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Abstract

In this paper, we prove an exponential rate of convergence result for a common estimator of conditional value-at-risk for
bounded random variables. The bound on optimistic deviations is tighter while the bound on pessimistic deviations is more
general and applies to a broader class of convex risk measures.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The use of value-at-risk (VaR) as a risk measure has
been the subject of significant criticism in recent years
(e.g., [7,9]), primarily due to the facts that VaR does
not properly account for risk diversification and that
it says nothing about the magnitude of losses beyond
the quantile level in question.

As a result of these drawbacks associated with VaR,
the class of coherent risk measures was axiomatized
and popularized by Artzner et al. [2] and Delbaen [8].
Of particular interest within this class of risk measures
is the conditional value-at-risk (CVaR) risk measure
(see, [14,1]), which has received considerable atten-
tion within the mathematical finance community.

Despite the interest in coherent risk measures, they
have in turn received criticism because the size of such
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risk measures grows linearly with the size of positions,
thereby ruling out many of the inherently nonlinear,
certainty equivalent-type risk measures suggested by
traditional utility theory [16]. Accordingly, the axioms
of coherent risk measures were relaxed by Föllmer
and Schied [10], who introduced the class of convex
risk measures. These risk measures allow the use of
a wide-range of nonlinear, certainty equivalent mea-
sures, including the class of optimized certainty equiv-
alent (OCE) risk measures introduced by Ben-Tal and
Teboulle [3,4,6], who also study these risk measures
in the context of portfolio theory [5]. It is known that
CVaR is in fact an OCE with a particular, piecewise-
linear loss function [6].

Our focus in this paper will be primarily on CVaR
and the practically relevant issue of how to esti-
mate it from samples. While the asymptotic conver-
gence properties of various estimators for CVaR have
been investigated (e.g., [1]), less is known about the
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finite-sample convergence properties for estimators.
Takeda and Kanamori [15] have recently shown some
finite convergence results for CVaR; although these
results apply to the case of optimization of CVaR, the
bounds rely on statistical learning and, as a result, suf-
fer from the conservatism of this theory.

Here we will use the classical results of McDiarmid
[12] and Hoeffding [11] to derive large deviation con-
vergence bounds for estimating CVaR from a finite
number of independent samples. Our results apply to
bounded random variables representing an uncertain
loss (hence, we will, at times, refer to estimates that are
larger than the true value to be “pessimistic” and those
that are smaller than the true value to be “optimistic”).
The estimator we will use is the intuitive one based on
fitting the distribution via the “method of moments”
and discussed in many treatments of CVaR (e.g., [14]).

For this estimator, with N independent samples, we
show the following:

1. The probability that an estimate of CVaR� (X) is
pessimistic by an amount � decays exponentially in
�2�2N . This bound applies to more general OCE
risk measures as well, and we show the CVaR bound
as a special case of it.

2. When X, in addition, has a continuous probabil-
ity distribution, the probability that an estimate is
optimistic by an amount � decays exponentially in
��2N .
Notice that the bound on optimistic (lower) devia-

tions is tighter than the bound on pessimistic devia-
tions, but less general in that it only applies to CVaR.
Although we have yet to show it, we believe a similar
bound decaying exponentially only in ��2N should ap-
ply to the pessimistic estimates as well. Furthermore,
though we also do not show it, we believe the bound
on optimistic estimates is tight up to constants.

For a real-valued function f : Rn → R, re-
call the definition of the conjugate is f ∗(y)�
supx∈dom f {y′x − f (x)}.

2. Background

Consider a probability space (�,F, P), and let X
be a set of real-valued random variables on �, i.e., a
set of functions X : � → R. Here, X represents an
uncertain loss. We have the following definition.

Definition 2.1. A risk measure is a function � :
X → R.

A risk measure � induces a preference order
�� over random variables in X. Specifically, we
have, for all X1, X2 ∈ X, X1��X2 ⇔ �(X1)�
�(X2).

We begin by recalling a class of certainty equivalent
risk measures introduced by Ben-Tal and Teboulle [3]
and further developed in [4,6].

Definition 2.2. Let � be the class of all functions � :
R → R ∪ {+∞} which are closed, convex, have a
minimum value of 0 attained at 1, and satisfy dom � ⊆
R+. The OCE of a random variable X ∈ X under
� ∈ � is

��(X)� inf
�∈R

{� + E[�∗(X − �)]}. (1)

The OCE can be interpreted as the value ob-
tained by optimally paying an uncertain debt X
between two periods. The sure amount � is paid to-
day, and the remainder, X − �, is paid later. The
loss function �∗ captures the “present value” of
this uncertain, future debt. �� is then the mini-
mum possible present value over all possible two-
period payment plans; in other words, computation
of the risk measure �� is itself an optimization
problem.

The framework for OCEs in [6] is actually devel-
oped in terms of gains and a concave utility func-
tion u. Specifically, the authors consider the measure
Su(X) = sup�∈R{� + E[u(X − �)]}, which is perhaps
more easily interpreted than �� as the optimal two-
period consumption of an uncertain income X with u
representing the utility of the future income X − �. It
is easy to show that ��(X)=−Su(−X) when �∗(t)=
−u(−t). Therefore, �� is a simple dual of Su with ap-
propriate sign changes to measure losses rather than
gains.

Some examples of OCEs are the following (here
dom � = R+ is implicitly assumed):

Exponential loss:

[�(t) = t log t − t + 1] ⇒ [�∗(u) = eu − 1]

⇒ [��(X) = log E[eX]].
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Quadratic loss: For a random variable X� − 1,

[�(t) = 1
2 (t − 1)2]

⇒
[
�∗(u) =

{ 1
2 u2 + u if u� − 1
− 1

2 otherwise

]
⇒ [��(X) = E[X] + 1

2	2(X)].
CVaR also fits in as a special case of the OCE risk

measure.

Definition 2.3. For � ∈ (0, 1], the conditional value-
at-risk at level � of a random variable X ∈ X is

CVaR� (X) � inf
�

{
� + 1

�
E[(X − �)+]

}
. (2)

Thus, as detailed in [6], CVaR is a special case of
the OCE measure with a particular, piecewise linear
loss function. It is well known (e.g., [1]) that, when
X has a continuous distribution, that CVaR� (X) =
E[X|X�VaR� (X)], where

VaR� (X) � sup
x

{x|P (X�x) ��} (3)

is the �-quantile (or “value-at-risk”) of X. While this
relationship does not necessarily hold if X has a dis-
continuous distribution, we can nonetheless roughly
interpret CVaR� (X) as the expected loss over the �%
worst cases.

As the thrust of this paper is the rate of convergence
for estimating risk measures (specifically, CVaR), we
now define the estimator for which we will prove con-
vergence results. We will implicitly assume the ran-
dom variable in question obeys the following assump-
tion in everything that follows.

Assumption 2.1. The random variable X ∈ X satis-
fies supp (X) ⊆ [0, U ] and the samples X1, . . . , XN

used for estimation are independent.

A boundedness criterion is common in many con-
centration inequalities and is in fact needed to apply
the results of McDiarmid [12] and Hoeffding [11];
we will, without loss of generality, use supp (X) ⊆
[0, U ], though the results extend in straightforward
fashion to more general intervals [a, b] ⊆ R. The rea-
son that this is so is that OCEs (and hence CVaR)
satisfy translation invariance, i.e., for any c ∈ R, we
have ��(X + c) = ��(X) + c (e.g., [6]). Therefore,

we may always shift all samples by a constant amount
so that they are in [0, U ], perform our estimation pro-
cedure, and then subtract the constant from the es-
timate. The corresponding convergence rates in such
cases, then, apply directly with U simply replaced by
b − a.

The estimator we will use is as follows.

Definition 2.4. Let �� be an OCE with � ∈ �. The
simple estimate for ��(X) is

�̂�(X1, . . . , XN)� inf
�

{
� + 1

N

N∑
i=1

�∗(Xi − �)

}
.

(4)

For the case of �� = CVaR�, we denote the simple

estimator by ̂CVaR�, i.e.,

̂CVaR� (X1, . . . , Xn) � inf
�

{
� + 1

N�

N∑
i=1

(Xi − �)+
}

.

(5)

The estimator (4) is an intuitive one based on the
method of moments; such estimators are efficiently
computed for large N and most convex loss functions
�∗. The estimator (5) is the one typically used in most
treatments discussing estimation of CVaR from sam-
ples (e.g., [14,15]). Our focus now will be quantifying
the estimation error associated with (4) and, in partic-
ular, (5).

3. A bound on upper deviations via McDiarmid

The main machinery for proving a rate of con-
vergence on upper deviations will be the following,
powerful result from McDiarmid [12]. We will prove
this convergence for general OCE risk measures, and
CVaR follows as a special case.

Theorem 3.1 (McDiarmid [12]). Consider a function
f : Sn → R which satisfies

sup
x1,...,xn,x′

i∈S

|f (x1, . . . , xn) − f (x1, . . . , x
′
i , . . . , xn)|

�ci , (6)
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for all i = 1, . . . , n. Let X1, . . . , Xn be independent
random variables taking values in S. Then

P (|f (X1, . . . , Xn) − E[f (X1, . . . , Xn)]|��)

�2e−2�2/
∑n

i=1c
2
i . (7)

Though not explicit in the statement of Theorem
3.1, McDiarmid’s inequality is in fact symmetric;
we apply the bound on upper deviations to derive a
rate of convergence on pessimistic estimation errors
for ��(X). We are able to do this because the es-
timator (4) lower bounds �� in expectation, as we
now show.

Proposition 3.1. The estimator (4) satisfies the fol-
lowing:

E[�̂�(X1, . . . , XN)]���(X). (8)

Proof. We prove the result for continuous probability
spaces, but it easily extends to the more general case.
We have

E[�̂�(X1, . . . , XN)]

=
∫
�∈�N

inf
�

{
�+ 1

N

N∑
i=1

�∗(Xi(�)−�)

}
dPN(�).

Since supp (X) ⊆ [0, U ], there exists a �∗(�) ∈
[0, U ] attaining the infimum for every � ∈ �N

(see [6, Proposition 2.1]). By construction, �∗(�)

satisfies

�∗(�) + 1

N

N∑
i=1

�∗(Xi(�) − �∗(�))

�� + 1

N

N∑
i=1

�∗(Xi(�) − �) ∀� ∈ R. (9)

In addition, let �̂∗ be any � attaining the infimum for
��(X), i.e., �̂∗ ∈ arg inf�{�+E[�∗(X−�)]}. By similar
reasoning, such a �̂∗ is guaranteed to exist in [0, U ].

We then have

E[�̂�(X1, . . . , XN)]

=
∫
�∈�N

inf
�

{
� + 1

N

N∑
i=1

�∗(Xi(�) − �)

}

× dPN(�)

=
∫
�∈�N

(
�∗(�)+ 1

N

N∑
i=1

�∗(Xi(�)−�∗(�))

)

× dPN(�)

�
∫
�∈�N

(
�̂∗+ 1

N

N∑
i=1

�∗(Xi(�)−�̂∗)
)

dPN(�)

= �̂∗ + 1

N

∫
�∈�N

N∑
i=1

�∗(Xi(�) − �̂∗) dPN(�)

= �̂∗ + E[�∗(X − �̂∗)]
= ��(X),

where the inequality follows by (9). �

The inequality in Proposition 3.1 will, in general, be
strict. Indeed, consider the case of exponential utility,
i.e., �∗(u)=eu−1. In this case, ��(X)=log E[eX], but
one also notes that inf�{�+ex−�−1}=x, which means,
when N = 1, that E[�̂�(X1)] = E[X1] = E[X]. From
here, Jensen’s inequality tells us that log E[eX] > E[X],
provided that X is not a constant random variable, and
therefore the inequality is strict in this case.

In general, then, the estimator (4) is optimistically
biased. As we will prove in the next section, however,
for the case of CVaR, the probability that the simple
estimate will deviate optimistically by an amount �
decays exponentially in �2N .

For now, we are ready for the main result of this
section, which is instead a large deviations bound on
the estimator being overly pessimistic.

Theorem 3.2. Let �� be an OCE with � ∈ �. Then

P(�̂�(X1, . . . , XN)���(X) + �)

�e−2(�/�∗(U))2·N . (10)

Proof. The main task is to find the bounded differ-
ences, then apply McDiarmid’s inequality and Propo-
sition 3.1. Without loss of generality, we may assume
the term on the left below (the term with X1 not X′

1) is
the larger of the two, and let �∗

R be a value of � which
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achieves the infimum for the term on the right (again,
such a �∗

R is guaranteed to exist). We then have

sup
(X1,...,XN ,X′

1)∈[0,U ]N+1
[�̂�(X1, . . . , XN)

− �̂�(X′
1, . . . , XN)]

= sup
(X1,...,XN ,X′

1)∈[0,U ]N+1

×
[

inf
�

{
� + 1

N

N∑
i=1

�∗(Xi − �)

}

− inf
�

{
� + 1

N

(
N∑

i=2

�∗(Xi − �)

)

+ 1

N
�∗(X′

1 − �)

}]

� sup
(X1,...,XN ,X′

1)∈[0,U ]N+1

×
[
�∗
R + 1

N

N∑
i=1

�∗(Xi − �∗
R)

−
(

�∗
R + 1

N

(
N∑

i=2

�∗(Xi − �∗
R)

)

+ 1

N
�∗(X′

1 − �∗
R)

)]
= 1

N
sup

(X1,X
′
1)∈[0,U ]2

[�∗(X1−�∗
R)−�∗(X′

1−�∗
R)]

� �∗(U)

N
,

where the last inequality follows from the fact that �∗
is convex and nondecreasing. Indeed, it is well known
that any conjugate function is convex (e.g., [13]); to
see that � ∈ � implies that �∗ is also nondecreasing,
consider y1 �y2, and let x∗

2 ∈ arg sup{y2x − �(x)}.
Then �∗(y1) = supx∈dom �{y1x − �(x)}�y1x

∗
2 −

�(x∗
2 )�y2x

∗
2 − �(x∗

2 ) = �∗(y2), where the last in-
equality follows from the fact that x∗

2 ∈ dom � ⊆ R+.
The bound on the negative difference follows by an

identical but reversed argument. We then have

P(�̂�(X1, . . . , XN)���(X) + �)

�P(�̂�(X1, . . . , XN)�E[�̂�(X1, . . . , XN)] + �)

�e−2�2/(N ·(�∗(U)/N)2)

= e−2(�/�∗(U))2·N ,

where the first inequality follows from Proposition
3.1 and the second follows from Theorem 3.1, which
can be applied because of the bounded difference
�∗(U)/N computed above. �

Theorem 3.2 leads us immediately to the upper de-
viation bound on CVaR.

Corollary 3.1. When ��(X) = CVaR� (X) for some
� ∈ (0, 1], we have

P(̂CVaR� (X1, . . . , XN) �CVaR� (X) + �)

�e−2(��/U)2·N . (11)

Proof. Immediate from the fact that �∗(u) = �−1u+
for CVaR�. �

4. A bound on lower deviations via Hoeffding

In this section, we are able to exploit the structure
of the estimator for CVaR to bound lower deviation
errors. The main tool we will use is a result from Ho-
effding [11], which is a special case of Theorem 3.1.

Theorem 4.1 (Hoeffding [11]). Let X1, . . . , XN be
i.i.d. random variables with supp (X) ⊆ [0, U ], where
U �0. Then, for any ��0, we have

P

(∣∣∣∣∣ 1

N

N∑
i=1

Xi − E[X]
∣∣∣∣∣ ��

)
�2e−2(�/U)2N .

Hoeffding’s inequality says we need on the order of
NH �(U/�)2 log(1/
) samples to estimate the sample
mean within a precision of � with probability at least
1 − 
. We would expect for CVaR� to need on the or-
der of NH /� samples, as CVaR is essentially a condi-
tional expectation of the �-tail of the distribution, and
roughly �% samples fall in the �-tail. In fact, for the
lower deviation bound, we can use the structure of the
estimator for CVaR in conjunction with Hoeffding’s
result to match this intuition.

To show this, we first need the following, straight-
forward fact.

Proposition 4.1. The inequality

̂CVaR� (X1, . . . , XN) � 1

N�

�N�
∑
i=1

X(i), (12)
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holds, where X(i) are the decreasing order statistics
of Xi , i.e., X(1) �X(2) � · · · �X(N).

Proof. The proof follows by simply carrying out the
minimization of the piecewise linear, convex function
�+ (1/N�)

∑N
i=1 (Xi − �)+, which has N + 1 pieces.

Quick inspection shows that the slope of this function
changes sign from positive to negative at � = X(�N��),
which means �∗ = X(�N��). We then have

̂CVaR� (X1, . . . , XN)

= �∗ + 1

N�

N∑
i=1

(Xi − �∗)+

= X(�N��) + 1

N�

�N�
∑
i=1

(X(i) − X(�N��))

=
(

1 − �N�

N�

)
X(�N��) + 1

N�

�N�
∑
i=1

X(i)

� 1

N�

�N�
∑
i=1

X(i),

where the inequality follows from Xi �0. �

We can now generalize the Hoeffding’s inequality
to apply to the simple estimates of CVaR� (X) for
random variables with bounded support. Our result

applies to underlying random variables with a contin-
uous distribution function.

Theorem 4.2. When X has a continuous distribution
function, we have, for any ��0,

P(̂CVaR� (X1, . . . , XN) �CVaR� (X) − �)

�3e−(1/5)�(�/U)2·N . (13)

Proof. We have, by Proposition 4.1,

P(̂CVaR� (X1, . . . , XN) �CVaR� (X) − �)

�P

⎛
⎝ 1

N�

�N�
∑
i=1

X(i) �CVaR� (X) − �

⎞
⎠ .

Since X has a continuous distribution, we have that
CVaR� (X) = E[X|X�VaR� (X)]. Thus, from here,
we are basically trying to bound the error in estimat-
ing conditional expectation. The key to doing this is
to condition on the random variable KN,�, defined as
KN,�=max{i|X(i) ∈ [VaR� (X) , U ]}. Note that KN,�
is a function of (X1, . . . , XN), but we omit this de-
pendence for brevity. Clearly KN,� is binomially dis-
tributed with parameters N and �.

From here, if we condition on KN,�=k, one can see
by symmetry that 1/k

∑k
i=1X(i) is equal in distribu-

tion to 1/k
∑k

i=1 X̃i , where X̃i are i.i.d. and equal in
distribution to {X|X ∈ [VaR� (X) , U ]}. We then have

P

⎛
⎝ 1

N�

�N�
∑
i=1

X(i) �CVaR� (X) − �

⎞
⎠

=
N∑

k=0

P(KN,� = k)P

⎛
⎝ 1

N�

�N�
∑
i=1

X(i) �CVaR� (X) − �

∣∣∣∣∣∣KN,� = k

⎞
⎠

=
�N�
∑
k=0

P(KN,� = k)P

⎛
⎝ 1

N�

�N�
∑
i=1

X(i) �CVaR� (X) − �

∣∣∣∣∣∣KN,� = k

⎞
⎠

︸ ︷︷ ︸
I2

+
N∑

k=�N�
+1

P(KN,� = k)P

⎛
⎝ 1

N�

�N�
∑
i=1

X(i) �CVaR� (X) − �

∣∣∣∣∣∣KN,� = k

⎞
⎠

︸ ︷︷ ︸
I1

.
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We now distinguish two cases.
Case 1: k��N�
 + 1. Then

P

⎛
⎝ 1

N�

�N�
∑
i=1

X(i) �CVaR� (X) − �

∣∣∣∣∣∣KN,� = k

⎞
⎠

�P

(
1

k

k∑
i=1

X(i) �CVaR� (X) − �

∣∣∣∣∣KN,� = k

)

(k��N�
 + 1�N�)

= P

(
1

k

k∑
i=1

X̃i �CVaR� (X) − �

∣∣∣∣∣KN,� = k

)

�e−2(�/U)2k (Theorem. 4.1).

Therefore, we have

I1 �
N∑

k=�N�
+1

(
N

k

)
�k(1 − �)N−ke−2(�/U)2k

�e−2(�/U)2(�N�
+1)
N∑

k=�N�
+1

(
N

k

)
�k(1−�)N−k

�e−2(�/U)2(�N�
+1)

�e−2�(�/U)2N .

Case 2: k��N�
. Then

P

⎛
⎝ 1

N�

�N�
∑
i=1

X(i) �CVaR� (X) − �

∣∣∣∣∣∣KN,� = k

⎞
⎠

�P

(
1

N�

k∑
i=1

X(i) �CVaR� (X) − �

∣∣∣∣∣KN,� = k

)

(Xi �0)

=P

(
1

k

k∑
i=1

X(i) �
N�

k
(CVaR� (X) −�)

∣∣∣∣∣KN,�=k

)

�P

(
1

k

k∑
i=1

X(i) �
�N��

k
(CVaR� (X) −�)

∣∣∣∣∣KN,�=k

)

�P

(
1

k

k∑
i=1

X(i) �CVaR� (X) − �N��
k

�

+
(�N�� − k

k

)
U

∣∣∣∣KN,� = k

)

(CVaR� (Xi) �U)

�P

(
1

k

k∑
i=1

X(i) �CVaR� (X) −�′(k)

∣∣∣∣∣KN,�=k

)
,

where �′(k)=(�N��/k)(�−U)+U . Note that �′(k)�0
if and only if k�(1 − �/U)�N��. Let � = 1 − �/U

and let k∗ = ���N���. Finally, for some � ∈ [0, 1], let
k∗
� = �(�� + (1 − �))�N��� = �(1 − �(�/U))�N��� ∈

[k∗, �N��].We furthermore note that, for any k ∈
[k∗, �N��], we have

(�′(k)/U)2 =
(

1 − ��N��
k

)2

=
(�N��

k

)2(
k

�N�� − �

)2

�
(

k

�N�� − �

)2

. (14)

Therefore, we have

P

(
1

k

k∑
i=1

X(i) �CVaR� (X) − �′(k)

∣∣∣∣∣KN,� = k

)

�

⎧⎨
⎩

e−2(�′(k)/U)2k, k∗ �k��N�


1, k < k∗
(Theorem.4.1),

�

⎧⎨
⎩

e−2k(k/�N��−�)2
, k∗ �k��N�


1, k < k∗
(Eq. (14)).
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Continuing further, we have

{
e−2k(k/�N�� − �)2, k∗ �k��N�
,
1, k < k∗,

�
{

e−2k(k/�N�� − �)2, k∗
� �k��N�
,

1, k < k∗
�,

�
{

e−2k(k∗
�/�N��−�)2

, k∗
� �k��N�
,

1, k < k∗
�,

�
{

e−2k(�(1−�(�/U))�N���/�N��−�)2
, k∗

� �k��N�
,
1, k<k∗

�,

�
{

e−2k(1−�(�/U)−�)2
, k∗

� �k��N�
,
1, k < k∗

�,

=
{

e−2k((1−�)�/U)2
, k∗

� �k��N�
,
1, k < k∗

�.

Going back to our original expansion, we have

I2 =
�N�
∑
k=0

P
(
KN,� = k

)

×P

⎛
⎝ 1

N�

�N�
∑
i=1

X(i) �CVaR� (X) −�

∣∣∣∣∣∣KN,�=k

⎞
⎠

�

⎡
⎢⎣

k∗
�−1∑
k=0

(
N

k

)
�k(1 − �)N−k

⎤
⎥⎦

︸ ︷︷ ︸
I2a

+
⎡
⎢⎣�N�
∑

k=k∗
�

(
N

k

)
�k(1 − �)N−ke−2k((1−�)�/U)2

⎤
⎥⎦

︸ ︷︷ ︸
I2b

.

For the first term, we have I2a �P(KN,� �(1 −
�(�/U))N�)�e−(�/2)(�(�/U))2N , where the second
inequality follows by the Chernoff bound. For the

second term, we have

I2b =
�N�
∑
k=k∗

�

(
N

k

)
(� · e−2((1−�)�/U)2

)k(1 − �)N−k

�(1 − (1 − e−2((1−�)�/U)2
)�)N

(Binomial expansion)

�e−(1−exp(−2((1−�)�/U)2)�N)

(1 − 
�e−
 for 
 ∈ [0, 1])
�e−�(2�(2−�)(1−�)2)(�/U)2N ,

where the last line follows from the fact that, for any
� ∈ [0, 1] and x ∈ [0, 1], we have

1 − e−2�2x2

= 1 −
∞∑

k=0

(−1)k
(2�2x2)k

k!
= 2�2x2 − 2�4x4

+
∞∑

k=1

[
1 −

(
2�2x2

2k + 2

)]
(2�2x2)2k+1

(2k + 1)!
�2�2x2(1 − �2x2)

�2�2(1 − �2)x2,

where the first inequality is a consequence of the fact
that 2�2x2/(2k + 2)�1 on k�1 (since �x�1). Us-
ing � = 1 − � and x = �/U results in the above
bound. To combine the three terms into a single, ex-
ponential bound with the highest decay coefficient,
we want to choose � ∈ [0, 1] such that the f (�) =
min(�2/2, 2�(2−�)(1−�)2) is maximum, which oc-
curs when these two terms in the minimization are
equal, or, equivalently, when �/2 = 2(2 − �)(1 −
�)2, which has a unique root �̂ on [0, 1] satisfying
�̂2/2� .2172� 1

5 . Putting everything together, we have

P(̂CVaR� (X1, . . . , XN) �CVaR� (X) − �)

�I1 + I2a + I2b

�e−2�(�/U)2N + e−�(�2/2)(�/U)2N

+ e−�(2�(2−�)(1−�)2)(�/U)2N

�3e−� min(2,�2/2,2�(2−�)(1−�)2)(�/U)2N

�3e−�̂
2
/2·�(�/U)2·N

�3e−(1/5)�(�/U)2·N. �
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5. Conclusions

In this paper, we have proven an exponential con-
vergence result for an estimator of CVaR for bounded
random variables representing an uncertain loss. Open
directions include the following:

1. Improving the bound on pessimistic errors. We be-
lieve the �2 in this bound in Theorem 3.2 can be
improved to � as in the optimistic case.

2. Establishing tightness of the bounds. Intuition sug-
gests that the bound on optimistic errors is tight up
to constants. It is also interesting to see how these
bounds perform over more restricted classes of dis-
tributions (e.g., truncated normal, uniform, distri-
butions with moment constraints, etc.).

3. Extending these bounds to optimization problems.
CVaR and, more generally, convex risk measures,
have gained popularity in optimization problems
with uncertainty, particularly portfolio optimiza-
tion. A challenging, open question is whether sim-
ilar bounds can be derived for optimal solutions
to finite-sample optimization problems using CVaR
and other risk measures.
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