sions of these logics by new operators that increase the expressiveness consider-ably. Thus it became possible to express interesting properties. Nowadays LTLand CTL are widely known and are often used in formal veri�cation. The logicsEF and EG are both very natural fragments of CTL. However, the motivationsfor their de�nition are quite di�erent. EF is considered to be a simple but usefullogic, because it can still express many interesting properties that are importantfor the veri�cation of systems. For example EF can express the property `Fromevery reachable state there is a terminating computation'. The logic EG was not

41
CTLUB LTL

Branching-time logics Linear-time logics
EG EF
Alternation-freeModal �-Calculus �-CalculusLinear-timeModal �-Calculus
Hennessy-Milner Logic Weak Linear-time Logic (WL)Figure 3.1: Linear and branching-time logicsde�ned because it is useful, but because it so simple and still so hard. It has beenused mostly to prove lower bounds for the decidability and complexity of modelchecking problems. Some of these results are quite surprising given the limitedexpressive power of EG. The logic UB is just the smallest common generalizationof EF and EG.The modal �-calculus [Koz83] and the linear-time �-calculus are �xpoint logics.They gain their expressive power from minimal and maximal �xpoint operators.In some way they are much more natural than CTL and LTL, because �xpointsare a very elementary concept. The linear-time �-calculus is only slightly moreexpressive than LTL. Therefore it is seldom used, because LTL is well-establishedand many people see no reason to switch to the linear-time �-calculus. Thesituation is di�erent for the modal �-calculus, because it is much more expressivethan both CTL and LTL. In fact, the modal �-calculus is almost too expressive,

42 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKINGbecause the full power of it is almost never needed in practice. Furthermore, it isvery hard to understand the meaning of modal �-calculus formulae with a highnesting-depth of minimal and maximal �xpoint operators. Therefore it has beencalled `the machine language of temporal logics', because everything else can bereduced to it, but hardly anyone really understands it completely.In the most general sense temporal logic formulae are interpreted over the com-putations of processes given as arbitrary (possibly in�nite) labeled transitionsystems. They can be given a state-based or action-based semantics, or a com-bination of the two. In state-based semantics formulae are built out of atomicpropositions and interpreted according to a valuation that assigns each atomicproposition a set of states in the transition system (the states that satisfy thisproposition). The information on top of the arrows is ignored, so it is actuallyinterpreted over an unlabeled transition system. In action-based semantics, theonly atomic sentence is true, and the information carried by the states is ignored.In this semantics, logics have relativised next operators, one for each possiblelabel (which is an atomic action). In branching-time logics simple atomic propo-sitions of the form `action a is enabled' can be expressed with these relativisednext operators. This is not the case for linear-time logics.In the following we will mostly use action-based semantics, for the following rea-sons: Firstly, it is more natural for our models, which are labeled transitionsystems. Secondly, atomic propositions of the form `action a is enabled' are de-�ned for every labeled transition system. This is not the case for stronger atomicpropositions which are only de�ned for some models. For example, propositionsof the form `there are at least k tokens on place p' are only de�ned for Petrinets and subclasses of Petri nets, but not for other models like context-free pro-cesses or PA-Processes. Finally, the decidability of model checking for a temporallogic depends heavily on the set of atomic propositions used. Thus by defaultwe use the minimal action based semantics. However, sometimes (in Chapter 6and Chapter 8) we use more general sets of atomic propositions, because in thesecases this is possible without losing decidability.3.1 Branching-Time LogicsIn branching-time logics, formulae are interpreted on states of a (possibly in�nite)labeled transition system. Let
 be the set of all states. In the framework of(�; �)-PRS,
 corresponds to the set of process terms T , but for the de�nitionof the logics we stay as general as possible.

3.1. BRANCHING-TIME LOGICS 433.1.1 Hennessy-Milner LogicThe weakest branching-time logic is Hennessy-Milner logic. The formulae havethe following syntax: � ::= true j :� j �1 ^ �2 j hai�The denotation [[�]] of a formula � is a subset of
 that is de�ned inductively asfollows: [[true]] :=
[[:�]] :=
� [[�]][[�1 ^ �2]] := [[�1]] \ [[�2]][[hai�]] := fs 2
 j 9s0 2
: s a! s0 2 [[�]]gThe one-step next operator hai is also denoted bya. The operator means aone-step next with any action.Disjunction can be expressed by conjunction and negation. The atomic propo-sition `action a is enabled' can be expressed by the formula haitrue . We alsodenote this proposition simply by the term \a".For any formula � and any state s 2
, the property s 2 [[�]] means `s satis�es�' and is also denoted by s j= �.Hennessy-Milner Logic can also be represented without explicit negation. To dothis, we need the predicate false, disjunction and a second universal one-step nextoperator. They are de�ned by[[false]] := fg[[�1 _ �2]] := [[�1]] [[[�2]][[[a]�]] := fs 2
 j 8s0 2
: s a! s0) s0 2 [[�]]gWe can transform every Hennessy-Milner Logic formula into a formula withoutnegation by pushing the negations inwards. This is possible, because:hai� = [a](:�)De�nition 3.1.1 The size of a formula � is de�ned as the number of atomicpropositions in � plus the number of operators in �.size(true) := 1size(:�) := size(�) + 1size(�1 ^ �2) := size(�1) + size(�2) + 1size(hai�) := size(�) + 1

44 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKINGFor this simple logic the truth or falsity of s j= � only depends on the pre�xesof all paths starting at state s that have a length of at most size(�). Thisis because there are at most size(�) occurrences of the next-operator hai in�. Therefore, model checking with Hennessy-Milner logic is decidable for anyclass of �nitely generated transition systems, even for those described by Turing-machines. Hennessy-Milner logic will not play a role in this thesis.3.1.2 The Logic EFThe branching-time temporal logic EF is an extension of Hennessy Milner logic bythe modal operator EF , meaning `for at least one path eventually in the future'.This operator is often denoted by 3 and de�ned as follows:[[3�]] := fs 2
 j 9�; s0: s �! s0 2 [[�]]gwhere � is a sequence of actions of arbitrary length.Another modal operator 2 (meaning \always") can be de�ned as 2 := :3:. 2�means that � holds in every reachable state. The modal operator 3 signi�cantlyincreases the expressive power of the logic, because it quanti�es over in�nitelymany sequences of actions of arbitrary length. It has been shown in [JKM98a,JKM98b] that decidability of EF su�ces to decide weak bisimulation equivalencebetween in�nite-state processes and �nite-state processes. Some other well-knownproblems can be expressed in fragments of EF.The reachability problem is the problem if a given state is reachable from theinitial state.ReachabilityInstance: A �nite description of a (possibly in�nite) labeled transition system,an initial state s0 and a given state s in this system.Question: Is the state s reachable from s0 ? Formally: Is there a sequence ofactions � s.t. s0 �! s ?The problem is not completely expressible in EF with an action-based semantics.However, it is expressible if stronger atomic propositions are introduced. Considerfor example propositions of the form \s", where s 2
 is a state, which are de�nedby [[s]] := fsgWith these atomic propositions the reachability problem is equivalent to theproblem s0 j= 3(s)

3.1. BRANCHING-TIME LOGICS 45In action-based semantics a di�erent, but closely related problem is expressible.De�nition 3.1.2 (State Formula)A state formula 	 is an EF-formula that contains conjunction, disjunction, nega-tion and atomic propositions a (meaning action \a" is enabled), but no modaloperators 3 or hai.They are called state formulae, because the truth of these formulae at a stateonly depends on the state and the arcs leading away from this state, but not onthe rest of the transition system.The reachable property problem is the problem if there is a reachable state thatsatis�es certain properties encoded in a state formula.Reachable PropertyInstance: A �nite description of a (possibly in�nite) labeled transition system,an initial state s0 and a state formula 	.Question: Is there a reachable state that satis�es 	 ? Formally: s0 j= 3	 ?If strong atomic propositions are allowed, then (as shown above) the reachabilityproblem can be expressed by the reachable property problem. However, in a sim-ple action based semantics this is not the case, since in general there is no stateformula whose denotation is a single state. On the other hand in action-basedsemantics the reachable property problem cannot be expressed by the reachabil-ity problem, since there are state formulae whose denotation contains in�nitelymany states. Thus in a general action-based semantics the two problems areincomparable.This is di�erent for certain models, especially for Petri nets. Here the reachabilityproblem can be expressed by the reachable property problem, even in a simpleaction-based semantics. Let � be a (P;P)-PRS (which is equivalent to Petrinets; see Chapter 2), t0 the initial state and t the given state. Let a; b be two newactions (not in Act(�)) and �0 := � [ft a! tg [ftkX b! tkX j X 2 Var(�)g.Then t0 j= 3(a ^ :b) with respect to �0 i� t is reachable from t0 in �. Thereachable property problem is not expressible by the reachability problem, butby the submarking reachability problem.It will turn out in the following chapters that both problems have the samedecidability and complexity for all models in the PRS-hierarchy. (See Chapter 11for a summary.)As mentioned earlier, we use simple action based semantics by default, but we usestronger atomic propositions whenever this is possible without loosing decidability(see Chapters 6 and 8). In Chapter 8 we use a slightly generalized version of EF.

46 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKING3.1.3 The Logic EGThe branching-time temporal logic EG is the extension of Hennessy Milner logicby the modal operator EG, meaning `for some path always in the future'. EFand EG are incomparable.This operator EG is de�ned as follows:[[EG �]] := fs 2
 j 9� 2 runs(s) 8�0 2 prefs(�): s �0! s0) s0 2 [[�]]g3.1.4 The Logic UBThe logic UB (for \uniform branching-time") is the extension of Hennessy-MilnerLogic by the operators EF and EG. It can be seen as the smallest commongeneralization of the logics EF and EG. Since these are incomparable, UB isstrictly more expressive than both of them.3.1.5 Computation Tree Logic (CTL)Computation Tree Logic (CTL) [CE81] is a very popular logic and it is widely usedfor the veri�cation of �nite-state systems. There are several di�erent de�nitions ofit that use di�erent operators. All these de�nitions have the same expressiveness[MB96]. Here we use a version with a minimal number of operators. It is de�nedas the extension of Hennessy Milner logic by two operators, the strong untiloperator U and the weak until operator wU . The syntax and semantics of theseoperators is de�ned as follows:[[E[�1 U �2]]] := (s j 9� 2 paths(s): s �! s0 2 [[�2]] ^8�0(6= �) 2 prefs(�): s �0! s00) s00 2 [[�1]])Intuitively, this means that there is a path that leads to a state s0 that satis�es�2 and all intermediate states on this path satisfy �1. So �1 holds until �2 holds,but �2 must hold eventually.[[E[�1wU �2]]] :=8><>: s j (9� 2 paths(s): s �! s0 2 [[�2]] ^8�0(6= �) 2 prefs(�): s �0! s00) s00 2 [[�1]]) _9� 2 runs(s):8�0 2 prefs(�): s �0! s00) s00 2 [[�1]] 9>=>;The meaning of wU is similar to U , except that it allows for the possibility thatthe path never reaches a state that satis�es �2.

3.1. BRANCHING-TIME LOGICS 47The operators EF and EG can be expressed with these until-operators.EG � = E[�wU false]and EF � = E[true U �]Thus CTL subsumes the logic UB.3.1.6 The Modal �-CalculusThe modal �-calculus [Koz83] is a �xpoint logic. It is the extension of Hennessy-Milner logic by variables and �xpoint operators. The semantics of formulae isde�ned w.r.t. a valuation V : V ar 7! 2
 that assigns every variable X in the logica set of states which satisfy it. [[X]]V := V(X)The syntax and semantics of the minimal �xpoint operator is de�ned as follows:[[�X:�]]V :=\fS �
 j [[�]]V[X:=S] � Sgwhere V[X := S](X 0) := (V(X 0); if X 6= X 0S; if X = X 0In model checking we use only closed formulae. These are the formulae whereevery variable is bound by a �xpoint operator. Also there is the restriction thatevery variable occurs within the scope of an even number of negations.The maximal �xpoint operator � can be expressed by �X:� := :�X::�[:X=X]or de�ned directly as[[�X:�]]V :=[fS �
 j S � [[�]]V[X:=S]gThe modal �-calculus is often presented in a form without explicit negation. Inthis form the negations are pulled inward to the atomic propositions. Formulaethen contain conjunction, disjunction, maximal �xpoint and minimal �xpoint,but no negation. In order to achieve this, it is necessary to introduce a secondone-step next operator, the so-called \universal one-step next" de�ned by[[[a]�]] := fs j 8s0: s a! s0) s0 2 [[�]]g

48 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKINGA �-formula is de�ned as a formula �X:� that starts with the minimal �xpointoperator. A �-formula is de�ned analogously. The alternation-free modal �-calculus is de�ned as the fragment of the modal �-calculus that satis�es thefollowing two restrictions:� For every formula �X:�, the variableX does not occur in any �-subformulaof �.� For every formula �X:�, the variableX does not occur in any �-subformulaof �.It is easy to see that CTL is a fragment of the alternation-free modal �-calculus.E[�1 U �2] = �X:(�2 _ (�1 ^X))E[�1wU �2] = �X:(�2 _ (�1 ^X)) _ �X:(�1 ^ (X _ : true))3.2 Linear-Time LogicsFormulae in linear-time logics are interpreted over runs of labeled transition sys-tems. A state satis�es a formula if all runs starting at it satisfy the formula.3.2.1 Weak Linear-Time Logic (WL)Weak linear-time logic (WL) has the same syntax as Hennessy-Milner logic. How-ever, the interpretation is di�erent. For a transition system with states
 letruns(
) be the set of all runs (starting at any state).[[true]] := runs(
)[[:�]] := runs(
) � [[�]][[�1 ^ �2]] := [[�1]] \ [[�2]][[hai�]] := f� 2 runs(
) j �rstact(�) = a ^ �1 2 [[�]]gDisjunction can be expressed by conjunction and negation. Unlike in branching-time logics the atomic proposition `action a is enabled' can not be expressed.Here the formula haitrue only means `action a is the next action in this run'.It is possible to add atomic propositions by de�ning[[a]] := f� 2 runs(
) j �(0) enables action ag

3.2. LINEAR-TIME LOGICS 49These atomic propositions make linear-time logics strictly more expressive. Forexample LTL (see Subsection 3.2.2) with these propositions is undecidable forPetri nets [Esp97], while normal action based LTL is decidable. Thus by defaultwe use only simple action based linear-time logics.For any formula � and any state s 2
 the property runs(s) � [[�]] means thats satis�es �. It is also denoted by s j= �.Just like for Hennessy-Milner Logic, the truth or falsity of s j= � only depends onthe pre�xes of all paths starting at state s that have a length of at most size(�).Thus model checking with WL is decidable for any class of �nitely generatedtransition systems, even for those described by Turing machines. WL will notplay a role in this thesis.3.2.2 Linear-Time Logic (LTL)Linear-Time Logic (LTL) [Pnu77] is the extension of WL by the \until"-operators,which are de�ned in analogy to CTL.[[�1 U �2]] := �� j 9i: �i 2 [[�2]] ^ 8j < i: �j 2 [[�1]]	Intuitively, this means that the path has a su�x that satis�es �2 and all pre�xessatisfy �1.[[�1wU �2]] := �� j (9i: �i 2 [[�2]] ^ 8j < i: �j 2 [[�1]]) _ 8i: �i 2 [[�1]]	s j= � :() runs(s) � [[�]].It is possible to express the negation of the reachable property problem in LTLwith atomic propositions. Let � be a state formula (using only atomic proposi-tions, negation and conjunction) and s0 the initial state. A state that satis�es �is not reachable i� s0 j= (:�)wU falseIn the same way the negation of the reachability problem is expressible, but onlyif stronger atomic propositions are used. These stronger atomic propositions arede�ned by [[s]] := f� 2 runs(
) j �(0) = sgThe state s is not reachable from the initial state s0 i�s0 j= (:s)wU false

50 CHAPTER 3. TEMPORAL LOGICS AND MODEL CHECKINGHowever, these stronger propositions are not normally used for linear-time logics.Sometimes abbreviations are used for some LTL formulae:G� := �wU falseF � := true U �G� means that � always holds on a path, and F � means that � eventuallyholds on a path.3.2.3 The Linear-Time �-CalculusThe linear-time �-calculus is a �xpoint logic that is de�ned in analogy to themodal �-calculus. It is the extension of WL by variables and �xpoint operators.[[�X:�]]V :=\fS � runs(
) j [[�]]V[X:=S] � SgJust like the modal �-calculus it can be presented without negation if, in additionto the normal (strong) next operator, the weak next operator is used.[[Ja�]] := f� j (�rstact (�) = a ^ �1 2 [[�]]) _ �rstact (�) 6= agIf the subscript is omitted, then it means `by any action'. Intuitively,� means`there is a next moment in time and � is true at this moment', whereas J�means `if there is a next moment in time, then � is true at this moment'.As always in linear-time logics,s j= � :() runs(s) � [[�]]Roughly speaking, the intuition for the minimal and maximal �xpoints is thefollowing:� The minimal �xpoint � is used to express properties of �nite parts of a run.For example the formula �X:(P _ X) means that property P must holdeventually (after a �nite number of steps).� The maximal �xpoint � is used to express properties that depend on thewhole in�nite run. For example the formula �X:(P ^ X) means thatproperty P always holds.

3.2. LINEAR-TIME LOGICS 51Of course the two �xpoints can also be combined. For example the formula�X:�Y:(hciX _ Y) means that the action c occurs in�nitely often.LTL is expressible in the linear-time �-calculus in the same way that CTL isexpressible in the modal �-calculus.�1 U �2 = �X:(�2 _ (�1 ^X))�1wU �2 = �X:(�2 _ (�1 ^X)) _ �X:��1 ^KX�The linear-time �-calculus can be expressed in the full modal �-calculus, but onlyat the cost of an exponential increase in the size of the formula [Bra92].The fragment of the linear-time �-calculus that uses only the weak next operator,but not the strong next operator is called the weak linear-time �-calculus. It willbe used in Chapter 9.Sometimes the interpretation of LTL and the linear-time �-calculus is de�neddi�erently. In this other interpretation only the in�nite runs of the transitionsystem are considered. Thus the de�nition is changed tos j= � :() f� 2 runs(s) j � is in�niteg � [[�]]We call this the weak interpretation, because it is weaker than our de�nitionwhere both �nite and in�nite runs are considered. For example the reachabilityproblem cannot be expressed in the weak interpretation. The weak interpretationis equivalent to the weak linear-time �-calculus, the fragment of the linear-time �-calculus that uses only the weak next operator, but not the strong next operator.This is because in the weak interpretation [[�]] = [[��]]. The weak linear-time�-calculus is used in Chapter 9.The main di�erence between the weak linear-time �-calculus and the normallinear-time �-calculus is that the negation of the reachability problem cannot beexpressed in the weak one. This is smaller restriction than it might seem, becausenormally the linear-time �-calculus is only used to verify liveness-properties ofsystems. These are mostly fairness-properties like `In every in�nite run actiona occurs in�nitely often'. Such properties only make sense for in�nite runs andthus reachability is not needed. Therefore the weak linear-time �-calculus oftensu�ces.

Chapter 4Tableau SystemsTableau systems are a common tool in mathematical logic. The application oftableau systems to temporal logics and veri�cation problems has been initiated byColin Stirling and Julian Brad�eld [BS90, SW90, SW91, BS92a, Sti92, Sti95]. Foran overview the reader is referred to [Bra92, Sti96]. Later, tableau systems havebeen applied to veri�cation problems in order to �nd structured proof techniques[BEM96, May96b, May97e, BS97] or to achieve decidability results [May97b,May97c].In this thesis tableau systems will be used in Chapter 8, 9 and 10. The tableausystems of Chapter 8 and Chapter 10 are used in decidability proofs of modelchecking problems. The tableau system of Chapter 9 is used as a proof method formodel checking Petri nets with the weak linear-time �-calculus. In this chapterwe give a brief introduction to tableau systems. For a more thorough treatmentsee [Bra92] and [Sti96].De�nition 4.0.1 A tableau is a proof-tree whose nodes are marked with logicalexpressions or sets of logical expressions which are called sequents. The proof-tree has a unique root-node that is marked with the root-sequent. The goal ofthe tableau is to prove the correctness of the root-sequent. The proof-tree isgenerated by a �nite set of tableau rules that can be applied to sequents andproduce child-nodes that are marked with new sequents.Tableau rules have the form AB1 B2 : : : Bnwhere A is called the antecedent and the Bi are called the succedents.52

53Sometimes the applicability and result of a tableau rule also depends on thesequents at several earlier nodes of the same branch in the proof tree. Sometableau rules also have side conditions that must be satis�ed. The constructionof the tableau can be nondeterministic and thus the tableau for a given root-sequent is not necessarily unique.Termination conditions are de�ned on sequents. A node in the tableau whosesequent satis�es a termination condition is a terminal node. The construction ofthe tableau stops at terminal nodes and thus terminal nodes are leaves in theproof-tree.There are success conditions that mark terminal nodes as successful or unsuccess-ful. The whole tableau is successful if it succeeds in proving the root-sequent. Ingeneral the success of the tableau is de�ned by a function on the success or failureof the terminal nodes. The two most common success conditions for tableaux arethe following:� The tableau is successful i� all terminal nodes are successful. In this casethe sequents are often sets of expressions that are interpreted disjunctively,while the branches of the tableau are interpreted conjunctively.� The tableau is successful i� at least one terminal node is successful. In thiscase the sequents are often sets of expressions that are interpreted conjunc-tively 1, while the branches of the tableau are interpreted disjunctively.A tableau system consists of the tableau rules, the termination conditions andthe success conditions. It is called sound if it can only be successful if the root-sequent is correct. Thus sound tableau systems don't give wrong answers. Atableau system is called complete if, for a given correct root sequent, it can al-ways construct a successful tableau. As mentioned earlier the tableau-rules aresometimes nondeterministic. In such cases many di�erent tableaux can be con-structed for a given root. In a sound and complete tableau system the root-nodeis true if and only if at least one of the possible tableaux is successful.It follows that a tableau system which is sound and complete and for any givenroot-sequent produces only �nitely many di�erent tableaux which are all �-nite yields a decision procedure. Just construct all the (�nitely many) di�erenttableaux for the root-sequent and check if one of them is successful.In the context of temporal logics the sequents are often sets of expressions of theform s ` �, where s is a state and � is a temporal logic formula. The symbol \`"1A set of subgoals that should be proved.

54 CHAPTER 4. TABLEAU SYSTEMSis used instead of \j=". This is because the property s j= � is de�ned semanticallywhile s ` � only means that an attempt is made to �nd a syntactical proof ofthe property s j= �.Now we show a simple example of a tableau system. We de�ne a tableau systemfor Hennessy-Milner Logic and arbitrary �nitely-branching transition systems (seealso Section 3.1.1). The sequents are sets of expressions of the form s ` � wheres is a state and � is a formula. Let � stand for sets of such expressions. Thesesets are interpreted conjunctively, i.e. as sets of subgoals that must be proved.The root-sequent is fs0 ` �0g.The tableau rules are as follows:^ fs ` �1 ^ �2g [�fs ` �1; s ` �2g [�_ fs ` �1 _ �2g [�fs ` �1g [� fs ` �2g [�hai fs ` hai�g [�fs1 ` �g [� fs2 ` �g [� : : : fsn ` �g [� (s a! si)[a] fs ` [a]�g [�fs1 ` �; s2 ` �; : : : ; sn ` �g [� (s a! si)true fs ` trueg [��A node is a terminal if its sequent is either1. The empty set.2. fs ` falseg [�3. fs ` hai�g [� and there is no s0 s.t. s a! s0.A terminal of type 1 is successful, but terminals of type 2 or 3 are unsuccessful.In this tableau system the branches are interpreted disjunctively and thus thetableau is successful i� at least one terminal is successful.It is easy to see that a tableau constructed by these rules is always �nite ands0 j= �0 i� a tableau with root fs0 ` �0g is successful.

55Remark 4.0.2 Note that it is also possible to construct a di�erent (dual) tableausystem for this problem where the sequents are interpreted disjunctively and thebranches are interpreted conjunctively. A tableau that is constructed with thisother system would be successful if and only if all terminals are successful.Example 4.0.3 The following (1; 1)-PRS de�nes a �nite-state system.X a! Y Y c! Y X a! Z Z b! Z Z c! XLet X be the initial state. The graphical representation looks like this:
a

c

c

a

b

X

ZYLet � := hai[b]false ^ [a]hcitrue be a formula in Hennessy-Milner logic. Intu-itively, it means that �rstly, there is a state reachable by action a where actionb is not enabled and secondly, all states that are reachable via action a enableaction c. We now construct the tableau that proves that X satis�es this formula.fX ` hai[b]false ^ [a]hcitrue gfX ` hai[b]false; X ` [a]hcitruegfY ` [b]false; X ` [a]hcitruegfX ` [a]hcitruegfY ` hcitrue ; Z ` hcitruegfY ` true; Z ` hcitruegfZ ` hcitruegfX ` truegfgsuccess, (cond. 1)
fZ ` [b]false; X ` [a]hcitruegfZ ` false; X ` [a]hcitruegfailure, (cond. 2)

This tableau is successful, because it has one successful leaf. Thus the transitionsystem with initial state X satis�es the formula �.

Chapter 5Finite-State SystemsModel checking �nite-state systems is an important �eld in both software ver-i�cation and hardware veri�cation. Since this thesis is about model checkingin�nite-state systems, we mention the results for �nite-state systems only for thesake of completeness. First we describe the results for branching-time logics andthen for linear-time logics.Model checking �nite-state systems with the full modal �-calculus is in NP \co-NP [EJS93, SW90, SW91, Mad97], but no polynomial algorithm is known sofar. The best known algorithms have a complexity of O(nm) where n is the sizeof the transition system and m is the size of the formula 1. Thus the complexityis polynomial in the size of the system for every �xed formula. Model checkingwith a fragment, the alternation-free modal �-calculus (see Section 3.1), can bedecided in linear time [SC93, SW90, SW91]. Thus model checking with CTL,UB, EG and EF is polynomial too. The model checker SMV (Symbolic ModelVeri�er) [CGL94] is a practical tool for model checking �nite-state systems withCTL.Model checking �nite-state systems with LTL and the linear-time �-calculus isPSPACE -complete [SC85, Var88]. However, the problem is polynomial in thesize of the system for every �xed formula. The model checkers SPIN [Hol91] andPROD [Val92] are practical tools for model checking �nite-state systems withLTL. A sound and complete tableau system for �nite-state systems and thelinear-time �-calculus is presented in [BEM96].The following table summarizes the results on the complexity of model checking�nite-state systems. We consider two di�erent versions of the model checking1More precisely the complexity is O(nd) where d is the alternation-depth of the minimal andmaximal �xpoints in the formula 56

57problem (see the de�nition of the model checking problem in Chapter 3 and thede�nition of reachability in Subsection 3.1.2):1. The general case, where the system and the formula are the input.2. The special case where the formula is �xed and only the system is the input.However, we assume the worst case for the �xed formula.Finite-state systems general �xed formulareachability/reachable property 2 P 2 PEF 2 P 2 PEG 2 P 2 PUB 2 P 2 PCTL 2 P 2 Palternation-free modal �-calc. 2 P 2 Pmodal �-calc. 2 NP \ co-NP 2 PLTL PSPACE -complete 2 Plinear-time �-calc. PSPACE -complete 2 P

Chapter 6Basic Parallel Processes (BPP)In this chapter we study model checking problems for Basic Parallel Processes(BPP). As shown in Subsection 2.3.2, BPP are equivalent to communication-free nets, a subclass of Petri nets. Model checking BPP with the logic EG isundecidable [EK95], even for a �xed EG-formula. Thus it is also undecidable forall branching-time logics except for EF (see Section 6.3). In Section 6.1 we showthat model checking BPP with the branching-time logic EF is PSPACE -complete.In Section 6.2 we show that model checking BPP with LTL and the linear-time�-calculus is decidable, but at least as hard as the reachability problem for Petrinets. In Section 6.3 we cite other results on BPP and present the general picture.6.1 Model Checking BPP with EFAs shown in Subsection 2.3.2, BPP are equivalent to communication-free nets, asubclass of Petri nets. While model checking with EF is undecidable for generalPetri nets [Esp94, Esp97] (see Chapter 9), it is still decidable for communication-free nets [Esp97]. The proof of the decidability for communication-free nets reliedon the fact that for communication-free nets the set of reachable states is e�ec-tively semilinear. Thus the model checking problem can be expressed in Pres-burger arithmetic, which is decidable. The problem with this was that the algo-rithm relying on Presburger arithmetic requires doubly exponential time, whilethe problem was only known to be PSPACE -hard [Esp97, Esp96]. PSPACE -hardness is relatively easy to show, since it holds even for �nite-state BPP (noticethat the size of the problem is the size of the formula plus the size of the BPP, andnot the size of its associated transition system), but the exact complexity of theproblem remained open. It was shown in [May96c] that the problem only requirespolynomial space, even for in�nite-state BPP. Thus it is PSPACE -complete.58

6.1. MODEL CHECKING BPP WITH EF 59We present this proof in the terminology of communication-free nets. In fact, thisis a somewhat stronger result than for BPP. This is because in communication-free nets of size n we allow arc-weights of up to O(2n), while in BPP (or (1; P)-PRS) the right hand sides of rules must have size O(n). This corresponds toarc weights of only O(n). However, all hardness results also hold for this weakerversion.6.1.1 General Properties of Communication-free NetsFirst we prove some general properties of communication-free nets. These resultsare used later for the model checking problem in Subsection 6.1.2.De�nition 6.1.1 For labeled Petri nets N there is a labeling function L : T !Act that assigns actions to the transitions. The labeling function L is extendedto sequences of transitions in the standard way. M �!M 0 means that a sequenceof transitions � is �reable at a marking M and leads to a new marking M 0.Let � be a sequence of transitions. Then P (�) is the Parikh-vector of � and E(�)is the e�ect-vector of � (see Def. 2.3.4). Let �; �0 be sequences of transitions andP (�); P (�0) the corresponding Parikh-vectors. Let P (�)i be the i-th componentof the Parikh-vector P (�). Let m be the number of transitions in the net. Thenthe sequence �0 is called a smaller sequence than � i�8i 2 f1; : : : ; ng: P (�0)i � P (�)i� is then called a greater sequence than �0.�0 is called a subsequence of � if it is a smaller sequence and the transitions occurin the same order. This means that �0 can be constructed from � by removingsome occurrences of transitions. Note that �0 is not a single piece of �, butpossibly a composition of many pieces of �. However, these pieces must be in thesame order as in �. If �0 is a subsequence of � then � is called a supersequenceof �0.De�nition 6.1.2 Let N = (S; T;W) be a communication-free net with places S,transitions T and a function W that assigns weights to the arcs in the net. Thesize of N is the space needed to describe it with the numbers in binary coding.n := size(N) := X(x;y)2Dom(W) log(W (x; y)) + 1It follows that jSj � n, jT j � n and 8t 2 T 8s 2 S: W (t; s) � 2n.

60 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)For a marking M of N , tokens(M) :=Ps2S M(s) is the number of tokens in themarking M . The space needed to describe M is O(n � log(tokens(M))).For two markings M and M 0 of N we de�neM 0 �M () 8s 2 S: M 0(s) �M(s)Now we de�ne interleavings of sequences of transitions.De�nition 6.1.3 Let �, �1 and �2 be sequences of transitions. We de�ne that� 2 interleave (�1; �2) means that � is an arbitrary interleaving of �1 and �2. Theformal de�nition is as follows: Let � be the empty sequence.interleave(�; �) := f�ginterleave(�; �) := f�ginterleave(t1�1; t2�2) := ft1� j � 2 interleave(�1; t2�2)g [ft2� j � 2 interleave(t1�1; �2)gThe generalization of the function interleave to n arguments is straightforward.In communication-free nets tokens can move independently of each other. Inthe following de�nitions and lemmas we show that this has many interestingconsequences. The following de�nition is somewhat unusual, because it givestokens a limited individuality. This is contrary to the normal de�nitions in Petrinet theory, but in this special case it does not violate the standard semantics ofPetri nets.De�nition 6.1.4 Let N be a communication-free net with initial marking M0.If a transition �res then it takes one token from the place in its preset and putsseveral tokens on the places in its postset. We interpret this so that the transitionchooses arbitrarily one of the tokens on the place in its preset and then uses thistoken. We call this token the parent-token. The new tokens that the transitionputs on the places in its postset are called the children of the parent-token. Wedistinguish these children from the other tokens on the places in the postset thatwere already there before the transition �red. In this sense the tokens have alimited individuality. Each time a transition �res a nondeterministic choice ismade which of the tokens on the place in the preset is used. We call this choicethe token-choice.The formal de�nition is as follows: We assign each token a pair of labels (l; al)where l is a unique label for this token and al is its ancestor-label. A markingM

6.1. MODEL CHECKING BPP WITH EF 61of N is then a mapping s.t. M(s) = f(l1; al1); : : : ; (lk; alk)g, if there are k tokenson place s. In the initial marking M0 every token is its own ancestor and thusl = al for every token in M0. However, this is not the case for other markings.When a transition t with preset s �res, then it chooses nondeterministically oneof the tokens (li; al i) and removes it from the place s. Then (li; al i) is the token-choice made by this occurrence of the transition t. t possibly puts several tokenson the places in its postset. These tokens all have their own unique label, buttheir ancestor-label is al i, the same as the ancestor-label of the parent-token.Thus the ancestor-label is inherited by the children.A sequence of transitions � then represents many di�erent possible sequences oftoken-choices made by the transitions in �. If M0 �! then let choices(M0; �) bethe set of possible sequences of token-choices for �. choices(M0; �) is �nite, butit depends on M0.Let M0 be the initial marking,M 0 a marking and � a sequence of transitions s.t.M0 �! M 0. Now we �x a possible sequence of token-choices sc 2 choices(M0; �).Then for every token in M 0 one of the following cases holds:� The token was already there in M0, or� The token was created as a child-token by a transition. Then it has a uniqueparent-token. This parent-token was either already present in M0 or wascreated as a child-token from another parent-token, and so on.Thus every token inM 0 has a unique ancestor-token inM0 (possibly itself). Thisancestor-token is uniquely determined by the ancestor-label. Every occurrence ofa transition t in � uses exactly one token. We label this occurrence of t with theancestor-label of this token. We call this label the ancestor-label of this occurrenceof t 1. Every occurrence of a transition has a unique ancestor-label. The ancestor-label is only de�ned for occurrences of transitions. Di�erent occurrences of thesame transition may have di�erent ancestor-labels.LetM0 �! and let sc 2 choices(M0; �) be a sequence of possible token-choices. Ifall occurrences of transitions in � have the same ancestor-label then we call thepair (�; sc) a uniform sequence. We call � a 1-token initiated sequence if there isa sequence of token-choices sc 2 choices(M0; �) s.t. (�; sc) is a uniform sequence.Now let � be a 1-token initiated sequence. We say that a place s is the startof � if the ancestor-label of all transitions in the uniform sequence (�; sc) is atoken on place s. The start s of � is uniquely determined and does not depend1Do not confuse the ancestor-label with the action-label that assigns an atomic action to atransition.

62 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)on the choice sc 2 choices(M0; �), because s is the place in the preset of the�rst transition of �. It is clear that a 1-token initiated sequence � with start sis enabled by every initial marking that has at least one token on s. � is calledremoving if the e�ect-vector of � is (0; : : : ; 0;�1; 0; : : : ; 0) where the �1 works onplace s. So the e�ect of a removing sequence � is just to remove one token fromits start s.Example 6.1.5 Consider the following communication-free net.
A

B C

b c

aThere are two ways to interpret the sequence abc. It depends on the token-choicemade by the transition b.1. It can be seen as 1-token initiated sequence abc with start A.2. It can also be seen as an interleaving of the 1-token initiated sequence acwith start A and the 1-token initiated sequence b with start B.Lemma 6.1.6 Let N be a communication-free net with initial marking M0 and� a 1-token initiated sequence with start s s.t. M0 �!.Then E(�)(s) � �1 and 8s0 6= s:E(�)(s0) � 0.Proof LetM be the marking that is de�ned byM(s) = 1 and 8s0 6= s:M(s0) = 0.Then � is �reable at M . The result follows directly.Now we show that every sequence can be decomposed (not uniquely) into 1-tokeninitiated sequences.Lemma 6.1.7 Let (N;M0) be a communication-free net with initial marking M0.Every �reable sequence of transitions � is an interleaving of �nitely many 1-tokeninitiated sequences.

6.1. MODEL CHECKING BPP WITH EF 63Proof Choose an arbitrary sequence of token-choices sc 2 choices(M0; �). Thereare only �nitely many tokens in M0. So there are only �nitely many di�erentancestor-labels l1; : : : ; lk for the occurrences of transitions in �. (k = tokens (M0)).For every ancestor-label li let �i be the maximal subsequence of � where alltransitions are labeled with li. (This means that the ancestor-label li only occursin �i and not in the rest of �.) Then every �i is a 1-token initiated sequence thatis �reable at M0 and � 2 interleave (�1; : : : ; �k).Thus every sequence � can be decomposed into 1-token initiated sequences, butthis decomposition is not unique, because it depends on the choice of sc. However,the decomposition is unique for every �xed sc. Now we show that the parts of adecomposition are independent of each other.Lemma 6.1.8 Let (N;M0) be a communication-free net with initial marking M0and � 2 interleave(�1; : : : ; �n) a �reable sequence where each �i is a 1-tokeninitiated sequence. Let f�01; : : : ; �0mg � f�1; : : : ; �ng.Then every sequence �0 2 interleave (�01; : : : ; �0m) is also �reable at M0.Proof For every i 2 f1; : : : ; ng the ancestor-label li of �i is a token inM0. Thusevery �i is �reable atM0. The di�erent sequences �i cannot inuence each other,since N is a communication-free net. Thus every interleaving of these sequencesis �reable at M0.A special case of a 1-token initiated sequence is a cycle.De�nition 6.1.9 (Cycles/spin-o�s)In communication-free nets every transition t has exactly one place in its preset.Let Pre(t) be the one place in the preset of t and Post(t) the postset of t. Asequence of transitions � = t1:t2: : : : :tn is a cycle i�1. 8i 6= j: ti 6= tj2. 8i 2 f1; : : : ; n� 1g: Pre(ti+1) 2 Post(ti)3. Pre(t1) 2 Post(tn)It follows that a cycle is a 1-token initiated sequence with start Pre(t1). If M �!M 0 with a cycle �, then M 0 �M . We can arbitrarily choose any decompositionof M 0 into M and (M 0 �M). The tokens in the marking (M 0 �M) are calledspin-o�s. When a cycle is possible it can be repeated an arbitrary number oftimes, because the resulting marking is bigger than the original one. A cycle doesnot change a marking, except that it generates some new tokens (the spin-o�s).

64 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)The intuition is that in a communication-free net tokens can move freely throughthe net, because every transition has only one place in its preset and the arcleading from this place to the transition is labeled by 1. When a transition ti ina cycle �res, then it takes a token from Pre(ti) and puts some tokens on placesin Post(ti). One regards one token on Pre(ti+1) as the continuation of the tokenthat was on Pre(ti). The other tokens that were put on the places in Post(ti) arethe spin-o�s. So, informally speaking, a cycle moves a token around and thenback to its original place and generates some spin-o�s on the way.We show that sequences that do not contain any cycles have bounded length.Lemma 6.1.10 Let (N;M) be a communication-free net with marking M . Letn be the size of N and x := tokens (M). Let � be a �ring sequence starting in Mthat does not contain any cycle �0 as subsequence. Thenlength (�) � x2n2�n � 12n � 1 = O(x � 2n2)Proof Let m be the number of places in N . Then m � n. Consider an arbitrarymarking M 0 that is reached from M by a pre�x of �. Every token in M 0 waseither already present in M or it was created by a transition in this pre�x of �.Any path in the net N that does not contain any place twice has a length of atmost m� 1. No subsequence of � is a cycle. Thus no token can move more thanm� 1 steps. The �ring of a transition increases the number of tokens in the netby at most 2n � 1. When a transition �res it replaces a token that can move ksteps by � 2n tokens that can only move � k � 1 steps. So only a �nite cascadeof tokens is possible. Thus the sequence � has a maximal length ofm�2Xi=0 x � (2n)i = x1� (2n)m�11� 2n = x2nm�n � 12n � 1 � x2n2�n � 12n � 1Now we de�ne a partial order on markings of nets. Later it'll be used to showthat certain classes of smaller markings have the same properties as larger ones.De�nition 6.1.11 First we de�ne a partial order on natural numbers. Letx; y; y0 2 IN, then y �x y0 :, (y � y0) ^ (y < y0) y � x)

6.1. MODEL CHECKING BPP WITH EF 65For every x relation �x is a partial order on IN. Now we de�ne this order onmarkings of Petri nets. Let N be a Petri net and S the set of its places. Forevery x 2 IN the relation �x on the set of markings of N is de�ned byM �x M 0 :, 8s 2 S: M(s) �x M 0(s)For every x the relation �x is a partial order on the set of markings of N .
5

10

15

20

25

M1

M1

M2

M2

S1 S2 S3

M1

M2

Figure 6.1: M1 �10 M2, but not M1 �20 M2.Example 6.1.12 Let there be a net with three places s1; s2; s3 and two markingsM1 and M2 s.t. M1(s1) = 3, M1(s2) = 12, M1(s3) = 21, M2(s1) = 3, M2(s2) = 23and M2(s3) = 25. Then M1 �10 M2, but not M1 �20 M2. Figure 6.1 illustratesthis.The following de�nitions and lemmas play a central role in the model checkingproblem. They show that smaller markings can simulate the behavior of largerones, at least for a limited number of steps.

66 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)De�nition 6.1.13 Let N = (S; T;W) be a communication-free net and s 2 S.Then reach(s) is the set of places s0 s.t. there is a path in N from s to s0. Thiscan also be de�ned as a smallest �xpoint.reach(s) :=\fS 0 � S j s 2 S 0 ^ Post(Post(S 0)) � S 0gDe�nition 6.1.14 Let x 2 IR, x � 0. Thenbxc := maxfy 2 IN j y � xgdxe := minfy 2 IN j y � xgThe following lemma is used in the proofs of Lemma 6.1.16 and Lemma 6.1.17.Lemma 6.1.15 Let N = (S; T;W) be a communication-free net, s 2 S, m :=jSj, x 2 IN and M0 the initial marking with M0(s) � x. Let there be a k 2 INs.t. M0(s) � k > x�bx=mc. Let there be k 1-token initiated sequences 1; : : : ; kwith start s s.t. 8i 2 f1; : : : ; kg: E(i)(s) = �1. For every i 2 f1; : : : ; kg let�i := 1 : : : i�1i+1 : : : k.Then there is a j 2 f1; : : : ; kg s.t.8s0 2 S: (E(j)(s0) > 0) E(�j)(s0) � bx=mc)Proof We assume the contrary and derive a contradiction. For every j 2f1; : : : ; kg there is a place s0(j) s.t. E(j)(s0(j)) > 0 and E(�j) < bx=mc. Weknow that s0(j) 6= s for all j, because E(j)(s) = �1. Thus there are only m� 1di�erent choices for s0(j). So there must be a place s00 6= s s.t. s00 = s(j) for atleast dk=(m� 1)e di�erent j. We have� km� 1� � �x� bx=mc + 1m� 1 �� �mbx=mc � bx=mc + 1m� 1 �= �bx=mc+ 1m� 1�= bx=mc+ 1Therefore there are at least bx=mc+ 1 di�erent j with E(j)(s00) > 0. Thus byLemma 6.1.6 for every i we have E(�i)(s00) � bx=mc. We take one j for whichs(j) = s00 and have a contradiction, because E(�j)(s00) < bx=mc.

6.1. MODEL CHECKING BPP WITH EF 67Now we show that smaller markings can, in a limited way, simulate the behaviorof larger markings.Lemma 6.1.16 Let N be a communication-free net with m places and two mark-ings M1 and M2 s.t. M1 �x M2 for an x 2 IN. Then for any sequence of tran-sitions �2 with M2 �2! M 02 there is a smaller sequence �1 s.t. M1 �1! M 01 andM 01 �bx=mc M 02.Proof We �x a sequence of token-choices sc 2 choices(M2; �2). By Lemma 6.1.7we can decompose �2 into 1-token initiated sequences. By Lemma 6.1.6 there aretwo kinds of 1-token initiated sequences with start s. For every place s let� s1; : : : ; sns be the 1-token initiated subsequences of �2 with start s s.t. for1 � i � ns we have E(si)(s) = �1 and 8s0 6= s:E(si)(s0) � 0. Lets := s1 : : : sns.� �s1; : : : ; �sms be the 1-token initiated subsequences of �2 with start s s.t.E(�si) � ~0 for 1 � i � ms. Let �s := �s1 : : : �sms.It follows that M 02 =M2 +Xs E(s) +Xs E(�s)By Lemma 6.1.6 no sequence si can have a negative e�ect on a place s0 6= s.Now we construct �1 by choosing a subset of these sequences. For every s wechoose a subsequence 0s of s and add this 0s to �1. Furthermore all sequences�s are added to �1. �s is added before 0s, because the e�ect of �s is non-negativeon every place. We start with the empty sequence for �1. Then for every place swe do the following. As M1 �x M2 there are two cases:1. If M1(s) = M2(s) then let 0s := s and we add � and 0s to �1. The onlyplace on which this sequence can have a negative e�ect is s. Thus it is�reable at M1, because it is �reable at M2 and M1(s) =M2(s).2. If M1(s) < M2(s) thenM1(s) � x. Only the sequences s1; : : : ; sns can havea negative e�ect on s. There are two cases:(a) If ns � x�bx=mc then let 0s := s and we add � and 0s to �1. We haveE(0s)(s) � bx=mc�x. Thus the sequence is �reable at M1 and leavesat least bx=mc tokens on the place s. Thus we have M 01(s) � [x=m].

68 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)(b) Now we assume ns > x � bx=mc. We show that the preconditions ofLemma 6.1.15 are satis�ed. k := ns corresponds to k in Lemma 6.1.15and the s1; : : : ; sns correspond to the 1; : : : ; k in Lemma 6.1.15.Then we repeatedly apply Lemma 6.1.15 to remove sequences si froms1 : : : sns until there are only x � bx=mc left. Let 0s be the concate-nation of those si that are left. By Lemma 6.1.15 we have for everyplace s0 6= s eitherE(0s)(s0) = E(s)(s0) or at least E(0s)(s0) � bx=mc.Since 0s consists of only x� bx=mc 1-token initiated sequences si wealso have E(0s)(s) = bx=mc � x. We add � and 0s to �1.Altogether we have the following cases:1. M1(s) =M2(s) and E(s) = E(0s).2. M2(s) > M1(s) � x and E(0s)(s) � bx=mc � x and8s0 6= s:E(0s)(s0) �bx=mc E(s)(s0)It follows that for every place s8s0 6= s: E(0s)(s0) �bx=mc E(s)(s0)The sequences �s have a non-negative e�ect on every place. We de�ne �1 :=�s10s1 : : : �sn0sn . By Lemma 6.1.8 and the above conditions �1 is �reable at M1and we get M1 �1!M 01.It remains to show that M 01 �bx=mc M 02. We show that M 01(s) �bx=mc M 02(s) forevery place s. There are two cases:1. If M1(s) =M2(s) thenM 01(s) = M1(s) + E(0s)(s) +Xs0 6=sE(0s0)(s) +Xs0 E(�s0)(s)= M2(s) + E(s)(s) +Xs0 6=sE(0s0)(s) +Xs0 E(�s0)(s)�bx=mc M2(s) + E(s)(s) +Xs0 6=sE(s0)(s) +Xs0 E(�s0)(s)= M 02(s)

6.1. MODEL CHECKING BPP WITH EF 692. If M2(s) > M1(s) � x thenM 01(s) = M1(s) + E(0s)(s) +Xs0 6=sE(0s0)(s) +Xs0 E(�s0)(s)� x+ E(0s)(s)� x+ (bx=mc � x)= bx=mcThus M 01 �bx=mc M 02.Now we show a dual property for larger markings.Lemma 6.1.17 Let N be a communication-free net with m places and two mark-ings M1 and M2 s.t. M1 �x M2 for an x 2 IN. Then for any sequence M1 �1!M 01there is a greater sequence �2 s.t. M2 �2!M 02 and M 01 �bx=mc M 02.Proof We �x a sequence of token-choices sc 2 choices(M1; �1). By Lemma 6.1.7we can decompose �1 into 1-token initiated sequences. By Lemma 6.1.6 there aretwo kinds of 1-token initiated sequences with start s. For every place s let� s1; : : : ; sns be the 1-token initiated subsequences of �1 with start s s.t. for1 � i � ns we have E(si)(s) = �1 and 8s0 6= s:E(si)(s0) � 0. Lets := s1 : : : sns.� �s1; : : : ; �sms be the 1-token initiated subsequences of �1 with start s s.t.E(�si) � ~0 for 1 � i � ms. Let �s := �s1 : : : �sms.It follows that M 01 =M1 +Xs E(s) +Xs E(�s)By Lemma 6.1.6 no sequence si can have a negative e�ect on a place s0 6= s.Now we construct �2 by choosing a multiset of these sequences (i.e. some se-quences si occur in �2 more than once). For every s we construct a sequence 0ss.t. 0s is a supersequence of s and add 0s to �2. Furthermore all sequences �sare added to �2. �s is added before 0s, because �s has a non-negative e�ect onevery place. We start with the empty sequence for �2. Then for every place s wedo the following. As M1 �x M2 there are two cases:1. If M1(s) =M2(s) then let 0s := s and we add �s and 0s to �2.

70 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)2. IfM1(s) < M2(s) then M1(s) � x. Only the sequences s1; : : : ; sns can havea negative e�ect on s. There are two cases:(a) If ns � x � bx=mc then let 0s := s and we add �s and 0s to �1. Wehave E(0s)(s) = E(s)(s) � bx=mc � x. Thus the sequence is �reableat M1 and leaves at least bx=mc tokens on the place s.(b) Now we assume ns > x � bx=mc. We show that the preconditions ofLemma 6.1.15 are satis�ed. k := ns corresponds to k in Lemma 6.1.15and the s1; : : : ; sns correspond to the 1; : : : ; k in Lemma 6.1.15.Thus by Lemma 6.1.15 there is a sj s.t. 8s0 6= s: (E(sj)(s0) >0) E(s)(s0) � E(s1 : : : sj�1; sj+1 : : : sns) � bx=mc). The intu-ition is that we have too many tokens on place s in the marking M2.So we move these surplus tokens away to a place where they do noharm, i.e. to places that contain at least bx=mc tokens in the mark-ing M 01. We can do this by adding several extra copies of sj to �2.Let w := M2(s) �M1(s). We de�ne 0s := s(sj)w. Then we haveE(0s)(s) = E(s)(s)� (M2(s)�M1(s)) and 8s0 6= s: E(s)(s0) �bx=mcE(0s)(s0). We add �s and 0s to �1.Altogether we have the following cases:1. M1(s) =M2(s) and E(s) = E(0s).2. M2(s) > M1(s) � x and E(s) = E(0s) and E(s)(s) � bx=mc � x.3. M2(s) > M1(s) � x and E(0s)(s) = E(s)� (M2(s)�M1(s)) and8s0 6= s: E(s)(s0) �bx=mc E(0s)(s0)It follows that for every place s8s0 6= s: E(s)(s0) �bx=mc E(0s)(s0)The sequences �s have a non-negative e�ect on every place. We de�ne �2 :=�s10s1 : : : �sn0sn . By Lemma 6.1.8 and the above conditions �2 is �reable at M2and we get M2 �2!M 02.It remains to show that M 01 �bx=mc M 02. We show that M 01(s) �bx=mc M 02(s) forevery place s. We have the same three cases as above:

6.1. MODEL CHECKING BPP WITH EF 711. If M1(s) =M2(s) thenM 01(s) = M1(s) + E(s)(s) +Xs0 6=sE(s0)(s) +Xs0 E(�s0)(s)= M2(s) + E(0s)(s) +Xs0 6=sE(s0)(s) +Xs0 E(�s0)(s)�bx=mc M2(s) + E(0s)(s) +Xs0 6=sE(0s0)(s) +Xs0 E(�s0)(s)= M 02(s)2. If M2(s) > M1(s) � x and E(s) = E(0s) and E(s)(s) � bx=mc � x thenM 01(s) = M1(s) + E(s)(s) +Xs0 6=sE(s0)(s) +Xs0 E(�s0)(s)� x+ E(s)(s)� x+ (bx=mc � x)= bx=mc3. Now we consider the third of the cases described above.M 01(s) = M1(s) + E(s)(s) +Xs0 6=sE(s0)(s) +Xs0 E(�s0)(s)= M1(s) + E(0s)(s) + (M2(s)�M1(s)) +Xs0 6=sE(s0)(s) +Xs0 E(�s0)(s)= M2(s) + E(0s)(s) +Xs0 6=sE(s0)(s) +Xs0 E(�s0)(s)�bx=mc M2(s) + E(0s)(s) +Xs0 6=sE(0s0)(s) +Xs0 E(�s0)(s)= M 02(s)Thus M 01 �bx=mc M 02.Now we show that ifM �!M 0 then one can reach a markingM 00 withM 00 �k M 0by a subsequence of bounded length.

72 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)Lemma 6.1.18 Let N be a communication-free net of size n, M a marking ofN and x := tokens(M). If M �!M 0 then for every k 2 IN there is a subsequence~� of � s.t. M ~�! ~M and ~M �k M 0 andlength (~�) � n2k + (x+ (2n � 1)n2k) � 2n2�n � 12n � 1 = O(2n2(x+ k))Proof The sequence ~� is the same as �, except that it possibly contains fewercycles. What is the maximal number of cycles in ~� that are needed to reach sucha ~M with ~M �k M 0 ? Cycles just generate new tokens, and at most k new tokensneed to be produced per place in N . The number of places in N is � n. So atmost n � k cycles are needed in ~�. In every cycle � n transitions are �red, so� (2n�1)n2k new tokens are produced. So at most x+(2n�1)n2k tokens are in thenet for moves without cycles. By Lemma 6.1.10 at most (x+(2n�1)n2k)� 2n2�n�12n�1non-cyclic moves are possible 2. By adding the numbers of moves belonging tocycles and the non-cyclic moves we get length(~�) � n2k + (x + (2n � 1)n2k) �2n2�n�12n�1 = O(2n2(x+ k)).6.1.2 Model Checking Communication-free NetsThe basic structure of the temporal logic EF (see Chapter 3) is �xed, but thepossible atomic propositions can depend on the process model that is analyzed.In this context we use propositions of the form s � k=s � k, meaning `there areat least/at most k tokens on place s'. It is easy to express the normally usedpredicates like `action a is enabled' by these. To do this, just �nd all places thatare in the preset of any transition marked with the action a. As every transitionhas exactly one place in its preset, action a is enabled i� at least one of theseplaces contains at least one token.We repeat the syntax of the logic here.� ::= s � k j s � k j :� j �1 ^ �2 j hai� j 3�where s ranges over the places of the net N and k 2 IN. The modal operator 2can be added by de�ning 2 := :3:.Let F be the set of all formulae. Let
 be the set of all markings of N . Thedenotation [[�]] of a formula � is the set of markings of N inductively de�ned as2This does not necessarily mean that the cycles are done �rst, and the non-cyclic movesafterwards. Moves belonging to cycles and non-cyclic moves can occur in any order. Weconsider the worst case where the cycles are done �rst.

6.1. MODEL CHECKING BPP WITH EF 73follows: [[s � k]] := fM jM(s) � kg[[s � k]] := fM jM(s) � kg[[:�]] :=
� [[�]][[�1 ^ �2]] := [[�1]] \ [[�2]][[hai�]] := fM j 9M a!M 0 2 [[�]]g[[3�]] := fM j 9�:M �!M 0 2 [[�]]gM 2 [[�]] is also denoted by M j= �.The model checking problem consists of deducing if M j= � holds for a givencommunication-free net N with marking M and formula �.De�nition 6.1.19 The nesting-depth nd (�) of an EF-formula � is de�ned bynd (s � k) := 0nd (s � k) := 0nd (:�) := nd(�)nd (�1 ^ �2) := maxfnd(�1);nd(�2)gnd (hai�) := nd(�) + 1nd (3�) := nd(�) + 1De�nition 6.1.20 Fd � F is de�ned as the set of all formulae with a nestingdepth of modal operators 3 or hai of at most d.Fd := f� 2 F j nd(�) � dgIt follows that formulae in F0 contain no modal operators.We show that certain classes of smaller markings satisfy the same EF-formulaeas larger ones, provided that these formulae have a limited nesting depth.Lemma 6.1.21 Let N be a communication-free net of size n � 2 and M1 andM2 two markings of N . Let � 2 Fd and k̂ be the maximal k occurring in asubterm of � of the form s � k or s � k. If M1 �(k̂+1)nd M2 thenM1 j= � , M2 j= �Proof By induction on d.

74 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)1. If d = 0 then � doesn't contain any modal operators and M1 �(k̂+1) M2.Thus for all places s and any k � k̂, M1(s) � k,M2(s) � k and M1(s) �k ,M2(s) � k. By induction on the structure of � the result follows.2. Now d > 0. We do an induction on the structure of �.� In the base case � = s � k or � = s � k. Just like in case 1 we haveM1 j= � , M2 j= �.� If � = :�0 then by induction hypothesis. M1 j= �0 , M2 j= �0. Itfollows directly that M1 j= � , M2 j= �.� If � = �1 ^ �2 then by induction hypothesis M1 j= �i , M2 j= �i,i = 1; 2. It follows that M1 j= � , M2 j= �.� Now � = hai' for a ' 2 Fd�1.) If M1 j= hai', then there is a M 01 s.t. M1 a!M 01 and M 01 j= '. Firethe same transition in M2 and get M2 a!M 02 with M 01 �(k̂+1)nd�1M 02. As n � 2 it follows that M 01 �(k̂+1)n(d�1) M 02. By inductionhypothesis M 02 j= ' and therefore M2 j= hai'.(If M2 j= hai' then there is a M 02 s.t. M2 a!M 02 and M 02 j= '. Thesame transition is �reable in M1 and so we get M1 a! M 01 withM 01 �(k̂+1)nd�1 M 02. As n � 2 it follows that M 01 �(k̂+1)n(d�1) M 02.By induction hypothesis M 01 j= ' and therefore M1 j= hai'.� Now � = 3' for a ' 2 Fd�1.) IfM1 j= 3' then there is a sequence � s.t. M1 �!M 01 andM 01 j= '.The number of places in N is � n. Thus by Lemma 6.1.17 thereis a greater sequence �0 s.t. M2 �0! M 02 and M 01 �(k̂+1)n(d�1) M 02.By induction hypothesis M 02 j= ' and therefore M2 j= 3'.(IfM2 j= 3' then there is a sequence � s.t. M2 �!M 02 andM 02 j= '.By Lemma 6.1.16 there is a smaller sequence �0 s.t. M1 �0! M 01and M 01 �(k̂+1)n(d�1) M 02. By induction hypothesis M 01 j= ' andtherefore M1 j= 3'.We show that in order to decide M j= 3� it su�ces to check M 0 j= � for thoseM 0 that can be reached from M by sequences of a certain bounded length.Lemma 6.1.22 Let N be a communication-free net of size n, M a marking,x := tokens(M), � 2 Fd and k̂ be the maximal k in a subterm of � of the forms � k or s � k. ThenM j= 3� , 9~�:M ~�! ~M ^ ~M j= � ^ length(~�) � O((x+ k̂) � 2n2 � nd)

6.1. MODEL CHECKING BPP WITH EF 75Proof There must be a sequence � s.t. M �!M 0 andM 0 j= �. By Lemma 6.1.18there is a smaller sequence ~� s.t. M ~�! ~M , ~M �(k̂+1)nd M 0 andlength (~�) � n2 � ((k̂ + 1)nd) + (x+ (2n � 1) � n2 � (k̂ + 1)nd) � 2n2�n � 12n � 1So M ~�! ~M , length (~�) = O((x+ k̂) � 2n2 � nd) and by Lemma 6.1.21 ~M j= �.Esparza [Esp95] showed that for communication-free nets it is decidable in poly-nomial time if there is a �reable sequence of transitions with a given Parikh-vector.Lemma 6.1.23 Let N be a communication-free net with marking M and K aParikh-vector.It can be decided in O(n3) time if there is a �reable sequence of transitions �(M �!) with Parikh-vector K (P (�) = K).Proof By Esparza in [Esp95].Now we show that the model checking problem for EF-formulae of nesting depthd is complete for the d-th order in the polynomial time hierarchy. (See [vL90] forthe de�nition of the polynomial time hierarchy.)Lemma 6.1.24 Let N be a communication-free net, M a marking of N and� 2 Fd. The problem M j= 3� can be solved in �pd+1.Proof By induction on d.Let n be the size of the instance of the problem, as de�ned in the de�nition ofmodel checking in Chapter 3. So n is the size of (N;M) plus the size of 3�in binary coding. It follows that N has O(n) places and if k̂ is the maximal koccurring in any subterm of � of the form s � k or s � k, then k̂ = O(2n). Alsox := tokens(M) = O(2n) and d = O(n).1. If d = 0 then � doesn't contain any modal operators. By Lemma 6.1.22 itsu�ces to look for a ~� with M ~�! ~M s.t. length (~�) = O((x + k̂)2n2 � nd)and ~M j= �. As k̂ = O(2n) and x = O(2n) and d = O(n) the Parikh-vectorof ~� can be written in polynomial space. Now guess a Parikh-vector ofpolynomial size. By Lemma 6.1.23 it can be checked in polynomial timeif there is a sequence ~� with this Parikh-vector s.t. M ~�! ~M . It onlytakes polynomial time to compute the resulting marking ~M and ~M canbe described in polynomial space. It can be checked in polynomial time if~M j= �. So the problem can be solved in NP = �p1.

76 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)2. Now d > 0. Again by Lemma 6.1.22 it su�ces to guess a Parikh-vector ofpolynomial size. Then by Lemma 6.1.23 we can check in polynomial timeif there is a �reable sequence ~� with this Parikh-vector s.t. M ~�! ~M andcompute ~M in polynomial time. As tokens(M) = x and length (~�) = O((x+k̂)2n2 � nd) one can assume that tokens (~M) = O(x + 2n((x+ k̂)2n2 � nd)).It follows that tokens(~M) = O(2n2) and ~M can be described in polynomialspace. It is possible to apply the induction hypothesis and to check if~M j= � in polynomial time with the help of a �pd-oracle. The oracle is usedto solve the problem for the subformulae of � that have the form 3' with' 2 Fd�1. Therefore the problem can be solved in NP�pd = �pd+1.The following lower bounds for the model checking problem were shown by Es-parza in [Esp97].Lemma 6.1.25 Let N be a communication-free net, M a marking of N and� 2 Fd. The problem M j= 3� is �pd+1-hard.Proof (by Esparza in [Esp97])The problem of the validity of bounded quanti�ed boolean formulae (BQBF) canbe reduced to the model checking problem. Example 6.1.27 describes the idea.Lemma 6.1.26 Let N be a communication-free net, M a marking of N and� 2 F . The problem M j= 3� is PSPACE-hard.Proof (by Esparza in [Esp97])The problem of the validity of quanti�ed boolean formulae (QBF) can be reducedto this model checking problem. Example 6.1.27 describes the idea.These hardness results even hold for communication-free nets with a �nite statespace. They remain true if the logic is restricted to atomic propositions of theform s > 0 or `action a is enabled' instead of s � k=s � k.Example 6.1.27 For the formula 9x18x29x3:(x1 ^ :x2 ^ :x3) _ (x2 ^ x3) thecommunication-free net of Figure 6.2 is constructed. It is easy to see that9x18x29x3:(x1 ^ :x2 ^ :x3) _ (x2 ^ x3)()3(~x2 > 0 ^2(~x3 = 0 _3((x1 > 0 ^ �x2 > 0 ^ �x3 > 0) _ (x2 > 0 ^ x3 > 0))))

6.1. MODEL CHECKING BPP WITH EF 77
x2x1x3

~x1 �x1~x2 �x2~x3 �x3Figure 6.2: Hardness of model checking BPP.Theorem 6.1.28 Let N be a communication-free net, M a marking of N and� 2 Fd. The problem M j= 3� is �pd+1-complete.Proof Directly from Lemma 6.1.24 and Lemma 6.1.25.Theorem 6.1.29 Model checking BPP with EF is PSPACE-complete.Proof BPP are equivalent to communication-free Petri nets. Let N be acommunication-free net, M a marking of N and � 2 F . The question is ifM j= �.Let n be the size of the instance of the model checking problem (the size of(N;M) plus the size of �). Let x := tokens (M), y := size(�), d := nd(�) thenesting-depth of � and k̂ the maximal k occurring in a subterm of � of the forms � k or s � k. Thus x = O(2n), y = O(n), d = O(n) and k̂ = O(2n). Weshow by induction on d that the problem can be solved nondeterministically withO(n3 + d � n2 + y + log x) space.

78 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)If d = 0 then � does not contain the operator 3. By induction on the structureof � the problem can be solved in time O(y) and thus in space O(y).If d > 0 then also use induction on the structure of � until subformulae of the form3' are reached. This requires only O(y) time and space. The only di�cult partare the subproblems of the formM j= 3'. Then ' 2 Fd�1 and by Lemma 6.1.22it su�ces to look for aM �!M 0 s.t. length (�) = O((x+k̂)2n2 �nd�1) = O(x�2n2 �nd�1) = O(x�2n2+(d�1) logn) = O(x�2n2) andM 0 j= '. The Parikh-vector of � canbe written in spaceO(n(log x+n2)) = O(n3). We nondeterministically guess sucha Parikh-vector. By Lemma 6.1.23 it can be decided in time (and space) O(n3)if there is a �reable sequence with this Parikh-vector. If yes, then the resultingmarking M 0 can also be computed in polynomial time. Let x0 := tokens (M 0). Itfollows that x0 � x + 2n length(�) = O(x � 2n2+n) = O(x � 2n2). By inductionhypothesis the problemM 0 j= ' can be decided in space O(n3 + (d� 1)n2 + y +log x0) = O(n3 + (d � 1)n2 + y + log x + n2) = O(n3 + dn2 + y + log x). Thereare at most O(y) such subproblems and thus the whole problem can be solvednondeterministically with O(n3 + dn2 + y + log x) space.As d = O(n), y = O(n) and x = O(2n) the problem is in NSPACE (O(n3)). Bythe theorem of Savitch [vL90] it is in DSPACE (O(n6)) � PSPACE .By combining this with Lemma 6.1.26 it follows that the problem is PSPACE -complete.So far we have seen that the model checking problem for BPP and EF is PSPACE -complete in the general case and �pd-complete if the formulae are restricted tonesting-depth d. (Note that formulae of a �xed nesting-depth can still be arbi-trarily large.) The question about the complexity of the problem in the size ofthe BPP for every �xed formula is still open. However, there is a linear timealgorithm for a slightly more restricted problem.Theorem 6.1.30 Let N be a �xed communication-free net and � a �xed EF-formula. Then the problem if M j= � for a marking M can be solved in lineartime in the size of M .Proof Let n be the size of N , k̂ the maximal k that occurs in � in an atomicproposition of the form s � k or s � k and let d be the nesting-depth of �. Son, k̂ and d are �xed. Thus we can also assume that we already know if M 0 j= �for every M 0 s.t. 8s:M 0(s) � (k̂ + 1)nd, because the number of these markingsM 0 is �xed.Now the algorithm for decidingM j= � is as follows: We construct a new markingM 0 by de�ning for every sM 0(s) := minfM(s); (k̂ + 1)ndg

6.2. MODEL CHECKING BPP WITH LTL 79This can be done in linear time. We know already ifM 0 j= �, becauseM 0 satis�esthe condition above. By Lemma 6.1.21 we haveM j= � () M 0 j= �The results on the complexity of model checking BPP with EF can be summarizedas follows.Problem Complexitygeneral PSPACE -completeformula restricted to nesting-depth d �pd-complete�xed formula 2 �pd�xed formula and �xed structure of the BPP 2 P6.2 Model Checking BPP with LTLIn [Hab97] Habermehl solves the model checking problem for Petri nets and BPPand a version of the linear-time �-calculus (and LTL). In this version only in�-nite runs of the system are considered. This is weaker than our version (see Sec-tion 3.2) where both �nite and in�nite runs are considered. Habermehl's versionhas the same expressiveness as the weak linear-time �-calculus, which is de�nedin Section 3.2 and used in Section 9.2. He shows that for the weak linear-time�-calculus the model checking problem is EXPSPACE -complete in the size of thePetri net and PSPACE -complete in the size of the formula. He claims to provethe same result for BPP, but this is only partially correct. It is correct that modelchecking BPP with the weak linear-time �-calculus is EXPSPACE -complete, butthe proof in [Hab97] that the problem is EXPSPACE -hard in the size of the BPPis incorrect. In this proof the size of the formula grows together with the sizeof the BPP. So the complexity of model checking BPP with a �xed linear-time�-calculus formula is an open question.Now we consider normal LTL and the normal linear-time �-calculus as de�nedin Section 3.2. Model checking with these logics is decidable for Petri nets (seeChapter 9). However, it is at least as hard as the reachability property problemfor Petri nets, because reachability of a deadlocked state can be expressed in LTL(see Section 3.2). This is a (potentially) stronger result, because the complexity

80 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)of reachability for Petri nets is an open question, and it may be harder thanEXPSPACE .Since BPP are a subclass of Petri nets, model checking with LTL and the linear-time �-calculus is decidable. However, reachability for BPP is only NP-complete[Esp95]. This is a much weaker lower bound than the EXPSPACE -hardnessproved by Habermehl in [Hab97]. The question is now if model checking BPPwith full LTL and linear-time �-calculus is also EXPSPACE -complete or harder.The following theorem shows that it is at least as hard as the reachability problemfor Petri nets. Note that for this result not even weak atomic predicates (of theform `action a is enabled') are needed. Only relativised next-operators and thepredicate true are used.Theorem 6.2.1 Model checking BPP with LTL is at least as hard as the reach-ability problem for Petri nets.Proof The reachability problem for Petri nets has the same complexity as theZero-Reachability Problem [Pet81]. This is the problem, for a Petri net, if theempty marking is reachable. This problem is equivalent to the Deadlock Reach-ability Problem, the question if a deadlock is reachable. (The reduction is asfollows: For every place add a transition that takes a token from this place andputs it back.)Let (N;M0) be the Petri net with initial marking M0. The question is if a dead-lock is reachable. We consider a modi�ed deadlock reachability problem where theinitial marking M0 is not a deadlock. This is equivalent to the deadlock reacha-bility problem without restriction. We reduce this modi�ed deadlock reachabilityproblem to the model checking problem for BPP and LTL. We assume w.r. thatevery transition in N has at least one place in its preset. Note that N is anunlabeled Petri net.Now we construct a BPP that weakly simulates the net (N;M0). Replace anytransition t in N with preset fp1; : : : ; pntg (a multiset) and postset fp01; : : : ; p0mtg(a multiset) by a set of new transitions as follows. These new transitions arelabeled with atomic actions. We describe them as rules in (1; P)-PRS notation.p1 t1�! �p2 t2�! �p3 t3�! �...pn�1 tnt�1�! �pn tnt�! p01k : : : kp0mt

6.2. MODEL CHECKING BPP WITH LTL 81The ti are new atomic actions. Let N 0 be the new net. All transitions in N 0 haveexactly one place in their preset and thus N 0 is a communication-free net (whichis equivalent to a BPP).M0 is also a marking of N 0, since N 0 has the same placesas N .Now we de�ne an LTL formula such that the runs of (N 0;M0) that satisfy thisformula are exactly those runs that faithfully simulate the behavior of (N;M0).Let � be the set of all LTL-formulae � of the form� := htiihti+1itruefor transitions t of N and 1 � i � nt � 1, or of the form� := htntiht01itruewhere t and t0 are transitions of N . Let A be the set of all actions tk. A run ofN 0 (see Def. 3.0.15) has length 0 i� it satis�es the LTL-formula	 := : _a2Ahaitrue!Then a run of the system (N 0;M0) is a faithful simulation of N if it satis�es thefollowing LTL-formula. 	1 := _�2��! wU _t htnti	!This formula ensures that the run of N 0 simulates every transition t of N in ntsteps. It also ensures that the run cannot stop during such a simulation series,but only between them.A run is in�nite if it satis�es the following formula.	2 := (:)wU falseA deadlock is not reachable in N if and only if all faithful simulation runs in N 0are in�nite. Thus a deadlock is reachable in N i�: ((N 0;M0) j= (1) 	2))

82 CHAPTER 6. BASIC PARALLEL PROCESSES (BPP)6.3 ConclusionBasic Parallel Processes are a weak model of concurrent computation. It canbe argued that any decent model of concurrent computation should be at leastas powerful as BPP. What makes them interesting is that they are a modelfor in�nite-state concurrent systems that seems to lie just on the \border ofdecidability". Some problems that are undecidable for more powerful models ofconcurrent systems are still decidable for BPP. For example strong bisimulationequivalence [CHM93a] and weak bisimulation equivalence to a �nite-state LTS[May96c] is decidable for BPP. On the other hand BPP are powerful enough tomake some properties undecidable, for example language equivalence [Hir93].Model checking BPP with most branching-time logics is undecidable. This followsfrom the result by Esparza and Kiehn [EK95] that model checking BPP with thelogic EG is undecidable. Although Esparza and Kiehn do not mention it explicitly,this undecidability result even holds for a �xed EG formula. We briey explainthe idea how to show this.In [EK95] the undecidability is shown by a reduction of the halting problem forMinsky 2-counter machines where the counters are initially zero, to the modelchecking problem for BPP and EG. However, in this construction the size of theEG formula is proportional to the size of the �nite control of the counter machine.This problem can be overcome by doing the same reduction for the universal 2-counter machine, which has a �xed �nite control, but whose counters initiallycontain arbitrary values. (Any control program can be encoded in these values.)In this case the constructed EG formula is �xed, but the initial state of the BPPrepresents the initial values in the counters. Thus model checking BPP with EGis undecidable, even for a �xed EG formula.EF is the only decidable branching-time logic for BPP. It has been shown inSection 6.1, that model checking BPP with EF is PSPACE -complete. However,the problem is only �pd-complete for formulae whose nesting-depth is bounded byd.Model checking BPP with linear-time logics is decidable and EXPSPACE -hard.As shown in Section 6.2, the problem is EXPSPACE -complete for the interpre-tation on in�nite runs, but in general it depends on the reachability problem forPetri nets. The complexity for a �xed formula is an open question.The following table shows the complexity of model checking BPP.

6.3. CONCLUSION 83BPP general �xed formulareachability,reachable property NP-complete 2 NPEF PSPACE -complete 2 �pdEG undecidable undecidableUB undecidable undecidableCTL undecidable undecidablealternation-free modal �-calc. undecidable undecidablemodal �-calc. undecidable undecidableLTL decidable,EXPSPACE -hard decidablelinear-time �-calc. decidable,EXPSPACE -hard decidable

Chapter 7Pushdown Processes and BPAAs shown in Section 2.3.5, pushdown processes are equivalent to (S; S)-PRS.Model checking pushdown processes has been studied in [BS94, BEM97a, Wal96a,Wal96b]. The main idea in [BEM97a] is to describe sets of states (stack contexts)of a pushdown system with �nite (alternating) multi-automata. A polynomial-time/(exponential-time) algorithm is presented in [BEM97a], that, given a set ofstates described by an (alternating) multi-automaton, computes an (alternating)multi-automaton describing the set of all possible predecessors of these states.It takes only polynomial time to check if a given state is described (recognized)by a given alternating multi-automaton. One does not need alternation for thereachability problem and the reachable property problem. Thus they can besolved in polynomial time.The results on the complexity of model checking pushdown processes can beclassi�ed into two groups: results on branching-time logics and results on linear-time logics.Model checking pushdown processes with branching-time logics is quite hard.Even for the simple branching-time logic EF the model checking problem isPSPACE -complete [BEM97a]. It gets even worse by the fact that even for a �xedEF-formula the problem is PSPACE -hard in the size of the pushdown system. Forthe other branching-time logics the problem is even harder. Walukiewicz [Wal96a,Wal96b] has shown that model checking pushdown processes with the modal �-calculus is EXPTIME -complete. Even for a �xed formula in the alternation-freemodal �-calculus the problem is EXPTIME -hard in the size of the pushdownprocess.For the other branching-time logics EG, UB and CTL the problem is still open.No better algorithm than the exponential time algorithm of Walukiewicz [Wal96a,84

85Wal96b] is known for them, but the known lower bounds are not as strong as forthe alternation-free modal �-calculus.It has been shown very recently that model checking with Hennessy-Milner Logicis PSPACE -complete for pushdown processes [May98] (but only polynomial forevery �xed formula). For EG this is the only known lower bound. For UB andCTL the known lower bound is the same as for EF, namely PSPACE -hardness(even for a �xed formula). Thus the exact complexity of model checking withUB and CTL is somewhere between PSPACE and EXPTIME . Altogether it canbe said that model checking with branching-time logics is much more di�cult forpushdown processes than for �nite-state systems. For all branching-time logics(except for the full modal �-calculus) model checking �nite-state systems is poly-nomial, while it is at least PSPACE -hard for pushdown processes (see Chapter 5for results on �nite-state systems). These results show that completely automatedveri�cation of pushdown processes is very hard and thus semiautomatic methodsare developed. In [BS97] Burkart and Ste�en describe a sound and completetableau system for pushdown processes and the full modal �-calculus.The situation is quite di�erent for linear-time logics. Model checking push-down processes with LTL and the linear-time �-calculus is EXPTIME -complete[BEM97a]. However, the model checking problem for any �xed formula is poly-nomial in the size of the pushdown process. The algorithm is only exponential inthe size of the formula. It follows that the problem is only slightly harder thanfor �nite-state systems, where it is PSPACE -complete but polynomial for any�xed formula (see Chapter 5).

86 CHAPTER 7. PUSHDOWN PROCESSES AND BPAThe following table summarizes the complexity results on model checking push-down processes.Pushdown processes general �xed formulareachability,reachable property 2 P 2 PEF PSPACE -complete PSPACE -completeEG 2 EXPTIME ,PSPACE -hard 2 EXPTIMEUB 2 EXPTIME ,PSPACE -hard 2 EXPTIME ,PSPACE -hardCTL 2 EXPTIME ,PSPACE -hard 2 EXPTIME ,PSPACE -hardalt.-free modal �-calc. EXPTIME -complete EXPTIME -completemodal �-calc. EXPTIME -complete EXPTIME -completeLTL EXPTIME -complete 2 Plinear-time �-calc. EXPTIME -complete 2 PNow we consider a subclass of pushdown processes, the context-free processes.Context-free processes were de�ned in Subsection 2.3.4. They are described bya sequence of symbols which can be interpreted as a stack, but unlike pushdownprocesses they have no �nite control. They are equivalent to (1; S)-PRS. Thealgebra of context-free processes is also called Basic Process Algebra (BPA). Sothey are also called BPA-processes.First we consider model checking context-free processes with branching-time log-ics. Although context-free processes are a weaker model than pushdown processes,the known upper bounds for the complexity of model checking are the same inthe general case where both the system and the formula are the input. However,there is one important di�erence when one considers the complexity in the size ofthe system. Burkart and Ste�en showed in [BS92b] that for any �xed formula inthe alternation-free modal �-calculus the model checking problem is only polyno-mial in the size of the context-free process. The algorithm is only exponential inthe size of the formula. More recently, Walukiewicz [Wal96a, Wal96b] has shownthat even for every �xed formula in the full modal �-calculus model checkingcontext-free process is decidable in polynomial time. Thus model checking BPAis much easier than for pushdown processes where the problem is EXPTIME -hard

87in the size of the process even for a �xed formula in the alternation-free modal�-calculus. In practice, the formula is normally very small while the systemcan be very large. Thus, in practice, model checking context-free processes withbranching-time logics is much easier than model checking pushdown processes.Very recently, some lower bounds have been shown for model checking BPAwith branching-time logics. Model checking BPA with Hennessy-Milner Logicis PSPACE -complete and model checking BPA with the alternation-free modal�-calculus is EXPTIME -complete [May98]. (Of course these hardness results donot hold for any �xed formula.)Now we consider model checking context-free processes with linear-time logics.As mentioned above, model checking pushdown systems with LTL and the linear-time �-calculus is EXPTIME -complete, but only polynomial in the size of thesystem for any �xed formula. The only question that remained was if EXPTIME -hardness also holds for context-free processes.We show now that model checking with LTL is EXPTIME -hard even for BPA.We generalize the proof of EXPTIME -hardness for pushdown systems and LTLof [BEM97a]. (This proof for pushdown systems is in the appendix of [BEM97a]and can be found in [BEM97b].)The proof of EXPTIME -hardness is done by a reduction of the acceptance prob-lem for linearly bounded alternating Turing machines [vL90]. An alternatingTuring machine (ATM) is described by a tuple (Q;�; �; q0; l), where Q are thestates of the �nite control, � the tape symbols, � the transition relation, q0 theinitial state and l is a function that labels states as existential, universal, accept-ing or rejecting. The computation of an ATM is de�ned just like the computationof a normal Turing machine, but the acceptance condition is more complex. Sincethe machine is nondeterministic, the computation can be represented as a compu-tation tree in which the branches represent di�erent possible computations. Thestates of the �nite control of the ATM are assigned labels by the function l asexistential, universal, accepting or rejecting. Now the states in the computationtree are labeled as accepting or rejecting by the following rules:1. A leaf of the computation tree is labeled accepting (rejecting) if the �nitecontrol of the ATM in this state is accepting (rejecting).2. An internal node where the �nite control is labeled universal (existential) isaccepting if any only if all (at least one) of its successor nodes is accepting.Otherwise it is rejecting.3. A node is labeled unde�ned if the label cannot be determined by the otherrules. (This only happens if there are in�nite branches.)

88 CHAPTER 7. PUSHDOWN PROCESSES AND BPAWithout loss of generality let j�(q; a)j= 2 for every universal state q and symbola. We choose an arbitrary order on the two elements of �(q; a) and call them the�rst and second successor con�guration of (q; a). An ATM M is called linearlybounded if there is a constant k, such that for every word w in the language ofM , M has an accepting computation that uses at most k � jwj space. We onlyconsider linearly bounded ATMs and thus avoid the problem of in�nite branchesand unde�ned labels.The acceptance problem for linearly bounded alternating Turing-machines isEXPTIME -complete [vL90]. Now we are ready to prove the hardness resultfor the model checking problem.Theorem 7.0.1 Model checking BPA with LTL is EXPTIME-hard.Proof We reduce the acceptance problem of a linearly bounded ATM to themodel checking problem. Let M = (Q;�; �; q0; l) be the ATM, w the input wordand n := k � jwj the length of the tape. Let M 's head be over the �rst cell ofthe tape. We construct in polynomial time a BPA � with initial state I and aLTL-formula � s.t. M accepts w i� I j= �, w.r.t. �.First we describe the intuition for the construction, then we formally de�ne theBPA � and �nally we construct the LTL-formula that characterizes exactly theruns of the system that are faithful simulations of M .The intuition is as follows. A con�guration of M is described by words of ��Q��of length n. In a con�guration �q�, � is the content of the tape to the left ofthe head, q is the state of the �nite control and � is the content of the tapeunder the head and to the right of it. The con�guration is accepting if q is anaccepting state. The computation of the BPA is now de�ned as an attempt toguess a computation of M . This is a �nite or in�nite tree of con�gurations inwhich every node has at most two successors. The BPA attempts (by guessingnondeterministically) to simulate a traversal of this tree in in�x order. In thesequence that describes its state it stores the sequence #c1#c2# : : :#ck of con-�gurations c1; : : : ; ck describing the path in this tree from the root to the actualcon�guration. Of course, most of these guesses are wrong or not even meaningful.Later we'll use the LTL formula to enforce a faithful simulation of M .Now we de�ne the BPA �. As the tree is traversed in in�x order the BPA alwaysdoes one of two things:1. It outputs #fc#, where c is a con�guration ofM and f (meaning `forward')is a special action and writes #c# onto the stack. This symbolizes that weenter a node from the parent node in the computation tree of M .

892. It outputs #bcr#, where cr is the reverse of the con�guration c and b(meaning `backward') is a special action, and pops #cr# from the stack.At the beginning of the execution the BPA outputs #fq0w# and writes #q0w#onto the stack. A computation is successful if it leads to a state where the stackis empty.The rules describing this are as follows: (We use a shorthand notation where therules can have strings as labels instead of single actions.)I #f�! I 0:#I 0 q0w�! T 0n:wr:q0T 0n #f�! T0:#Ti a�! Ti+1:a for a 2 �, 0 � i � n� 2Ti q�! T 0i :q for q 2 Q, 1 � i � nT 0i a�! T 0i+1:a for a 2 �, 1 � i � n� 1T 0n #b�! �a a�! � for a 2 �q q�! � for q 2 Q# #�! �# #f�! T0:#It is easy to see thatM accepts w if the BPA outputs a string #d0#d1# : : :#dm#such that this string is a faithful simulation of the computation of M on w andis in a state with empty stack (a deadlock) afterwards.Now we de�ne when a simulation is faithful and construct the LTL formula thatcharacterizes exactly the faithful simulations. The simulation is faithful if thefollowing properties hold for every 0 � i � m� 11. If di = fc and c is an existential con�guration, then di+1 = fc0 and c0 is asuccessor con�guration of c.2. If di = fc and c is a universal con�guration, then di+1 = fc0 and c0 is the�rst successor con�guration of c.3. If di = bcr and di+1 = fc0, then c is a universal con�guration, and c0 is thesecond successor con�guration of c.4. The con�guration in di is not a rejecting con�guration.

90 CHAPTER 7. PUSHDOWN PROCESSES AND BPA5. If the con�guration in di is an accepting con�guration, then di+1 = bcr forsome c.These properties can be encoded in LTL. For each symbol a 2 �[Q[ff; b;#gwede�ne a proposition pa :=atrue. We use the abbreviation i� for � � � �(i-times).As de�ned in Subsection 3.2.2, G� := �wU false and F � := true U �.A run of the BPA is a faithful simulation of M if it satis�es the following LTLformula: faithful := G((p# ^n+3p#)) (1 ^	2 ^	3 ^	4 ^	5))where p#^n+3p# expresses that the current state is a #-position di�erent fromthe last, and 	1;	2;	3;	4;	5 encode parts (1){(5) of the properties above. It isn+3, because n is the length of the con�guration and the symbol #, the symbolf (or b) and state q count extra.M accepts w if there is a run of the BPA that is faithful (satis�es the LTL formulafaithful) and leads to a state of deadlock. Let� := faithful ^ F (: true)ThereforeM accepts w i� there is a run of the BPA that satis�es �. This is truei� not all runs satisfy :�. Thus M accepts w i�:(I j= :�)We only show how to construct the formula 	1, since 	2 { 	5 are similar.� \di = fc" is encoded as pf .� \c is an existential con�guration" is encoded asn+2_j=1j(_q2Qe pq)where Qe � Q is the set of existential states.� \di+1 = fc0" is encoded as n+3pf .

91� \c0 is a successor con�guration of c" is encoded as a disjunction of formulae,one for each possible successor con�guration of c. These formulae are in turna conjunction of formulae of the form(j�1pa1 ^jpq ^j+1pa2))j+(n+3)+kpxwhere k 2 f�1; 0; 1g, q 2 Q, a 2 � and x 2 Q[� and 3 � j � n+1. Theyare determined only by the transition relation of the ATM.For example let a1 = 0; a2 = 1, q 2 Q and (q0; 0; L) 2 �(q; 1). Then, forevery j, there would be three such formulae with di�erent right hand sides.These right hand sides arej+(n+3)�1pq0 j+(n+3) p1 j+(n+3)+1 p0The following table summarizes the complexity results on model checking BPA.BPA general �xed formulareachability/reachable property 2 P 2 PEF PSPACE -complete 2 PEG 2 EXPTIME ,PSPACE -hard 2 PUB 2 EXPTIME ,PSPACE -hard 2 PCTL 2 EXPTIME ,PSPACE -hard 2 Palternation-free modal �-calc. EXPTIME -complete 2 Pmodal �-calc. EXPTIME -complete 2 PLTL EXPTIME -complete 2 Plinear-time �-calc. EXPTIME -complete 2 P

Chapter 8PAD and PAThe process model PAD is de�ned as (S;G)-PRS in the PRS-hierarchy. As de-scribed in Subsection 2.3.7, it can be used to model systems with nondeterminism,parallelism (but no synchronization) and subroutines that can return a value totheir caller. A special case of PAD is PA, which is de�ned as (1; G)-PRS inSubsection 2.3.6. PA can model nondeterminism, parallelism and recursion, but,unlike in PAD, the subroutines have no e�ect on their caller. PA is the smallestnatural common generalization of BPP and BPA.Almost all model checking problems have the same complexity for PAD and PAand thus we consider both of them in this chapter.Model checking with linear-time logics like LTL and the linear-time �-calculus isundecidable for PA [BH96], even for a �xed LTL-formula. Thus it is undecidablefor PAD too.Model checking with most branching-time logics is undecidable too. This is be-cause model checking with the logic EG is undecidable for BPP (see Chapter 6),even for a �xed EG formula. The only possible exception is the logic EF, be-cause it is the only branching-time logic that is not stronger than EG. Here weshow that model checking PAD with EF is indeed decidable. It has already beenshown by the author in [May97b] that model checking PA-processes with EF isdecidable. Here we prove the more general result for PAD. Note that the modelchecking problem for EF is PSPACE -hard, because it is PSPACE -complete forBPP (see Chapter 6 and [May96c]).In Section 8.1 we prove that model checking PAD with the logic EF is decidable.In Section 8.2 we prove NP-completeness of the reachability problem for PAD.In Section 8.3 we give some examples of simple veri�cation problems for PA thatcan be solved in polynomial time. Section 8.4 contains other results and thegeneral picture for PA and PAD. 92

8.1. MODEL CHECKING PAD WITH EF=DC 938.1 Model Checking PAD with EF=DCIn this section we prove that model checking PAD with EF is decidable. We usethe logic EF=DC, a generalized version of EF, because the decidability proof for ithas a clearer structure and is easier to understand.The proof is structured as follows: In Subsection 8.1.1 we de�ne the logic EF=DCand reduce the model checking problem to a simpler form. In Subsection 8.1.2we show how properties can be decomposed w.r.t. sequential and parallel compo-sition. This is used in Subsection 8.1.3 to construct a tableau system that solvesthe model checking problem. In Subsection 8.1.4 we show that this tableau sys-tem is sound, complete and decidable. Subsection 8.1.5 is about the complexityof the algorithm.8.1.1 The Temporal Logic EF=DCWe use the logic EF=DC, an extended version of the logic EF. It uses strongatomic propositions of the form `The current state is term t' and can thus expressreachability. The \=" in the name stands for these strong propositions, becausethey express that the current state is equal to a given state t. The logic EF=DCcan also express weak constraints on sequences of actions. These constraints arecalled decomposable constraints (thus the DC in the name).De�nition 8.1.1 (EF=DC)The syntax of the formulae is as follows:� ::= t j :� j �1 ^ �2 j 3C�where t 2 T is a process term and C is a decomposable constraint (see Def. 8.1.3).Let F be the set of all EF=DC-formulae. Let T be the set of all processes terms(as in Def. 2.1.2) in the process algebra. The denotation [[�]] of an EF=DC-formula� is the set of process terms de�ned inductively by the following rules:[[t]] := ftg[[:�]] := T � [[�]][[�1 ^ �2]] := [[�1]] \ [[�2]][[3C�]] := ft 2 T j 9t0; �: t �! t0 ^ t0 2 [[�]] ^ C(�)gDisjunction can be expressed by conjunction and negation.The property t 2 [[�]] is also denoted by t j= �.

94 CHAPTER 8. PAD AND PADe�nition 8.1.2 For any EF=DC-formula � let terms(�) be the set of processterms used in � as atomic propositions.terms(t) := ftgterms(:�) := terms(�)terms(�1 ^ �2) := terms(�1) [terms(�2)terms(3C�) := terms(�)The logic EF=DC uses constraints on sequences of actions. These constraints arecalled decomposable, because they can be decomposed with respect to sequentialand parallel composition of sequences of actions.De�nition 8.1.3 (Decomposable Constraints)A set of decomposable constraints DC is a �nite set of predicates on �nite se-quences of actions that satisfy the following conditions.1. DC contains the predicates true (all sequences satisfy it) and false (nosequence satis�es it).2. For every predicate C 2 DC it is decidable if C is satis�able.3. For every C 2 DC there is a �nite index set I and a �nite set of decompos-able constraints fC1i ; C2i 2 DC j i 2 Ig s.t.8�; �1; �2: �1�2 = �) C(�) () _i2I C1i (�1) ^ C2i (�2)!4. For every C 2 DC there is a �nite index set I and a �nite set of decompos-able constraints fC 0i 2 DC j i 2 Ig s.t.8�; �0: a�0 = �) C(�) () _i2I C 0i(�0)!5. For every C 2 DC there is a �nite index set I and a �nite set of decompos-able constraints fC1i ; C2i 2 DC j i 2 Ig s.t.8�; �1; �2:8a 2 Act : �1a�2 = �) C(�) () _i2I C1i (�1) ^ C2i (�2)!

8.1. MODEL CHECKING PAD WITH EF=DC 956. For every C 2 DC there is a �nite index set I and a �nite set of decompos-able constraints fC1i ; C2i 2 DC j i 2 Ig s.t.8�1; �2: (9� 2 interleave(�1; �2): C(�)) () _i2I(C1i (�1) ^ C2i (�2))!� 2 interleave(�1; �2) means that � is an arbitrary interleaving of �1 and�2. The formal de�nition of the function interleave is as follows: Let � bethe empty sequence.interleave (�; �) := f�ginterleave(�; �) := f�ginterleave(a1�1; a2�2) := fa1� j � 2 interleave(�1; a2�2)g[fa2� j � 2 interleave(a1�1; �2)gLemma 8.1.4 If DC is a set of decomposable constraints, then the closure DC 0of DC under the boolean operations of conjunction and disjunction is also a setof decomposable constraints.Proof The formulae in DC 0 can be transformed into disjunctive normal form,such that the formulae in DC are the atomic formulae. Since DC is �nite, DC 0 is�nite too.Remark 8.1.5 A set of decomposable constraints need not be closed under nega-tion.Now we give an example for a set of decomposable constraints. Let A � Act ,be a �nite set of atomic actions. For any a 2 A let #a(�) be the number ofoccurrences of action a in �. For u; v 2 IN let [u]v denote u modulo v. We de�nethe following constraints:1. length (�) � i or length (�) � i for all i � k for some �xed constant k.2. #a(�) � i or #a(�) � i for all i � n for some �xed constant n.3. [#a(�)]k = i for all i; k � m for some �xed constant m.4. �rst(�) = a for any action a 2 A.For any choice of A; k; n;m let CA;k;n;m denote the closure of the set of theseconstraints under conjunction and disjunction.

96 CHAPTER 8. PAD AND PALemma 8.1.6 For any A; k; n;m, the set CA;k;n;m is a set of decomposable con-straints. It is even closed under negation.Proof Directly from the de�nitions.Example 8.1.7 The constraint [#a(�)]2 = 0 expresses that the number of oc-currences of action a in � is even. Let � 2 interleave (�1; �2) be an interleaving oftwo sequences. Then the number of occurrences of the action a in � is even i� itis either even in both �1 and �2 or odd in both �1 and �2. This can be expressedby the following decomposition.[#a(�)]2 = 0 () ([#a(�1)]2 = 0 ^ [#a(�2)]2 = 0) _([#a(�1)]2 = 1 ^ [#a(�2)]2 = 1)We use these constraints to show that the usual de�nition of EF is a fragment ofEF=DC. The usual 3 is just 3true . The normal one-step nexttime operator EX isoften denoted by hai and de�ned by[[hai�]] := ft j 9t a! t0 2 [[�]]gIt is clear that hai = 3C with C := [�rst(�) = a ^ length(�) = 1]. The normalversion of EF also does not have atomic propositions t (meaning that the state isequal to t; see Def. 8.1.1), but propositions \a" (meaning that the atomic actiona is enabled). This can be expressed by haitrue, where true = t_:t for any termt.It is also possible to express the modal operator 2 (meaning `always') by de�ning2C := :3C:. 2C� then means that � holds in all states that are reachable viaa sequence of actions � s.t. C(�).De�nition 8.1.8 The nesting-depth nd (�) of an EF=DC-formula � is de�ned bynd (t) := 0nd(:�) := nd(�)nd(�1 ^ �2) := maxfnd (�1);nd (�2)gnd(3C�) := nd(�) + 1De�nition 8.1.9 Fd � F is de�ned as the set of all EF=DC-formulae with anesting-depth of modal operators 3C of at most d.Fd := f� 2 F j nd(�) � dgIt follows that formulae in F0 contain no modal operators.

8.1. MODEL CHECKING PAD WITH EF=DC 97In order to simplify the notation we use some abbreviations:Let T = ft1; : : : ; tng � T be a �nite set of process terms, thent j= �T :() t j= :t1 ^ � � � ^ :tnFor reasons of symmetry we also de�net j= T :() t j= t1 ^ � � � ^ tnOf course this cannot be true if n � 2.De�nition 8.1.10 We de�ne a subset F cd � Fd of formulae that do not con-tain disjunction. Thus the formulae in F cd are called conjunctive formulae. F cdis de�ned as the minimal set of formulae �d that are de�ned by the followinggrammar. �0 = T+ ^ �T�for every �nite T+; T� � T and�d = T+ ^ �T� j �d ^3C�d�1 j �d ^ :3C�d�1for every �nite T+; T� � T and every decomposable constraint C and every�d�1 2 F cd�1.It follows that every formula in F cd has the formT+ ^ �T� ^ î2I3Ci	i ^ ĵ2J :3Dj�jwhere T+; T� � T , and Ci;Dj are decomposable constraints and 	i 2 F cd�1 and�j 2 F cd�1.A formula � is in normal form if � = Wi2I 3Ci	i s.t. the 	i are conjunctiveformulae.Lemma 8.1.11 Any EF=DC-formula 3C� is equivalent to a formula in normalform.Proof By induction on the nesting-depth d of modal operators in �. Theimportant property here is that 3C(�1 _ �2) = 3C�1 _ 3C�2. We transformthe subformulae into disjunctive normal form, and then push the disjunctionsoutwards.

98 CHAPTER 8. PAD AND PALemma 8.1.12 Every model checking problem for EF=DC is decidable i� it isdecidable for all formulae 3C� with � 2 Sd2INF cd.Proof If it is decidable for formulae of the form 3C� with � 2 F cd, then it isdecidable for formulae in normal form and thus by Lemma 8.1.11 for all formulaeof the form 3C	, with 	 2 F . Simple boolean operations yield the decidabilityof the whole model checking problem. The other direction is trivial.8.1.2 DecompositionThe key to the construction of the tableau system in Subsection 8.1.3 is thatproperties of the form t1:t2 j= 3C� or t1kt2 j= 3C� can be decomposed intoproperties of t1 and properties of t2. First we give a small example how this isdone and then we do it in general.Example 8.1.13 We show how to do the decomposition for the following simpleformula of nesting-depth two:� := 3(:u ^ 3(v) ^ :3(w))where u; v; w are process terms. No decomposable constraints are used, exceptfor the constraint true (3true = 3). This formula means that there is a reachablestate di�erent from u, s.t. from this state the state v is reachable, but the statew is not reachable.Let t1; t2 be process terms. Then the propertyt1kt2 j= 3(:u ^ 3(v) ^ :3(w))is equivalent to(t1 j= 3(�) ^ t2 j= �) _(t1 j= � ^ t2 j= 3(�)) _9�1; �2; t01; t02: t1 �1! t01 ^ t2 �2! t02 ^^�1k�2=u(t01 6= �1 _ t02 6= �2) ^ t01kt02 j= 3(v) ^ t01kt02 j= :3(w)

8.1. MODEL CHECKING PAD WITH EF=DC 99where �1; �2 are process terms. This is equivalent to(t1 j= 3(�) ^ t2 j= �) _(t1 j= � ^ t2 j= 3(�)) _9�1; �2; t01; t02: t1 �1! t01 ^ t2 �2! t02 ^ ^�1k�2=u(t01 6= �1 _ t02 6= �2) ^_�1k�2=v(t01 j= 3(�1) ^ t02 j= 3(�2)) ^:0@ _1k2=w t01 j= 3(1) ^ t02 j= 3(2)1AThis is equivalent to(t1 j= 3(�) ^ t2 j= �) _(t1 j= � ^ t2 j= 3(�)) _9�1; �2; t01; t02: t1 �1! t01 ^ t2 �2! t02 ^ ^�1k�2=u(t01 6= �1 _ t02 6= �2) ^_�1k�2=v(t01 j= 3(�1) ^ t02 j= 3(�2)) ^^1k2=w(t01 j= :3(1) _ t02 j= :3(2))Now we transform this expression into disjunctive normal form. We de�ne theset F of all functions f that assign to every pair (�1; �2) s.t. �1k�2 = u,a value in f1; 2g. For every f 2 F let A1f := f�1 j f((�1; �2)) = 1g andA2f := f�2 j f((�1; �2)) = 2g. Then the expression is equivalent to(t1 j= 3(�) ^ t2 j= �) _(t1 j= � ^ t2 j= 3(�)) _9�1; �2; t01; t02: t1 �1! t01 ^ t2 �2! t02 ^ _f2F(t01 =2 A1f ^ t02 =2 A2f) ^_�1k�2=v(t01 j= 3(�1) ^ t02 j= 3(�2)) ^^1k2=w(t01 j= :3(1) _ t02 j= :3(2))In the same way we de�ne the set G of all functions g that assign to every pair(1; 2) s.t. 1k2 = w, a value in f1; 2g. For every g 2 G let B1g := f1 jg((1; 2)) = 1g and B2g := f2 j g((1; 2)) = 2g.

100 CHAPTER 8. PAD AND PAThen the expression is equivalent to(t1 j= 3(�) ^ t2 j= �) _(t1 j= � ^ t2 j= 3(�)) _9�1; �2; t01; t02: t1 �1! t01 ^ t2 �2! t02 ^ _f2F(t01 j= �A1f ^ t02 j= �A2f) ^_�1k�2=v(t01 j= 3(�1) ^ t02 j= 3(�2)) ^_g2G0@ ^12B1g t01 j= :3(1) ^ ^22B2g t02 j= :3(2)1AThis is equivalent to(t1 j= 3(�) ^ t2 j= �) _(t1 j= � ^ t2 j= 3(�)) _9�1; �2; t01; t02: t1 �1! t01 ^ t2 �2! t02 ^_f2F;�1k�2=v;g2G t01 j= �A1f ^ t01 j= 3(�1) ^ ^12B1g t01 j= :3(1)^t02 j= �A2f ^ t02 j= 3(�2) ^ ^22B2g t02 j= :3(2)Finally, this is equivalent to(t1 j= 3(�) ^ t2 j= �) _(t1 j= � ^ t2 j= 3(�)) __f2F;�1k�2=v;g2G t1 j= 3(�A1f ^3(�1) ^ ^12B1g :3(1)) ^t2 j= 3(�A2f ^3(�2) ^ ^22B2g :3(2))This is a boolean combination of properties of t1 and properties of t2.Now we show how the decomposition is done in the general case. In order tosimplify the presentation, we de�ne the following sets of expressions. Let DC bea set of decomposable constraints, T � T a �nite set of process terms and d 2 IN.

8.1. MODEL CHECKING PAD WITH EF=DC 101Cform(d; T;DC) := 8><>: î2I ti j= 3Ci�i ^ î2J t0j j= :3Dj	j! j8i; j: ti; t0j 2 T;Ci;Dj 2 DC;�i 2 F cd;	j 2 F cd�1 9>=>;Cform0(d; T;DC) := like Cform(d; T;DC), except that 	j 2 F cdDform(d; T;DC) := (_i2I Fi j Fi 2 Cform(d; T;DC))The next two lemmas show the decomposition of properties for sequential com-position. The general idea is that properties of the form t1:t2 j= 3C� are decom-posed into properties of t1 and properties of t2. However, the details are morecomplex. It does not always su�ce to use properties of t1 and properties of t2,but sometimes also properties of other terms are needed. These other terms arethe terms that occur in � as atomic propositions and the terms that occur in therules of the PAD-process. Fortunately, these are only �nitely many.We de�ned that sequential composition is left-associative, so if we write t1:t2, thenthe term t2 is either a single variable or a parallel composition. The followinglemma describes the decomposition for the case that t2 is a single variable.Lemma 8.1.14 Let t be a process term, X a process variable, � a PAD, �a formula in F cd that contains only constraints from a set DC of decomposableconstraints and C 2 DC. Let T := f�; t;Xg [terms(�) [fr j (l a! r) 2 �gThen an expression F 2 Dform(d; T;DC) can be e�ectively constructed s.t.t:X j= 3C� () FProof by induction on d.� = (T+^�T�^Vi2I 3Ci�i^Vj2J :3Dj	j) for some T+; T� � T , �i;	j 2 F cd�1and Ci;Dj 2 DC decomposable constraints. In the base case d = 0 the sets Iand J are empty and we solve the problem without referring to the inductionhypothesis.If jT+j � 2 then t:X j= 3C� is equivalent to false.

102 CHAPTER 8. PAD AND PAIf jT+j = 1 s.t. the term in T+ is not t0:X for some t0, then t:X j= 3C� isequivalent to _i2I(t j= 3Ci1(�) ^X j= 3Ci2�)__j2J; �l:X a!r�2�(t j= 3Dj1(l) ^ r j= 3Dj2�)where the C ik;Djk are the decompositions of C as de�ned in Def. 8.1.3 (cases 3and 5). This expression is the F that we are looking for. It is in Dform(d; T;DC).Now we consider the case that T+ = fu:Xg for some term u. If u:X 2 T� thent:X j= 3C� is equivalent to false . Otherwise t:X j= 3C� is equivalent to_i2I(t j= 3Ci1(�) ^X j= 3Ci2�)__j2J; �l:X a!r�2�(t j= 3Dj1(l) ^ r j= 3Dj2�)_t j= 3C(u) ^ î2I u:X j= 3Ci�i ^ ĵ2J u:X j= :3Dj	jwhere the C ik;Djk are the decompositions of C as de�ned in Def. 8.1.3 (cases 3and 5). This is the expression F that we are looking for. It is in Dform(d; T;DC).Now we consider the case that T+ = fg. Then t:X j= 3C� is equivalent to_i2I(t j= 3Ci1(�) ^X j= 3Ci2�)__j2J; �l:X a!r�2�(t j= 3Dj1(l) ^ r j= 3Dj2�)_9�; t0:0@ t �! t0 ^ C(�) ^ (8(�:X) 2 T�: t0 6= �) ^î2I t0:X j= 3Ci�i ^ ĵ2J t0:X j= :3Dj	j 1Awhere the C ik;Djk are the decompositions of C as de�ned in Def. 8.1.3 (cases 4and 5).

8.1. MODEL CHECKING PAD WITH EF=DC 103If d = 0 then I = J = fg and the induction hypothesis is not needed. If d > 0then by induction hypothesis there are expressions Fi; Gj 2 Dform(d � 1; (T �ftg) [ft0g;DC) s.t. the above expression is equivalent to_i2I(t j= 3Ci1(�) ^X j= 3Ci2�)__j2J; �l:X a!r�2�(t j= 3Dj1(l) ^ r j= 3Dj2�)_9�; t0: t �! t0 ^ C(�) ^ (8(�:X) 2 T�: t0 6= �) ^ î2I Fi ^ ĵ2J :GjBy transformation to disjunctive normal form there are �nite index sets K, Nk,N 0k, Mk and formulae �0i;	0i 2 F cd�1 and decomposable constraints Ei; E 0i 2 DCand Hj 2 Cform 0(d � 1; T � ftg;DC) s.t. the above expression is equivalent to_i2I(t j= 3Ci1(�) ^X j= 3Ci2�)__j2J; �l:X a!r�2�(t j= 3Dj1(l) ^ r j= 3Dj2�)_9�; t0:0BB@ t �! t0 ^ C(�) ^ (8(�:X) 2 T�: t0 6= �) ^_k2K 24 ^i2Nk t0 j= 3Ei�0i ^i2N 0k t0 j= :3E0i	0i ^j2Mk Hj35 1CCANote that the expressions Hj do not contain the terms t or t0. This is equivalentto _i2I(t j= 3Ci1(�) ^X j= 3Ci2�)__j2J; �l:X a!r�2�(t j= 3Dj1(l) ^ r j= 3Dj2�)__k2K 24t j= 3C 0@�f� j �:X 2 T�g ^ ^i2Nk3Ei�0i ^i2N 0k :3E0i	0i1A ^ ^j2Mk Hj35This is the expression F that we are looking for. It is in Dform(d; T;DC).

104 CHAPTER 8. PAD AND PAThe following lemma does the same decomposition for the case that the secondcomponent in the sequential composition is itself a parallel composition.Lemma 8.1.15 Let t1; t2; t3 be process terms, � a PAD, � a formula in F cd thatcontains only constraints from a set DC of decomposable constraints and C 2 DC.Let T := f�; t1; t2kt3g [terms(�) [fr j (l a! r) 2 �gThen an expression F 2 Dform(d; T;DC) can be e�ectively constructed s.t.t1:(t2kt3) j= 3C� () FProof The proof is similar to Lemma 8.1.14 with only the following di�erences:1. Leave out the part _j2J; �l:X a!r�2� t j= 3Dj1(l) ^ r j= 3Dj2�of the disjunction, and2. Substitute (t2kt3) for X everywhere.Now we show an analogous property for parallel composition.Lemma 8.1.16 Let t1; t2 be process terms, � a PAD, � a formula in F cd thatcontains only constraints from a set DC of decomposable constraints and C 2 DC.Let T := f�; t1; t2g [terms(�).Then an expression F 2 Dform(d; T;DC) can be e�ectively constructed s.t.t1kt2 j= 3C� () FProof by induction on d.� has the form (T+ ^ �T� ^Vi2I 3Ci�i ^Vj2J :3Dj	j) for some T+; T� � Tand �i;	j 2 F cd�1.If jT+j � 2 then 3C� is equivalent to false.Now we consider the case that T+ = ftg for some term t. If t 2 T� thent1kt2 j= 3C� is equivalent to false . Otherwise it is equivalent to_k2K� (t1 j= 3C0k (�) ^ t2 j= 3C00k�) _(t2 j= 3C0k (�) ^ t1 j= 3C00k�) �__l2L _�1k�2=t0@ t1 j= 3D0l(�1) ^ t2 j= 3D00l (�2)^î2I t j= 3Ci�i ^ ĵ2J t j= :3Dj	j 1A

8.1. MODEL CHECKING PAD WITH EF=DC 105where the C 0k; C 00k ;D0l;D00l are the decompositions of C as de�ned in Def. 8.1.3(case 6). This is the F that we are looking for. It is in Dform(d; T;DC).Now we consider the case that T+ = fg. Then t1kt2 j= 3C� is equivalent to_k2K� (t1 j= 3C0k (�) ^ t2 j= 3C00k�)_(t2 j= 3C0k (�) ^ t1 j= 3C00k�) �__l2L9�1; �2; t01; t02:0BBBB@ t1 �1! t01 ^ t2 �2! t02 ^D0l(�1) ^D00l (�2) ^^�1k�22T�(t01 6= �1 _ t02 6= �2) ^î2I t01kt02 j= 3Ci�i ^ ĵ2J t01kt02 j= :3Dj	j 1CCCCAwhere the C 0k; C 00k ;D0l;D00l are the decompositions of C as de�ned in Def. 8.1.3(case 6). In the base case d = 0 we have I = J = fg and don't need theinduction hypothesis. For d > 0, by induction hypothesis, there are formulaeFi; Gj 2 Dform(d � 1; ft01; t02g [terms(�);DC) such that t01kt02 j= 3Ci�i () Fiand t01kt02 j= 3Dj	j () Gj . Now we transform the expression into disjunctivenormal form. We de�ne the set Func of all functionsf : f(�1; �2) j �1k�2 2 T�g 7! f1; 2gthat assign to every pair (�1; �2) s.t. �1k�2 2 T�, a value in f1; 2g. For everyf 2 Func let A1f := f�1 j f((�1; �2)) = 1g and A2f := f�2 j f((�1; �2)) = 2g.Then the expression is equivalent to_k2K� (t1 j= 3C0k (�) ^ t2 j= 3C00k�)_(t2 j= 3C0k (�) ^ t1 j= 3C00k�) �__l2L9�1; �2; t01; t02:0BBBB@ t1 �1! t01 ^ t2 �2! t02 ^D0l(�1) ^D00l (�2) ^_f2Func(t01 =2 A1f ^ t02 =2 A2f) ^î2I Fi ^ ĵ2J :Gj 1CCCCABy transformation to disjunctive normal form there must be �nite index sets Oand M(o);M 0(o); N(o); N 0(o) for every o 2 O and formulae �0n;	0n0 ;�00m;	00m0 2F cd�1 and decomposable constraints En; E 0n0 ; Fm; F 0m0 2 DC s.t. the condition is

106 CHAPTER 8. PAD AND PAequivalent to _k2K� (t1 j= 3C0k (�) ^ t2 j= 3C00k�) _(t2 j= 3C0k (�) ^ t1 j= 3C00k�) �__l2L9�1; �2; t01; t02:2666664 t1 �1! t01 ^ t2 �2! t02 ^D0l(�1) ^D00l (�2) ^_f2Func(t01 =2 A1f ^ t02 =2 A2f) ^_o2O� Vn2N(o) t01 j= 3En�0nVn02N 0(o) t01 j= :3E0n0	0n0Vm2M(o) t02 j= 3Fm�00mVm02M 0(o) t02 j= :3F 0m0	00m0 � 3777775This is equivalent to _k2K� (t1 j= 3C0k (�) ^ t2 j= 3C00k�) _(t2 j= 3C0k (�) ^ t1 j= 3C00k�) �__l2L;f2Func;o2O24 t1 j= 3D0l ��A1f ^Vn2N(o)3En�0nVn02N 0(o) :3E0n0	0n0�^t2 j= 3D00l ��A2f ^Vm2M(o)3Fm�00mVm02M 0(o) :3F 0m0	00m0� 35This is the expression F that we are looking for. It is in Dform(d; T;DC).8.1.3 The Tableau SystemWe show the decidability of the model checking problem for PAD and EF=DC byinduction on the nesting-depth d of the formula. We describe a tableau systemthat solves the model checking problem for formulae 3C� with � 2 F cd underthe condition that we can already solve the problem for formulae 3C	 with	 2 F cd�1. This is because we use properties of the form t0 j= 3C	 for 	 2 F cd�1as side conditions in the construction of the tableau. By induction hypothesis wecan assume this. In the base case of d = 0 the condition is trivially satis�ed, asF c�1 = fg. (See Chapter 4 for an introduction to tableau systems.)Every node in the tableau is a set of expressions of the form t ` �, where t is aprocess term and � an EF=DC-formula. We use the symbol ` in the tableau in-stead of j=. The expression t ` � means that one attempts to prove the propertyt j= �. The meaning of t j= � is de�ned semantically (Def. 8.1.1). The sets ofexpressions that form the tableau nodes are denoted by � and interpreted as setsof subgoals that should be proved. These subgoals are interpreted conjunctively.The branches in the tableau are interpreted disjunctively, so the tableau is suc-cessful i� there is at least one successful branch. Every branch in the tableau canbe seen as an attempt to construct a proof.

8.1. MODEL CHECKING PAD WITH EF=DC 107The following tableau rules are meant to be applied to a problem of the formt j= 3C� with � 2 F cd . In the rules Induct1{Induct4 we apply the inductionhypothesis that we can already solve the problem for formulae of a smaller nesting-depth.SEQ1 ft:X ` 3C�g [�fFg [� where F is from Lemma 8.1.14SEQ2 ft1:(t2kt3) ` 3C�g [�fFg [� where F is from Lemma 8.1.15PAR ft1kt2 ` 3C�g [�fFg [� where F is from Lemma 8.1.16STEP1 fX ` 3C�g [�fX ` �g [� fWi2I1 t1 ` 3Di1�g [� : : : fWi2In tn ` 3Din�g [�if C(�), where � is the empty sequence, (X ak! tk) 2 �, k = 1; : : : ; nand the Dik are the decompositions of C (Def. 8.1.3 (case 4)).STEP2 fX ` 3C�g [�fWi2I1 t1 ` 3Di1�g [� : : : fWi2In tn ` 3Din�g [�if not C(�), (X ak! tk) 2 �, k = 1; : : : ; nand the Dik are decompositions of C (Def. 8.1.3 (case 4)).Unsat ft ` 3C�g [�ffalseg if C is unsatis�ableconj1 ft ` � ^	g [�ft ` �; t ` 	g [�conj2 fF ^Gg [�fF;Gg [�disj1 ft ` � _	g [�ft ` �g [� ft ` 	g [�disj2 fF _ Gg [�fFg [� fGg [�

108 CHAPTER 8. PAD AND PAInduct1 ft ` 3C	g [�� if 	 2 F cd�1 and t j= 3C	Induct2 ft ` 3C	g [�ffalseg if 	 2 F cd�1 and not t j= 3C	Induct3 ft ` :3C	g [�� if 	 2 F cd�1 and not t j= 3C	Induct4 ft ` :3C	g [�ffalseg if 	 2 F cd�1 and t j= 3C	Term1 ft ` T+g [�� if T+ = ftg or T+ = fgTerm2 ft ` T+g [�ffalseg if T+ 6= fg ^ T+ 6= ftgTerm3 ft ` �T�g [�� if t =2 T�Term4 ft ` �T�g [�ffalseg if t 2 T�In order to avoid any unnecessary growth of the proof tree, we de�ne that therules with names in capital letters (PAR, SEQ1, SEQ2, STEP1 and STEP2) havea lower precedence than the other rules. So in the construction of a branch ofthe proof tree we only use such a rule if none of the others is applicable.Lemma 8.1.17 For any instance of a tableau-rule, the antecedent is true i� atleast one of the succedents is true.Proof This follows immediately from the de�nition of the tableau-rules andLemma 8.1.14, Lemma 8.1.15 and Lemma 8.1.16.De�nition 8.1.18 (Termination conditions)A node in the tableau consisting of a set of formulae � is a terminal node if oneof the following conditions is satis�ed:1. � = fg

8.1. MODEL CHECKING PAD WITH EF=DC 1092. false 2 �.3. There is a previous node in the same branch that is marked with the sameset �.Terminal nodes of type 1 are successful, while terminal nodes of types 2,3 areunsuccessful.The construction of a branch of the tableau stops when a terminal node is reached.The branch is successful if this terminal node is successful. The tableau is suc-cessful if there is at least one successful branch.The intuition is that every branch in the tableau is an attempt to construct aproof. A terminal node of type 1 means that all subgoals have been solved. Aterminal node of type 2 means that this attempt to construct a proof failed. Aterminal node of type 3 means that the proof is `running in circles'. If there is aproof, then it can be found elsewhere in the tableau by a shorter branch.The construction of the tableau starts with a root-node of the form ft j= 3C�gwhere t is a process term and � 2 F cd. The tableau for a given root is not unique,because the sequents are sets of expressions and the element to which a ruleis applied is chosen nondeterministically. However, all tableaux are equivalentsemantically, because the order in which subgoals are solved does not matter.8.1.4 DecidabilityIn this section we show that the tableau system of the previous section is soundand complete and produces only �nite tableaux for any given root. Thus it yieldsa decision procedure for the model checking problem for PAD and EF=DC.Lemma 8.1.19 If the root node has the form ft ` 3C�g, for � 2 F cd, then forevery node in a tableau with this root at least one of the following conditions issatis�ed:1. A tableau rule is applicable2. The node is a terminal node.Proof The only problematic cases are the expressions of the form t ` :3C�.If such an expression occurs, then it must be due to the rules SEQ1, SEQ2 orSTEP1. By de�nition of these rules and Lemma 8.1.14 and Lemma 8.1.15 weknow that � 2 F cd�1. Then the rules Induct3 or Induct4 are applicable, becausewe assumed (by induction hypothesis) that we can already solve the problem forformulae of a smaller nesting depth.

110 CHAPTER 8. PAD AND PALemma 8.1.20 The tableau is �nite for every instance of the model checkingproblem.Proof If only process terms of a bounded size are used as atomic propositions,then there are only �nitely many formulae in F cd for any �xed d. The tableau rulesand the proofs of Lemmas 8.1.14, 8.1.15 and 8.1.16 show that this preconditionis satis�ed. Any set DC of decomposable constraints is �nite. There are only�nitely many rules (t1 a! t2) 2 � with only �nitely many subterms of the termst2. So there are only �nitely many di�erent sets of expressions of the form t ` �in the tableau. Therefore the branches of the tableau can only have �nite length,because of termination condition 3. Since the tableau is �nitely branching, theresult follows.Now we prove the soundness and completeness of the tableau. The followinglemma shows the soundness.Lemma 8.1.21 Let � 2 F cd and C 2 DC. If there is a successful tableau withroot ft ` 3C�g, then t j= 3C�.Proof A successful tableau has a successful branch ending with a node markedby the empty set of expressions. Since these sets are interpreted conjunctivelythis node is true. By repeated application of Lemma 8.1.17 all its ancestor-nodesmust be true and thus the root-node must be true.We need some new de�nitions to show the completeness. These de�nitions onlyapply to this particular tableau system in this chapter.De�nition 8.1.22 A valid sequent � in a tableau is a set of expressions whichevaluate to true.For example if (t ` 3C�) 2 � then t j= 3C�. If (F ^ G) 2 � then F and Gevaluate to true.It follows from the construction of the tableau system that every expression in avalid sequent is a disjunction of conjunctions of expressions of the form t ` 3C�or t ` :3C�.Now we de�ne a total order on valid sequents.

8.1. MODEL CHECKING PAD WITH EF=DC 111De�nition 8.1.23 For an expression t ` 3C� with t j= 3C� we de�nexnorm(t ` 3C�) := minflength (�) j t �! t0 2 [[�]] ^ C(�)gand ynorm(t ` 3C�) := size(t)For an expression F in a valid sequent we de�nexnorm(F) := maxfxnorm(t ` 3C�) j t ` 3C� is subterm of F , nd(�) = dgandynorm(F) := maxfynorm(t ` 3C�) j t ` 3C� is subterm of F , nd(�) = dgand znorm(F) := size(F)where size(F) is just the number of letters/symbols needed to write F . The normof F is a triple, which is de�ned bynorm(F) := (xnorm(F); ynorm(F); znorm(F))These norms are ordered lexicographically. The order is well-founded.For a valid sequent � letx;y;z := jfF 2 � j norm(�) = (x; y; z)gjSince � is valid and �nite, there is a largest x s.t. x;y;z 6= 0 for some y; z. Thislargest x will be called xmax. It depends on �. Also for every x � xmax there isa largest y (called y(x)) s.t. x;y;z 6= 0 for some z. Finally, for every x; y there isa largest z(x; y) s.t. x;y;z 6= 0.We de�ne a well-founded ordering on valid sequents. Let � and �0 be two validsequents and x;y;z and 0x;y;z be de�ned as above. Then� < �0 :, 9(x; y; z):x;y;z < 0x;y;z ^ 8(x0; y0; z0) �lex (x; y; z): x0;y0 ;z0 = 0x0 ;y0;z0The intuition is that if a tableau-rule is applied to a valid sequent �, then there isat least one valid succedent sequent that is smaller. This is because an expressionF 2 � is replaced with several others with a lower norm. Since the ordering iswell-founded, the process must eventually terminate.Note that these de�nitions do not apply to non-valid sequents.

112 CHAPTER 8. PAD AND PALemma 8.1.24 Let � be a valid sequent. Then every tableau with root � has atleast one successful branch that ends with the empty sequent.Proof By Lemma 8.1.17 every tableau with root � has at least one branch thatonly contains valid sequents. Choose one such branch of minimal length. Weshow that the order of the sequents on this branch must strictly decrease. We dothis by showing that every application of a tableau rule to a valid sequent yieldsa smaller sequent.SEQ1,SEQ2 It follows from the construction of the expressions in Lemma 8.1.14and Lemma 8.1.15 that in these expressions one of two cases holds:1. The remaining sequence is shorter (lower xnorm) or2. The remaining sequence has the same length and the terms are smaller(lower ynorm).Thus the succedent sequent is smaller.PAR It follows from the construction of the expression in Lemma 8.1.16 that theterms are always smaller (since t1; t2 are smaller than t1kt2). The xnormis the same or smaller and the ynorm is smaller. Thus the succedent issmaller.STEP1,STEP2 Here we have two sub-cases:� In the �rst branch of the rule STEP1 the sequence has length 0. Inthe succedent the xnorm and ynorm are the same, but the znorm issmaller.� In the other branches of STEP1 and all branches of STEP2 we choosethe valid succedent that corresponds to the shortest sequence thatleads to a state that satis�es �. In this succedent the sequence isshorter and thus the xnorm is smaller.In both cases the succedent is smaller.Unsat This rule is never applied in this branch, because all sequents are valid.conj1,conj2 For these rules the succedent is smaller, because the znorm de-creases.disj1,disj2 For these rules the succedent is smaller, because the znorm decreases.

8.1. MODEL CHECKING PAD WITH EF=DC 113Induct,Term For the rules Induct1,Induct3 and Term1,Term3 the succedentmust be smaller, because expressions are removed from the sequent. Therules Induct2,Induct4,Term2,Term4 are never applied in this branch, be-cause all sequents are valid.The construction of this branch cannot be stopped by termination condition 3,because the order strictly decreases. Since the order of the sequents strictlydecreases on this branch, it must eventually end with the empty sequent andthus it is successful.Corollary 8.1.25 If t j= 3C� for � 2 F cd and C 2 DC then every tableau withroot ft ` 3C�g is successful.Proof The root-sequent is valid. By Lemma 8.1.24 every tableau must have abranch that ends with the empty sequent. This branch is successful and thus thetableau is successful.Lemma 8.1.26 Let t be a process term, � a PAD, � 2 F cd, DC a set of decom-posable constraints and C 2 DC. Then the following conditions are equivalent:� t j= 3C�� A tableau with root ft ` 3C�g is successful.� Every tableau with root ft ` 3C�g is successful.Proof Directly from Lemma 8.1.21 and Corollary 8.1.25.Theorem 8.1.27 The model checking problem for EF=DC and PAD is decidable.Proof By Lemma 8.1.12 it su�ces to prove decidability for formulae of the form3C� with � in F cd for any d. We prove this by induction on d. By Lemma 8.1.26and Lemma 8.1.20 it su�ces to construct a �nite tableau. During the constructionwe must decide problems of the form t0 j= 3C	 for 	 2 F cd�1. In the base cased = 0 this is trivial, since F c�1 = ;. For d > 0 this is possible by inductionhypothesis.Since EF is weaker than EF=DC, we get the following corollary.Corollary 8.1.28 Model checking PAD with EF is decidable.

114 CHAPTER 8. PAD AND PA8.1.5 ComplexityWe have shown that the model checking problem for the branching-time temporallogic EF and the process model PAD is decidable. The exact complexity of theproblem is an open problem. While for the special case of BPP the problem isPSPACE -complete [May96a, May96c] (see Section 6.1), the algorithm for PA in[May97b] and the one for PAD described here have superexponential complexity.The algorithm described here is a generalization of the one in [May97b], but nota generalization of the algorithm for BPP in [May96c]. The PSPACE -algorithmfor BPP in [May96c] uses a bounded search, while the algorithms for PA andPAD work by decomposition. For a formula of nesting-depth d the complexityof the algorithm derived from the tableau system is d-times exponential. Thisis because there are d-times exponentially many di�erent EF-formulae of nestingdepth d. The decompositions of Lemma 8.1.14, Lemma 8.1.15 and Lemma 8.1.16introduce expressions of d-times exponential size. So the overall complexity ofthe algorithm is O(tower (n)), where tower (0) := 0 and tower (i+ 1) := 2tower(i).The best known lower bound for both PAD and PA is PSPACE -hardness. Thislower bound is inherited from BPP, because PAD and PA subsume BPP. How-ever, there is still a di�erence between PAD and PA. For PAD the problem isPSPACE -hard in the size of the system for a �xed formula, because this holdsfor pushdown processes and PAD subsumes pushdown processes (see Chapter 7).PA does not subsume pushdown processes and the best known lower bound isthe same as for BPP: The problem is �pd-hard for formulae of nesting depth d.The interesting part is now the complexity of model checking PA with any �xedformula. Unlike for PAD, there is no hardness result for this problem. In thefollowing we show that model checking PA with any �xed EF=DC-formula 3C�,where � has nesting-depth d, is in �pd+1. So there is a real di�erence betweenPAD and PA. It is an open question if model checking PA with a �xed formulacan be done in polynomial time.Theorem 8.1.29 For every �xed EF=DC-formula 3C�, where � has nesting-depth d, the model checking problem for PA can be solved in �pd+1.Proof We use the same tableau system as for PAD. However, it becomes simplerfor PA, because some cases can never occur. The most important di�erencebetween PAD and PA is in the sequential decomposition in Lemma 8.1.14. In PAthe parts of the expression of the form_j2J; �l:X a!r�2� t j= 3Dj1(l) ^ r j= 3Dj2�

8.1. MODEL CHECKING PAD WITH EF=DC 115are empty, because in PA no rule in � has sequential composition on the left-hand side. These expressions are the only ones where terms of rules in � areintroduced into the EF=DC-formulae, so this does never occur for PA.Consider a tableau for a PA-process � with initial state t0 and an EF=DC-formula3C�. The root node has the form ft ` 3C�g and every sequent in the tableauis a set of expressions of the form t0 ` �0 where t0 is a process term and �0 isa formula. For PA the size of these formulae �0 is bounded by a constant thatdepends only on the size of 3C� and does not grow with the size of � or t0.Thus there is constant c that depends only on 3C� s.t. the number of di�erentformulae �0 that can occur in the tableau is bounded by c. Since we considerthe model checking problem for a �xed formula, c is a constant. Every term t0that occurs in a subgoal of the form t0 ` �0 is either a subterm of t0 or a subtermof the right hand side of some rule in �. Thus t0 has size O(n). Furthermore,Var(�) has size O(n). Thus there are only O(n) di�erent subgoals of the formX ` �0.By Lemma 8.1.26 it does not matter which of the possible tableaux we constructfor a given root. Thus we can safely restrict the nondeterminism in the construc-tion of the tableau. We do this by the requirement that the most recently intro-duced subgoal must be solved �rst. Thus we assign a priority to every subgoalt0 ` �0 in a sequent. The most recently created subgoals have the highest priority.For every sequent � let �rst(�) be the subgoal with the highest priority. Now wecan modify the tableau system by introducing a stronger version of terminationcondition 3 (see Def. 8.1.18): A branch is unsuccessful if it ends with a sequent� s.t. there is a previous sequent �0 with �rst(�) = X ` �0 = �rst(�0) and thesubgoal X ` �0 in �rst(�0) was created (possibly in several steps) from �rst(�).It is easy to see that such a branch must be unsuccessful, because the subgoal�rst(�0) has been attacked �rst and should have been solved already. Instead itwas reduced to itself, and the proof is running in circles. In a subgoal of the formt0 ` �0 the term t0 has size O(n). t0 is decomposed in the tableau, and thus weget a subgoal of the form X ` �0 after at most O(n) steps. There are only O(n)di�erent such subgoals. So one can assume that every subgoal can be solved inO(n2) steps. In particular the one goal in the root sequent can be solved in O(n2)steps. Thus if the root-sequent is true, then there must be a successful branchof length O(n2). The branching degree of the tableau is � max (2; n) = O(n),because there are only O(n) rules in �. Every sequent in the tableau can be de-scribed in O(n) space, because all the terms in the subgoals are disjoint subtermsof t0 or the right-hand sides of rules in �. Thus, if the root-sequent is true, thenthere must be a successful branch that can be described in O(n3) space. Theinstance of the model checking problem has answer `yes' i� at least one branch issuccessful. Thus it su�ces to nondeterministically guess a branch of size O(n3).

116 CHAPTER 8. PAD AND PAIn order to verify that this branch is indeed a valid successful branch we need todecide side consitions of the form t00 j= 3C�00 or t00 j= :3C�00 where �00 has asmaller nesting-depth (at most d� 1). By induction hypothesis this can be donein �pd. Therefore the validness and successfulness of the branch can be veri�ed inpolynomial time with the help of a �pd-oracle. Thus the problem is in �pd+1.8.2 Reachability for PADAs shown in Chapter 3, the reachability problem can be expressed in the logicEF by t0 j= 3(t). Since state formulae have nesting depth 0, the tableau systemof the previous section yields an exponential time algorithm. A more carefulanalysis shows that the problem is NP-complete.Theorem 8.2.1 The reachability problem and the reachable property problem forPAD are NP-complete.Proof The question is if t0 j= 3(t). Consider the tableau system de�ned in theprevious section. In this special case the induction hypothesis is not needed anthe rules Induct1{Induct4 are never used. Every branch in the tableau standsfor an attempt to construct a proof of reachability. The branching degree of thetableau may be exponential, but since the problem is decomposed into smallersubproblems, any node can be described in polynomial space. (This is not truefor the general model checking problem. There the branching degree is d-timesexponential and any node can be described in (d� 1)-times exponential space.)The important observation is now that if t0 j= 3(t), then there is a successfulbranch of polynomial length. (There may be other successful branches of expo-nential length.) All (polynomially many) expressions in the set that constitutesa node in the tableau have the form t0i ` 3(t00i) for terms t0i; t00i , 1 � i � k. Let thesize of a node be de�ned as the sum of the sizes of these terms. This size cannotincrease on a branch. It can decrease in some applications of the rules SEQ1 andSEQ2 (where the ends of t0 and t00 match). There must be a successful branchwhere such a decrease occurs every polynomially many steps. If this is not thecase, then the branch does unnecessary work (like too many applications of therules STEP1 and STEP2). Only polynomially many applications of STEP-ruleslie between each decrease, because there are only polynomially many right handsides of rules. Thus if more STEP-rules were applied, the branch would partly berunning in circles. So in a short successful branch the size of the nodes decreasesat least once every polynomially many steps. Thus the branch has polynomiallength and can be described in polynomial space.

8.3. SIMPLE VERIFICATION PROBLEMS FOR PA 117The NP-algorithm is now to guess a branch of polynomial length and to usethe tableau-rules to verify if it is indeed a valid successful branch. NP-hardnessfollows from the fact that PAD subsumes BPP and reachability is NP-completefor BPP (see Chapter 6).The proof for the reachable property problem is similar.8.3 Simple Veri�cation Problems for PAAs mentioned in Subsection 2.3.6, PA-processes are (1; G)-PRS in the PRS-hierarchy. They can describe nondeterminism, sequential- and parallel composi-tion and recursion, but no communication between components. They are thesmallest natural common generalization of BPP and BPA. PA is a special case ofPAD. Intuitively, the only di�erence is that in PA the subroutines have no e�ecton their caller (see also Section 2.2).In this section we study two simple veri�cation problems for PA-processes. Theycan be seen as special cases of the model checking problem for PA-processes andthe logic EF. However, the algorithm in Section 8.1 has a very high complexity(see also [May97b]). Thus it is useful to consider these subproblems here, becausethey can be solved in polynomial time. In practice, it often su�ces to check verysimple properties of systems, and it is not necessary to use a full temporal logicto express them. The veri�cation problems in this section have also been solvedwith tableau methods in [May97e].8.3.1 Partial DeadlockThe Partial deadlock problem is the problem if there is a reachable state wherecertain given actions are disabled.Partial deadlockInstance: A labeled transition system with initial state s0 and a �nite set ofatomic actions A.Question: Is it possible to reach a state s s.t. 6 9a 2 A; s0: s a! s0 ?In the special case of A = Act this is the problem if a deadlocked state is reachable.This problem can also be formulated in the logic EF. Let A = fa1; : : : ; ang, thenthe question is equivalent to s0 j= 3(:a1 ^ � � � ^ :an). Of course this is muchsimpler than general model checking with EF.For general Petri nets the partial deadlock problem is equivalent to the problem ofdeciding if a state is reachable where certain places are unmarked. This problem

118 CHAPTER 8. PAD AND PAhas the same complexity as the reachability problem. So the partial deadlockreachability problem is decidable for Petri nets, but at least EXPSPACE -hard[Lip76, May84].The situation is di�erent for PA. The reachability problem for PA is NP-complete, because it is NP-complete for BPP [Esp95] and for PAD (see Sec-tion 8.2). However, the partial deadlock problem can be decided in polynomialtime.First we de�ne some predicates.De�nition 8.3.1 Let A � Act be a set of actions. Sequences of actions aredenoted by �. E(t) :() 9�: t �! �DA(t) :() 9�; t0: (t �! t0 ^ 6 9a 2 A: t0 a!)SA(t) :() 9�; t0: (t �! t0 6= � ^ 6 9a 2 A: t0 a!)It is clear that DA(t) () SA(t) _ E(t).Intuitively, E(t) means that the process t can terminate, DA(t) means that t canreach a partial deadlock and SA(t) means that t can get `stuck', i.e. reach adeadlock without terminating. The partial deadlock problem for a PA-process tis to decide if DA(t) holds.Lemma 8.3.2 The following logical equalities follow directly from the de�nitions.They are used to decompose the problem.DA(t) () SA(t) _ E(t)SA(t1:t2) () SA(t1) _ (E(t1) ^ SA(t2))SA(t1kt2) () (SA(t1) ^DA(t2)) _ (DA(t1) ^ SA(t2))E(t1:t2) () E(t1) ^ E(t2)E(t1kt2) () E(t1) ^ E(t2)Lemma 8.3.3 Let � be a set of PA-rules. It is possible to decide the propertyE(X) for all variables X in O(n3) time.Proof We use a marking algorithm. First mark all variables X s.t. there is arule (X a! �) 2 �. This can be done in O(n) time.

8.3. SIMPLE VERIFICATION PROBLEMS FOR PA 119The following step is repeated until no new variable is marked:Consider every rule (Y a! t) 2 � s.t. Y is unmarked so far. If all variables in tare marked then mark Y .Checking if all variable in t are marked can be done in O(n) time. As there areO(n) rules in � this must be done at most O(n) times in each step. There areO(n) variables and thus we need at most O(n) steps. So the algorithm requiresat most O(n3) time.Lemma 8.3.4 If E(X) is already known for every variable X then the propertyE(t) for a term t can be decided in linear time in the size of t.Proof E(t) holds if and only if E(X) for every variable X that occurs in t.Theorem 8.3.5 The partial deadlock problem for PA-processes is decidable inO(n3) time.Proof Let t0 be the initial state, � the set of rules and A � Act . We canassume w.r. that t0 is a single variable X0, because otherwise we could add a newvariable X0 and a new rule X a! t0. The problem is if DA(X0) holds.1. First we decide E(X) for all variables X in time O(n3) with the algorithmof Lemma 8.3.3.2. Now we decide SA(X) for all variables X. First mark all variables X s.t.6 9a 2 A:X a!. This can be done in O(n2) time.Repeat the following step until no new variable is marked:For all rules Y a! t1:t2 or Y a! t1kt2 s.t. Y is unmarked use the equationsof Lemma 8.3.2 and the already acquired knowledge about E(Z) and SA(Z)for other variables Z to prove SA(Y). In addition to the normal failurecases this fails when we encounter unmarked variables. It it succeeds themmark Y .There are O(n) variables and thus this step is done at most O(n) times.Each step can be done in O(n2) time and thus the whole procedure can bedone in O(n3) time.3. As we know the values of E(X) and SA(X) for every variable X we candecide DA(X0) in constant time.

120 CHAPTER 8. PAD AND PA8.3.2 LivelockThe Livelock problem is the problem if a state can be reached, such that fromthen on certain given actions can never become enabled again.LivelockInstance: A labeled transition system with initial state s0 and a �nite set ofatomic actions A.Question: Is is possible to reach a state s s.t. no state s0 that is reachable froms enables any action in A ?Note that in the special case of A = Act this is the same as the deadlock problem.The livelock problem can be expressed in the logic EF. For A = fa1; : : : ; ang, thequestion is if s0 j= 32(:a1 ^ � � � ^ :an)We show that the livelock problem for PA can be solved in polynomial time. Firstwe de�ne some predicates.De�nition 8.3.6 Let A � Act be a set of actions.E(t) :() 9�: t �! �EnA(t) :() 9a 2 A: t a!NA(t) :() 6 9�; t0: (t �! t0 ^ EnA(t0))RA(t) :() 9�; t0: (t �! t0 ^ NA(t0))RIA(t) :() 9�; t0: (t �! t0 ^ NA(t0) ^ :E(t0))Intuitively, NA(t) means that t will never be able to do any action from A, andRA(t) means that a state t0 is reachable from t s.t. for t0 all actions in A aredisabled forever. RIA(t) means that a state t0 is reachable from t s.t. t0 has noterminating computation and all actions in A are disabled forever. This can alsobe expressed in EF. Let A := fa1; : : : ; ang.NA(t) = t j= 2(:a1 ^ � � � ^ :an)RA(t) = t j= 32(:a1 ^ � � � ^ :an)RIA(t) = t j= 3(:3(�) ^ 2(:a1 ^ � � � ^ :an))The livelock problem is to check if RA(t0) holds for a PA-process with initial statet0 and set of rules �. W.r. we can assume that t0 is a single variable X0, becauseotherwise we could just add a new variable X0 and a rule X0 ! t0.The algorithm proceeds in four steps:

8.3. SIMPLE VERIFICATION PROBLEMS FOR PA 1211. Decide E(X) for all variables X.2. DecideNA(X) for all variablesX using the previously collected information.3. Decide RA(X) and RIA(X) for all X using the previously collected infor-mation.4. Decide RA(t0) by using the previously collected information.The �rst step uses the algorithm described in Lemma 8.3.3 It requires O(n3)time.For the second step we de�ne PA(t) := :NA(t) and use a marking algorithm todecide PA(X) for every variable X.Start Mark all variables X s.t. 9a 2 A: X a!.Step For every unmarked variable X and every rule (X ! t) 2 � do the follow-ing: If P 0A(t) then mark X.P 0A is de�ned byP 0A(t1kt2) := P 0A(t1) _ P 0A(t2)P 0A(t1:t2) := P 0A(t1) _ (E(t1) ^ P 0A(t2))P 0A(X) := if X is marked then true else falseRepeat Step until no new variable is marked.At the end PA(X) holds if X is marked. Thus NA(X) is true i� X is not markedat the end. The evaluation of an instance of P 0A(t) can be done in O(n) time.There are O(n) rules in �, and thus at most O(n) instances of P 0A(t) are calledin Step. The Step is done at most O(n) times and thus the algorithm requiresonly O(n3) time.The third step is a marking algorithm that uses two di�erent markings RA andRIA. If a variable X is marked by RA (RIA) then it means that it is alreadyknown that RA(X) (RIA(X)) is true.Start If NA(X) then mark X with RA. If NA(X) and :E(X) then mark X withRIA.

122 CHAPTER 8. PAD AND PAStep For every variable X and every rule (X ! t) 2 � do: If R0A(t) then markX with RA. If RI 0A(t) then mark X with RIA. The functions R0A and RI 0Aare de�ned as follows:R0A(t1kt2) := R0A(t1) ^R0A(t2)R0A(t1:t2) := RI 0A(t1) _ (E(t1) ^R0A(t2))R0A(X) := if X is marked by RA then true else falseRI 0A(t1kt2) := (RI 0A(t1) ^ R0A(t2)) _ (R0A(t1) ^RI 0A(t2))RI 0A(t1:t2) := RI 0A(t1) _ (E(t1) ^RI 0A(t2))RI 0A(X) := if X is marked by RIA then true else falseRepeat Step until no new variable is marked.Every evaluation of an instance of R0A(t) or RI 0A(t) can be done in O(n) time,because of Lemma 8.3.4. At mostO(n) instances are called in every Step, becausethere are only O(n) rules in �. The Step is done at most O(n) times becausethere are only O(n) variables. Thus the algorithm requires at most O(n3) time.The last step can be done in constant time, because we assumed that the initialstate X0 is a variable. RA(X0) holds if X is marked by RA.Theorem 8.3.7 The livelock problem for PA is decidable in O(n3) time.Proof Each of the four steps of the algorithm can be done in O(n3) time.8.4 ConclusionThe reachability problem and the reachable property problem are NP-completefor BPP (see Chapter 6) and for PAD (see Section 8.2). Thus they are alsoNP-complete for PA.Model checking with most branching-time logics is undecidable for PA and PAD,since model checking with the temporal logic EG is undecidable for BPP, even fora �xed EG-formula (see Section 6.3). The only exception is the logic EF, whichis incomparable to EG. It has been shown in [May97b] that model checking PAwith EF is decidable. This proof has been generalized to PAD in Section 8.1. Theexact complexity is open. The general complexity of the algorithm isO(tower(n))and it is d-times exponential for formulae of nesting-depth d. The best knownlower bound is PSPACE -hardness, but there is a di�erence between PA and PAD.

8.4. CONCLUSION 123� PAD subsumes pushdown processes and inherits their lower bound (seeChapter 7). Thus the model checking problem for EF and PAD is PSPACE -hard in the size of the process even for a �xed EF-formula.� PA does not subsume pushdown processes and only inherits the lower boundfrom BPP (see Chapter 6). Thus model checking PA with EF is PSPACE -hard, but only �pd-hard for formulae of nesting-depth d. As shown in The-orem 8.1.29 model checking PA is in �pd for every �xed EF-formula 3C� ofnesting-depth d. Thus there is a real di�erence between PA and PAD.Model checking PA with all linear-time logics (except for WL) is undecidable.This has been shown by Bouajjani and Habermehl in [BH96]. In fact, not evenfull PA is needed for this result. It su�ces to take two context-free processesand a �nite-state process running in parallel. The two context-free processesserve as counters and the �nite-state system as a �nite control. While PA itselfcan not enforce a synchronization between these three components, this can beachieved with an LTL formula. This LTL formula characterizes all faithful runsof the system which synchronize correctly. So it is possible to reduce the haltingproblem for Minsky 2-counter machines to the model checking problem, thusproving its undecidability.Although Bouajjani and Habermehl do not explicitly mention it in [BH96], themodel checking problem is even undecidable for two BPA processes that runin parallel and a �xed LTL-formula. This is because the �nite control of theuniversal 2-counter machine can be encoded in a LTL-formula. The two BPAprocesses serve as counters and their initial states represent the initial values inthe counters. The LTL-formula encodes the �xed �nite control of the universal2-counter machine and enforces the synchronization. The undecidability resultcarries over to PAD, because it subsumes PA.

124 CHAPTER 8. PAD AND PAThe following table shows the complexity of model checking PAD.PAD general �xed formulareachability,reachable property NP-complete 2 NPEF 2 DTIME(tower (n)),PSPACE -hard 2 d-EXPTIMEPSPACE -hardEG undecidable undecidableUB undecidable undecidableCTL undecidable undecidablealt.-free modal �-calc. undecidable undecidablemodal �-calc. undecidable undecidableLTL undecidable undecidablelinear-time �-calc. undecidable undecidableThe results on PA are almost the same. The only exception is the complexity ofmodel checking with EF.PA general �xed formulareachability,reachable property NP-complete 2 NPEF 2 DTIME(tower (n)),PSPACE -hard 2 �pdEG undecidable undecidableUB undecidable undecidableCTL undecidable undecidablealt.-free modal �-calc. undecidable undecidablemodal �-calc. undecidable undecidableLTL undecidable undecidablelinear-time �-calc. undecidable undecidable

Chapter 9Petri NetsPetri nets are a very popular model for concurrent systems. As shown in Chap-ter 2, they are equivalent to (P;P)-PRS. In Section 9.1 we show that (except forreachability) no branching-time logic is decidable for Petri nets. Section 9.2 isabout model checking Petri nets with linear-time logics (LTL and the linear-time�-calculus). While this is decidable, it is at least as hard as the reachabilityproblem for Petri nets.9.1 Branching-Time LogicsThe reachability problem and the submarking reachability problem (and thus thereachable property problem) are decidable and EXPSPACE -hard for Petri nets[May84, Lip76].Petri nets are equivalent to (P;P)-PRS and thus they subsume BPP, which are(1; P)-PRS (see Chapter 2). Since model checking with the logic EG is undecid-able for BPP (see Section 6.3), it is undecidable for Petri nets too. This resulteven holds for a �xed EG-formula.Model checking Petri nets with EF is undecidable too. This was �rst proved byEsparza in [Esp94]. The proof there contains a slight error, which was correctedin [Esp97]. The idea is to prove undecidability by a reduction of the reachabilityset containment problem to the model checking problem.125

126 CHAPTER 9. PETRI NETSReachability set containmentInstance: Two Petri nets N1 and N2 having the same number of places anda bijection f between the sets of places of N1 and N2. f can beextended to a bijection on markings in the obvious way. Let M10 ;M20be the initial markings of N1; N2.Question: Does the following property hold? For every reachable marking Mof N1, f(M) is a reachable marking of N2.Rabin showed that this problem is undecidable by a reduction of Hilbert's 10thproblem. A proof by Jan�car [Jan94, Jan95] uses a reduction of the halting problemfor counter machines.We sketch the reduction of the reachability set containment problem to the modelchecking problem. It is similar to the one in [Esp97], but slightly simpler. Weassume that the transitions in N1; N2 are not labeled with atomic actions.1. Put N1 and N2 side by side.2. Add a place A and arcs from A to every transition in N1 and back. Putone token on A.3. Add a new transition t and a place B and arcs from A to t and from t toB. The transition t is labeled with the atomic action a. Place B is initiallyunmarked.4. Add arcs from B to every transition in N2 and back.5. For every pair of places (s; f(s)) add a transition ts and arcs from s to ts,f(s) to ts, B to ts and ts to B.6. For every place s in N1 add a transition t0s labeled with action b and arcsfrom s to t0s and back. Do the same for N2.Figure 9.1 illustrates this construction.Remember that the formula `a' means that the atomic action a is enabled (seeSubsection 3.1.1).Lemma 9.1.1 An instance of the reachability set containment problem has an-swer `yes' if and only if the newly constructed Petri net satis�es the EF-formula2(a) 3(:a ^ :b))Proof Directly from the de�nition of the net and the interpretation of theformula.

9.2. LINEAR-TIME LOGICS 127
A

a

b

b

t
s

f(s)

B

N2

N1

t s

Figure 9.1: Reducing reachability set containment to model checking with EFTheorem 9.1.2 Model checking with EF is undecidable for Petri nets, even fora �xed EF-formula.Proof Directly from the undecidability of the reachability set containment prob-lem for Petri nets and Lemma 9.1.1.9.2 Linear-Time Logics9.2.1 The Complexity of the ProblemModel checking Petri nets with LTL and the linear-time �-calculus is decidable,but at least as hard as the reachability problem for Petri nets [Esp94].The hardness result is easy to prove. As shown in Section 3.2, the reachableproperty problem can be encoded in LTL. It was also shown that for Petri netsthe reachable property problem subsumes the reachability problem. (This is not

128 CHAPTER 9. PETRI NETStrue for some other models.) This hardness result even holds for a �xed LTL-formula, since the formula (true)wU falseexpresses the property that no deadlock is reachable. For Petri nets this problemhas the same complexity as reachability [Pet81].The decidability proof in [Esp94] uses the fact that every formula in LTL or thelinear-time �-calculus can be e�ectively transformed into a B�uchi-automaton thatdescribes exactly the same !-sequences (possibly in�nite sequences) of actions[Var88]. (The reverse translation is also possible [Dam92].) So one constructsthe B�uchi-automaton for the formula and synchronizes this automaton with thePetri net. (Note that, unlike some other models, Petri nets are closed undersynchronization with �nite-state systems.) For this new system one has to solve�nitely many instances of the following problems:� Is it possible to reach a given state? This is the reachability problem.� Is there an in�nite path that visits a certain state in the B�uchi-automatonin�nitely often. This problem can be reduced to the problem of the existenceof certain in�nite runs in Petri nets. It has been show in [Yen92] that itcan be done in exponential space.The problem with the algorithm in [Esp94] is that it has non-elementary complex-ity and is therefore hardly useful in practice. (The problem is at least as hard asthe reachability problem for Petri nets and therefore at least EXPSPACE -hard).Even more important is that the algorithm yields hardly any insight on why aproperty holds. Thus it cannot be used as a proof method in semiautomaticveri�cation.We consider the model checking problem for Petri nets and the weak linear-time�-calculus. This logic is a version of the linear-time �-calculus that is interpretedonly on in�nite runs. It is equivalent to the fragment of the linear-time �-calculuswithout the strong nexttime operator (see Section 3.2 for details on this temporallogic). This model checking problem is EXPSPACE -complete [Hab97]. Thus itis hard to solve with fully automated methods.Here we present a tableau system for this model checking problem. While itcannot provide a more e�cient algorithm, it can serve as a basis for a semiau-tomatic approach to solve this problem. This tableau system is a generalizationof the tableau system for the linear-time �-calculus and �nite-state systems byBrad�eld, Esparza and Mader [BEM96] and Stirling and Walker [SW91]. It can

9.2. LINEAR-TIME LOGICS 129be used as a proof method and gives the user much better insight why a prop-erty holds. In semiautomatic veri�cation this allows the user to apply his/herknowledge about the system in the veri�cation process.9.2.2 PreliminariesThe linear-time �-calculus and its interpretation are de�ned in Section 3.2. Thefollowing de�nitions are important in the construction of the tableau system.De�nition 9.2.1 For all ordinals � 2 Ord, the �xpoint approximants ��Z:� and��Z:� are de�ned by: �0Z:� = false and �0Z:� = true, ��+1Z:� = �[��Z:�=Z],��Z:� = W��� ��Z:�, ��Z:� = V��� ��Z:�, where � is a limit ordinal.Proposition 9.2.2 (Knaster-Tarski) �Z:� = W� ��Z:�, �Z:� = V� ��Z:�.De�nition 9.2.3 The �-signature �-sig(�;�) of a run � w.r.t. a formula �(where � j= �) is the lexicographically least sequence �1; : : : ; �k such that � j=�[��iZi:�i=�Zi:�i] where �Zi:�i are the �-subformulae of � in order of depth,i.e. in some (�xed) order such that subformulae appear after any containing sub-formulae. The containing formula is called higher and the contained subformulais called lower.Dually, the �-signature of � 6j= � is the least sequence s.t. � 6j= �[��iZi:�i=�Zi:�i].The closure of a formula in the weak linear-time �-calculus is the set of its sub-formulae modulo unfolding of �xpoint operators.De�nition 9.2.4 (Closure)The closure Cl(�) of a formula � is de�ned as follows:Cl (Q) := fQgCl (�A�) := f�A�g [Cl (�)Cl (�1 ^ �2) := f�1 ^ �2g [Cl (�1) [Cl(�2)Cl (�1 _ �2) := f�1 _ �2g [Cl (�1) [Cl(�2)Cl(�X:�) := f�X:�g [Cl(�[�X:�=X])where Q is an atomic proposition and � 2 f�; �g.

130 CHAPTER 9. PETRI NETSThese preliminary de�nitions apply to �nite or in�nite systems. For a thoroughtreatment of �nite systems we refer to [BEM96] and [SW91]. Here we are inter-ested in in�nite systems described by general Petri nets.De�nition 9.2.5 (!-markings of Petri nets)A labeled Petri net N = (S; T;W;L;Act) consists of a �nite set of places S, a�nite set of transitions T , a function W : S�T [T �S ! IN that assigns weightsto the arcs, a set of actions Act and a labeling function L : T ! Act that assignsactions to the transitions.Markings of nets will be denoted by M . As a technicality markings will bemappings S 7! (IN [f!g) instead of S 7! IN, where ! is the �rst limit ordinal.(It follows that for every k 2 IN we have k < !, ! + k = ! and ! � k = !.)In the rest of this section we will use the weak linear-time �-calculus (see Sec-tion 3.2). It does not contain the strong nexttime operator . This is done inorder to make it impossible to express the state of deadlock with the calculus andto avoid having to solve the reachability problem for Petri nets in the tableau.As mentioned earlier the model checking problem is decidable for the full linear-time �-calculus [Esp94], but so far there exist no tableau methods for solving thereachability problem for Petri nets.This is not a big restriction, since normally the linear-time �-calculus is only usedto verify liveness-properties of systems. These are mostly fairness-properties like`In every in�nite run action a occurs in�nitely often'. Such properties only makesense for in�nite runs and thus most systems that are veri�ed with the linear-time �-calculus are deadlock-free anyway. Therefore one can as well use the weaklinear-time �-calculus.De�nition 9.2.6 We only use the weak nexttime operator J. As an abbrevia-tion we use �nite sets of actions as subscripts instead of single actions. For a setof actions A = fa1; : : : ; ang letKA :=Ka1 _Ka2 _ � � � _KanWe use atomic propositions in the calculus. LetM denote markings of nets. Theatomic propositions Q 2 ZC must satisfy two conditions. Let W(Q) be the setof markings that satisfy Q.Q1 M 2 W(Q)) 8M 0 �M: M 0 2 W(Q)

9.2. LINEAR-TIME LOGICS 131Q2 (M + !M 0) 62 W(Q)) 9k 2 IN 8k0 � k: (M + k0M 0) 62 W(Q).The conditions Q1 and Q2 imposed on the atomic propositions basically amountto the condition that every atomic proposition has the formP := fx1 � k1; x2 � k2; : : : ; xn � kngwhere x1; : : : ; xn are the places in the net and k1; : : : ; kn 2 IN [f!g. A markingM satis�es the atomic proposition P i� 8i 2 f1; : : : ; ng:M(xi) � ki. In Subsec-tion 9.2.9 we show that the tableau system can be generalized to a larger class ofatomic propositions.The following three subsections closely follow the presentation in [BEM96]. Themain new points are in in Subsection 9.2.6 and the rest of the chapter.9.2.3 The SequentsAn important di�erence between the modal �-calculus and the linear-time �-calculus is the treatment of disjunction. In a tableau system for the modal�-calculus (see [SW91]) the sequents have the form M ` �, which means thatthe state s satis�es the formula �. So M j= � _ 	 means M 2 [[�]] [[[]] andtherefore implies either M j= � or M j= 	. Thus the two rulesM ` � _ 	M ` � M ` � _	M ` 	are complete.For the linear time �-calculus the situation is di�erent, because hereM j= �_	means fM j�(0) = Mg � [[�]] [[[]]. As f�j�(0) = Mg is a set of runs (that canhave more than one element) we can no longer inferM j= [[�]] or M j= [[]]: someruns starting at M may satisfy � but not 	, while others may satisfy 	 and not�. The solution is to allow sets of formulae in the right hand side of the sequentthat are interpreted disjunctively (see [BEM96]). This way, the ruleM ` � _	M ` �;	is sound and complete.Now the tableau consists of nodes of the form M ` �1; : : : ;�k, where the for-mulae �1; : : : ;�k are interpreted disjunctively. The branches in the tableau areinterpreted conjunctively, so the tableau is successful i� all branches are success-ful. (This is di�erent from other tableau systems in Chapters 8 or 10 where thebranches are interpreted disjunctively.)

132 CHAPTER 9. PETRI NETS9.2.4 The Basic RulesThe rules for the tableau can be divided into two groups: the basic rules andthe special rules. While the basic rules are su�cient for �nite-state systems,the special rules are needed for Petri nets. We will de�ne and discuss the basicrules �rst since they are more intuitive, and make the necessary adjustmentsand extensions by the special rules later. To simplify the notation we de�nethat �;�; : : : denote sequences of formulae (i.e. � = �1;�2; : : : ;�n and �A� =�A�1; : : : ;�A�n).^ M ` �;� ^	M ` �;� M ` �;	_ M ` �;� _	M ` �;�;	Q M ` �; QM ` � where M =2 W(Q)J M ` �A1�1; : : : ;�An�nM1 ` � : : : Mk ` � where � = �1; : : : ;�k andfM1; : : : ;Mkg = nM 0 j 9a 2 \ni=1Ai: M a!M 0o�Z M ` �; �Z:�M ` �;�[�Z:�=Z]Additionally we use the following `cleanup-procedure' after each rule application:If a formula � occurs in a sequence � more than once, then delete all occurrencesbut the �rst.Lemma 9.2.7 The antecedent of a rule is true if and only if all its consequentsare true.Proof Trivially from the de�nitions.For these basic rules the result of the application of a rule to a sequent is com-pletely determined by the sequent. In other words, the child-nodes are completely

9.2. LINEAR-TIME LOGICS 133determined by the parent-node. We'll see later that this is not the case for thespecial rules. There several ancestors (in the path from the root to the sequent)must be taken into account.9.2.5 Paths and Internal PathsA proof tree is a tree of sequents constructed by the iterated application of rules,starting with a root M0 ` �0. Associated with a path � in a proof tree is asequence � = t1; t2; : : : ; tn of transitions arising from the applications of the �-rule in �. We denote this by � = trans(�).In the tableau each node is assigned a unique label ni. Let ni : Mi ` �i andnj : Mj ` �j be two nodes in the tableau. By ni ' nj we mean that Mi = Mjand �i = �j. We write nj � ni if nj occurs earlier than ni in the path from theroot to ni. It follows that � is a partial order on the set of nodes in a tableau.The price we pay for allowing sets of formulae in the right hand side of a sequentis that a path in the proof tree has a more complex internal structure: a set ofinternal paths describing the dependencies between formulae at di�erent nodes.The path n1 :M ` (�fa;bg� ^) _ �fa;cg	n2 :M ` �fa;bg� ^	;�fa;cg	n3 :M 0 ` � ^	;	n4 :M 0 ` �;	has the following internal paths:n1 : (�fa;bg� ^) _ �fa;cg	 n1 : (�fa;bg� ^) _ �fa;cg	# #n2 : �fa;bg� ^	 n2 : �fa;cg	# #n3 : � ^	 n3 : 	# #n4 : � n4 : 	Intuitively, the truth of a sequent depends on the structure of the internal pathsstarting at it, particularly on which � or �-variables are unfolded in those paths.De�nition 9.2.8 (Internal paths, internal circuits)Let � be a path of the proof tree. An internal path of � is a �nite or in�nite

134 CHAPTER 9. PETRI NETSsequence of triples (n1;M1;�1)(n2;M2;�2); : : : s.t. �1 appears in n1, and for anytwo consecutive pairs (n1;Mi;�i); (ni+1;Mi+1;�i+1), one of the following casesholds:� ni+1 is a child of ni, no rule is applied to �i and �i+1 = �i, or� ni+1 is a child of ni, some rule di�erent from Q is applied to �i, and�i+1;Mi+1 are the formula/marking given by the rule application.An internal circuit of a �nite path � = n1n2 : : : nk such that n1 : M1 ` �,nk :Mk ` � and M1 �Mk is a �nite sequence of internal paths of �((n1;M1;�1) : : : (nk;Mk;�k)) ((n1;M1;�k+1) : : : (nk;Mk;�2k)) : : :: : : ((n1;M1;�jk+1) : : : (nk;Mk;�(j+1)k)) for j 2 INsuch that �ik+1 = �ik, �1 = �(j+1)k and M1 �Mk and �1 2 �.The characteristic of a �nite internal path is the highest variable that is unfolded(by the �Z-rule) or the symbol ? if no variable is unfolded; the characteristic ofan in�nite internal path is the highest variable that is unfolded in�nitely often.If the characteristic of an internal path is a �-variable (�-variable), then we saythat the path has �-characteristic (�-characteristic). For a path n : : : n0 the setInt(n; n0) is de�ned as the set of triples (�;�0; Z) such that there exists an internalpath (n;�) : : : (n0;�0) with characteristic Z.It is easy to see that if the formula at the root of the proof tree is guarded (everyvariable occurs within the scope of a next-operator J), then the characteristicof any internal circuit is always di�erent from ?.9.2.6 The Special RulesBefore de�ning the special rules we must make some additions. We assign eachnode a label consisting of a �nite set of pairs 2 INl � N , where l is the numberof places of the Petri net and N the set of nodes in the tableau. The label of theroot node is the empty set. For a node n with state M , label D and sequenceof formulae � we write n(D) : M ` �. If the label is of no concern then we justwrite \?" for it.Child-nodes that are created by basic rule applications do not inherit these labels;they are only introduced by the special rules.The special rules are introduced to deal with the problems arising from the factthe Petri nets can have in�nite state spaces. They ensure the �niteness of thetableau. The intuition is as follows:

9.2. LINEAR-TIME LOGICS 135Let M be a marking and M 0 � M . If there is an unsuccessful run (one thatdoesn't satisfy the formula) starting at M , then the same run can also start atM 0. So the chance to �nd an unsuccessful run is better if the start-marking islarger. A new marking that contains ! on some places is introduced to representin�nitely many reachable markings with arbitrarily high numbers of tokens insome places. Note that the ! does not mean that there are in�nitely manytokens on this place, but only that there are reachable markings with arbitrarilyhigh numbers of tokens on this place. So the !-rule is as follows:! n2(D) :M2 ` �n2(D) :M2 + !(M2 �M1) ` �With the following side-condition: There is a previous node n1(?) : M1 ` � s.t.n2 � n1, M2 �M1 and there is a place s s.t. M1(s) < M2(s) 6= !A tableau can be seen as an attempt to construct an unsuccessful run. The M-rule is introduced to cut o� branches that don't give any new information on theproblem if an unsuccessful run can possibly be constructed.M n(D) :M ` �n(D [f(�; n00)g) :M ` �With the following side-condition: There are two ancestors n0(?) : M ` � andn00(?) : M ` � s.t. n � n0 � n00 and Int(n00; n0) = Int(n00; n) and � is thee�ect-vector of the sequence of transitions �red between n0 and n (see Def. 2.3.4).If the conditions for the M -rule are satis�ed then the path from node n0 tonode n gives us no new information for the construction of an unsuccessful run.This is because of the condition Int(n00; n0) = Int(n00; n). The only thing worthremembering are the changes � in the marking of the net. By adding the vectorto the label of the node we remember that we could insert this piece of the branchas often as we want, and change the marking by �. This is necessary, becauselater in the tableau it might turn out that we should have inserted this piece ofthe branch between n0 and n a certain number of times in order to be able toconstruct an in�nite unsuccessful run. However, at the point where the M -ruleis applied we don't know yet how often to insert this part of the branch.Remark 9.2.9 The special rules only have one antecedent and one succedent.Once the succedent is constructed the antecedent is no longer relevant. So thetableau could be simpli�ed by just replacing the antecedent by the succedent in thecase of the special rules. (See [May96b]).

136 CHAPTER 9. PETRI NETSThe basic rules are always applied at the end of the sequence of formulae whichform a sequent. We de�ne that the special rules take precedence over the basicrules and the !-rule takes precedence over the M -rule.Lemma 9.2.10 The tableau for a given root is unique.Proof Directly from the de�nition.Now we can de�ne the terminal nodes.De�nition 9.2.11 A node n(?) : M ` � is a terminal if any of the followingconditions is satis�ed:1. � = Q and M 62 W(Q)2. � = �A1�1; : : : ;�An�n and 6 9a 2 Tni=1Ai;M 0: M a!M 03. Q 2 � and M 2 W(Q)4. n has an ancestor n0 ' n s.t. n0 � n and� every internal circuit of the path n0 : : : n has �-characteristic, and� Let �0 be the e�ect-vector of the sequence of �red transitions betweenn0 and n. Letf�1; : : : ; �kg := f� j 9~n: n0 � ~n(D)� n ^ 9(�; n̂) 2 D: n̂� n0gThere are x1; : : : ; xk 2 IN s.t. �0 + x1�1 + � � �+ xk�k � ~0.5. There are nodes n00(?) : M ` � and n0(D) : M ` � s.t. n00 � n0 � n. Let�1 be the path between n00 and n0 and �2 the path between n0 and n. Let �be the e�ect-vector of the sequence of transitions �red in �2. It must holdthat �1 = �2 and 9~n: (�; ~n) 2 D.Terminals of type 1 and 4 are unsuccessful, and terminals of type 2,3 and 5 aresuccessful.The tableau is a �nite proof tree whose leaves (and no other nodes) are terminals.It is successful i� all its terminals are successful.

9.2. LINEAR-TIME LOGICS 137The intuition behind the de�nition of the special rules and the terminals is thefollowing: Each path of the tableau can be seen as an attempt to construct afalse run of the system, i.e. a run that does not satisfy the formula at the root.The terminals identify the points at which we have gathered enough informationeither to construct such a run (unsuccessful terminal) or to give up searching thecontinuations of the path (successful terminal), because either they all lead totrue runs, or a false run can be found in a di�erent and shorter branch. Let � bea path of the tableau ending in a terminal n, and let � = trans(�).1. If n is of type 1 then it is of the form M ` Q, and no nun starting at Msatis�es Q. Therefore any run of the form ��0 is false.2. If n is of type 2 then any run of the form ��0 is a true run. This is due tothe de�nition of �A since � has no continuations �0 starting with an actionin Tni=1Ai.3. If n is of type 3 then any run of the form ��0 is true.4. If n is of type 4 then an in�nite false run can be constructed. Basically thisis because in any chain of dependencies corresponding to this run some �-variable is unfolded in�nitely often. If the highest variable that is unfoldedin�nitely often is a �-variable then this run does not satisfy the formula (seeSubsection 3.2.3). The details will be explained in the proof in Section 9.2.7.5. If n is of type 5 then nothing new has happened between n0 and n. This isbecause the same path has already occurred earlier in the tableau betweenn00 and n0. Even the e�ect-vector of transitions �red between n0 and n hasalready been recorded in the label of n0. Basically this means that if anyfalse run can be found, then it can be found elsewhere in the tableau in aneasier (shorter) way.9.2.7 Soundness and CompletenessFirst we show that the tableau is always �nite. The following general lemma isvery useful for decidability problems about Petri nets. It was proved by Dicksonin [Dic13].Lemma 9.2.12 (Dickson's Lemma)Given an in�nite sequence of vectors M1;M2;M3; : : : in INk there are i < j s.t.Mi �Mj (� taken componentwise).

138 CHAPTER 9. PETRI NETSLemma 9.2.13 For any given root the tableau is �nite.Proof Let � be the tableau with root M0 ` �0 and m the number of symbols in�0. It is easy to see that the size of the closure Cl(�0) of �0 is bounded by m.Therefore at most 2m di�erent sequents � can occur in nodes of the tableau andthere are at most 2m3 di�erent Int relations. Let t be the number of transitionsin the Petri net. Then each node has at most maxf2; tg children.Assume that there is an in�nite path in the tableau. Because of the special rule! and Dickson's lemma (9.2.12) the number of di�erent markingsM occurring innodes of the tableau is �nite. Thus there are only �nitely many di�erent pathsbetween di�erent nodes with the same sequent M ` �.Because of the special rule M all the e�ect-vectors of these paths will eventuallybe stored in the labels of the nodes. So the path will end by termination condition5, a contradiction.Thus every path in the tableau has �nite length. As each node has only �nitelymany children the tableau is �nite.Lemma 9.2.14 If M0 j= �0 then the tableau with root-node n0(fg) :M0 ` �0 issuccessful.Proof Starting with the root-node n0(fg) : M0 ` �0, apply the rules until thetableau is constructed. The construction terminates by Lemma 9.2.13.We will assume that there exists an unsuccessful terminal n(D) : M ` � andderive a contradiction. There are two cases:1. n is of type 1. Then n is of the form n(D) :M ` Q and M doesn't satisfyQ. Therefore n is a false node. By condition Q1 and Q2 from Def. 9.2.6it follows that we could construct another tableau without using the !-rule that has a path leading to a node n2(?) : M 0 ` Q s.t. M 0 � Mand 8s 2 S: M 0(s) 6= M(s)) M(s) = ! and M 0 fails Q. This is acontradiction, because by Lemma 9.2.7 the node n2 should be true.2. If n is of type 4 then because of condition Q1 and Q2 for any k 2 IN itis possible to construct another tableau without using the M - and !-ruless.t. this tableau contains two nodes n1(?) : M1 ` � � n2(?) : M2 ` �,M2 � M1, 8s 2 S:M(s) = !) M1(s) � k and every internal circuit ofthe path n1 : : : n2 has �-characteristic.Let � = trans(n1 : : : n2). By our assumption the run �! starting at M1satis�es some formula of �. Let f�1; : : : ;�lg be the satis�ed formulae. Let

9.2. LINEAR-TIME LOGICS 139~� be the e�ect-vector of �. We know that ~� � ~0. An internal path startingwith �1 of the formM1 ` �1 : : :M2 = (M1+~�) ` �x : : : (M1+ i~�) ` �y : : :must be periodic. Especially some formula �i must occur in�nitely often.Now construct this periodic internal path � =M1 ` �i : : : (M1 + 1 �m~�) `�i : : : (M1 + j � m~�) ` �i : : : . The construction is guided by inductivelyassociating to each pair M ` � a su�x �i of �! s.t. �i(0) = M and �isatis�es �. For the initial pairM1 ` �i this is �! itself. Now we de�ne howto select the (x + 1)-th element M 0 ` �0 and �x+1, given the x-th elementM ` � and �x.� If � = Q and the Q-rule is applied, then M ` � is the last node of�. In the original tableau there is a corresponding marking M! s.t.M � M! and 8s 2 S:M!(s) 6= M(s)) M!(s) = ! ^ M(s) � k0.Notice that k0 2 IN is �nite, but we can choose it arbitrarily high,because we can choose k arbitrarily high and ~� � ~0. As M! 6j= Q itfollows that M 6j= Q, because of condition Q2 de�ned in Def. 9.2.6.� If � = 	 ^ � and the ^-rule is applied to �, then M 0 = M , �0 iseither 	 or �, according to the choice in the path from n1 to n2, and�i+1 = �i.� If � = 	 _ � and the _-rule is applied to �, then M 0 =M , �i+1 = �iand �0 = (; if �-sig (�i;) � �-sig(�i;�)�; otherwise� If � = �A	 then the �-rule is applied and �0 = 	, �i+1 = �(1)i andM 0 is the state corresponding to �i+1(0).� If � = �Z:	 the �Z-rule is applied and M 0 = M , �0 = 	[�Z:	=Z]and �i+1 = �i.There are two possible sub-cases:(a) � is �nite.Then the last node must be of the form M ` Q, and the Q-ruleis applied. Therefore no run starting at M satis�es Q. This is acontradiction, as the node M ` Q should be true.(b) � is in�nite.Let Z be the characteristic of �. Then Z is also the characteristic ofsome internal circuit of n1 : : : n2, and therefore a �-variable. Assign toeach elementM ` � of � (with corresponding run �) a truncated pre-�x of �-sig(�;�) by removing all ordinals corresponding to �-variables

140 CHAPTER 9. PETRI NETSlower than Z. Let T� be the sequence of truncated signatures associ-ated with �.The sequence T� is non-increasing, because no variable higher than Zis ever unfolded, and because of the way we de�ned the internal pathwhere the _-rule was applied. As we have shown before an in�nitenumber of sequents of the form M1 + j � m~� ` �i for i = 1; 2; : : :occur in �, s.t. each has the associated run �!. So the associatedtruncated �-signatures are the same. This is a contradiction, becausethe truncated �-signature should decrease as the variable Z is unfoldedbetween two occurrences of this sequent.Lemma 9.2.15 If the tableau with root n0(fg) : M0 ` �0 is successful, thenM0 j= �0.Proof Assume that there is a successful tableau � for M0 ` �0, but M0 6j= �0.We will derive a contradiction.Assuming thatM0 6j= �0 there must be a run �0 starting atM0 s.t. �0 62 [[�0]]. Wewill use this run to show the existence of an unsuccessful terminal, contradictingthe success of � .To do this, we �rst use �0 to construct a (possibly in�nite) path �0 in a tableau � 0that is constructed without using the special rules (i.e. by the basic rules only).Using this path we will then prove the existence of a �nite unsuccessful path �in the tableau � that is constructed by all rules.To serve as guide during the construction of the path �0 = n0n1n2 : : : , we induc-tively associate to each node ni a su�x �i of �0 s.t. the state of ni is �i(0) and �ifails every formula of ni. The su�x associated with the root n0 is �0. If ni is aterminal of type 1, 2, 3 or 4 then (�i; ni) is the last element of �. Otherwise itssuccessor ni+1 and associated su�x �i+1 are chosen as follows:� If the �-rule is applied to ni, then �i+1 = �(1)i , and ni+1 is the child of nihaving �i+1(0) as state;� If the ^-rule is applied to ni, then �i+1 = �i and ni+1 is a child of ni s.t. the�-signature of �i is preserved (if � fails � ^ 	 with �-signature �, then �fails either � or 	 with �-signature �).� If one of the rules _, Q or �Z is applied then �i+1 = �i and ni+1 is the onlychild of ni.As no special rules are used, the labels of all nodes are empty. It follows fromLemma 9.2.7 that every node of �0 is false. There are two cases:

9.2. LINEAR-TIME LOGICS 1411. �0 is in�nite.As there are only �nitely many subformulae of �0, there are only �nitelymany di�erent sequents � in the tableau � 0. So �0 must contain an in�nitesubsequence nm1; nm2 ; : : : s.t. nmi(fg) :Mmi ` �. Let � = �1; : : : ;�n. Weassign to each node nmi a vector of signatures�xi = (�-sig(�1; �mi); : : : ; �-sig(�n; �mi))By Dickson's Lemma there are two indices i � j s.t. �xi � �xj and Mmi �Mmj . Note that the relation between �xi and �xj is the pointwise order onvectors, while the order on their components is the lexicographic order.Now we prove that every internal circuit of nmi : : : nmj has �-characteristic.Assume there is an internal circuit of nmi : : : nmj with �-characteristic Z.Assign to each element (nk;�k) of a pre�x of �-sig (�k; �k) obtained byremoving all ordinals corresponding to �-variables lower than Z. Let T bethe sequence of truncated signatures corresponding to . We claim thatT is non-increasing. Let nk and nk+1 be two consecutive nodes of . Ifnk 6= nmj then nk+1 is a successor of nk and the truncated signature cannotincrease when moving from nk to nk+1, because no variable higher than Z isever unfolded and because of the way the branch is chosen at the ^-nodes.If nk = nmj , then nk+1 = nmi+1 and since �xi � �xj the truncated signaturecannot increase as well.Since Z is unfolded somewhere in , the last element of T is lexicograph-ically less than the �rst. This contradicts the assumption that �xi � �xj.Therefore Z must be a �-variable.Using these properties we will now construct a tableau � 00 by using thebasic rules and the !-rule, but omitting theM -rule. The condition Q1 fromDef. 9.2.6 ensures that � 00 contains two nodes n1(fg) : M ` � � n2(fg) :M ` �, s.t. every internal circuit between them has �-characteristic. (Mwill possibly contain !s). (The condition Q1 ensures that the application ofthe !-rule does not make atomic propositions true which were false before.)There are two cases:(a) Either the !-rule has been applied before nmi and n1 corresponds tonmi and n2 to nmj .(b) Or the !-rule is applied at nmj . Let �! be the path from nmi to nmj .Then n1 corresponds to the modi�ed nmj and n2 corresponds to thenode that is reached from n1 via �!.Note that now both n1 and n2 have the same markingM (which can contain!s).

142 CHAPTER 9. PETRI NETSLet � be the e�ect-vector of the sequence of transitions �red between n1and n2. As Mmi �Mmj we know that � � ~0.Now we construct the tableau � 000 using all rules and show that it mustcontain a terminal of type 4 that occurs at the same place as n2, or evenbefore. Note that n2 would be a candidate for such a terminal, were it notfor the M -rule and termination condition 5. We will start with the tableau� 00 and successively cut out segments of the path leading from the root ton2, thus obtaining a shorter path leading to a type 4 terminal. We repeatthis until termination condition 5 is not satis�ed anywhere in this path.Thus we obtain a path of the tableau that could have been constructedfrom scratch by using all rules. Let n00, n0 and n be the nodes that satisfythe conditions of the M-rule and �1 be the path from the root to n1 in � 00.Note that no application of the !-rule takes place between n00 and n, as wellas between n1 and n2. There are four cases:(a) n� n1Let � be the path from n0 to n. In the path from n to n1 we can cutout all the subpaths equal to �, thus obtaining a shorter path. n2 stillsatis�es the conditions to be a type 4 terminal.(b) n0 � n1 � nLet � be the path from n to n2 and � the path from n1 to n. Let n3be the node that can be reached from n0 with the path ��. It followsthat n3 � n2 and n3 is a type 4 terminal.(c) n00 � n1 � n0Let � be the path from n to n2 and � the path from n1 to n. Let n3be the node that can be reached from n00 with the path ��. It followsthat n3 � n2 and n3 is a type 4 terminal.(d) n1 � n00Let � be the path from n0 to n. In the path from n to n2 we cannow cut out all subpaths equal to �. All internal circuits of the pathn1 : : : n2 still have �-characteristic, because Int(n00; n0) = Int(n00; n).Let �0 be the e�ect-vector of the sequence of transitions �red in �. n2is still a type 4 terminal, because n now carries the additional label(�0; n00) and n00 � n1.So � 000 must contain an unsuccessful terminal. Since the tableau for a givenroot is unique it follows that � 000 = � . This is a contradiction, as � issuccessful.2. �0 is �nite.Let n be the last node of �0. n cannot be a terminal of type 5, because all

9.2. LINEAR-TIME LOGICS 143labels are empty in � 0. n cannot be a terminal of type 2 or 3, because n isfalse. So n must be a terminal of type 1 or 4.(a) If n is of type 1 then it must have the form n(fg) : M ` Q s.t.M 62 W(Q). There is a path � in � corresponding to a subsequence �00of �0 s.t. �s last node is n0(?) :M 0 ` Q and 9M 00: M 0 =M +!M 00. Itfollows from condition Q1 in Def. 9.2.6 that M 0 62 W(Q). So n0 is anunsuccessful node in � , a contradiction.(b) If n is of type 4, then we have the same situation as in case 1.9.2.8 Examples
a

2

b 5

Figure 9.2: A simple Petri netFirst we consider a very simple example. The weak linear-time �-calculus formula�x:�a xmeans that there is no in�nite run that contains only actions a.The Petri net in Figure 9.2 satis�es this formula. The tableau that proves thishas just one branch. A marking of the net is described by the number of tokens

144 CHAPTER 9. PETRI NETSon the place. (5) ` �x:�a x�Z�! (5) ` �ax��! (3) ` �x:�a x�Z�! (3) ` �ax��! (1) ` �x:�a x�Z�! (1) ` �axThe last node is a successful terminal of type 2.
a

5

2

Figure 9.3: The modi�ed Petri netNow we modify this example. The Petri net in Figure 9.3 does not satisfy theformula �x: �a x. The tableau that proves this has just one branch. A markingof the net is described by the number of tokens on the place.n1 : (5) ` �x:�a x�Z�! n2 : (5) ` �ax��! n3 : (6) ` �x:�a x!�! n4 : (!) ` �x:�a x�Z�! n5 : (!) ` �ax��! n6 : (!) ` �x:�a xThe node n6 is an unsuccessful terminal of type 4. This is because n4 ' n6,the path between n4 and n6 has �-characteristic and the e�ect-vector of thetransitions that are �red between n4 and n6 is (+1).

9.2. LINEAR-TIME LOGICS 145Note that in the last two examples the M -rule was not used. Now we study amore complex example where this rule must be applied. Consider the followingweak linear-time �-calculus formula.�x:�a (x ^ �y:�b (�z:�c (z ^ �dy)))Intuitively, the meaning is that there are no constants n;m 2 IN s.t. a runan(bcmd)! is possible.Does the system in Figure 9.4 satisfy this formula?The answer is \No". The tableau that proves this is quite large, so we onlydescribe one unsuccessful branch. Markings of this net are now described by4-tuples that contain the number of tokens on places A;B;C;D. So the initialmarking M is M := (1; 0; 1; 0). Let M2 := (1; 1; 1; 1), M3 := (1; !; 1; !), M4 :=(1; !; 0; !). M ` �x:�a (x ^ �y:�b (�z:�c (z ^ �dy)))�Z�! M ` �a(x ^ �y:�b (�z:�c (z ^ �dy)))��! M2 ` x ^ �y:�b (�z:�c (z ^ �dy))^+!�! M3 ` �x:�a (x ^ �y:�b (�z:�c (z ^ �dy)))�Z�! M3 ` �a(x ^ �y:�b (�z:�c (z ^ �dy)))��! M3 ` x ^ �y:�b (�z:�c (z ^ �dy))�̂! n1 :M3 ` �y:�b (�z:�c (z ^ �dy))�Z�! M3 ` �b(�z:�c (z ^ �dy))��! n2 :M4 ` �z:�c (z ^ �dy)�Z�! M4 ` �c(z ^ �dy)��! M4 ` z ^ �dy�̂! n3 :M4 ` �z:�c (z ^ �dy)�Z�! M4 ` �c(z ^ �dy)��! M4 ` z ^ �dy^+M�! n4(f((0; 2; 0;�1); n2)g) :M4 ` �z:�c (z ^ �dy)�Z�! M4 ` �c(z ^ �dy)��! M4 ` z ^ �dy�̂! M4 ` �dy��! M3 ` �y:�b (�z:�c (z ^ �dy))At the node n4 the M-rule is applied, because n2; n3 and n4 are the same andInt(n2; n3) = Int(n2; n4). The e�ect-vector of the transitions �red between n3and n4 is just the e�ect of the transition that is labeled with the action c.

146 CHAPTER 9. PETRI NETS

b

c d

a

2

A

B

C

D

4

11

10

Figure 9.4: A more complex Petri net

9.2. LINEAR-TIME LOGICS 147The last node in this path already occurred earlier at n1, and all internal pathsbetween them (only one in this case) have �-characteristic, because the highestunfolded variable y is a �-variable. The only problem is that the e�ect-vectorof the sequence of transitions �red between node n1 and the last node is notpositive. Let E(b) be the e�ect-vector of the transition labeled with the actionb, and similarly for the actions c and d. The e�ect vector of the transitions thatare �red between n1 and the last node is E(b) + 3 � E(c) + E(d) = (0;�5; 0; 3).Fortunately we have a label at n3 with an entry marked with n2, which is belown1 (and thus we may use it). The question is now if there is a k 2 IN s.t.(0;�5; 0; 3) + k � (0; 2; 0;�1) � ~0 ? We see that there is one (in this case onlyone) solution, k = 3. Thus termination-condition 4 is satis�ed and the branch isunsuccessful. Thus the system does not satisfy the formula.It can be veri�ed that even a slight change of the system makes it satisfy theformula. If the arc from B to b is labeled by 13 instead of 11, then no in�nitesequence of the form (bcnd)! is possible, although such sequences of arbitrarylength are possible if enough a's are done �rst. Thus the above constructionis impossible. Any in�nite path must contain in�nitely many a's and in thetableau each a-action is accompanied by an unfolding of the outermost �-variablex. Therefore the modi�ed system satis�es the formula.9.2.9 ExtensionsThe restrictions Q1 and Q2 imposed on the atomic propositions in Def. 9.2.6basically amount to the condition that every atomic proposition has the formP := fx1 � k1; x2 � k2; : : : ; xn � kngwhere x1; : : : ; xn are the places in the net and k1; : : : ; kn 2 IN [f!g. A markingM satis�es the atomic proposition P i� 8i 2 f1; : : : ; ng:M(xi) � ki.A possible generalization is to allow conditions of the form si = ki instead ofsi � ki. We cannot express reachability even with these new atomic proposition,because they are not closed under complement. In order to express deadlockreachability we would need propositions of the form si � ki, which we don't have.The only problem with these new atomic propositions is the application of the!-rule. We can no longer assume that if a markingM fails an atomic propositionP , then every marking M 0 � M also fails P . So we can no longer assume thatwhenever the !-rule is applicable, an in�nite path could be created leading tomarkings with arbitrary high numbers of tokens in some places. This is becausenow it might be possible to terminate this path by termination condition 3. Thesolution is to modify the side condition for the !-rule appropriately. It is now:

148 CHAPTER 9. PETRI NETSThere is a previous node n1(?) :M1 ` � s.t. n2 � n1 and� M2 �M1 and there is a place s s.t. M1(s) < M2(s) 6= ! and� Let M 01; : : : ;M 0m be the states of nodes in the tableau between n1 and n2where the Q-rule is applied and P1; : : : ; Pm the corresponding atomic propo-sitions. 8i 2 f1; : : : ;mg:8k 2 IN: M 0i + k(M2 �M1) 62 W(Pi).Note that this condition is still decidable for these atomic propositions.Now it can be seen that the tableau method can be generalized for atomic propo-sitions satisfying the following weaker conditions:P1 M 62 W(Q)) M + !M 0 62 W(Q)P2 It is decidable for a marking M and a vector � � ~0 if there is an i 2 IN s.t.M + i� 2 W(Q).Q2 M + !M 0 62 W(Q)) 9k 2 IN 8k0 � k: (M + k0M 0) 62 W(Q).9.2.10 Related WorkWe have presented a tableau system for model checking Petri nets with the weaklinear-time �-calculus, a fairly expressive fragment of the linear-time �-calculus.It uses the technique of examining internal paths that was �rst used for �nite-state systems in [BEM96]. Our tableau system is only for the weak linear-time�-calculus and Petri nets. However, it yields a tableau system for the full linear-time �-calculus if only �nite-state systems are considered. Now we describe thisidea.Finite-state systems can be modeled by Petri nets by assigning a place to eachstate and a transition to each arc. The initial marking puts only one token on theplace that corresponds to the initial state in the �nite-state system. The net onlycontains one token at every reachable marking. The only problem that remainsis that the weak linear-time �-calculus does not contain the strong nexttime op-erator. However, in this special case, we can encode the strong nexttime operatorwith the weak nexttime operator and atomic propositions. For any atomic actiona we de�ne the atomic proposition Pa s.t.M 2 W(Pa) :, 9M 0: M a!M 0 ^ 6 9M 00; b 6= a: M b!M 00These atomic propositions satisfy the conditions Q1 and Q2 from De�nition 9.2.6,because the net only contains one token at every reachable marking. Of course

9.3. CONCLUSION 149this is not the case for general nets. Now we can express the strong nexttimeoperator. For every formula � and every marking M we haveM j=a� , M j= �a� ^ PaThe tableau system we presented is decidable. However, it is not intended to beused as a decision procedure, but rather as a proof method. The advantage of thetableau system is that it gives the user better insight and more control over theproof. This allows the user to apply his/her knowledge about the system by guid-ing the search in the tableau and helping to avoid unnecessary branches (see Sub-section 9.2.8). Thus tableau systems are particularly useful for computer-assistedveri�cation, i.e. theorem provers with human interaction like PVS [ORSv95] or\Isabelle" [Pau94].9.3 ConclusionThe complexity of model checking problems for Petri nets is summarized in thefollowing table. Again we distinguish the general problem and the problem for�xed formulae. Note that for Petri nets the problem if the empty marking isreachable has the same complexity as the general reachability problem [Pet81].The same holds for the problem if a deadlock is reachable [Pet81]. Thus thecomplexity of the reachability problem for a �xed given marking is the same asthe complexity of the general reachability problem.Petri nets general �xed formulareachability,reachable property decidable,EXPSPACE -hard decidable,EXPSPACE -hardEF undecidable undecidableEG undecidable undecidableUB undecidable undecidableCTL undecidable undecidablealternation-free modal �-calc. undecidable undecidablemodal �-calc. undecidable undecidableLTL decidable,EXPSPACE -hard decidable,EXPSPACE -hardlinear-time �-calc. decidable,EXPSPACE -hard decidable,EXPSPACE -hard

Chapter 10PRS and PANThe most general and most expressive class of systems in the PRS-hierarchy is(G;G)-PRS (here simply called PRS). PRS have been introduced in [May97c].They subsume all the other models in the PRS-hierarchy and are strictly moregeneral (see Section 2.5).PRS and PAN are both extensions of Petri nets by sequential composition, whichcan be interpreted as the possibility to call subroutines. However, unlike in PAN,PRS-subroutines can inuence the behavior of their caller after their termination.This can be interpreted as the possibility to return a value to the caller (seeSection 2.3 and Section 10.3), which makes PRS much more useful than PANfor modeling real programs. The results on decidability and complexity of modelchecking are the same for PAN and PRS and thus we consider only PRS in thischapter.Model checking PRS or PAN with any of the temporal logics de�ned in Chapter 3is undecidable (except for the trivial logics WL and Hennessy-Milner logic). Thisis because model checking Petri nets with EF is undecidable [BE97, Esp97] (seeChapter 9), model checking BPP with EG is undecidable [EK95] (see Chapter 6)and model checking PA with LTL or linear-time �-calculus is undecidable [BH96](see Chapter 8). The other logics (UB, CTL, modal �-calculus) are more generalthan EF and EG, and thus also undecidable for PRS and PAN.The only veri�cation problems that are still decidable for PRS are reachabilityand reachable property (see Subsection 3.1.2). Thus PRS are not Turing-powerful.In Section 10.1 we show that the reachability problem is decidable for PRS.Section 10.2 shows the decidability of the reachable property problem. Thus itis decidable if there is a reachable state that satis�es certain properties that canbe encoded in a simple logic. In Section 10.3 we describe applications of thesealgorithms. 150

10.1. THE REACHABILITY PROBLEM 15110.1 The Reachability ProblemIn this section we show that the reachability problem is decidable for PRS. ThusPRS are not Turing-powerful.For Petri nets reachability is decidable and EXPSPACE -hard [May84, Lip76].Here we show that reachability is decidable for PRS by reducing the problem tothe reachability problem for Petri nets. As the atomic actions are not importantfor reachability, we'll ignore them for the rest of this section and write just t1 ! t2instead of t1 a! t2.We prove the decidability of reachability in two steps. First we show that itsu�ces to decide the problem for a special class of PRS, the PRS in transitivenormal form (see below). Then we solve the problem for this subclass of PRS.De�nition 10.1.1 For a PRS � and process terms t; t0 2 T we de�net �� t0 :() 9�: t �! t0where � is a sequence of applications of rules in �. If � is �xed, then we justwrite t � t0.� is in normal form i� all rules in � have one of the following two forms:Par-Rule X1kX2k : : : kXi ! Y1kY2k : : : kYk, i; k 2 IN.Seq-Rule X1:X2 ! Y or X ! Y1:Y2 or X ! Y .where X;Y;Xi; Yi are process variables.The only rules that are both seq-rules and par-rules are of the form X ! Y . Thefollowing relations ��par and ��seq are only technicalities used in the proofs.t ��par t0 :() 9�: t �! t0 and all rules used in � are par-rules from �t ��seq t0 :() 9�: t �! t0 and all rules used in � are seq-rules from �A PRS � is in transitive normal form i� it is in normal form and for all X;Y 2Var X �� Y) (X ! Y) 2 �

152 CHAPTER 10. PRS AND PANProposition 10.1.2 Let � be a PRS in transitive normal form and t1; t2 processterms that do not contain the operator for sequential composition. It is decidableif t1 ��par t2.Proof This follows directly from the decidability of the reachability problem forPetri nets [May84].The reachability problem for PRS is reducible to the reachability problem forPRS in normal form.Lemma 10.1.3 Let � be a PRS using only variables from the �nite set Var(�).Let t1; t2 2 T be two terms containing only variables from Var(�).Then a PRS �0 in normal form and terms t01 and t02 can be e�ectively constructeds.t. �0, t01 and t02 use only variables from the �nite set V 0 (with Var(�) � V 0 �Var) and t1 �� t2 () t01 ��0 t02Proof Let ki be the number of rules (t1 ! t2) in � that are neither par-rulesnor seq-rules and size(t1) + size(t2) = i. Let n be the maximal i s.t. ki 6= 0. (nexists because � is �nite). We de�neNorm(�) := (kn; kn�1; : : : ; k1)These norms are ordered lexicographically. � is in normal form i� Norm(�) =(0; : : : ; 0). Now we describe a procedure that transforms � into a new PRS �0 andterms t1; t2 into t01; t02 s.t. Norm(�0) <lex Norm(�) and t1 �� t2 () t01 ��0 t02.Remember that we assume that sequential composition is left-associative. Sowhen we write t1:t2 then t2 is either a single variable or a parallel composition. If� is not in normal form, then there exists a rule in � that is neither a seq-rulenor a par-rule. We call such rules \bad rules". There are �ve types of bad rules:1. The bad rule is u ! u1:u2. Let Z;Z1; Z2 be new variables. We get �0 inthree steps. Initially �0 is �.(a) Replace the bad rule by the following rulesu! Z Z ! Z1:Z2 Z1 ! u1(b) Then substitute Z2 for u2 in �0, t1 and t2 (thus we get t01, t02).

10.1. THE REACHABILITY PROBLEM 153(c) Finally add the rule Z2 ! u2 to �0.2. The bad rule is u ! u1ku2. Let Z1; Z2 be new variables. We get �0 bysubstituting Z1 for u1 and Z2 for u2 everywhere and then replacing the badrule by the following rulesu! Z1kZ2 Z1 ! u1 Z2 ! u2:3. The bad rule is u1k(u2:u3) ! u4. Let Z1; Z2 be new variables. We get �0by replacing the bad rule by the following rulesu1 ! Z1 u2:u3 ! Z2 Z1kZ2 ! u4t01 := t1 and t02 := t2.4. The bad rule is u1:(u2ku3)! u4. Let Z be a new variable. �0 and t01; t02 areconstructed as follows:(a) Substitute Z for (u2ku3) in all rules and in t1 and t2.(b) Then add the rules Z ! u2ku3 and u2ku3 ! Z.5. The bad rule is u1:X ! u2, where u1 is not a single variable. Let Z be anew variable. We get �0 by replacing the bad rule with the following tworules u1 ! Z Z:X ! u2t01 := t1 and t02 := t2.In all these cases Norm(�0) <lex Norm(�) and t1 �� t2 () t01 ��0 t02.Repeated application of this procedure yields a PRS in normal form.The following lemma will be used to prove the correctness of the algorithm inLemma 10.1.5.Lemma 10.1.4 Let � be a PRS in normal form. If there are variables X;Ys.t. X �� Y and (X ! Y) =2 �, then there are also variables X 0; Y 0 with(X 0 ! Y 0) =2 � and X 0 ��par Y 0 or X 0 ��seq Y 0.Proof It follows from the preconditions that we can choose a pair of variablesX 0; Y 0 s.t. (X 0 ! Y 0) =2 � and X 0 �! Y 0 for a sequence � of minimal length.More precisely the length of � is minimal over the choice of X 0, Y 0 and �.Now we show that X 0 ��par Y 0 or X 0 ��seq Y 0. We do this by assuming thecontrary and deriving a contradiction. We say that a rule is trivial if it has theform (X 00 ! Y 00). We assume that � contains both seq-rules and par-rules thatare nontrivial. There are two cases:

154 CHAPTER 10. PRS AND PAN1. The last nontrivial rule in � is a par-rule. If a seq-rule Z1 ! Z2:Z3 occursin � then there is a subsequence �0 of � and a variable Z4 s.t. Z2:Z3 �0! Z4.This contradicts the minimality of the length of �.2. The last nontrivial rule in � is a seq-rule. This seq-rule must have the formZ1:Z2 ! Z. The �rst nontrivial par-rule that occurs in � must have theform Z 0 ! Z 01k : : : kZ 0n. Then there is a subsequence �0 of � and a variableZ 00 s.t. Z 0 �0! Z 00. This contradicts the minimality of the length of �.Thus � consists either only of applications of par-rules (and thus X 0 ��par Y 0) oronly of seq-rules (and thus X 0 ��seq Y 0).Lemma 10.1.5 Let � be a PRS in normal form. Then a PRS �0 in transitivenormal form can be e�ectively constructed s.t.8t1; t2 2 T : t1 ��0 t2 () t1 �� t2Proof It su�ces to �nd all pairs of variables X;Y s.t. X �� Y and to addthe rules (X ! Y) to �. By Lemma 10.1.4 it su�ces to check X ��par Y andX ��seq Y . This is decidable because of Proposition 10.1.2 and the decidability ofthe reachability problem for pushdown processes (see Chapter 7). Lemma 10.1.4basically says that while there are new rules to add we can �nd at least one toadd.The algorithm is as follows:�0 := �; ag := true;While ag doag := false;For every pair of variables X;Y with (X ! Y) =2 �0 doIf X ��0par Y or X ��0seq Y then (�0 := �0 [(X ! Y); ag := true) �;od;od;Theorem 10.1.6 The reachability problem is decidable for PRS.Proof Let � be a PRS and t1; t2 2 T . The question is if t1 �� t2.

10.2. THE REACHABLE PROPERTY PROBLEM 155We construct a new PRS �0 by adding new variablesX1 andX2 and rulesX1 ! t1and t2 ! X2. It follows thatt1 �� t2 , X1 ��0 X2Then we use Lemma 10.1.3 and transform �0 into a PRS �00 in normal form.Normally the terms X1;X2 would also change in this transformation, but sincethey are single variables they stay the same 1. It follows thatt1 �� t2 , X1 ��00 X2Then we use Lemma 10.1.5 to transform �00 into a PRS �000 in transitive normalform. It follows that t1 �� t2 , X1 ��000 X2Since �000 is in transitive normal form we havet1 �� t2 , X1 ��000 X2 , (X1 ! X2) 2 �000The condition (X1 ! X2) 2 �000 is trivial to check.10.2 The Reachable Property ProblemIn the previous section the problem was if one given state is reachable. Here weconsider the question if there is a reachable state that has certain properties. Thisproblem was de�ned in Subsection 3.1.2 as the \reachable property problem".Unlike for reachability, the atomic actions are important for this problem.The denotation [[�]] of a state formula � is a (possibly in�nite) set of processterms. To simplify the notation we use sets of actions. Let A := fa1; : : : ; akg �Act, then [[A]] := [[a1]] \ � � � \ [[ak]][[�A]] := [[:a1]] \ � � � \ [[:ak]]By transformation to disjunctive normal form every state-formula � can be writ-ten as (A+1 ^ �A�1) _ � � � _ (A+n ^ �A�n)1It wouldn't matter if they changed.

156 CHAPTER 10. PRS AND PANwhere A+i ; A�i � Act. The modal operator 3 is de�ned as usual.[[3�]] := ft j 9�; t0: t �! t0 2 [[�]]gLet t 2 T be a process term. For t 2 [[�]] we also write t j= �. The reachableproperty problem is if t0 j= 3� for a state formula � and a PRS � with initialstate t0.We prove the decidability of the reachable property problem for PRS in two steps.First we solve the problem for PRS in transitive normal form, and then we usethis result to prove the decidability in the general case.Let there be a PRS � in transitive normal form with initial state t0 and �a state-formula. We now describe a tableau system that decides the problemt0 j= 3�. (See Chapter 4 for the de�nition of tableau systems.) As � can betransformed into disjunctive normal form andt j= 3(�1 _ �2) () t j= 3(�1) _ t j= 3(�2)it su�ces to show decidability for formulae of the form 3(A+ ^ �A�). Thenodes in the tableau will be sets of expressions (subgoals), which will be inter-preted conjunctively. � denotes sets of expressions. The branches are interpreteddisjunctively. The tableau is successful i� there is a successful leaf.For technical reasons we introduce a new operator r that is de�ned by[[r�]] := ft j 9�; t0 6= �: t �! t0 2 [[�]]gNow we de�ne the tableau-rules. Every node in the tableau consists of a �niteset of expressions. These expressions have either of the following forms:� t ` 3(A+ ^�A�), where t is a process term and A+ and A� are �nite setsof atomic actions.� t ` r(A+ ^�A�), where t is a process term and A+ and A� are �nite setsof atomic actions.� t1 � t2, where t1 and t2 are process terms.� (t1 ! t2) 2 �, where t1 and t2 are process terms.We describe the transformations of single elements of these sets. So the expression\[�" should be appended to every node, where � denotes a set of expressions.We leave this out to simplify the notation. Because of space constraints in the

10.2. THE REACHABLE PROPERTY PROBLEM 157following tableau-rules we write di�erent branches below each other instead ofbeside each other. So a rule of the formAB1B2...Bnmeans AB1 B2 : : : Bnwhere the Bi stand for di�erent branches.Note that the following tableau-rules are only correct because � is in transitivenormal form.SP1 f(t1:(t2kt3))kt4 ` 3(A+ ^ �A�)gft1 � �; t2kt3kt4 ` 3(A+ ^ �A�)g...ft1 ` r(A+1 ^ �A�); t4 ` 3(A+2 ^ �A�)g...where A+ = A+1 [A+2SP2 f(t1:Y)kt2 ` 3(A+ ^ �A�)gft1 � �; Y kt2 ` 3(A+ ^ �A�)gft1 ` r(A+1 ^ �A�); t2 ` 3(A+2 ^ �A�)gft1 � X; X:Y ` (A+1 ^ �A�); t2 ` 3(A+2 ^ �A�)gft1 � X; (X:Y ! Z) 2 �; Zkt2 ` 3(A+ ^ �A�)g (X 2 Var (�))with a separate branch for every A+1 ; A+2 s.t. A+ = A+1 [A+2SP3 f(t1:(t2kt3))kt4 ` r(A+ ^ �A�)gft1 � �; t2kt3kt4 ` r(A+ ^ �A�)g...ft1 ` r(A+1 ^ �A�); t4 ` 3(A+2 ^ �A�)g...where A+ = A+1 [A+2

158 CHAPTER 10. PRS AND PANSP4 f(t1:Y)kt2 ` r(A+ ^ �A�)gft1 � �; Y kt2 ` r(A+ ^ �A�)gft1 ` r(A+1 ^ �A�); t2 ` 3(A+2 ^ �A�)gft1 � X; X:Y ` (A+1 ^ �A�); t2 ` 3(A+2 ^ �A�)gft1 � X; (X:Y ! Z) 2 �; Zkt2 ` r(A+ ^ �A�)g (X 2 Var(�))with a separate branch for every A+1 ; A+2 s.t. A+ = A+1 [A+2PAR1 ft ` 3(A+ ^ �A�)g: : :8>><>>: 8k 2 K: Yk ` r(A+k ^ �A�);8k 2 K 0: Y 0k :Zk ` (A+k ^ �A�);8i 2 I: Ui ` r(�A�);8i 2 I 0: U 0i :Vi ` (�A�) 9>>=>>; : : :where t 2 P is a term without sequential compositionand (Xi ! Yi:Zi) 2 �, (i = 1; : : : ; k) are seq-rules and9t0 2 P: t �par (t0kX1k : : :kXkkt00) with t0 j= (A+0 ^ �A�)and t00 is a parallel composition of atomic terms in M = fW1; : : : ;Wjgand (Wi ! Ui:Vi) 2 �, (i = 1; : : : ; j) are seq-rules andI [I 0 = f1; : : : ; jg8i 2 I 0: Ui � U 0iand A+ = A+0 [A+1 [� � � [A+k , 0 � k � 2jA+ jand K [K 0 = f1; : : : ; kgand 8k 2 K 0: Yk � Y 0kPAR2 ft ` r(A+ ^ �A�)g: : :8>><>>: 8k 2 K: Yk ` r(A+k ^ �A�);8k 2 K 0: Y 0k :Zk ` (A+k ^ �A�);8i 2 I: Ui ` r(�A�);8i 2 I 0: U 0i :Vi ` (�A�) 9>>=>>; : : :where t 2 P is a term without sequential compositionand (Xi ! Yi:Zi) 2 �, (i = 1; : : : ; k) are seq-rules and9t0 2 P: t �par (t0kX1k : : :kXkkt00) with t0 j= (A+0 ^ �A�)and t00 is a parallel composition of atomic terms in M = fW1; : : : ;Wjgand (Wi ! Ui:Vi) 2 �, (i = 1; : : : ; j) are seq-rules andI [I 0 = f1; : : : ; jg8i 2 I 0: Ui � U 0iand A+ = A+0 [A+1 [� � � [A+k , 0 � k � 2jA+ jand K [K 0 = f1; : : : ; kgand 8k 2 K 0: Yk � Y 0kand k > 0 or t0kt00 6= �

10.2. THE REACHABLE PROPERTY PROBLEM 159E1 ft � t0g [�� if t � t0E2 f(X:Y ! Z) 2 �g [�� if (X:Y ! Z) 2 �In the rules SP1,SP2,SP3,SP4 we have to consider all di�erent (but only �nitelymany) ways of partitioning A+ into A+1 and A+2 . In PAR1 and PAR2 the dotssymbolize all di�erent ways of choosing k, the setM , the rules (Xi ! ti) and thepartitioning of A+ into A+0 ; : : : ; A+k . Again there are only �nitely many.Lemma 10.2.1 If the side conditions of an instance of a rule are satis�ed, thenthe antecedent is true if and only if one of its succedents is true.Proof Directly from the de�nitions and the condition that the PRS � is intransitive normal form. The only di�erence between PAR1 and PAR2 is thecondition k 6= 0 _ t0kt00 6= �. This ensures that the reachable state that satis�es(A+ ^ �A�) is not �.De�nition 10.2.2 (Termination conditions)A node marked with a set of expressions � is a terminal node i� one of thefollowing conditions is satis�ed.1. � is empty.2. � = �0 [ft � t0g for some t; t0 2 T and not t � t0.3. � = �0 [f(X:Y ! Z) 2 �g and not (X:Y ! Z) 2 �.4. The same node � occurred earlier on the same branch.Terminals of type 1 are successful, while terminals of types 2,3 and 4 are unsuc-cessful.Note that, since the sequents are sets, the tableau for a given root is not unique.However, there are only �nitely many for a given root.The following de�nition and lemma by Jan�car [Jan90] are used to show that thetableau can be e�ectively constructed.De�nition 10.2.3 For a given Petri net N the set LN of formulae is de�ned asfollows:

160 CHAPTER 10. PRS AND PAN� There is one variable M that stands for a marking of the net.� A term is either{ a termM(p) where p is a place, or{ a constant c 2 IN, or{ of the form t1 + t2.� A formula is either{ an atomic formula t1 < t2 or t1 � t2, where t1; t2 are terms, or{ of the form f1&f2 where f1; f2 are formulae.For a concrete marking M , f(M) denotes the instance of f with this M . Thesemantics is natural.Lemma 10.2.4 ([Jan90])For a Petri net N with initial marking M0 it is decidable if there is a reachablemarking M s.t. f(M).Lemma 10.2.5 For a given root all possible tableaux can be e�ectively con-structed.Proof1. The side conditions of the rules are decidable: For rule E1 this follows fromTheorem 10.1.6. For PAR1 and PAR2 this follows from Lemma 10.2.4.2. The tableau is �nitely branching: This is because there are only �nitelymany di�erent ways to partition A+ into subsets and because � is �nite.3. The tableau is �nite: Let t0 be the state in the root-node. There areonly �nitely many di�erent subterms of t0. As � is �nite there are only�nitely many di�erent seq-rules. Only �nitely many variables are used in�, thus Var (�) is �nite. Only �nitely many di�erent formulae of the form3(A+ ^ �A�) or r(A+ ^ �A�) can occur in the tableau. Therefore thereare only �nitely many di�erent nodes in the tableau. Thus the constructionof the tableau must terminate, because of termination condition 4.

10.2. THE REACHABLE PROPERTY PROBLEM 1614. There are only �nitely many di�erent tableaux for a given root: This is be-cause all sequents in any tableau for a given root are sets whose cardinalityis bounded by a constant c that depends only on the PRS � and the size ofthe root. The only nondeterminism in the construction is in which subgoalin a sequent is solved �rst.Now we prove the soundness and completeness of the tableau system.Lemma 10.2.6 If there is a successful tableau with root ft ` 3(A+ ^ �A�)g,then t j= 3(A+ ^ �A�).Proof If the tableau is successful, then it has a branch that ends with a suc-cessful (empty) node. This node is certainly true. By repeated application ofLemma 10.2.1 the root-node must be true as well.Lemma 10.2.7 Let Op 2 f3;rg. Let there be a node of the form ft ` Op(A+^�A�)g [�, s.t. t j= Op(A+ ^ �A�) and � is a set of subgoals that are all true.Then every tableau with this root has a branch leading to a node �0 s.t. �0 is atrue set of subgoals that has developed from �.Proof First we describe the proof for a particular tableau where the most recentlycreated subgoals are solved �rst.We do the proof by induction on lexicographically ordered pairs (x; y) s.t.(x; y) := (length(�); size(t))where � is a sequence of minimal length s.t. t �! t0 and t0 j= (A+ ^ �A�) (andt0 6= � if Op = r). Such a sequence must exist, because t j= Op(A+ ^ �A�).If (x; y) = (0; 0) then t = � and A+ = fg. The rule PAR1 is applicable and theone child-node is �.Otherwise we apply a tableau-rule to ft ` Op(A+ ^�A�)g. By Lemma 10.2.1 atleast one child-node must be true. Choose the true child-node that correspondsto �. The tableau-rule replaces the expression by several other expressions with(x0; y0) s.t. (x0; y0) <lex (x; y). For the rules SP1, SP2, SP3 and SP4 in the childnode x is lower or equal and y is smaller. With the induction hypothesis and rulesE1,E2 we can solve all newly created subgoals and arrive at a node �. For therules PAR1 and PAR2 the second component y may have increased in the child-node, but the �rst component x is always smaller. Thus by induction hypothesiswe can solve all newly created subgoals and arrive at a node �. This construction

162 CHAPTER 10. PRS AND PANcannot be interrupted by termination condition 4, because this would contradictthe minimality of the length of �.The above construction is for a particular tableau where the most recently createdsubgoals are solved �rst. In other tableaux we might have applications of tableau-rules to other expressions in � between the steps we described above. However,if we stay on a branch of true sequents (it must exist by the preconditions)then our sequents have the form M [�0 where M are the subgoals created fromft ` Op(A+ ^�A�)g and �0 is a true development of �. Eventually we will solvethe subgoals in M and reach a node �0 where �0 is a true development of �.Corollary 10.2.8 If t j= 3(A+ ^ �A�), then every tableau with the root-nodeft ` 3(A+ ^ �A�)g is successful.Proof We apply Lemma 10.2.7 for the special case of � = fg. Since �0 isa development of � it must be empty too. Thus the tableau is successful bytermination condition 1.Lemma 10.2.9 Let � be a PRS in transitive normal form with initial state t0and (A+ ^ �A�) a state formula. Then the following properties are equivalent.1. t0 j= 3(A+ ^ �A�)2. A tableau with root ft ` 3(A+ ^ �A�)g is successful.3. Every tableau with root ft ` 3(A+ ^ �A�)g is successful.Proof Directly from Lemma 10.2.6 and Corollary 10.2.8.So far we have only considered the reachable property problem for PRS in tran-sitive normal form. For the general case more work is needed. It is not possibleto apply the same algorithms as in Lemma 10.1.3 and Lemma 10.1.5 to trans-form a PRS into transitive normal form, because these transformations do notpreserve the properties we want to check. A generalized version of Lemma 10.1.3is necessary.Lemma 10.2.10 Let � be a PRS that uses only variables from the �nite setVar(�) � Var and t 2 T a process term.Then a PRS �0 in normal form and a term t0 can be e�ectively constructed s.t. forevery state formula �, t j= 3� with respect to � i� t0 j= 3(� ^ :) with respectto �0. (is a new action.)

10.2. THE REACHABLE PROPERTY PROBLEM 163Proof Let ki be the number of rules (t1 ! t2) in � that are neither par-rulesnor seq-rules and size(t1) + size(t2) = i. Let n be the maximal i s.t. ki 6= 0. (nexists because � is �nite). We de�neNorm(�) := (kn; kn�1; : : : ; k1)These norms are ordered lexicographically. � is in normal form i� Norm(�) =(0; : : : ; 0). Now we describe a procedure that transforms � into a new PRS �0and t into t0, with the above properties. For this we introduce two completelynew atomic actions and � that do not occur in �, t and the state formula �.If � is not in normal form, then there exists a rule in � that is neither a seq-rulenor a par-rule. We call such rules bad rules. There are �ve types of bad rules:1. The bad rule is u a! u1:u2, where u2 is either a single variable or a parallelcomposition. Let Z;Z1; Z2 be new variables. We get �0 in three steps:(a) First replace the bad rule by the following rulesu a! Z Z ! Z1:Z2 Z1 ! u1(b) Then we substitute Z2 for u2 in �0 and t (obtaining t0).(c) Finally, we add the rules Z2 ! u2 and u2 �! Z2.2. The bad rule is u a! u1ku2. Let Z1; Z2 be new variables. We get �0 throughthe following steps:(a) Replace the bad rule by the following ruleu a! Z1kZ2(b) Then we add the rules Z1 ! u1 Z2 ! u23. The bad rule is u1k(u2:u3) a! u4. Let Z1; Z2; Z3 be new variables. We get�0 in the following steps:(a) First replace the bad rule by the following rulesu1 �! Z1 u2:u3 �! Z2 Z1kZ2 �! Z3 Z1 ! Z1 Z2 ! Z2 Z3 a! u4(b) Then for all actions b that are enabled by the term u1k(u2:u3) withrespect to � add to �0 a rule Z3 b! Z3.

164 CHAPTER 10. PRS AND PAN(c) For every rule (l x! r) where the term u1k(u2:u3) occurs as a subtermof l add a new rule (l0 x! r) where l0 is obtained from l by replacingall occurrences of u1k(u2:u3) by Z3 2.(d) t0 := t.4. The bad rule is u1:(u2ku3) a! u4. Let Z be a new variable. �0 and t0 areconstructed as follows:(a) Substitute Z for (u2ku3) in all rules in � and in t (thus obtaining t0).(b) Then add the rules Z ! u2ku3 and u2ku3 �! Z.5. The bad rule is u1:X a! u2, where u1 is not a single variable. Let Z1; Z2 benew variables. We get �0 by the following steps:(a) First replace the bad rule with the following rulesu1 �! Z1 Z1 ! Z1 Z1:X �! Z2 Z2 a! u2(b) Then for all actions b that are enabled by the term u1:X with respectto � add to �0 a rule Z2 b! Z2.(c) For every rule (l x! r) where the term u1:X occurs as a subterm of ladd a new rule (l0 x! r) where l0 is obtained from l by replacing alloccurrences of u1:X by Z2 3.(d) t0 := t.In all cases Norm(�0) <lex Norm(�) and the property of the state formulae ispreserved. Repeated application of this procedure yields a PRS in normal form.Now we can prove decidability for the general case.Theorem 10.2.11 The reachable property problem is decidable for PRS.Proof Let there be a PRS � with initial state t0 and � a state-formula. Thequestion is if t0 j= 3�.First we apply Lemma 10.2.10 to get a PRS �0 in normal form and a t00 s.t. t0 j=3� w.r.t. � i� t00 j= 3(� ^ :) w.r.t. �0. Then we use the algorithm in2Note that we keep the old rule (l x! r).3We keep the old rule (l x! r).

10.3. APPLICATION 165Lemma 10.1.5 to transform the PRS �0 into an equivalent PRS �00 in transi-tive normal form. All new rules that are added in this process are labeled withthe special new action � . It follows that t0 j= 3� w.r.t. � i� t00 j= 3(� ^ :)w.r.t. �00. It su�ces to show decidability for formulae of the form 3(A+ ^�A�).Since �00 is in transitive normal form we can apply the tableau system. ByLemma 10.2.5 all possible tableaux with root ft00 ` 3(A+ ^ �A�)g can be e�ec-tively constructed. It follows from Lemma 10.2.9 that it su�ces to construct onetableau. The property holds if and only if it is successful.This result can also be used to decide the deadlock reachability problem. Let �be a PRS with initial state t0 and Act(�) the (�nite!) set of actions used in �.A deadlock is reachable i� t0 j= 3(�Act (�)).10.3 ApplicationWe consider the example from Section 2.4 again. With the algorithm from Sec-tion 10.1 we can verify the system by checking the following properties. Let Xbe the initial state.1. It is possible to reach the state T . This means that the computation canterminate and return the result true.2. It is not possible to reach the state XkZ. This means that process Z cannever run in parallel with process X. Of course this must hold, becauseprocess Z is always called as a subroutine of process X.3. It is not possible to reach the state (WkT):X. Remember that we intro-duced di�erent symbols for boolean values to force a conjunctive or dis-junctive interpretation. This property shows (partly) that the two inter-pretations cannot get into conict with each other. (Later we show thisfully.)With the algorithm from Section 10.2 we can do further veri�cation: Let Act(ex)be the set of all actions used in the example. It is possible to reach a state wheredecomp2 is the only possible actionX j= 3(decomp2 ^ �(Act(ex)� fdecomp2g))but there is no reachable state where decomp1 and decomp2 are the only possibleactions.X j= :3(decomp1 ^ decomp2 ^ �(Act(ex)� fdecomp1; decomp2g))

166 CHAPTER 10. PRS AND PANNow we show that the conjunctive and disjunctive interpretations of booleanvalues can never get into conict. To do this we add some new rules to thesystem of the example from Section 2.4.WkF conict�������! �RkF conict�������! �WkT conict�������! �RkT conict�������! �Then the conjunctive and disjunctive interpretations of boolean values can getinto conict if and only if the action conict can ever become enabled. Withthe algorithm from Section 10.2 we can show that for this modi�ed system theproperty X 6j= 3(conict)holds and thus action conict can never become enabled.The algorithms for the reachability problem and the reachable property problemfor PRS rely on the reachability problem for Petri nets and are thus not primitiverecursive. So it might seem that they are not applicable in practice because oftheir very high complexity. However, there are three arguments in their favor:1. In many examples the system is not very large and the structure of thePetri nets that are contained in them is often simple.2. In a large PRS there may be many Petri nets as substructures, but ofteneach of these Petri nets is quite small. These Petri nets are either notconnected with each other at all, or their inuence on each other is verylimited. Thus they yield small subproblems that can be solved in acceptabletime.3. Finally, the reachability problem for Petri nets has been studied for manyyears and ways of dealing with it have been developed. There are semi-decision procedures that give yes/no/don't know answers in acceptable time[CH78, Mur89, ME96]. These algorithms mostly use constraints to repre-sent sets of states and approximate the behavior of the system.Therefore the algorithms of Section 10.1 and Section 10.2 can still be useful inpractice to verify systems that are modeled with PRS.

10.4. CONCLUSION 16710.4 ConclusionThe reachability problem and the reachable property problem are the only de-cidable veri�cation problems for PRS. Since PRS subsumes Petri nets, theseproblems are at least as hard as the reachability problem for Petri nets and thusEXPSPACE -hard. Like for Petri nets, this hardness result even holds for thequestion if the empty state � is reachable.Model checking Petri nets with EF is undecidable [BE97, Esp97] (see Chapter 9),model checking BPP with EG is undecidable [EK95] (see Chapter 6) and modelchecking PA with LTL or linear-time �-calculus is undecidable [BH96] (see Chap-ter 8). Thus model checking PAN or PRS with these logics is undecidable. Theother logics (UB, CTL, modal �-calculus) are more general than EF and EG, andthus also undecidable for PAN and PRS.PAN/PRS general �xed formulareachability,reachable property decidable,EXPSPACE -hard decidable,EXPSPACE -hardEF undecidable undecidableEG undecidable undecidableUB undecidable undecidableCTL undecidable undecidablealternation-free modal �-calc. undecidable undecidablemodal �-calc. undecidable undecidableLTL undecidable undecidablelinear-time �-calc. undecidable undecidable

Chapter 11SummaryIn the Chapters 5 { 10 the results about the complexity of model checking aregiven individually for each process-model in the PRS-hierarchy. Now we presenta view on these results from the perspective of the logics.We also show the limits of the decidability of model checking with each logicin the PRS-hierarchy. In the Figures 11.1,11.2, 11.3, and 11.4 this is describedgraphically.11.1 Branching-Time Logics11.1.1 Reachability and Reachable PropertyAs shown in Chapter 10, the reachability problem and the reachable propertyproblem are decidable for all models in the PRS-hierarchy, so none of these mod-els is Turing-powerful. It has also turned out that, although the two problemsare not completely equivalent for every model, they have the same complexi-ties for every model in the PRS-hierarchy. Interestingly, there are three groupsof models: For models with only sequential composition (BPA, pushdown pro-cesses) reachability is polynomial. For models with parallel composition but nosynchronization (BPP, PA, PAD) it is NP-complete. For the other models it isdecidable, but at least as hard as the reachability problem for Petri nets, andthus EXPSPACE -hard. The reachability problem for a �xed given state mightbe easier for BPP, PA and PAD, but not for Petri nets, PAN and PRS.168

11.1. BRANCHING-TIME LOGICS 169Reachability general �xed state�nite-state systems 2 P 2 PBPA 2 P 2 Ppushdown processes 2 P 2 PBPP NP-complete 2 NPPA NP-complete 2 NPPAD NP-complete 2 NPPetri nets decidable,EXPSPACE -hard decidable,EXPSPACE -hardPAN decidable,EXPSPACE -hard decidable,EXPSPACE -hardPRS decidable,EXPSPACE -hard decidable,EXPSPACE -hard
BPA (1,S)

PA (1,G)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Finite-State Systems (1,1)

Petri Nets (P,P)Pushdown (S,S)
Processes

NP-complete

polynomial

decidable,
EXPSPACE-hard

Figure 11.1: The complexity of reachability.

170 CHAPTER 11. SUMMARY11.1.2 EFEF is the branching-time logic with the easiest model checking problem. Modelchecking with EF is decidable for several models (PAD, PA and BPP), wheremodel checking with any other branching time logic is undecidable. One of thereasons for this is that the logic allows a limited decomposition: 3(�1 _ �2) =3(�1) _ 3(�2). Such a decomposition is not possible in other logics (not evenin EG). The following table shows the complexity of the model checking problemfor EF. Like in the previous chapters we distinguish the general model checkingproblem and the problem for a �xed formula.EF general �xed formula�nite-state systems 2 P 2 PBPA PSPACE -complete 2 Ppushdown processes PSPACE -complete PSPACE -completeBPP PSPACE -complete 2 �pdPA 2 DTIME(tower (n)),PSPACE -hard 2 �pdPAD 2 DTIME(tower (n)),PSPACE -hard 2 d-EXPTIME ,PSPACE -hardPetri nets undecidable undecidablePAN undecidable undecidablePRS undecidable undecidableSo far, there is no hardness result for any branching-time logic and BPA. Theknown algorithms for PA and PAD have a very high complexity (O(tower (n))),but this is mostly in the size of the formula.Figure 11.2 shows the limits of the decidability of EF. Model checking with EFis decidable for all models below the line and undecidable for those above it.

11.1. BRANCHING-TIME LOGICS 171

BPA (1,S)

PA (1,G)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Pushdown (S,S) Petri Nets (P,P)

Finite-State Systems (1,1)

Processes

EF

Figure 11.2: Limits of the decidability of model checking with EF.

172 CHAPTER 11. SUMMARY11.1.3 EGThe logic EG is a simple fragment of CTL (and UB), but model checking withEG is a lot harder than with EF. In the rest of this chapter we'll see that for allmodels in the PRS-hierarchy decidability of model checking with EG coincideswith decidability of model checking with the full modal �-calculus. (See Fig-ure 11.3.) It is an open question if this also holds for computational complexity.It is unlikely however, since the modal �-calculus is much more expressive thanEG.EG general �xed formula�nite-state systems 2 P 2 PBPA 2 EXPTIME ,PSPACE -hard 2 Ppushdown processes 2 EXPTIME ,PSPACE -hard 2 EXPTIMEBPP (and higher) undecidable undecidable11.1.4 UBThe logic UB is a combination of EF and EG. The results on the complexityof model checking reect this. It seems that the operators EF and EG have nostrong interaction that increases the expressiveness.UB general �xed formula�nite-state systems 2 P 2 PBPA 2 EXPTIME ,PSPACE -hard 2 Ppushdown processes 2 EXPTIME ,PSPACE -hard 2 EXPTIME ,PSPACE -hardBPP (and higher) undecidable undecidable

11.1. BRANCHING-TIME LOGICS 17311.1.5 CTLThe following table of complexities is the same as for UB. However, it is notcertain yet that UB and CTL always have the same complexity. Model checkingBPA with UB (or EG) is possibly easier than model checking BPA with CTL.CTL general �xed formula�nite-state systems 2 P 2 PBPA 2 EXPTIME ,PSPACE -hard 2 Ppushdown processes 2 EXPTIME ,PSPACE -hard 2 EXPTIME ,PSPACE -hardBPP (and higher) undecidable undecidable11.1.6 Alternation-free Modal �-CalculusFor the alternation-free modal �-calculus there is a stronger hardness result thanfor CTL. Model checking pushdown processes with the alternation-free modal�-calculus is EXPTIME -complete while for CTL it is only known to be betweenPSPACE and EXPTIME .Alt.-free modal �-calc. general �xed formula�nite-state systems 2 P 2 PBPA EXPTIME -complete 2 Ppushdown processes EXPTIME -complete EXPTIME -completeBPP (and higher) undecidable undecidable11.1.7 Modal �-CalculusThe full modal �-calculus is the only logic considered here for which modelchecking �nite-state systems is not known to be polynomial. However, it is inNP \ co-NP, which argues that a subexponential algorithm might exist.

174 CHAPTER 11. SUMMARYModal �-calculus general �xed formula�nite-state systems 2 NP \ co-NP 2 PBPA EXPTIME -complete 2 Ppushdown processes EXPTIME -complete EXPTIME -completeBPP (and higher) undecidable undecidableExcept for the logic EF, all branching-time logics have the same limits of decid-ability in the PRS-hierarchy. Figure 11.3 illustrates this.

11.1. BRANCHING-TIME LOGICS 175

BPA (1,S)

PA (1,G)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Pushdown (S,S)

Finite-State Systems (1,1)

Petri Nets (P,P)
Processes

EF

EG, UB, CTL,
modal mu-calc.Figure 11.3: Limits of the decidability of branching-time logics.

176 CHAPTER 11. SUMMARY11.2 Linear-Time LogicsLTL and the linear-time �-calculus have the same decidability and complexityfor all models in the PRS-hierarchy. This is not too surprising, since they havealmost (but not quite) the same expressive power. Unlike for branching-timelogics, strict lower bounds are known for BPA.LTL/Linear-time �-calc. general �xed formula�nite-state systems PSPACE -complete 2 PBPA EXPTIME -complete 2 Ppushdown processes EXPTIME -complete 2 PBPP decidable,EXPSPACE -hard decidablePA undecidable undecidablePAD undecidable undecidablePetri nets decidable,EXPSPACE -hard decidable,EXPSPACE -hardPAN undecidable undecidablePRS undecidable undecidableThese complexity results are quite di�erent from those for any branching-timelogic. On the one hand model checking �nite-state systems is harder and modelchecking systems with both sequential and parallel composition (PA,PAD,PANand PRS) is undecidable. But on the other hand model checking Petri nets isdecidable, unlike for any branching-time logic. Another nice point is that modelchecking purely sequential systems (BPA and pushdown processes) is polynomialfor every �xed formula.Figure 11.4 shows the limits of the decidability of model checking with linear-timelogics. These limits are quite di�erent from those for any branching-time logic.

11.2. LINEAR-TIME LOGICS 177

BPA (1,S)

Pushdown (S,S)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Finite-State Systems (1,1)

Petri Nets (P,P)
Processes

PA (1,G)

LTL,
linear-time mu-calc.

Figure 11.4: Limits of the decidability of linear-time logics.

Chapter 12Conclusion and Final RemarksThere are �ve main conclusions from the results that are presented in this thesis.1. None of the models in the PRS-hierarchy is Turing-powerful.2. Model checking with EF is much easier than for any other branching-timelogic. It is decidable for manymore models and often has a lower complexity.3. All other branching-time logics are decidable for the same models in thePRS-hierarchy.4. Linear-time logics and branching-time logics are completely di�erent withrespect to decidability and complexity of model checking.5. Most model checking problems for in�nite-state systems are PSPACE -hard.However, the complexity in the size of the system is often lower. It is evenlinear in some cases.The results on the complexity of model checking in�nite-state systems look dis-couraging at �rst. Many problems are PSPACE -hard, EXPTIME -hard or evenEXPSPACE -hard. However, a closer look shows that the situation is not as badas it might seem. There are still many things that can be done in practice.Firstly, it is not always necessary to use a full temporal logic to specify the prop-erties that must be checked in order to verify a system. In practice it often su�cesto check simple properties of systems, which can be much easier. Some of thesesimple veri�cation problems are decidable in polynomial time (see Section 8.3).Secondly, not even PSPACE -hard problems are always as bad as they seem. Thecomplexity of the model checking problem depends on two parameters: the size178

179of the system and the size of the formula. In practice, the system can be verylarge, but the formula is usually very small. Thus the complexity in the size ofthe system is the important part. In many cases the complexity in the size ofthe system is much lower than the complexity of the general problem. Roughlyspeaking, there are two classes of model checking problems:1. Model checking problems that are hard in the size of the system even for asmall �xed formula. The model checking problems for pushdown processes(and PAD) and branching-time logics belong to this class, since they arePSPACE/EXPTIME -hard, even for small �xed formulae (see Chapter 7).Model checking parallel systems like Petri nets with linear-time logics is alsoin this class, since it is at least as hard as reachability for Petri nets andthus EXPSPACE -hard, even for a small �xed LTL-formula (see Chapters 6and 9).Model checking BPP with EF is almost (but not quite) as hard. The modelchecking problem is not PSPACE -hard for any �xed formula, but completefor the d-th order in the polynomial time hierarchy for formulae of nestingdepth � d. Of course this lower bound also holds for PA.2. There are model checking problems that are only hard in the size of theformula. Model checking BPA with all branching-time logics is polynomialin the size of the system for any �xed formula (see Chapter 7). This showsthat BPA and pushdown processes are quite di�erent in model checking,although they describe the same class of languages (Chomsky-2).The model checkers SPIN [Hol91] and PROD [Val92] work with �nite-statesystems and LTL. This problem is also PSPACE -complete, but polynomialin the size of the system for any �xed formula. Model checking BPA andpushdown processes with linear-time logics (see Chapter 7) is also polyno-mial in the size of the system for any �xed formula. So these problemsare tractable in practice and model checkers like SPIN [Hol91] and PROD[Val92] could be generalized to handle them. Similar tools could be devel-oped for BPA and the modal �-calculus.Finally, veri�cation doesn't have to be completely automatic. Normally a sys-tems designer knows quite a lot about the structure of the system that he/shewants to verify. If the user can use his knowledge about the system in the ver-i�cation process, then the problem becomes a lot easier. This is because fullyautomatic veri�cation algorithms often spend a lot of time proving (implicationsof) properties that are trivial for the user, for example \process t1 cannot haveany inuence on the behavior of process t2 before action b has occurred". So

180 CHAPTER 12. CONCLUSION AND FINAL REMARKSsemiautomatic veri�cation methods are a promising direction. They can be im-plemented in theorem provers with human interaction, like PVS [ORSv95] and\Isabelle" [Pau94]. In these semiautomatic methods it is necessary that the usercan understand and inuence the veri�cation process. Tableau systems like inSection 9.2 and in [Bra92, BEM96, BS97, And94] provide the theoretical basisfor this.

Bibliography[And94] Henrik Reif Andersen. On model checking in�nite-state systems. InLogical Foundations of Computer Science { LFCS'94, volume 813 ofLNCS. Springer Verlag, 1994.[BCS95] O. Burkart, D. Caucal, and B. Ste�en. An elementary bisimulationdecision procedure for arbitrary context-free processes. In MFCS'95,volume 969 of LNCS. Springer Verlag, 1995.[BCS96] O. Burkart, D. Caucal, and B. Ste�en. Bisimulation collapse and theprocess taxonomy. In Ugo Montanari and Vladimiro Sassone, editors,Proceedings of CONCUR'96, volume 1119 of LNCS. Springer Verlag,1996.[BE97] O. Burkart and J. Esparza. More in�nite results. Electronic Notes inTheoretical Computer Science (ENTCS), 5, 1997.[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. Verifying in�nite stateprocesses with sequential and parallel composition. In Proceedings ofPOPL'95, pages 95{106. ACM Press, 1995.[BEM96] J. Brad�eld, J. Esparza, and A.Mader. An e�ective tableau system forthe linear time �-calculus. In F. Meyer auf der Heide and B. Monien,editors, Proceedings of ICALP'96, volume 1099 of LNCS. SpringerVerlag, 1996.[BEM97a] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis ofpushdown automata: application to model checking. In InternationalConference on Concurrency Theory (CONCUR'97), volume 1243 ofLNCS. Springer Verlag, 1997.[BEM97b] A. Bouajjani, J. Esparza, and O. Maler. Reachabil-ity Analysis of Pushdown Automata: Application toModel Checking. Technical report, VERIMAG, 1997.ftp://ftp.imag.fr/imag/SPECTRE/ODED/pda.ps.gz.181

182 BIBLIOGRAPHY[BH96] A. Bouajjani and P. Habermehl. Constrained properties, semilinearsystems, and Petri nets. In Ugo Montanari and Vladimiro Sassone,editors, Proceedings of CONCUR'96, volume 1119 of LNCS. SpringerVerlag, 1996.[BK85] J. A. Bergstra and J.W. Klop. Algebra of communicating processeswith abstraction. Theoretical Computer Science (TCS), 37:77{121,1985.[Bra92] J. Brad�eld. Verifying Temporal Properties of Systems. Birkh�auser,1992.[BS90] J. Brad�eld and C. Stirling. Verifying temporal properties of pro-cesses. volume 458 of LNCS, pages 115{125. Springer Verlag, 1990.[BS92a] J. Brad�eld and C. Stirling. Local model checking for in�nite statespaces. Theoretical Computer Science (TCS), 96:157{174, 1992.[BS92b] O. Burkart and B. Ste�en. Model checking for context-free processes.In Proc. of CONCUR'92, volume 630 of LNCS, pages 123{137, 1992.[BS94] O. Burkart and B. Ste�en. Pushdown processes: Parallel compositionand model checking. In CONCUR'94, volume 836 of LNCS, pages98{113. Springer Verlag, 1994.[BS95] O. Burkart and B. Ste�en. Composition, decomposition and modelchecking optimal of pushdown processes. Nordic Journal of ComputerScience, 1995.[BS97] O. Burkart and B. Ste�en. Model checking the full modal mu-calculusfor in�nite sequential processes. In Proceedings of ICALP'97, volume1256 of LNCS. Springer Verlag, 1997.[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tractsin Theoretical Computer Science, 18, 1990.[Cau92] D. Caucal. On the regular structure of pre�x rewriting. Journal ofTheoretical Computer Science, 106:61{86, 1992.[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchroniza-tion skeletons using branching time temporal logic. volume 131 ofLNCS, pages 52{71, 1981.[CGL94] E. Clarke, O. Grumberg, and D. Long. Veri�cation tools for �nite-state concurrent systems, volume 803 of LNCS. Springer Verlag, 1994.

BIBLIOGRAPHY 183[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraintsamong variables of a program. In 5th ACM Symposium on Principlesof Programming Languages. ACM-Press, 1978.[CHM93a] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalenceis decidable for Basic Parallel Processes. In E. Best, editor, Proceed-ings of CONCUR 93, volume 715 of LNCS. Springer Verlag, 1993.[CHM93b] S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability, de-cidability and axiomatisability for bisimulation equivalence on BasicParallel Processes. In Proceedings of LICS'93. IEEE Computer Soci-ety Press, 1993.[Chr93] S. Christensen. Decidability and Decomposition in Process Algebras.PhD thesis, Edinburgh University, 1993.[CHS92] S. Christensen, H. H�uttel, and C. Stirling. Bisimulation equivelenceis decidable for all context-free processes. In W.R. Cleaveland, editor,Proceedings of CONCUR'92, volume 630 of LNCS. Springer Verlag,1992.[Dam92] M. Dam. Fixed points of B�uchi automata. In R. Shyamasundar,editor, Foundations of Software Technology and Theoretical ComputerScience (FSTTCS'92), volume 652 of LNCS, pages 39{50. SpringerVerlag, 1992.[Dic13] L.E. Dickson. Finiteness of the odd perfect and primitive abundantnumbers with distinct factors. American Journal of Mathematics,35:413{422, 1913.[EJS93] E. Emerson, C.S. Jutla, and A. Sistla. On model checking for frag-ments of �-calculus. In Proceedings of CAV'93, volume 697 of LNCS,pages 385{396. Springer Verlag, 1993.[EK95] J. Esparza and A. Kiehn. On the model checking problem for branch-ing time logics and Basic Parallel Processes. In CAV'95, volume 939of LNCS, pages 353{366. Springer Verlag, 1995.[Eme94] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science : Volume B, FORMALMODELS AND SEMANTICS. Elsevier, 1994.[Esp94] J. Esparza. On the decidability of model checking for several �-calculiand Petri nets. In Trees in Algebra and Programming { CAAP'94,volume 787 of LNCS. Springer Verlag, 1994.

184 BIBLIOGRAPHY[Esp95] J. Esparza. Petri nets, commutative context-free grammars and BasicParallel Processes. In Horst Reichel, editor, Fundamentals of Compu-tation Theory, volume 965 of LNCS. Springer Verlag, 1995.[Esp96] J. Esparza. More in�nite results. In B. Ste�en and T. Margaria,editors, Proceedings of INFINITY'96, number MIP-9614 in Technicalreport series of the University of Passau. University of Passau, 1996.[Esp97] J. Esparza. Decidability of model checking for in�nite-state concurrentsystems. Acta Informatica, 34:85{107, 1997.[Hab97] P. Habermehl. On the complexity of the linear-time mu-calculus forPetri nets. In Proceedings of the International Conference on Appli-cation and Theory of Petri Nets, Toulouse, France, LNCS. SpringerVerlag, 1997.[Hir93] Y. Hirshfeld. Petri nets and the equivalence problem. In Proceedings ofCSL'93, volume 832 of LNCS, pages 165{174. Springer Verlag, 1993.[HJM94] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithmfor deciding bisimulation of normed context free processes. Technicalreport, LFCS report series 94-286, Edinburgh University, 1994.[HJM96] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial-time algo-rithm for deciding bisimulation equivalence of normed Basic ParallelProcesses. Journal of Mathematical Structures in Computer Science,1996.[Hol91] G.J. Holzman. Design and validation of computer protocols. PrenticeHall, Englewood Cli�s, NJ, 1991.[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,Languages and Computation. Addison Wesley, 1979.[Jan90] P. Jan�car. Decidability of a temporal logic problem for Petri nets.Theoretical Comuter Science, 74:71{93, 1990.[Jan94] P. Jan�car. Decidability questions for bisimilarity of Petri nets andsome related problems. In Proceedings of STACS'94, volume 775 ofLNCS. Springer Verlag, 1994.[Jan95] P. Jan�car. Undecidability of bisimilarity for Petri nets and some re-lated problems. Theoretical Computer Science, 148:281{301, 1995.

BIBLIOGRAPHY 185[JE96] P. Jan�car and J. Esparza. Deciding �niteness of Petri nets up tobisimulation. In F. Meyer auf der Heide and B. Monien, editors,Proceedings of ICALP'96, volume 1099 of LNCS. Springer Verlag,1996.[JKM98a] P. Jan�car, A. Ku�cera, and R. Mayr. Deciding bisimulation-like equiv-alences with �nite-state processes. In Proc. of ICALP'98, LNCS.Springer Verlag, 1998. To appear.[JKM98b] P. Jan�car, A. Ku�cera, and R. Mayr. Deciding bisimulation-like equiv-alences with �nite-state processes. Technical Report I9805, TU-M�unchen, 1998.[Koz83] D. Kozen. Results on the propositional �-calculus. TCS, 27:333{354,1983.[Lip76] R. Lipton. The reachability problem requires exponential space. Tech-nical Report 62, Department of Computer Science, Yale University,January 1976.[Mad97] A. Mader. Veri�cation of Modal Properties Using Boolean EquationSystems. PhD thesis, TU-M�unchen, 1997.[May84] E. Mayr. An algorithm for the general Petri net reachability problem.SIAM Journal of Computing, 13:441{460, 1984.[May96a] Richard Mayr. Some results on Basic Parallel Processes. TechnicalReport TUM-I9616, TU-M�unchen, March 1996.[May96b] Richard Mayr. A tableau system for model checking Petri nets with afragment of the linear time �-calculus. Technical Report TUM-I9634,TU-M�unchen, October 1996.[May96c] Richard Mayr. Weak bisimulation and model checking for Basic Par-allel Processes. In Foundations of Software Technology and Theoreti-cal Computer Science (FSTTCS'96), volume 1180 of LNCS. SpringerVerlag, 1996.[May97a] Richard Mayr. Combining Petri nets and PA-processes. In MartinAbadi and Takayasu Ito, editors, International Symposium on The-oretical Aspects of Computer Software (TACS'97), volume 1281 ofLNCS. Springer Verlag, 1997.

186 BIBLIOGRAPHY[May97b] Richard Mayr. Model checking PA-processes. In International Confer-ence on Concurrency Theory (CONCUR'97), volume 1243 of LNCS.Springer Verlag, 1997.[May97c] Richard Mayr. Process rewrite systems. Electronic Notes in Theoret-ical Computer Science (ENTCS), 7, 1997. Proceedings of Expressive-ness in Concurrency (EXPRESS'97).[May97d] Richard Mayr. Semantic reachability. Electronic Notes in TheoreticalComputer Science (ENTCS), 5, 1997.[May97e] Richard Mayr. Tableau methods for PA-processes. In D. Galmiche,editor, Analytic Tableaux and Related Methods (TABLEAUX'97), vol-ume 1227 of LNAI. Springer Verlag, 1997.[May98] Richard Mayr. Strict lower bounds for model checking BPA. May1998.[MB96] F. Moller and G. Birtwistle, editors. Logics for Concurrency, volume1043 of LNCS. Springer Verlag, 1996.[ME96] S. Melzer and J. Esparza. Checking system properties via integerprogramming. In H.R. Nielson, editor, Proc. of ESOP'96, volume1058 of Lecture Notes in Computer Science, pages 250{264. SpringerVerlag, 1996.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.[Mol96] Faron Moller. In�nite results. In Ugo Montanari and Vladimiro Sas-sone, editors, Proceedings of CONCUR'96, volume 1119 of LNCS.Springer Verlag, 1996.[Mur89] T. Murata. Petri nets: Properties, analysis und applications. Proc.of the IEEE, 77(4):541{580, 1989.[ORSv95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal veri�cationfor fault-tolerant architectures: Prolegomena to the design of PVS.IEEE Transactions on Software Engineering, 21(2):107{125, 1995.[Pau94] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover, volume828 of LNCS. Springer Verlag, 1994.[Pet81] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, 1981.

BIBLIOGRAPHY 187[Pnu77] A. Pnueli. The temporal logic of programs. In FOCS'77. IEEE, 1977.[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional lineartemporal logics. Journal of the ACM, 32(3):733{749, 1985.[SC93] B. Ste�en and R. Cleaveland. A linear{time model{checking algo-rithm for the alternation{free modal mu{calculus. International Jour-nal on Formal Methods in System Design, 1, 1993.[Ste93] B. Ste�en. Generating data ow analysis algorithms from modal spec-i�cations. International Journal on Science of Computer Program-ming, 21:115{139, 1993.[Sti92] C. Stirling. Modal and temporal logics. In S. Abramsky, D. Gabbay,and T. Maibaum, editors, Handbook of Logic in Computer Science,volume 2, pages 477{563. Oxford University Press, 1992.[Sti95] C. Stirling. Local model checking games. In Insup Lee and Scott A.Smolka, editors, Proceedings of CONCUR'95, volume 962 of LNCS,pages 1{11, 1995.[Sti96] C. Stirling. Modal and temporal logics for processes. In F. Moller andG. Birtwistle, editors, Logics for Concurrency, volume 1043 of LNCS,pages 149{237. Springer Verlag, 1996.[SW90] C. Stirling and D. Walker. CCS, liveness, and local model checkingin the linear time �-calculus. In Proceedings of the First Interna-tional Workshop on Automatic Veri�cation Methods for Finite StateSystems, volume 407 of LNCS, pages 166{178. Springer Verlag, 1990.[SW91] C. Stirling and D. Walker. Local model checking in the modal �-calculus. Theoretical Computer Science, 89:161{177, 1991.[Val92] A. Valmari. A stubborn attack on state explosion. Formal Methodsin System Design, 1:297 { 322, 1992.[Var88] M.Y. Vardi. A temporal �xpoint calculus. In Conference Record ofthe 15th Annual Symposium on Principles of Programming Languages(POPL'88), pages 250{259. ACM Press, 1988.[vL90] J. van Leeuwen, editor. Handbook of Theoretical Computer Science:Volume A, Algorithms and Complexity. Elsevier, 1990.

188 BIBLIOGRAPHY[Wal96a] I. Walukiewicz. Pushdown processes: games and model checking. InInternational Conference on Computer Aided Veri�cation (CAV'96),volume 1102 of LNCS. Springer Verlag, 1996.[Wal96b] I. Walukiewicz. Pushdown processes: games and model checking.Technical Report RS-96-54, BRICS, Aarhus, Denmark, 1996. Longerversion of a CAV'96 paper.[Yen92] H. Yen. A uni�ed approach for deciding the existence of certain Petrinet paths. Information and Computation, 96(1):119{137, 1992.

List of Figures2.1 A labeled transition system . 112.2 The PRS-hierarchy. 163.1 Linear and branching-time logics 416.1 M1 �10 M2, but not M1 �20 M2. 656.2 Hardness of model checking BPP. 779.1 Reducing reachability set containment to model checking with EF 1279.2 A simple Petri net . 1439.3 The modi�ed Petri net . 1449.4 A more complex Petri net . 14611.1 The complexity of reachability. 16911.2 Limits of the decidability of model checking with EF. 17111.3 Limits of the decidability of branching-time logics. 17511.4 Limits of the decidability of linear-time logics. 177
189

Index(�; �)-PRS, 14EF=DC, 93Action-based Semantics, 42Alternation-freeModal �-Calculus, 48,173ATM, 87Basic Parallel Processes, 17, 58Basic Process Algebra, 22, 84Bisimulation, 21, 30, 37BPA, 22, 86, 179BPP, 17, 58CCS, 18Context-free Processes, 22, 84, 86CTL, 40, 46, 173Cycle, 63EF, 40, 44, 58, 93, 125, 170, 178E�ect-vector, 22EG, 40, 46, 125, 172Finite-State Systems, 17, 56Hennessy-Milner Logic, 30, 43, 54Linear-Time �-Calculus, 41, 50, 127,176, 178Linear-Time Logic, 49Livelock, 120LTL, 40, 49, 79, 88, 123, 127, 176,178, 179Modal �-Calculus, 41, 47, 173Model Checking Problem, 38

PA, 24, 92, 117PAD, 25, 92PAN, 26, 150Parikh-vector, 22Partial Deadlock, 117Petri nets, 21, 125Process Rewrite Systems, 11, 150Process Terms, 12PROD, 56, 179PRS, 11, 26, 150PRS-hierarchy, 10, 16, 30, 37, 178Pushdown Processes, 22, 84, 179Reachability Problem, 44, 116, 151,168Reachable Property Problem, 45, 155,168SemiautomaticVeri�cation, 128, 149,180SPIN, 56, 179State Formula, 45State-based Semantics, 42SVM, 56Tableau system, 52, 106, 131, 157,180UB, 46, 172Weak Linear-Time Logic, 48WL, 48190

