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Abstract—Many neurons in the monkey ventral premotor
area F5 discharge selectively when the monkey grasps an
object with a specific grip. Of these, the motor neurons are
active only during grasping execution, whereas the visuomo-
tor neurons also respond to object presentation. Here we
assessed whether the activity of 90 task-related F5 neurons
recorded from two macaque monkeys during the perfor-
mance of a visually-guided grasping task can be used as
input to pattern recognition algorithms aiming to decode
different grips. The features exploited for the decoding were
the mean firing rate and the mean interspike interval calcu-
lated over different time spans of the movement period (all
neurons) or of the object presentation period (visuomotor
neurons). A support vector machine (SVM) algorithm was
applied to the neural activity recorded while the monkey
grasped two sets of objects. The original set contained three
objects that were grasped with different hand shapes, plus
three others that were grasped with the same grip, whereas
the six objects of the special set were grasped with six
distinctive hand configurations. The algorithm predicted with
accuracy greater than 95% all the distinct grips used to grasp
the objects. The classification rate obtained using the first
25% of the movement period was 90%, whereas it was nearly
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perfect using the entire period. At least 16 neurons were
needed for accurate performance, with a progressive in-
crease in accuracy as more neurons were included. Classifi-
cation errors revealed by confusion matrices were found to
reflect similarities of hand grips used to grasp the objects.
The use of visuomotor neurons’ responses to object presen-
tation yielded grip classification accuracy similar to that ob-
tained from actual grasping execution. We suggest that F5
grasping-related activity might be used by neural prostheses
to tailor hand shape to the specific object to be grasped even
before movement onset. © 2011 IBRO. Published by Elsevier
Ltd. All rights reserved.

Key words: ventral premotor cortex, decoding, grasping,
hand configuration, neuroprosthesis.

The plethora of bones, joints and muscles constituting the
hand, gives to this structure remarkable biomechanical
complexity. From the kinematic point of view, the hand has
over 20 degrees of freedom (DOFs) (Kapandji, 1982;
Soechting and Flanders, 1997). The control of multi-DOFs
artificial hand prosthesis which is capable of carrying out
many dexterous tasks in an effective and flexible way
(Light and Chappell, 2000; Carrozza et al., 2006) is par-
ticularly challenging. Psychophysical studies suggested
that the brain adopts simplifying strategies in order to
reduce the complexity of hand movements by controlling
the different fingers in a “synergic” way (Santello et al.,
1998; Mason et al., 2001; Schieber and Santello, 2004). In
the last years many researchers have attempted to use
cortical neuronal activity to develop brain-machine inter-
faces (BMIs) for both reaching and grasping (Wessberg et
al., 2000; Serruya et al., 2002; Taylor et al., 2002; Car-
mena et al., 2003; Musallam et al., 2004; Hochberg et al.,
2006; Kim et al., 2006; Santhanam et al., 2006; Velliste et
al., 2008; for review, see Schwartz et al., 2006; Hatsopou-
los and Donoghue, 2009; Nicolelis and Lebedev, 2009).

There are several cortical areas whose neurons fire
hen hand movements are executed (Murata et al., 1997,
000; Raos et al., 2003, 2004, 2006; Brochier and Umilta,
007; Gardner et al., 2007a,b; Umilta et al., 2007; Rozzi et
l., 2008; Baumann et al., 2009; Bonini et al., 2010; Fattori
t al., 2010) and thus could, in principle, provide reliable
nd robust signals for the control of skilful grasping by an
rtificial hand. Among them is the rostral sector of the
entral premotor cortex (area F5, Matelli et al., 1985) which
ontains neurons that code specific goal-related distal mo-
or acts and not single movements (Rizzolatti et al., 1988;
urata et al., 1997; Raos et al., 2006; Umilta et al., 2007).

5 grasping neurons usually show specificity for the type of
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prehension (precision grip, finger and whole hand prehen-
sion) performed to grasp an object. As originally proposed
by Rizzolatti and colleagues (1988) area F5 contains a
vocabulary” of elementary motor acts in which each
word” corresponds to a category of motor neurons that
epresent either the goal of the motor act, or the way in
hich it is executed, or its temporal segmentation. In ad-
ition to motor-related discharge, some F5 neurons also
espond to the presentation of an object or a set of objects,
ven when grasping is not actually performed. Often the
bject evoking the strongest activity during grasping also
vokes optimal activity during its visual presentation (Riz-
olatti et al., 1988; Murata et al., 1997; Raos et al., 2006).
ierarchical cluster analysis indicated that the selectivity of
oth the motor and the visual discharge of grasping-related
5 neurons is not determined by the object shape but by

he grip posture used to grasp the object (Raos et al.,
006).

The goal of the present study was to explore whether
eural activity recorded from area F5 can provide a reliable
ignal to pattern recognition algorithms in order to decode
he hand configuration to be used for grasping an object.

e demonstrated that the recognition algorithm, based on
he motor and visual discharge of F5 grasping-related
eurons, is able to predict with accuracy distinctive hand
hapes.

EXPERIMENTAL PROCEDURES

Properties of the neurons analyzed in this paper have been re-
ported in a previous study (Raos et al., 2006). Single unit activity
was recorded from area F5 in the posterior bank of the inferior limb
of the arcuate sulcus in three hemispheres (contralateral to the
moving forelimb) of two awake monkeys (Macaca nemestrina).
The behavioral apparatus and paradigm are summarized in the
next section (for more details see (Raos et al., 2006)). All exper-
imental protocols were approved by the Veterinarian Animal Care
and Use Committee of the University of Parma, and complied with
the European law on the humane care and use of laboratory
animals.

Behavioral task

The behavioral paradigm required the monkeys either to observe
only or to observe and then reach for and grasp 3-dimensional
objects. The objects were grasped with different types of grips,
according to their physical characteristics (Murata et al., 2000;
Raos et al., 2006). The monkey was seated on a primate chair
with the head fixed, in front of a rotating turntable subdivided into
six sectors, each containing a different object. The objects were
presented one at a time. A spot of light from a red/green light-
emitting diode (LED) that instructed the behavior of the monkey
was projected onto the object through a half mirror. Neurons were
tested in three experimental conditions. The conditions, run sep-
arately one after the other, were the following: (1) Movement in
light condition (ML); (2) Movement in dark condition (MD) and (3)
Object fixation (OF). The initial LED color (red or green) used in
the movement and fixation conditions, respectively, allowed the
monkey to discriminate immediately between the movement and
the fixation conditions. The temporal sequence of the events
during the four conditions is illustrated in Fig. 1. In the movement
conditions the monkey initially had to fixate the red LED for a
variable period of 1.0–1.2 s. The LED was projected onto the
object which was visible only in the ML condition. A change of LED

color instructed the monkey to reach for and grasp the object, pull,

Please cite this article in press as: Carpaneto J, et al., Decoding the ac
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and hold it for a variable period of 1.0–1.2 s. The reaching-to-
grasp movement was performed with and without visual guidance
in the ML and MD conditions, respectively. In the OF condition, the
monkey had to fixate the presented object for 1–1.2 s while it was
engaged in a motor behavior that was irrelevant to the object (a
key press). In the ML and OF conditions the objects were pre-
sented in random order, in the MD condition the objects were
presented in blocks. The task events LED on (red or green),
key-press, LED color change (go signal), key release (movement
onset in the movement conditions), object pull (movement end),
LED color change, and object release have been acquired as
digital markers together with the neuronal activity. These markers
were used for the alignment of the neuronal activity across the
different trials. A more detailed account on the behavioral para-
digm can be found in (Raos et al., 2006).

A variety of objects of different sizes and shapes was used.
The two monkeys were trained to always use an identical hand
posture for grasping the same object. We used a set of six
geometric solids (cube, cone, sphere, cylinder, horizontal plate,
and horizontal ring), as originally employed by Sakata and co-
workers (Murata et al., 1996, 1997; Raos et al., 2006). This set of
objects will be referred to as “original turntable.” The grips with
which the objects were grasped are the following. Sphere, cone,
and cube: side grip performed using the thumb and the radial
surface of the distal phalanx of the index finger. Cylinder: finger
prehension performed using the first three fingers. Horizontal
plate: primitive precision grip performed using the thumb and the
radial surface of the middle and distal phalanges of the index
finger. Horizontal ring: hook grip with the fingers inserted into the
ring.

To test a broader variety of grips we introduced another set of
objects that will be referred to as “special turntable.” This set was
composed of the following objects: small sphere, small horizontal
ring, large horizontal ring, small sphere in horizontal groove, large
cylinder in horizontal container, and very large sphere. The small
sphere in horizontal groove was grasped with advanced precision
grip performed with the pulpar surface of the last phalanx of the
index finger opposed to the pulpar surface of last phalanx of the
thumb. For grasping the large cylinder in horizontal container, all
the fingers were inserted into the container, with the four fingers
opposed to the thumb. The prehension of the very large sphere
required all the fingers to wrap around the object and the palm to
be in contact with the object. A summary of the objects and the
grips is provided in Fig. 1.

Neuronal properties

Single-unit activity was recorded from area F5 in the posterior
bank of the inferior limb of the arcuate sulcus in three hemispheres
(contralateral to the moving forelimb) of two awake monkeys
(Macaca nemestrina). Surgical and recording procedures were
previously described (Raos et al., 2006). Data from 90 task-
related grasping neurons have been analyzed in the present
study. Sixty-five neurons were tested with the objects of the orig-
inal turntable and 25 with the objects of the special turntable. The

Fig. 1. Timeline of the task events in movement and fixation condi-
tions. Upward deflection: on, downward deflection: off.
recorded neurons were subdivided into two main classes: motor

tivity of grasping neurons recorded from the ventral premotor
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neurons (n�46, 36 tested with the original set of objects, 10 tested
with the special set of objects) and visuomotor neurons (n�44, 29
tested with the original set of objects, 15 tested with the special set
of objects). All neurons of both classes discharged during grasp-
ing movements. Visuomotor neurons, in addition, also responded
during object presentation.

To obtain a measure of the motor preference of the recorded
neurons we computed a preference index (PI) that takes into
account the magnitude of the neuron response during the grasp-
ing of the objects, as follows:

PI�(n�(�ri ⁄ rmax)) ⁄ (n�1)

where n is the number of objects, ri the activity for object i, and rmax

the maximum activity in the movement epoch of the ML condition.
The PI can range between 0 and �1.0. A value of 0 indicates the
same magnitude of response for all six objects, while a value of 1
indicates preference for only one object. The distribution of the
PIs, for the neurons tested with the objects of the original and the
special set, calculated from the activity in the movement epoch of
the ML condition is presented in Fig. 2.

Hierarchical cluster analysis showed that the determinant of
the selectivity of F5 neurons was the grip used to grasp an object
and not the shape of the object (Raos et al., 2006). Consequently,
the objects of the original set have been grouped as follows: the
ring—the only object that does not require the opposition of the
thumb to be grasped—is separated from all the other objects. Out
of the remaining five objects, for which the use of the thumb is
necessary, the elongated objects (plate and cylinder) which are
grasped with a similar type of grip are at a close distance; the
cube, the sphere, and the cone which are grasped in an identical

Fig. 2. Distribution of the preference index (PI). Black bars: original
set, 65 neurons; grey bars: special set, 25 neurons.

Fig. 3. Video frames illustrating the grips used by the monkeys for gra
1–6 below each picture denote the code used in the following figures
denote the similarities among the grips as revealed by hierarchical clus

and darker the background.

Please cite this article in press as: Carpaneto J, et al., Decoding the ac
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way (side grip) form a single cluster. For the objects of the special
set, the two rings, which do not require the opposition of the
thumb, form a cluster separated from the other objects. The
grasping of the remaining four objects requires the involvement of
the thumb. This digit acts as a buttressing and reinforcing agent
for the grasping of the very large sphere. Therefore, this object is
separated from the small sphere, the sphere in groove, and the
cylinder in container which require an active opposition of the
thumb to the other fingers and are clustered together. Fig. 3
rovides a summary of the clustering among grips in both sets of
bjects used.

Selection of neuronal features and time periods for
analysis

The features selected for the decoding were the mean firing rate
(mFR) and the mean interspike interval (mISI). The combined use
of these two features outperformed the use of each one in isola-
tion (data not presented in the manuscript). The distributions of the
frequency rates and interspike intervals within the trials during the
whole movement period (entire neuronal population) are pre-
sented in Fig. 4A, B.

Different amount of time was required for grasping the various
objects with the appropriate grips (Table 1). The features during
the movement period (from the onset of reaching movement to the
beginning of object pulling), in the ML and MD conditions of all the
neurons, were calculated over four time-spans corresponding to
25%, 50%, 75%, and 100% of movement time. To avoid incorrect
classification of the grips due to the variation of the movement
time periods among grips and trials, mFR and mISI were esti-
mated on a trial-by-trial basis, namely four different values per trial
were taken (first quarter, half, three quarters and whole movement
interval).

For a given condition (e.g. ML), for a given time span (e.g.
75% of movement time), for a given number of neurons (e.g., K),
and for a given object to be grasped, the structure of the feature
vector was the following:

FR_neuron_1 ISI_neuron_1 . . . . . . FR_neuron_K ISI_neuron_K

Given that the visuomotor neurons respond to the presenta-
tion of an object or a set of objects, even when a grasping
movement is not required, we also analyzed four time-spans
(25%, 50%, 75%, and 100%) of the object presentation period,
1–1.2 s, from the illumination of the object to the cue signaling the

objects of the original (top) and the special (bottom) set. The numbers
tance between the frames as well as the shading of the background
sis. The more similar the grips, smaller the distance among the frames
sping the
. The dis
ter analy
tivity of grasping neurons recorded from the ventral premotor
euroscience.2011.04.062
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release of the key, in the ML and OF conditions of the visuomotor
neurons. The distributions of the frequency rates and interspike
intervals within the trials during the object presentation period of
OF condition (all visuomotor neurons) are presented in Fig. 4C, D.
The discharge of the visuomotor units during the object presen-
tation period has been also analyzed, on non-normalized data, in
eight time increments with a step of 100 ms, starting 150 ms after
the presentation of the object. Hence, the increments used were:
150–250 ms, 150–350 ms . . . 150–950 ms. The first 150 ms of
the object presentation period have been omitted to take into
account the delay of the visual response with respect to object
presentation.

To investigate when, in real time, a reliable grip classification
is obtained, features have been extracted from motor and visuo-
motor units during the period starting 400 ms before the instruction
to move (LED color change) and ending 200 ms after the move-
ment onset (key release). In particular, two different approaches
were used. In the first one, the features were extracted from a time
window of 200 ms which progressively slid over the reference
period with a moving step of 50 ms, while in the second, the
features were extracted from a time window (initial width: 20 ms)
which was progressively increasing at 20 ms increments until to
cover the entire reference period.

Fig. 4. Distributions of the frequency rates and interspike intervals dur
(C, D) the object presentation period of OF condition (all visuomotor

Table 1. Duration of the movement period (tmov) for the grips tested,
calculated as the difference between object pull and key release
events of the task

Original set tmov (ms) Special set tmov (ms)

Cube 367�117 Sphere in groove 678�161
Sphere 323�64 Large cylinder in container 518�145
Cone 379�126 Small sphere 415�96
Plate 283�49 Very large sphere 239�38
Cylinder 289�137 Small ring 437�128
m
Ring 378�108 Large ring 212�50

Please cite this article in press as: Carpaneto J, et al., Decoding the ac
area F5 of the macaque monkey, Neuroscience (2011), doi: 10.1016/j.n
Decoding algorithms

The performance of several classifiers frequently used in pattern
recognition problems such as normal densities based linear clas-
sifier (LC) (Fukunaga, 1990), k-nearest neighbor (kNN) (Fuku-
aga, 1990), artificial neural network (ANN) (Bishop, 1995), soft-
ax network (SM) (Bishop, 1995), and support vector machines

SVM) (Cortes and Vapnik, 1995) have been tested using the F5
ata. Their main characteristics are described hereafter.

LCs are the simplest and perhaps the most widely used
lassifiers. They are based on the normal distribution:

p(x|�i) �
1

(2�)
1
2|�i|

1
2
exp��

1
2

(x � �i)
T�i

�1(x � �i)�
A pattern x is assigned to the category �i for which the posterior
probability, p��i�x�, is the greatest, or equivalently log�p��i�x��. The
means (�i) and the covariance matrices (�i) of the categories are
stimated from the training data. Data samples often are not
ormally distributed and for this reason the final error could differ
rom the optimal Bayesian error.

The kNN classifier is another method based on a measure of
he similarity between a new pattern and a set of prototypes for
ach category in the training set. kNN algoritm finds, for a given

nput feature x, the k “closest” examples in the training data set
nd assign x to the category that appears most frequently within
he k-subset. This algorithm has been shown to be a robust
lassifier, especially when the number of training samples is not
arge as in our case.

ANNs are algorithms originally inspired by the functioning of
iological neurons. The basic components of ANN are neurons
nd connections among them. In a feed-forward neural network
tructure, a unit receives information from several units belonging
o the previous layer. Several ANN structures have been devel-
ped in the past (Bishop, 1995): the most popular model is the
ulti-layer perceptron that consists of an input layer, many inter-

) the entire movement period of ML condition (all neurons, n�90) and
n�44).
ediate (hidden) layers, and an output layer with an adjustment of

tivity of grasping neurons recorded from the ventral premotor
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the parameters (weights) based on error back-propagation.
Thanks to the non linear relationship between inputs and outputs,
ANN are powerful classifiers and are widely used in the field of
machine learning even if they have a high computational cost and
uncertainty about the working procedure of the classifier. In the
present study a feed-forward ANN classifier with 10 hidden units
trained using the back-propagation algorithm has been used. The
training phase was either stopped after a specified number of
epochs (1000), or if the iteration number exceeded twice that of
the best classification result.

SVMs are a family of supervised learning methods originally
proposed for two-category discrimination problems. Feature vec-
tors are non-linearly mapped to a very high-dimension space
where a linear separation between the two categories may be
possible. In the transformed feature space a hyperplane is con-
structed to maximize the margin between category members.
Kernel functions are used to avoid the computational costs of the
explicit representation of the input vectors in the high dimensional
feature space. Moreover, other properties of SVM are the absence
of local minima and the automatic derivation of a network structure
that guaranties an upper bound on the generalization error
(Burges, 1998; Shawe-Taylor and Cristianini, 2004).

If SVM cannot find a separating hyperplane, a regularization
parameter C is introduced to allow misclassification in the training
set (Cortes and Vapnik, 1995). The type of SVM used in this
manuscript is called �-SVM (Chen et al., 2005). Among the vari-
us kernels available, the radial basis function (RBF) was chosen
ecause it allows fairly complex separation surfaces requiring a
educed number of hyper-parameters to tune (Hsu et al., 2003).
he radial basis kernels are of Gaussian form:

K(x, y) � exp(�	(x � y)2)

ith x,y as input vectors. It was decided to use fixed hyperparam-
eters, even if this could lead to more conservative results, be-
cause tuning them by means of iterative methods requires an
additional cross-validation scheme that reduces the already small
number of examples available to train and test the classifier. Using
�-SVM with RBF, hyperparameters � and 	 need to be chosen.

he regularization parameter � is an upper bound on the fraction
of margin errors and a lower bound on the fraction of support
vectors. ��0.5 was selected because it was considered a good
trade-off between allowing training errors and favoring smooth
separation surfaces. The parameter 	 determines the radius of the

BF. We set 	�1/
2 where 
 is the radius of the smallest sphere
in the input space that contains all feature vectors F of the training
set. Keerthi (2002) has shown that it is a good starting point for
terative methods. To allow SVMs, and other binary classifiers, to
andle multi-category problems, the latter must be decomposed

nto several binary problems. Several approaches are possible
Huang et al., 2006), and the most commonly used are: (i) one-
gainst-one and (ii) one-against-the-rest. In this work a one-
gainst-one approach was used where, for a k- category classifi-
ation problem, k(k�1)/2 machines were trained. Each SVM sep-
rates a pair of categories and, in the prediction stage, a voting
trategy was used where the outcome was the category with the
aximum number of votes.

The SM estimator (Bishop, 1995) is equivalent to a non linear
wo layer neural network but the output layer was organized into M
utputs corresponding to the number of categories to identify.
hese output units were trained to encode the probabilities of a
pecific category. Because these outputs are mutually exclusive
i.e., only a specific category is possible), the probabilities were
onstrained to sum to unity through SM normalization. The activity

f output unit i on trial k, yi

k, was determined according to:

Please cite this article in press as: Carpaneto J, et al., Decoding the ac
area F5 of the macaque monkey, Neuroscience (2011), doi: 10.1016/j.n
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k �

exp��
j�1

N

wij ri
k�

�
i�1

6

exp��
j�1

N

wij rj
k�

where �wij�i�1,. . .,6j�1,. . .,N are the weights and �rj
k�j�1,. . .,N are the ac-

ivities of the F5 neurons on trial k.

Training and cross-validation

Usually, cross-validation consists of splitting the dataset of exam-
ples into two (or more) subsets such that supervised training is
initially performed on one subset (the training set), while another
is retained “blind” (the test set) for later use in validating the
trained classifier and assessing its generalization abilities. To deal
with the small number of trials available (6 objects�8 repetitions),
a leaving-one-out (LOO) validation scheme has been imple-
mented (Fukunaga, 1990). LOO uses a single example per cate-
gory (grip type) as the test set, and the remaining ones as the
training set. The error rate is the number of errors on the single
test cases divided by the number of repetitions.

Presentation of results

Classification performance has been assessed and presented by
using the recognition ratio (RR) and confusion matrixes (CMs).
The RR, the overall percentage of correct classification, is the ratio
between the number of grips correctly identified and the total
number of grips classified. This parameter provides a synthetic
indication of the average performance of the system. The confu-
sion matrix CM describes the pattern of errors made by the
classifier. Each row indicates the grip, and each column indicates
the classifier predictions (as a percentage of trials). Each element
CMij is the number of grips of actual category i, identified (correctly
f i�j, wrongly if i�j) as belonging to the predicted category j. The
dvantage of a confusion matrix is that it facilitates the identifica-
ion of subsets of categories that the system recurrently confuses.

The algorithm has been tested varying the number of neurons
eing decoded to determine the effects on the recognition ratio
nd on the minimum number of neurons needed for a good
lassification. The number of units K decoded was set from 2 to
he maximum number of units recorded for each set of objects and
xperimental condition. If the number of combinations of neurons
aken K at a time was too high, a random selection of 2000
ifferent combinations has been used for the generation of the
opulation patterns of activity. The RR of the classifiers has been
lso evaluated varying the number of grips, either considering
hem different for each object (six/set) or taking into account their
imilarities as revealed by the hierarchical cluster analysis.

All algorithms have been developed under Matlab (Math-
orks, Natick MA, USA) environment. The toolbox provided by

Duin et al., 2004) was used for the LC, kNN and ANN classifiers,
hereas the toolbox supplied by Sigurdsson (2002) was em-
loyed for the SM classifier. The open source library LIBSVM
Chang and Lin, 2001; Hsu et al., 2003) was used for the SVM
lassifier.

RESULTS

Different algorithms have been tested for the classification
of the features extracted from the signals recorded from F5
grasping-related neurons at time intervals spanning from
25% to 100% of movement or object presentation periods,
using different sets of objects/grips (original and special,

see Fig. 3). In particular, five classifiers have been tested

tivity of grasping neurons recorded from the ventral premotor
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to discriminate either six grips as if each object required a
different grip, or clusters of grips (from three to five) ac-
cording to the results of the hierarchical cluster analysis.
Fig. 5 shows a comparison of the performance of all the
classifiers used in this study taking into account the fea-
tures extracted from the neuronal discharge during the
entire movement epoch of the ML condition. Similar results
have been obtained with the features extracted from the
discharge during the entire movement epoch of the MD
condition, as well as during the presentation periods of the
ML and OF conditions. For the subsequent analyses we
chose to use SVM algorithm because of its higher RR
percentage with six grips in both sets of objects (see Fig. 5)
and its easier implementation with the data.

Fig. 6 presents the classification performance (RR) as
a function of the number of grips to be recognized. We
analyzed the neuronal discharge during the movement
period of ML and MD condition. When the grips used for
grasping the six objects of the original set are considered
all different, the performance of the classifier is poor even
using the entire movement period (Fig. 6A, C). However,
when the classification is made among the four grips ac-
tually used in order to grasp the six different objects, the
algorithm discriminates accurately (100%) when fractions
of the movement time (ML: 50%, MD: 75%) are taken into
account (Fig. 6A, C). The performance of the classifier with
the six grips of the special set, which appear more distinct
than the grips of the original set, reached high values (ML:

Fig. 5. Comparison of the RR obtained with the different classifiers as
a function of the number of grips to be recognized. The entire move-
ment period of ML condition and the entire neuronal population were
used for the calculation of RRs. (A) original set; 65 neurons, (B) special
set; 25 neurons. Horizontal grey lines denote chance levels.
100%, MD: 97.92%) when 50% of the movement time is
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taken into account (Fig. 6B, D). Note that in the special set
of objects there are two objects with the same shape (ring
and sphere) but of different size (small and large), which
were grasped by the monkey with different grips (see Fig.
3). The algorithm is able to distinguish the objects of dif-
ferent sizes, very likely because its recognition is based on
grip coding.

As demonstrated above, a period corresponding to the
50% of the movement time is sufficient for the extraction of
the features to obtain correct classification of the grips by
the classifier. Given that the time required for the accom-
plishment of the transport and grasping phases of the
movement (calculated as the difference between object
pull and key release events) toward the objects of the
original and the special set is 337�115 ms and 417�196
ms, respectively, there is sufficient time for the eventual
control of a robotic hand. The optimal window length could
be selected for each subject as a trade-off between per-
formance and acceptable delay.

In order to investigate the performance of the classifier
during the different phases of grasping, we also analyzed
the data of the holding phase during which the grips are
static. When the grips used for grasping the six objects of
the original set are considered all different, the perfor-
mance of the classifier is poor (Fig. 6E). The performance
improves when the classification is made among four grips
(91%, with the entire movement period considered). High
performance (above 93%) is achieved at short time win-
dows (25%) for the classification of the six grips of the
special set (Fig. 6F).

To take advantage of the fact that visuomotor neurons
esponded also during the presentation of an object or a
et of objects, as if the visual features of an object were
utomatically “translated” into a potential motor act de-
cribing its pragmatic physical properties, we also ana-

yzed the neuronal discharge of the object presentation
eriod. Object presentation periods exist in ML and OF
onditions. In the former condition, the object presentation
eriod is followed by a grasping movement whereas in the

atter it is not. Because both conditions gave equivalent
ecoding performances, only the results of the OF condi-
ion will be presented here. The classifier discriminates
ccurately (100%) the four grips of the original set when
he 25% of object presentation period is used (Fig. 6G).
he performance of the classifier for the grips of the spe-
ial set, although lower than in the latter case, ranges from
1.67% to 95.83% (Fig. 6H).

Fig. 7 presents the classification performance as a
unction of the number of units recruited for the recognition
mong the grips. Taking into account the neuronal dis-
harge during the movement period and considering six
rips for the objects of the original set, the higher RR (ML:
7.5%, MD: 83.6%) is achieved when the entire movement
eriod and the entire neuronal population is engaged (Fig.
A, B). However, when the classification is made among
our grips, higher RRs (ML: 93.75%, MD: 95.8%) are
chieved with 65 neurons recruited, even when only 25%
f movement time is used (Fig. 7C, D). The classification
performance reaches high values (ML: 94.64–99.87%,

tivity of grasping neurons recorded from the ventral premotor
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MD: 94.64–99.55%) when fewer neurons (16–32) are re-
cruited at longer movement time intervals (50–100%).
Concerning the grips for the special set of objects, the
accuracy of the recognition reaches high values (ML:
100%, MD: 97.92%) even when few cells (25) were used
with a rather short (50%) time window (Fig. 7E, F).

To examine whether and how decoding performance

Fig. 6. Performance of the SVM classifier as a function of the number
75%, and 100% of the movement time of ML (A, B) and MD (C, D) c
condition (E, F) [all neurons, n�65 for the original set (A, C, E) and n�
f OF condition [visuomotor neurons, n�29 for the original set (G) an
depends on the selectivity of neurons recruited, the popu-
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lation of neurons tested with the original set of objects has
been divided in two subpopulations on the basis of their
motor preference as quantified by the preference index.
The neurons having a PI smaller than the median have
been assigned to the subpopulation of neurons displaying
low selectivity, whereas the neurons having a PI larger
than the median constituted the subpopulation of neurons

be recognized based on the features extracted during the 25%, 50%,
, during the 25%, 50%, 75%, and 100% of the holding period of ML
special set (B, D, F)]; as well as during the object presentation period

for the special set (H)]. Other conventions as in Fig. 5.
of grips to
onditions
25 for the
with high selectivity. The performance of the classifier

tivity of grasping neurons recorded from the ventral premotor
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using the features extracted during the movement period
of the ML condition is presented in Fig. 8. When consider-
ing six grips the RR achieved is poor irrespective of low or
high selectivity (Fig. 8A, B). However, when the classifica-
tion is made among four grips, maximum performance is
achieved when the entire movement period and all neu-
rons in each subpopulation are taken into account (Fig. 8C,
D). It is noteworthy that the classification performance
reaches high values (low: 91.95–97.34%, high: 95.52–

Fig. 7. Performance of the SVM classifier (mean RR�SD) as a funct
50%, 75%, and 100% of the movement time of ML (left column) and M
(C, D) original set of objects, 65 neurons, four grips; (E, F) special se

Fig. 8. Performance of the SVM classifier with neurons displaying low (
lassifier (mean RR�SD) (original set of objects) has been tested as a

25%, 50%, 75%, and 100% of the movement time of ML condition. (A

in Fig. 5.

Please cite this article in press as: Carpaneto J, et al., Decoding the ac
area F5 of the macaque monkey, Neuroscience (2011), doi: 10.1016/j.n
96.58%) also when fewer neurons (16–24) are recruited at
shorter movement time intervals (50–75%).

Half of the object presentation period and the entire
population of the visuomotor neurons tested with the orig-
inal set are required in order to achieve a high recognition
ratio (93.75%) among six grips (Fig. 9A). However, when
the classification is made among four grips, the recognition
ratio reaches the maximum (100%) using the shortest time
window with the entire population (Fig. 9B). Interestingly,

number of neurons based on the features extracted during the 25%,
olumn) conditions. (A, B) original set of objects, 65 neurons, six grips;
ts, 25 neurons, six grips. Other conventions as in Fig. 5.

n) and high (right column) selectivity as quantified by the PI. The SVM
of the number of neurons, based on the features extracted during the

eurons, six grips; (C, D) 32 neurons, four grips. Other conventions as
ion of the
left colum
function

, B) 32 n
tivity of grasping neurons recorded from the ventral premotor
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high performance (above 95%) is achieved using fewer
units (16) at all time windows (Fig. 9B). The performance of
the classifier for the grips of the special set is shown in Fig.
9C. In this case, the entire presentation period is required
to achieve the highest recognition (95.83%) among the six
grips.

To reveal the effects of the clustering, the CMs pre-
ented in Fig. 10 were calculated. In Fig. 10A, C it is

evident that the side grips performed for grasping the cube
(1), the sphere (2) and the cone (3) cannot be discrimi-
nated perfectly even when the entire movement period is
used, may be due to the fact that they are virtually identical
from a kinematic viewpoint. The grips of the special set are
recognized when short fractions of the movement time are
employed (Fig. 10B, D), probably due to the sharper kine-

atic differences among them, as compared to the grips of
he original set.

Also in the case of the object presentation period of OF
ondition the algorithm cannot discriminate satisfactorily
mong the side grips even when the entire object presen-

ation period is used (Fig. 10E). However, the discrimina-
tion among the four grips is achieved with short fractions of
the object presentation period (Fig. 10E). The grips of the
special set can be recognized without clear effects of
clustering when sufficient time is provided (Fig. 10F).

Fig. 11 displays the performance of the SVM as a

Fig. 9. Performance of the SVM classifier (mean RR�SD) as a func-
tion of the number of neurons based on the features extracted during
the 25%, 50%, 75%, and 100% of the object presentation period of OF
condition. (A, B) original set of objects, 29 visuomotor neurons, six and
four grips, respectively; (C) special set of objects, 15 visuomotor
neurons, six grips. Other conventions as in Fig. 5.
function of the window length of the object presentation

Please cite this article in press as: Carpaneto J, et al., Decoding the ac
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period of OF condition used for the extraction of the fea-
tures. For the original set, a period of 450 ms is sufficient
to obtain a good prediction of the grips (RRs from 85.42%
for six grips to 93.75% for four grips, Fig. 11A). Similarly, a
period longer than 650 ms is required to obtain high rec-
ognition ratios for the classification of four to six grips
during the observation of the objects belonging to the
special set (RRs from 93.75% for six grips to 97.92% for
four grips, Fig. 11B). Although during object presentation,
as compared with movement time, information must be
accumulated over longer periods in order for classification
to asymptote, the potential use of the discharge during
object presentation for the decoding is remarkable given
that it occurs well before the initiation of the movement,
thus providing ample time for the control of hand
prosthesis.

For the results reported so far, the features were cal-
culated on a trial-by-trial basis separately for each portion
of the movement period considered, in order to avoid
incorrect classification of the grips due to variation of the
movement duration among trials and grips. However, this
procedure has the disadvantage of missing real time infor-
mation. To complement our results by defining when one
can trust the grip classification in real time, we estimated
the performance of the SVM classifier as a function of the
number of grips to be recognized based on the features
extracted from time spans falling in a reference period
starting 400 ms before the instruction to move (LED color
change) and ending 200 ms after the movement onset.
Fig. 12A, B, E, F show the classification performance when
the features were extracted from a time window of 200 ms,
which progressively slid over the reference period with a
moving step of 50 ms. Fig. 12C, D, G, H show the classi-
fication results when the features were extracted from a
time window (initial width: 20 ms), which was progressively
increasing at 20 ms increments until the end of the refer-
ence period. Both approaches revealed that good recog-
nition ratios between the grips can be obtained as early as
400 ms before the instruction to move and that there is no
strong difference in the performance of the algorithm be-
fore and after movement onset.

DISCUSSION

The results of the present study show that F5 grasping-
related neurons represent a reliable source of information
for the implementation of decoding algorithms that could
eventually be used for the control of artificial hand grasp-
ing. In most cases, few neurons and short window lengths
for the extraction of the features were sufficient to achieve
a good prediction. The classifier could predict the six grips
for the special set of objects and the four grips for the
original set of objects. Classification errors revealed by
confusion matrices were found to reflect similarities of
hand postures used to grasp the objects. The decoding
process can extract the correct kind of grip even when only
the discharge of the visuomotor units during the presenta-
tion of the objects (occurring well before movement onset)

was used.

tivity of grasping neurons recorded from the ventral premotor
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Fig. 10. Confusion matrices (CMs) describing the pattern of errors made by the SVM classifier. Different percentages (25%, 50%, 75%, and 100%)
of the movement time of ML (A, B) and MD (C, D) conditions as well as of the object presentation period (E, F) of OF condition have been used for
the extraction of the features. Numbers 1 to 6 denote different grips (as presented in Fig. 3) and numbers 12, 123 and 45 denote grips clustered
together. The performance of the classifier is represented by the gray shading. (A, C) original set, 65 neurons; (B, D) special set, 25 neurons; (E)

original set, 29 visuomotor neurons; (F) special set, 15 visuomotor neurons.

Please cite this article in press as: Carpaneto J, et al., Decoding the activity of grasping neurons recorded from the ventral premotor
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The fact that in the present study the decoding was
erformed offline introduces some caveats. The most im-
ortant one is related to the use of single cell recordings
hich provide signals of higher quality (in terms of signal-

o-noise ratio) as compared to multiunit activity recorded
y chronic implants. We found that the type of grip can be
ecoded with high accuracy from small numbers of neu-
ons and decoding accuracy remains rather unaffected by
he degree of selectivity of the neuronal population. These
esults likely overstate true performance, as those neurons
ere selected online for their responsiveness and quality
f isolation, something that would not be possible for any
urrently available implantable system. Therefore, more
ells may be necessary to achieve comparable levels of
lassification performance with chronically implanted elec-
rodes. In addition, our data lack a correlation structure; in
ontrast, the activities of simultaneously recorded neurons
re often correlated. However, it is difficult to predict how

he performance would be using the activity of simultane-
usly recorded neurons because correlations can either

mprove or deteriorate decoding accuracy depending on
he form of the correlation matrix (Zohary et al., 1994;
bbott and Dayan, 1999; Maynard et al., 1999; Bair et al.,
001).

The fact that the decoding performance occurs even
hen the monkey does not perform the encoded behavior
ould indicate that the motor timing (movement onset) is
ot encoded by F5 activity. Recent studies demonstrate

Fig. 11. Comparison of the RRs obtained as a function of the duration
of the object presentation period considered. The duration ranges from
150 to 950 ms (steps of 100 ms). (A) original set, 29 visuomotor
neurons, (B) special set, 15 visuomotor neurons. Other conventions as
in Fig. 5.
hat predictions of motor timing can be extracted from the n
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opulation activity of neurons recorded in motor and dorsal
remotor cortex (Lebedev et al., 2008).

The majority of the studies aimed to decode grasping
ovements used signals recorded from area MI (Carmena
t al., 2003; Hochberg et al., 2006; Kim et al., 2006;
elliste et al., 2008). However, simultaneous recordings

rom ventral premotor and MI populations revealed that
remotor neurons display greater grip specificity than
hose of MI. The grip-related activity of F5 premotor neu-
ons started in the pre-movement and early movement
hases and was a strong predictor of the activity later in
he task. In contrast, MI neurons were involved in all
hases of the grasp-and-hold task, but their contribution
aried during different phases of the tasks (Umilta et al.,
007). Moreover, it has been shown that F5 neurons are
ore related to the goal of the motor act than MI neurons
o (Umilta et al., 2008). The ventral premotor area F5
ould influence hand motor function through at least two
athways: corticospinal projections (Dum and Strick, 1991;
e et al., 1993; Borra et al., 2010) and corticocortical
rojections to MI (Matsumura and Kubota, 1979; Muak-
assa and Strick, 1979; Matelli et al., 1986; Dum and
trick, 2005). Several lines of evidence support the notion

hat the hand motor function is accomplished by the latter
athway (Cerri et al., 2003; Shimazu et al., 2004). Very
ecently it has been demonstrated that inactivation of MI
educed or abolished electromyographic responses elic-
ted by intracortical microstimulation of F5 (Schmidlin et al.,
008). These results further corroborate the idea that the
otor effects evoked from F5 depend, at least in part, on

orticocortical interactions with MI, leading to activation of
I corticospinal outputs to hand muscles.

The robotic limbs used in many studies during the last
ecade were equipped with grippers that could open and
lose, but lacked the flexibility and adaptability of the hu-
an or primate hand and therefore could not change their

onfiguration to conform appropriately to objects that differ
n size and shape (Carmena et al., 2003; Hochberg et al.,
006; Kim et al., 2006; Velliste et al., 2008). A BMI aiming
o control complex motor actions such as reaching to and
rasping objects of different shape and size could take
dvantage of multiple cortical areas with complementary
ctivities. The use of activities from multiple neuronal pop-
lations belonging to different cortical areas would improve
ecoding performance (Lebedev et al., 2008) and enable
he extraction of different kinds of information (Hatsopou-
os et al., 2004; Schwartz et al., 2004). Based on simulta-
eous recordings from MI and dorsal premotor (PMd) cor-
ices in behaving monkeys, Hatsopoulos et al. (2004) dem-
nstrated a double dissociation in which ensemble activity

n MI more accurately reconstructed a dynamically varying
ndpoint, whereas PMd ensemble activity more effectively
redicted upcoming movements to discrete targets. Using
motor illusion paradigm, Schwartz and colleagues (2004)
emonstrated that the actual arm movement trajectory was
econstructed more accurately by a population of MI neu-
ons, whereas the visualized trajectory was reconstructed
ore faithfully by a population of ventral premotor cortex

eurons. In the same way, the control of a robotic arm

tivity of grasping neurons recorded from the ventral premotor
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equipped with a dexterous hand for reaching, grasping and
manipulating objects of different shape and size positioned
in various spatial locations could benefit from motor, pre-
motor and parietal population activity. Activity from premo-
tor and parietal areas may play an instructive role for
primary motor cortex during performance of skilled hand
movements. For example, signals from F5 concerning the
grip type, the goal of the motor act (Rizzolatti et al., 1988;
Umilta et al., 2008) and the physical properties of the
bject (Murata et al., 1997; Raos et al., 2006) and signals

Fig. 12. Performance of the SVM classifier as a function of the numb
starting 400 ms before the instruction to move (LED color change) and
sliding time window approach (sliding window width: 200 ms, moving s
width: 20 ms, increment: 20 ms). Left column: original set; right column
mean time of key release (continuous line) � SD (dashed lines). Oth
from anterior intraparietal area (AIP) providing information

Please cite this article in press as: Carpaneto J, et al., Decoding the ac
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about object affordances and visual guidance for the hand
(Sakata et al., 1995; Murata et al., 2000; Baumann et al.,
2009) could be combined with signals from MI regarding
direction of reaching, timing of grasping and force to
be employed. Recently, Scherberger and colleagues
(Townsend et al., 2007) succeeded to correctly predict the
grasp type (precision vs. power) using neural activity ac-
quired through chronically implanted electrodes in AIP and
F5. Their study is the first showing the feasibility of online
grip decoding using activity recorded from premotor and

s to be recognized based on the features extracted during the period
200 ms after the movement onset (key release) using (A, B, E, F) the
s) or (C, D, G, H) the increasing time window approach (initial window
set. Vertical line at 0 ms: LED color change. Vertical lines at 300 ms:
tions as in Fig. 5.
er of grip
ending

tep: 50 m
: special
parietal cortical areas. Our finding that the decoder cor-
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rectly discriminates among grips in advance of movement
onset and maintains this classification also when the
movement starts, indicates that information about the grip
can be provided to a control system earlier than movement
onset, thus giving ample time for the control of grasping.
Depending on the operation of the automatic control sys-
tem, the information about the correct grip type can be
used either for an early opening (during reaching) of the
prosthetic hand scaled to object size, similarly to what
occurs in natural reach-to-grasp movements (Jeannerod,
1981; Paulignan et al., 1990; Roy et al., 2000; Mason et al.,
2001), or for a late hand opening at the end of reaching.
The former solution, however, would allow a faster and
smoother performance of the prosthetic hand.

Recently, Donoghue’s team correlated neural activity
n MI of macaques to the upper limb postures during reach-
ng and grasping of objects differing in shape and size
Vargas-Irwin et al., 2010). They successfully measured

and reconstructed 25 joint angles going far beyond the few
dimensions of neural control that had been achieved so far
in previous studies (Carmena et al., 2003; Hochberg et al.,
2006; Kim et al., 2006; Velliste et al., 2008). However,
there was no discrimination among different grips, al-
though the task decoupled the groups of kinematic vari-
ables related to the upper arm, the wrist, and the hand. In
another study Ben Hamed et al. (2007) were able to de-
code offline 12 single finger movements with �99% accu-
racy using as few as 30 neurons randomly selected from
populations of task-related neurons recorded sequentially
from the MI hand representation. However, movements of
pairs of fingers were decoded with less accuracy (90.9%)
using a three times larger population of neurons. Similar
results were subsequently obtained by other studies
(Acharya et al., 2008; Aggarwal et al., 2008).

The decoding performance obtained using the activity
of F5 grip-related neurons is promising. The results of the
present study strongly suggest that the ventral premotor
area F5 is a viable cortical area that could, in combination
with other areas, be proficiently used for the control of
grasping.
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