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SUMMARY

In recent years substantial research has been devoted to developing failure-time method-
ology which accounts for possible dependency between observations. An example is the
univariate frailty model (Vaupel, Manton & Stallard, 1979), which incorporates an
exchangeable dependence structure by the inclusion of cluster-specific random effects. In
some studies it may be reasonable to expect more than one level of within-cluster associ-
ation: for instance, association between a parent and child versus that between two siblings
in studies of familial disease aggregation, or association between two village residents who
live in different households versus that between residents of the same household in inter-
vention studies. We propose a family of distributional models for failure-time data that
accounts for multiple levels of clustering and reduces in the case of a single clustering
level to a univariate frailty model. The resulting survival functions are constructed by a
recursive nesting of univariate frailty-type distributions through which archimedean copula
forms are determined for all bivariate margins. Properties of the proposed model are
developed, illustrated and briefly contrasted with multivariate frailty model properties. In
conclusion, we outline the application of our model to marginal risk regression problems.

Some key words: Archimedean copula; Conditional hazard ratio; Frailty distribution; Hierarchical; Laplace
transform; Multivariate survival function.

1. INTRODUCTION

In recent years a growing body of work has appeared on the analysis of failure-time
data when outcomes are not all independent. Lack of independence may occur when there
are multiple potential failure events to be studied per unit or when units cluster. When
m > 2 outcomes are to be observed per cluster, some of the pairwise associations among
cluster members may be stronger than others. In this case, we say that these are multiple
levels of clustering. For motivation, consider two such cases. First, understanding the
strength of intra-familial association provides insight into the role of heredity in chronic
disease onset; multiple-level modelling is indicated because, for instance, parent—parent
association may differ in strength from sibling—sibling association. Secondly, understand-
ing strength of association within geopolitical units assists public health planners in
developing intervention strategies by indicating appropriate units for health care delivery;
multiple-level modelling is indicated because within-household association might well
exceed within-village, between-household association.

In this paper we propose a family of distributional models for multivariate survival
data which allows for multiple levels of association. Generated by building specifiable



30 KAREN J. BANDEEN-ROCHE AND KUNG-YEE LIANG

distributional forms within each other recursively, it generalises ideas previously discussed
by Joe (1993). Because its construction induces an ordering on pairwise associations, this
latter family is particularly appropriate for geopolitical-type data with a hierarchical struc-
ture. Two particularly appealing features of the construction are that it permits specifica-
tion of simple distributional forms for all bivariate margins and that the resulting
distribution reduces in the case of a single clustering level to the frailty formulation
introduced by Vaupel et al. (1979).

In the next section frailty models are reviewed. Section 3 is devoted to developing our
proposed model; conditions under which that model represents a legitimate survival func-
tion comprise the chief result of the paper. An example which illustrates strengths and
limitations of the approach is presented in § 4. We conclude with a discussion of regression
applications and possibilities for future research.

2. FRAILTY MODELS

For simplicity, consider a single cluster of size m. Let T; denote the survival time for
individual j in the cluster, j=1,..., m; S;(t):==pr(T; > t), the marginal survival function
for the jth individual;, and S(t):=pr(T; >t,,..., T,,>t,), the joint survival function for
the cluster, with t denoting the vector (¢,...,t,). Further, let 4;(t) denote the hazard
function corresponding to S;.

The univariate frailty model is a random-effects formulation for within-cluster associ-
ation; here we recapitulate an excellent summary provided by Oakes (1989). According
to this model, association is generated because each cluster carries a corresponding random
effect, denoted by a, with distribution G and Laplace transform p(x):= E(e ~**). Conditional
upon a cluster survival times are assumed to be independent with survival functions
pr(T;>t|a = a) = {S¥(¢)}°, for some continuous survival functions St (j=1,...,m).
Because S,(t) = [ {S¥()}° dG(a), the multivariate survival function for the cluster may be
specified as a function of its marginals as follows:

S(t)= J-eXp {a > logS}‘(tj)} dG(a)=P{— ) 10gS}"(tj)} =p[ > q{Sj(tj)}]s (1)
j=1 j=1 ji=1
where g is the inverse function of p. This last functional relationship is special because it
defines a proper subclass of the symmetric multivariate distributions with uniform mar-
ginals which are archimedean copulas, described by Genest & MacKay (1986a, b).
For such archimedean copula distributions, the association between T; and T
(j<k=2,...,m) may be described by the commonly-used conditional hazard ratio

lr,,lr,‘(tﬂ T.=1t)
Arm (G Te> )

This measure is easily interpretable as the factor by which an individual’s hazard at time
t; is increased if his cluster partner is known to have failed at time ¢,, rather than to have
survived past f,. One famous example of (1) is the Clayton (1978) model, which is charac-
terised by constant hazard ratio 6(t) =0 corresponding to gamma frailty with p(u) =
(1 +u)¥0~9 (1 <0 < o0). Substituting into (1), this leads to

m 1/(1-6)
S(1) = [_2 {Sj(t_,-)}‘_"—m+1] . (2)

Marshall & Olkin (1988), Hutchinson (1981), A. Yashin, J. Vaupel and I. Iachine, in

0(t) =0(t;, ty):=
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the unpublished report ‘Correlated individual frailty: an advantageous approach to sur-
vival analysis of bivariate data’, and others have described generalisations of (1) which
permit individual cluster members to carry different, possibly dependent random effects.
A special case of such multivariate frailty models is particularly natural for applications
of present interest, as follows. Consider a cluster which may be partitioned into N subclus-
ters I, ..., Iy such as siblings versus each parent or households within a village. Then, a
reasonable multivariate survival function for the cluster is given by

N
S(t)= Iexp[— Y oa Y qk{Sj(tj)}]dG(al, ..., ay). (3)
k=1 jely

Two properties of this formulation have motivated our development of the alternative
multivariate survival model to be described in the next section. First, whereas the multivari-
ate survival function for members of any single subcluster has the archimedean copula
form of equation (1), the bivariate survival function for members of distinct subclusters
takes a more general form which does not generally define an archimedean copula.
Therefore, for convenient multivariate frailty distribution choices, between- and within-
subcluster associations 8 may differ substantially in complexity of time dependence.
Secondly, the continuing development of multivariate frailty distributions notwithstand-
ing, the diversity and computational tractability of existing univariate frailty distributions
remains appealing. Thus, we proceed to develop an alternative family of multilevel survival
functions whose construction is based exclusively on univariate frailty distributions.

3. A FULLY HIERARCHICAL MODEL PROPOSAL
3-1. Notational framework

The basic idea of our proposal is to build the cluster survival function S(t) recursively
from archimedean copula distributions such as (1). At all but the first stage of the recursion,
however, the survival function arguments of the copula may themselves be multivariate.

For the sake of full generality, the proposed model relies on a somewhat cumbersome
notational framework based on nested partitioning of cluster members. This partitioning
defines a series of subclusters within the overall cluster. Heuristically, at each ‘level’ in the
series we aggregate subclusters from the previous level; increasing levels then correspond
to increasingly dissociated subclusters. Let | be an index which tracks levels, I=0,..., L.
At I =0 cluster members are considered as individuals; at /=1 individuals are grouped
into initial subclusters, such as households; increasing values of | denote increasingly
dissociated units, such as villages at [ =2, regions at [ =3, etc. The index k will track the
number of cells in the partition per level, k=1, ..., N,. Then cluster partitions are defined
by the index sets

Iy, = {j:cluster member j € kth cell partition at level /};

these sets are constructed to satisfy

Ny
Ilknllr=® (k:i:r), U Ilk={1,-'-’m}
k=1

for all I. Finally, let M,, identify the cells of the (I — 1)th partition which are collapsed to
create the kth cell of the Ith partition; My, = {r: I, =), I;-,,};

Ny
MM, = k=+r1), UMu={1,~--,N1-1}-
k=1
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Level I  Designation & I,={}u for k=1, ..., N,
0 Individuals 8 {1} {22 (3o {8} 04 {530 {6}os {T}or {8}
\1:112{17 le={3y Y.F{s,:/ \<:4={7,;7
1 Households 4 {1,2}, {34}, {56}1 {7,8}14
\”11={1,2/ Vu={3y4/
2 Villages 2 {1,2,3,4},, {5,6,7,8}
\ My ={12} /
3 Region 3 {172y3’4’5’6’7’8}

Fig. 1. Hierarchical notation for an eight-member geographical cluster with L=3.

Ultimately a single partition cell will engulf all indices, so that N, = 1. This framework is
illustrated in Fig. 1. In terms of the conditional hazard ratio, the association between
persons j and j' is

Aryi1, (851 Ty = tp) g 1, (6] Ty > £j:)=10,,(1),
where
re=min{l:je I, and j € I, for some u}, s:={k:jel,,j el,}, t=(t;,t;).

When modelling multiple clusters jointly, we permit clusters of different sizes. Thus,
distinct clusters T, =(T,y, ..., Tom,) and T, = (T, . .., T;,,) may differ in their number of
levels L, and L, and in composition of sublevels {I,;} within a given level I. Importantly,
though, we impose the condition that the cluster-specific survival functions (5) to follow
all derive from a finite set {p,; k=1,...,N,I=1,...,L}. Thus, L,<L and

{Plak;k=l:""Nla’la=l""5La}C{plk;k=1""’Nl,l=1""’L}

for each cluster a. To complete the joint model, we impose mutual independence between
clusters. Summarising, then, our association model has finite dimension independent of
the number of clusters.

3-2. Model specification
We begin by considering the case of two clustering levels. For this motivational case,
assume five cluster members with I, = {1, 2}, I, = {3,4, 5} and I,; = {1, 2, 3, 4, 5}. Then,
the proposed model is
S(8) = p21[421 {811 (11, 12)} + 21 {S12(13, L4, t5)}], (4)

with

2 5
S11(t1, t2) =pyy [ Z q11 {Sj(tj)}:lr Si2(ts, tg, ts) = Plz[ 2 qi12 {Sj(tj)}]-
J

=1 j=3
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Here, p,, are Laplace transforms for distributions which determine the bivariate associ-
ation structure within I, and p,, is a Laplace transform which determines the form of
association between I;, and I,,; q,, and g,, are the respective inverse functions. It is
straightforward to verify that each bivariate marginal follows the archimedean copula
structure whereby conditional hazard ratio forms 6,,(t) are determined. In the two clus-
tering level case this model is equivalent to the multivariate mixture family proposed by
Joe (1993), and (4) is essentially equivalent to his equation (4-4).

For an arbitrary number of levels, our model is constructed recursively. For notational
convenience, define S, (t,)=pr(T;>t;, jel,) to be the partially marginalised survival
function for the individuals whose indices belong to Iy;; thus, ¢, is a vector of size |I;],
the number of individuals belonging to I;. Then,

Soj(to))=8;(t)) (j=1,....,m), Sul(tn) =P1k|: Z qlk{Sj(tj)}] k=1,...,Np),....

J€ Iy

In general,

Sultu) = PucI: Y {Sl—l.r(tl—l,r)}:| (k=1,...,N;I1=2,..., L) (5)
re My,

As in the two subcluster case, it is straightforward to verify that each bivariate marginal

follows the archimedean copula structure whereby conditional hazard ratio forms 8,,(t)

are determined.

3-3. Survival function legitimacy

In this section, we ensure that our proposed model produces legitimate multivariate
survival functions. Toward this end we assume the following.

Assumption 1. For each j=1,...,m, S,(t) is a right-continuous survival function.

Assumption 2. Assume p, (I=1,...,L, k=1,..., N;) are Laplace transforms of distri-
bution functions whose supports exclude [— o0, 0] and which have piecewise continuous
first derivatives on (0, c0).

Assumption 3. Assume S(t) is differentiable with derivative —f(t), for each j.

It follows from standard theory (Churchill, 1972, pp. 46-8) that the p, and g, are
strictly decreasing elements of C(c0). Moreover, the ith order derivative of p, has sign
(—1)" everywhere excluding co for all positive integers i, and the first two derivatives of
qu are respectively negative and positive everywhere excluding 0.

Given Assumptions 1 and 2, it is virtually immediate to demonstrate that the proposed
model satisfies four properties of multivariate survival functions. That consequence is
embodied in the following statement whose proof is deferred to the Appendix.

PROPOSITION 1. The multivariate function S(t) defined by (5) satisfies
(1) Sw)=1 for all u<Q,
(1) limg_ o infx>KS(t) =0,
@) t, <t,=8(t;) = S(t,),
(iv) S is right continuous.
Here, all inequalities define componentwise relationships.

To ensure that (5) produces a legitimate survival function, we must still demonstrate
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that the distribution F corresponding to S assigns nonnegative mass to every region of
space. This, in turn, will be true if odd-ordered mixed partial derivatives of S are nonposi-
tive and even-ordered mixed partials are nonnegative almost everywhere. Since this prop-
erty induces restrictions upon our model, we consider it in detail. For a generic function
h(x), let b denote the ith derivative of h with respect to x, with h’:=h™ and h":=h?, As
we show in the Appendix, a sufficient condition to ensure nonnegative mass assignment
almost everywhere is as follows.

THEOREM 1. If for each level | < L of the recursion in (5) and each cell I,_, , containing
at least |I,_, ,| =2 members

(— 1) Y(gquop, - 1,r)m(u) >0 (6)

onu<o,i=1,... |-, r=1,..., N_y, then odd- (even-) ordered mixed partial deriva-
tives of S(t) are nonpositive (nonnegative). In (6), k is such that r € My,.

We organise the preceding results into a formal statement which follows immediately
from Proposition 1 and Theorem 1.

COROLLARY. We have that S(t) = S;,(t) as defined by the recursion in (5) is a legitimate
survival function provided that Assumptions 1-3 and the conditions of Theorem 1 hold.

Briefly, the proof of Theorem 1 relies on a chain rule for higher-order differentials and
induction across levels to demonstrate that odd (even)-ordered mixed partials of
qu{S;-1.(t;-1,)} are nonnegative (nonpositive), I=2,...,L, k=1,...,N, re M. Two
remarks should be made. First, Assumption 3 is not a necessary condition of Theorem 2;
it is included here for economy of proof. Secondly, Joe (1993) provides an elegant alterna-
tive proof of survival function legitimacy in the two-level case, using a condition which is
essentially equivalent to (6) as described in his Condition A, Theorem B, and first para-
graph of the derivative for his equations (4-1) and (4-2). Generalisation to arbitrarily many
levels, however, is complicated by the element of recursion and seems to require the more
direct strategy we have employed.

Hierarchical constraints are induced upon our proposed model by the requirement that
no region of space be assigned negative mass embodied in (6). Providing a general
interpretation of (6) is difficult; rather, the condition must be verified on a case-by-case
basis. However, verification is not difficult in some important cases. An example is provided
in the next section.

4. AN EXAMPLE: A GAMMA FRAILTY GENERALISATION

In this section we detail a hypothetical example to illustrate the proposed model.
Consider a five-individual village within which members {1, 2} and {3,4, 5} comprise
separate households; hence, N; =1, I,; = {1,2} and I,, = {3, 4, 5}. To define the cluster
survival function, we set p;;(u) = (1 + w)/ =% (k =1, 2) and p,; (W) = (1 + u)/*~%) in (5);
note that in this case the constraint 6, = 8, might well be reasonable. With these Laplace
transform choices, the multivariate survival function as calculated from (4) is

2 03— 1)/(6, - 1) s (63— 1)/(8, 1) 1/(1-63)
S(t)= [{Z Sj(tj)l—e‘—l} + {Z Sj(tj)l_O’—Z} —1] :
j=3

Jj=1

Clearly, then, all bivariate margins of S(t) have the archimedean copula form (2) with 8 =
0, for the members of the first household, § =6, for any two members of the second
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household, and @ = 6, for two members of different households. It follows that all pairwise
conditional hazard ratios are constant over time and equal 6, > 1 as just described, k =
1,2, 3, with 8, = 1 corresponding to pairwise independence. By way of contrast, consider
a multivariate frailty formulation of the type (3) with G, ,,(a;, a,) bivariate gamma, having
marginal Laplace transforms p,(x) = (1 +©)"/? =% (k =1, 2) and cov (,, a,) = 1/(8% — 1).
While this model also induces constant within-household hazard ratios, it yields the com-
plicated between-household association of

(6% — 1) X, (1, 0,)X;(t5, 0,)
{Xi(ty, 6,)+ D, } {X;(t5,60,) + D}’

0h(t, t3) =1+

where
Dy =(0% —0){S1(t,) "% + 85(t3) %2 =1}, Xi(t,0)=0—-1)S;()'"° (k=1,2;j=1,3).

It remains to illustrate the nature of the hierarchical constraint induced by (6), which
in the present example involves the functions

8=y {pix(w)} = (1 + ) 70V0"W -1 (k=1,2).

Now,

gi(w)= =5 (1 4 )@ —0/0-01)
1—6,

which is positive assuming 6, > 1 and 6, > 1. Further,

" 6;—0;\ (106, (26, ~ 85— 1)/(1—6,)
g‘(")‘<1—91><1—01>(”“’ ’

which is negative if and only if 6; < 6,. By induction, it is easy to see that
gPw=c(1+ u)“ol —03=(=1)}/(1-8y)

Hence, 0; < 6, and 0, > 1 implies that {if, — 0, — (i — 1)}/(1 — 6,) <O for all i > 1 and thus
¢;> 0 for odd i and ¢; < 0 for even i. Arguing similarly regarding derivatives of q,; { p;2 (1)},
the conditions of Theorem 1 are satisfied if and only if 6; < 8, and 0; < 0,. In this case
negative mass is assigned in some regions of space if 8, > 6, or 8; > 6,, so that the condition
is necessary. For our geopolitical example, the resulting constraint that between-household
associations not exceed within-household associations is reasonable. However, such a
constraint is probably not reasonable for parent—child clusters. To see this, redefine {1, 2}
as {mother, father} and {3, 4, 5} as their children. Genetically, one expects that the parent—
child association should exceed the father—mother association. For I,; = {1,2} and
I, =13, 4,5}, however, I, = {1, 2, 3, 4, 5} requires the parent—parent association to equal
or exceed the parent—child association. Alternative level-1 partitions induce similar
unreasonable constraints. While multivariate frailty models described in § 2 do accommo-
date this example, practitioners should note that such models roughly impose the con-
straint that between-subcluster associations be no larger than the associations within
subclusters. Thus, in (3) the two parents should be assigned to separate, single-person
subclusters.

5. DIiISCcUSSION

We have proposed a family of models for describing association in multivariate survival
problems with multiple levels of clustering. Because we model association parametrically,
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our proposed family may be particularly appropriate when association is of key interest
and insufficient data are obtainable to justify nonparametric estimation such as that
described by Prentice & Cai (1992). A key advantage of our family is its specification
subject only to existence of sufficiently regular Laplace transforms. This endows our formu-
lation with a high degree of flexibility while retaining parametric power and inter-
pretability. Moreover, it suggests the use of diagnostics to guide the choice of model in a
given data-analytic situation (Oakes, 1989; Genest & Rivest, 1993).

We believe our models will be especially useful when researchers wish to impose a Cox
(1972) or other regression structure on the marginal hazard functions corresponding to
S;(t). Then, it would be straightforward in principle to write down a likelihood function
for the observed data based on (5), accounting for censored observations in the usual
way. It follows that one reasonable strategy for estimating parameters might be to maxi-
mise the likelihood in all of its arguments following Nielsen et al. (1992) and Murphy
(1994). An alternative approach begins by estimating the marginal hazard parameters in
a way which is robust to the structure of association (Lee, Wei & Amato, 1992; Liang,
Self & Chang, 1993), and proceeds to estimate association parameters by the method of
pseudo-maximum likelihood (Gong & Samaniego, 1981). Genest, Ghoudi & Rivest (1995)
and Shih & Louis (1996) have recently discussed applying this approach to copula esti-
mation, with nonparametric estimation of marginal survival functions. We are currently
investigating the inferential properties of this approach in the regression setting.

One interesting goal for future research is to develop methods for estimating association
parameters which do not require the full likelihood of the data, but retain the appealing
measure of association provided by the conditional hazard ratio. In applications that we
have encountered, bivariate association characteristics are often of greatest interest. This
evokes thoughts of a methodology which requires only the specification of bivariate con-
ditional hazard ratio structure, much as quasi-likelihood (Wedderburn, 1974) and general-
ised estimating equation (Liang & Zeger, 1986) approaches require only first- and second-
order moments. Research into this issue is ongoing.

ACKNOWLEDGEMENT

This work was supported in part by a grant from the National Institutes of Health. We
thank the editors and referees, whose comments greatly improved the presentation of
the paper.

APPENDIX
Proofs

Proof of Proposition 1. Consider first the case of two levels. Properties (iii) and (iv) follow
immediately from the monotonicity and continuity of Laplace transforms and their inverses under
the assumptions. Since any Laplace transform maps 0 to 1 and converges to 0 as its argument
converges to co, properties (i) and (ii) also hold. The general case of more than two levels follows
immediately by induction.

Proof of Theorem 1. We need the following preliminary notation: let f{ , (v) denote the kth order
partial derivative of f with respect to the variables {v; , ..., v, };let | x}’ denote the integer part of x.

LEMMA A-l: A chain rule for higher-order derivatives. Let h(v) be of the form h(v) = g{f(vy, - - . , V,)}-



Modelling failure-time associations 37

Then,

s x
dor a0, 0= 2 & UOIRL®) =1....m),

with

Lkfi] (k—kfi-1)  Llk— ".‘,k.)IZJ{ ;

Rur= 308 S ] it S ) (=200

k=1 ky=k, kioy=ki_; cusl

for some set of constants {pi%; ", }, each greater than 0. Above, Y, denotes the sum over all possible

combinations of {(iys, - - -, d1k,)s - - - » Girs - - -, I, )} from (iy, ..., i), and ky=k — i\ k,.
The proof is a special case of Theorem 2.2.5 of Field (1976).
LeMMA A-2. Foreachl=2,.. ,L, k=1,...,N,re My, and for any A<I,_,,,
ol =0 for |A| odd,
= {Si— 1 (61— 1,
[1)e4 0t G {11, (t1-1.)} {SO for |A| even,
with ¢ {S,-,,(t;—,,)} as defined in (5).

Proof (by induction). For the case | =2, choose arbitrary k,r,A<I,,. If |I,,|=1, then |4| =1
and

14l 0
H_.IEA—é_t; qu{S1. (60} = 6-{, g {S;(t))} = —quAS,(t))} f5(t;) = 0. (A1)
Suppose that |1, ,|> 1. Then
|4l |4l
m Qo {S1 . (t1,)} = ﬁ:;a—':j q2x°D1r [j’ez;" q1r {Sj'(tj')}]
= (—1)"(gy0p,,)04" IT 43 {S;(t))} fi(t).

JeA
Because q;,(v) is nonpositive on v € [0, 1], the sign of 8'4!q, {S,,(t,,)}/I1;c , 8¢ is as claimed.

For the case | > 2, suppose that the sign of 8" gy, {S,~,(ta—1,)}/I 1, , 0t;is as claimed for each
Acl,_,, forall re M, forall k=1,..., N,, for each n <l Choose arbitrary k,r, AcI,_;,. If
[Ii—y,l=1, then 8" qu{S,_y,(t;—1,)}/T];c 4 8t,>0 exactly as in the case /=2. Supposing that
|Il—1.r| > 1)

qlt{sl-l,r(tl—l,r)}=qlk°pl—l.r|: Z ‘11—1;{S1—2...(tt—2.;)}:|~

SEM;_y,

Denote by a, the number of indices in 4 belonging to I,_,, and by 1 (.) the usual indicator function.
Appealing to Lemma A-‘1 with

8 =qu°Pi-1, [= Z Q-1 881-2.4(ti-2.4)},

sEM;_y,

M qu (811, (t1- 1.0}/ T e 4 31 i as follows.
(i) g {f(V)}R 4114/ (v) term. By Theorem 1 conditions, g!4"{ f(v)} has sign (—1)"!** on its
nonzero range, with v =t,_, ,. Further,

of(ti-y,) 0
_5‘;]1—' = a_t, Q-1 481-24(t1-2)} 20

by the induction assumption. Hence, the sign of the g" { f(v)}R, 4 14(v) term is as claimed.
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(i) gV{f(®)}R,4.1(v) term. Under the conditions of Theorem 1 g {f(v)} >0 on its nonzero
range, with v =t;_, ,. Further,

a!AI
I a1, Z Q-1 {S1-25(ti-2.5)}
JjEA sEM;_,,

has sign (—1)4*1 if Z,EM,_UI(a,>0)= 1, and equals 0 otherwise. Hence, the sign of the
gV {f(v)}R,,.1(v) term is as claimed.

(iii) g9 { f(V)}R) 1.:(v) terms for i=2,...,|A| — 1. Under the conditions of Theorem 1 g?{ f(v)}
has sign (—1)'*! on its nonzero range with v =¢,_, ,. Using the ‘R, ;(v)’ term from Lemma A-1 with
k:=|A|, notice that f}‘:1 i (ti-1,)=0unless {ij,..., 04 } <I;—,, for some single se M,_, ,. If

.....

i, i} S L_y4,5€ Ml—l,r’fstlg...,iuk“(tl—l.r)

either equals 0 or has sign (~1)*«*! by the induction condition. Then, R4 ,(t,;—,,) either equals 0
or has sign (— 1) Tl _, (k, 4 1) =(—1)4*7 5o that the g { f(v)}R) 4 ,(v) term either equals 0 or has
sign (_ 1)IAI+21+1.

Thus, the sign of each term of Li.,g”{f(ti-1,)}Rai(ti-1,) is consistent with the claim and
the result of Lemma A-2 is proved.

Theorem 1 follows by applying Lemma A-1 with g:=p,, and f== 2751414 {St—1.5(tL-1,}. The
conditions of the theorem and fact that —p;, satisfies those conditions then imply, according to
Lemma A-2, that all odd-ordered mixed partial derivatives of S(t) are nonpositive, and all even-
ordered mixed partial derivatives are nonnegative, up to and including order m. d
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