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Integrative genomics strategies to elucidate the 
complexity of drug response

Interindividual variability in drug response, 
adverse events and toxicity represents a com-
mon observation in clinical therapeutics, and 
strong genetic components underlying drug 
metabolism and clinical drug response have been 
implicated through family and twin studies [1–7]. 
Understanding the genetic factors that predispose 
patients to poor treatment outcome, adverse events 
and/or toxicity will help guide therapeutic strate-
gies for individual patients to obtain maximal effi-
cacy and safety. With genome-wide genotyping 
of common variation becoming routine, and 
whole exome and even whole-genome sequenc-
ing beginning to emerge as an affordable practice 
in research settings, the study of the relationship 
between genetic variations (primarily SNPs) and 
drug response or toxicity has shifted from lim-
ited numbers of candidate variations (pharmaco
genetics) to whole-genome variation that covers 
hundreds of thousands to millions of SNPs simul-
taneously (pharmacogenomics). Whole-genome 
scanning provides a far more objective and com-
prehensive view of the genetic susceptibility of 

drug response than previous knowledge-based 
candidate-gene approaches, just as it has in the 
genetic study of common human diseases.

Pharmacogenomic studies have identified 
genetic markers that are strong predictors of 
drug effects [8]. For instance, common and rare 
genetic variations in CYP2C9 and VKORC1 are 
found to predict warfarin dosage or response 
[9–13], the HLA‑B*5701 variant is associated with 
abacavir hypersensitivity [14,15], HLA‑B*5701, 
HLA‑DRB1*0107‑DRB1*0103, and TNF‑a-
238G/A are linked to flucloxacillin-induced liver 
injury [16], and SNPs at the IL28A/IL28B locus are 
associated with antihepatitis C treatment response 
to interferons and ribavirin [17–20]. These findings 
highlight the power of pharmacogenomics to 
identify genetic risk factors. However, the iden-
tification of susceptibility SNPs or loci does not 
directly lead to mechanisms, as shown by a survey 
of genetic loci associated with common human 
disease [21]. In fact, drug response is a complex 
trait just like common human disease traits, and 
so interpretations of genetic associations with drug 

Pharmacogenomic investigation from both genome-wide association studies and experiments focused on 
candidate loci involved in drug mechanism and metabolism has yielded a substantial and increasing list 
of robust genetic effects on drug therapy in humans. At the same time, reasonably comprehensive 
molecular data such as gene expression, proteomic and metabolomic data are now available for collections 
of hundreds to thousands of individuals. If these data are structured in a statistically robust and 
computationally tractable way, such as a network model, they can aid in the analysis of new 
pharmacogenomics studies by suggesting novel hypotheses for the regulation of genes involved in drug 
metabolism and response. Similarly, hypotheses taken from these same models can direct genome-wide 
association studies by focusing the genome-wide association studies analysis on a number of specific 
hypotheses informed by the relationships customarily seen between a gene’s expression or protein activity 
and genetic variation at a particular locus. Network models based on other sorts of systematic biological 
data such as cell-based surveys of drug effect on gene expression and mining of literature and electronic 
medical records for associations between clinical and molecular phenotypes also promise similar utility. 
Although surely primitive in comparison with what will be developed, these model-based approaches to 
leveraging the increasing volume of data generated in the course of patient care and medical research 
nevertheless suggest a huge opportunity to improve our understanding of biological systems involved in 
pharmacogenomics and apply them to questions of medical relevance.

KEYWORDS: abacavir n Bayesian network n coexpression network n connectivity map 
n electronic medical records n flucloxacillin n gene networks n genetics of gene 
expression n genome sequencing n genome-wide association study n integrative 
genomics n interferons n lumiracoxib n pharmacogenomics n ribavirin n statins 
n warfarin

Andrew Kasarskis*1,2‡, 
Xia Yang3,4‡ 
& Eric Schadt1,2

1Pacific Biosciences, 1380 Willow 
Road, Menlo Park, CA 94025, USA 
2Department of Genetics & Genomics 
Sciences, Mount Sinai School of 
Medicine, One Gustave L. Levy Place, 
Box 1498, New York, NY 10029, USA
3Sage Bionetworks, 1100 Fairview 
Ave N, Seattle, WA 98109, USA 
4Department of Integrative Biology & 
Physiology, Univeristy of California, 
Los Angeles, Terasaki Life Sciences 
Building, 610 Charles E. Young Dr. East, 
Los Angeles, CA 90095-7239, USA 
*Author for correspondence: 
andrew.kasarskis@mssm.edu 
‡These authors contributed equally

For reprint orders, please contact: reprints@futuremedicine.com



Pharmacogenomics (2011) 12(12)1696 future science group

Review Kasarskis, Yang & Schadt

response and disease traits are necessarily similar. 
In both cases, genome-wide association studies 
(GWAS) have revealed a definitive relationship 
between a segment of DNA and a phenotype of 
interest, a key fact, which is very hard to establish 
for common genetic variation before GWAS were 
possible, and that points the way toward fine map-
ping, functional, and other experiments needed to 
determine exactly how the DNA variation influ-
ences phenotype. Typically, given an association 
between SNP genotypes from a GWAS and drug 
response, the gene that is driving variations in 
response is often unknown. In addition, whether 
activation or inactivation of that gene leads to 
increased drug response is often unknown and 
neither the context in which the associated gene 
operates nor the mechanism by which the SNP 
(or causal variants linked to the associated SNP) 
confers risk of poor response, adverse events or 
toxicity is clear; therefore there remains ample 
further experimental work to be done.

According to the GWAS catalog maintained by 
the National Human Genome Research Institute 
[22,201], a total of 48 pharmacogenomic GWAS 
have reported the pharmacogenomics of various 
therapeutic agents in terms of dosage, therapeutic 
efficacy, adverse events or hepatotoxicity. These 
studies cover a variety of therapeutic agents includ-
ing antipsychotics [23–29], antidepressants [30–33], 
anticoagulants [11,34–37], anti-hepatitis C drugs [18–
20], statins [38,39] and others (Table 1). In contrast to 
these successful cases, the results from many other 
pharmacogenomics studies, especially those for the 
antidepressant and antipsychotic agents, appear to 
involve multiple loci, with many loci supported 
by only a single study [201], suggesting more com-
plex genetic susceptibility and/or a more complex 
phenotype affected by many distinct biological 
processes. In addition, many of the genetic loci 
are located in intergenic regions with no obvious 
candidate genes directly implicated, which is con-
sistent with the previous observation that almost 
40% of disease/trait-associated SNPs are located in 
intergenic regions and another 40% are intronic, 
whereas only 12% are located in or are close to 
protein-coding regions of genes [21]. Therefore, 
interpreting pharmacogenomic findings is rarely 
a straightforward task

Recently, integrative genomics approaches 
that leverage functional genomics and network 
biology have been developed to identify genes, 
pathways and gene networks that underlie 
GWAS findings for various diseases and traits 
[40–47]. These methods also exploit a large volume 
of valuable information gathered in a GWAS, 
which is underutilized when the GWAS is 

analyzed in isolation. Typically, without a prior 
hypothesis with which to focus the analysis on a 
subset of gene regions, the multiple testing cor-
rection utilized in genome-wide statistical analy-
sis allows for the detection of only the strongest 
effects, and penalizes weaker associations that 
are biologically meaningful. In this review, we 
discuss several integrative genomics methodolo-
gies that are just as applicable to the pharmaco
genomics field as they are in the study of com-
mon human disease and systems biology more 
generally, where they were largely developed.

Functional genomics
As discussed above, genetic association studies 
such as pharmacogenomics or GWAS investigate 
the association between genetic variations and 
clinical diseases or traits to uncover genetic risk 
factors of phenotypic traits. However, although 
the identification of significant genetic loci 
from a genetic association study does imply that 
they are functionally relevant to the associated 
phenotype, it does not directly imply functional 
relevance of the associated SNPs or provide the 
underlying genes and molecular mechanisms, 
except in those cases where the genetic poly-
morphism has an obvious path to mechanism 
such as structural effect on a protein. In order 
to tackle the functional role of the risk loci, it is 
necessary to not only understand the correspond-
ing genes involved, but also to understand the 
molecular consequences of the sequence varia-
tions. To this end, the relationship between the 
genome and intermediate molecular traits such as 
gene expression, alternative splicing and protein 
products can be explored via functional genomic 
studies to identify molecular quantitative trait 
loci (QTL). 

The study of genetic variations that are associ-
ated with gene expression, the most commonly 
characterized molecular trait, is coined genetics 
of gene expression (GGE). Through GGE, one 
can simultaneously scan for associations between 
millions of SNPs and tens of thousands of gene-
expression traits (including alternative splicing) 
corresponding to tens of thousands of genes 
in the human genome, and thereby determine 
which genetic loci are linked to the expression 
traits. These genetic loci are termed expres-
sion QTL (eQTL), and individual SNPs under 
eQTL are named expression SNPs (eSNPs). 
These eQTL or eSNPs linking to intermediate 
molecular traits are useful in elucidating the 
functions of the genetic variations. The correla-
tion between a SNP and a molecular trait implies 
that either the SNP itself or a DNA variant in 
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linkage disequilibrium (LD) with the observed 
SNP is functional. When the same genetic loci 
or SNPs are found to be associated with a phe-
notypic trait, the genes whose expression levels 
are correlated with these QTL or SNPs repre-
sent more plausible candidate causal genes for 
the phenotypic traits than uncorrelated genes 
[48–56]. Put simply, it is difficult to imagine how a 
DNA variation could cause a phenotype without 
modifying the expression of at least one gene in 
one tissue, so genes for which eQTL are detected 
should have a better than random chance of 
causing the phenotype.

GGE studies have been conducted in lympho-
cytes or lymphoblastoid cell lines [57–65], mono-
cytes [66], fibroblasts [67], T‑cells [67], brain [68], 
liver [42,69] and adipose tissues [41,58,69]. These 
studies support the presence of both shared 
eQTL across tissues or cell types and tissue- or 
cell-type-specific eQTL. The overlap of eQTL 
across tissues has been found to depend on both 
sample size and similarity between tissues. As 
reported by Greenawalt et al. [69] with a sample 
size of approximately 100, approximately 30% 
of eQTL overlap between liver and adipose, and 
49% overlap between subcutaneous adipose and 

Table 1. Confirmed or replicated genetic loci in pharmacogenomic genome-wide association studies based on 
National Human Genome Research Institute genome-wide association studies catalog†.

PubMed ID Disease or 
medical 
condition

Therapy End point Loci at 
association 
p < 1 × 10-5

Reported 
candidate genes

Ref.

18650507 Dyslipidemia Statin AE – myopathy 12p12.1 SLCO1B1 [84]

21149285 Epilepsy, mood 
disorders

Carbamazepine AE – cutaneous 6p21.33 HLA-A [173]

21428769 Epilepsy, mood 
disorders

Carbamazepine AE – carbamazepine-
induced SJS and TEN

6p21.33 HLA-A [174]

18535201 Blood clots Warfarin Dosage 10q23.33, 
12p13.33, 
16p11.2

CYP2C9, CACNA1C, 
VKORC1

[35]

19300499 Blood clots Warfarin Dosage 10q23.33, 
16p11.2, 
19p13.12

CYP2C9, VKORC1, 
CYP4F2

[11]

20833655 Blood clots Warfarin Dosage 10q23.33, 
13q21.1, 
16p11.2, 
19p13.12, 
7q22.3

CYP2C9, NR, VKORC1, 
CYP4F2

[34]

19578179 Blood clots Acenocoumarol Dosage 10q23.33, 
19p13.12, 
3q22.3

CYP2C18, CYP2C19, 
CYP4F2, CNTN4

[36]

19706858 Blood clots Clopidogrel Efficacy – antiplatelet, 
cardiovascular outcomes

10q23.33 CYP2C18, CYP2C19, 
CYP2C9, CYP2C8

[37]

19684573 Hepatitis C Three treatment regimens 
involving PegIFN-2b or 
PegIFN-2a combined with 
ribavirin

Efficacy – sustained 
virological response

19q13.2, 
4q34.3, 
6q21

IL28B, AKD2 [18]

19749757 Chronic 
hepatitis C

Pegylated IFN-a and 
ribavirin therapy

Efficacy – sustained 
virological response

19q13.2 IL28B [20]

19749758 Chronic 
hepatitis C

IFN-a and ribavirin therapy Efficacy – sustained 
virological response

19q13.2 IL28A, IL28B [19]

19483685 Infection Flucloxacillin Hepatotoxicity 12q12, 
15q26.2, 
3q11.2, 
3q27.3, 
6p21.33, 
9p21.2

ALG10B, MCTP2, 
OR5H2, ST6GAL1, 
HCP5, HLA-B, 
C9org82

[16]

20639878 Osteoarthritis Lumiracoxib Hepatotoxicity 6p21.32 HLA-DRB1 [83]

21570397 Infection Amoxicillin-clavulanate Hepatotoxicity 6p21.32, 
6p21.33

HLA-DRB1, HLA-A [175]

†Data downloaded from the National Human Genome Research Institute genome-wide association studies catalog on 17 July 2011 [201].
AE: Adverse event; SJS: Stevens–Johnson syndrome; TEN: Toxic epidermal necrolysis.
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omental adipose. When the sample size increases 
to approximately 800, the overlap increases to 
60% between liver and adipose and to 80% 
between the two adipose depots. These results 
suggest that a relatively large proportion of 
eQTL is shared between tissues. 

It is important to note that eQTL identifi-
cation is subject to confounders that produce 
nonreplicable false discoveries and that replica-
tion between studies is therefore critical in order 
to select eQTL of biological significance. In a 
recent study, Innocenti et al. investigated eQTL 
in two independent liver cohorts and found that 
confounders that affect liver gene expression, 
such as drug exposure, clinical descriptors and 
unknown factors associated with tissue ascer-
tainment and analysis, and all contribute to 
the ability to replicate eQTL between studies 
[70]. Therefore, thorough quality control and 
advanced statistical methods that take hidden 
cofounding variables into consideration are 
necessary to identify reliable signals.

In addition to eQTL identified in GGE stud-
ies, QTL for other intermediate molecular traits 
such as alternative splicing [60,71–73] allelic expres-
sion [74,75], DNA methylation [76–81], and liver 
enzyme activity [82] have also been pursued and 
similar tissue specificities have been observed for 
these molecular QTL types. Additional types of 
molecular QTL associated with traits such as 
miRNA, protein and metabolite levels, histone 
modification and chromatin structure can also 
be detected to further annotate the function of 
genetic loci. 

The power of utilizing QTL of molecular 
traits identified from functional genomic studies 
to identify candidate genes as well as the mecha-
nisms underlying GWAS findings of complex 
human diseases have been demonstrated in a num-
ber of recent studies [40–42,72]. For example, the 
HLA‑DRB1 locus identified for Type 1 diabetes 
is strongly associated with the expression levels of 
the HLA‑DRB1 gene [42,69]. In the case of warfarin 
treatment, a SNP approximately 50 kb upstream 
of the gene VKORC1, rs10871454, was found to 
be associated with warfarin dosage with an asso-
ciation p‑value of 4.7 × 10-34 in a meta-analysis of 
index and replication cohorts in a recent pharma-
cogenomics GWAS [35]. As this SNP is in perfect 
LD (r2 = 1.0) with the promoter SNP rs9923231, 
it could act as a surrogate for the promoter SNP, 
which functions in regulating the expression 
of VKORC1. In order to elucidate the potential 
mechanism, we searched our human liver eSNP 
database and found that this SNP is strongly 
associated with the expression level of VKORC1 

at p = 1.07 × 10-69 [42,69]. Specifically, the minor 
allele of rs10871454 is associated with decreased 
VKORC1 expression (Figure 1). This finding sug-
gests that rs10871454 itself or one or more func-
tional DNA variants in LD with this SNP regulate 
the expression levels of the warfarin target gene, 
thus providing a mechanistic explanation for the 
observed association between the SNP and war-
farin response. The liver eSNPs from two cohorts, 
an unselected liver cohort [42] and a morbidly obese 
cohort [69], have been published and are publicly 
accessible. The expression data for both cohorts are 
available at Gene Expression Omnibus [202] with 
accession numbers GSE9588 and GSE24335. The 
genotype data can be obtained upon request and 
will be available at dbGaP [203]. Between the two 
cohorts, 66% of eSNPs overlap, suggesting con-
sistent signals. We chose to report the SNP–gene 
association p‑values from the larger liver cohort 
due to its higher statistical power [70].

When intersecting the genetic loci identified 
from other recent pharmacogenomics GWAS 
listed in Table  1 with published liver GGE or 
eQTL data [42,69], we were able to identify or 
confirm additional candidate genes for a num-
ber of loci via eQTL mapping. For example, 
the HLA‑DRB1 locus for lumiracoxib-related 
liver injury [83] is found to be a liver eQTL 
for the HLA‑DRB1 gene (p = 3.15 × 10-33 for 
association of SNP rs3129934 and HLA‑DRB1 
gene expression). In addition, several loci 
for statin response or adverse effects [38,39,84] 
are liver eQTL for SORT1 (p  =  5.20  ×  10-88 
with rs646776)/PSRC1 (p = 3.05 × 10-86 with 
rs646776)/CELSR2 (p  =  6.27  ×  10-68 with 
rs646776), FADS1 (p = 7.00 × 10-19 with rs1535)/
FADS2 (p = 5.63 × 10-8 with rs1535)/FADS3 
(p  =  2.96  ×  10-6 with rs1535) and SLCO1B1 
(p  =  4.44 × 10-6 with rs12371604, a SNP in 
LD with the reported SNP rs4149056); and a 
locus linked to flucloxacillin-induced liver injury 
(represented by the SNP rs2395029) [16] is a 
liver eQTL for the MHC‑I polypeptide-related 
sequence B protein (p = 2.68 × 10-9), HLA‑B 
(p = 5.66× 10-7) and HLA‑C (p = 1.90 × 10-6). 
Although these eSNP–gene associations were 
identified from published eQTL studies, these 
associations have not been highlighted previously 
in the context of pharmacogenomics, with the 
exception of the VKORC1 association. Tables 1 & 2 
list all of the genes significantly associated with 
pharmacogenomics GWAS SNPs as this asso-
ciation provides empirical evidence to support 
them as candidate genes at these loci. Whether 
or not these eSNP-nominated candidate genes do 
in fact mediate the association with phenotype 



www.futuremedicine.com 1699future science group

Integrative genomics strategies to elucidate the complexity of drug response Review

 

VKORC1 vs rs10871454 HLA-DRB1 vs rs3129934 SLCO1B1 vs rs12371604
V

K
O

R
C

1 
ex

p
re

ss
io

n
M

IC
B

 e
xp

re
ss

io
n

MICB vs rs2395029 HLA-C vs rs2395029 HLA-B vs rs2395029

H
L

A
-B

 e
xp

re
ss

io
n

rs2395029

H
L

A
-C

 e
xp

re
ss

io
n

rs2395029rs2395029

SORT1 vs rs646776 PSRC1 vs rs646776 CELSR2 vs rs646776

C
E

L
S

R
2 

ex
p

re
ss

io
n

P
S

R
C

1 
ex

p
re

ss
io

n

rs646776 rs646776

S
O

R
T

1 
ex

p
re

ss
io

n
FA

D
S

1 
ex

p
re

ss
io

n

FA
D

S
2 

ex
p

re
ss

io
n

FADS1 vs rs1535 FADS2 vs rs1535

rs1535 rs1535

FA
D

S
3 

ex
p

re
ss

io
n

FADS3 vs rs1535

rs1535

rs646776

H
L

A
-D

R
B

1 
ex

p
re

ss
io

n

S
L

C
O

1B
1 

ex
p

re
ss

io
n

C/C

-0.6

-0.2

-0.4

0.2

0.0

0.4

-0.2

-0.4

0.2

0.0

0.4

-0.2

-0.4

-0.6

0.2

0.4

0.0

-0.5

0.5

1.0

0.0

-0.5

0.5

1.0

0.0

-0.5

-1.0

0.5

1.0

1.5

0.0

-0.5

0.5

1.0

0.0

0.6

-0.2

-0.4

0.2

0.0

0.4

0.6

-0.2

-0.1

0.2

0.0

0.1

0.4

0.3

-0.5

-1.0

0.5

0.0

10.0

-0.5

-1.0

0.5

0.0

C/T

rs10871454 rs12371604rs3129934

T/T

G/G G/T T/T

A/A A/G G/G

A/A A/G G/G A/A A/G G/G A/A A/G G/G

A/A A/G G/G A/A A/G G/G

G/G G/T T/T G/G G/T T/T

C/C C/T T/T C/C C/T T/T

-0.3

-0.2

0.2

0.0

0.1

0.3

-0.1

Figure 1. Pharmacogenomic risk SNPs that are associated with gene-expression levels in human liver. Each panel shows box 
plots of the normalized expression of the gene in individuals of the three given genotypes at that SNP.  
Data taken from [69].
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will, of course, await further confirmatory 
experiments of the type performed to nominate 
SORT1 as the causal gene underlying the 1p13 
human dyslipidemia locus [85].

It is worth noting that many loci could not be 
successfully mapped via GGE in these liver data 
sets. One possible explanation for this is that the 
effect of these loci on the expression of genes in 
the liver is small, and that the loci negative for 
regulation of gene expression in the liver might 
demonstrate that regulation in other tissues. 
Another possibility is that many loci may affect 
the function of a gene via post-transcriptional 
mechanisms that are not detected at the level of 
gene expression or eQTL. Still another possibil-
ity is that many of the pharmacogenomic asso-
ciations that have been reported may represent 
false discoveries, as is suggested for those that 
have not been reproduced in independent stud-
ies. All of these effects demonstrate an opportu-
nity to improve the use of functional genomics 
in interpreting pharmacogenomics studies. 

Network biology
While helpful when inferring the candidate 
genes underlying individual genetic loci via 
QTL mapping as demonstrated in the previous 
section, functional genomics cannot, in general, 
directly address the molecular mechanisms of 
each locus as well as the potential interactions 
among genetic loci. In recent years, network biol-
ogy has increasingly come to provide a systems 
view of how individual molecular traits such 
as genes, metabolites or proteins interact with 
one another and their relationship with various 
clinical phenotypes (including drug response) 
within a cell, a tissue or an organ via integration 
of large-scale genetic, genomic, transcriptomic, 
metabolomic and proteomic data [86]. As shown 
in Figure 2, networks are represented graphically 
as nodes and edges, where nodes are individual 
molecular traits or higher-order phenotypes 
(e.g., clinical traits associated with disease) and 
edges represent the interactions such as physi-
cal binding or statistical correlation among 
molecular traits or between molecular traits 
and higher-order phenotypes. Networks can be 
directed or undirected. In a directed network, 
the direction of an edge between any two nodes 
represents a causal relationship or a sequential 
event, whereas in an undirected network the 
edge between two nodes represents reciprocal 
association such as correlation. 

A variety of network methodologies have 
been developed to construct networks of vari-
ous types. The most common networks are 

protein–protein interaction networks and gene 
regulatory networks. In this review, we will 
focus initially on two types of gene regulatory 
networks, namely, weighted gene coexpression 
network analysis (WGCNA) [87,88] and Bayesian 
network (BN) (Figure 3) [89–96]. We have con-
structed such networks in various species includ-
ing human, mouse and yeast to help identify 
gene sub-networks associated with a variety of 
common human diseases such as obesity and 
atherosclerosis [16,97–100,204]. 

WGCNA is a correlation-based method and 
focuses on the coregulation pattern among genes. 
The advantage of coexpression networks is that 
they allow one to look at the overall gene–gene 
correlation structure at a high level via the con-
struction of gene modules comprised of highly 
interconnected sets of genes (a schematic analysis 
flow is shown in Figure 3A). A number of studies 
have demonstrated that coexpression network 
modules are generally enriched for genes involved 
in known biological pathways, for genes that are 
linked to common genetic loci, and for genes 
associated with diseases [42,51,87,97–105]. Using 
coexpression networks, one can identify key 
groups of genes that are modulated by genetic 
loci or regulated by key transcription factors and 
that in turn lead to disease, and therefore define 
disease states at the molecular level [89]. 

BNs on the other hand are probabilistic 
graphical models comprised of molecular and 
higher-order traits and constructed by assessing 
the conditional dependencies between all of the 
variables under consideration (a schematic anal-
ysis flow is shown in Figure 3B). A BN provides a 
natural and mathematically elegant framework 
for integrating diverse large-scale, high-dimen-
sional genetic, transcriptomic, proteomic and 
metabolomic data sets to decipher the biologi-
cal function of individual genes and pathways. 
Prior information such as genetic regulation, 
transcription factor binding and protein–pro-
tein interaction can be incorporated to help infer 
directionality between genes. Compared with 
WGCNA, BNs are more sparse since they penal-
ize complexity and therefore only keep primary 
interactions, however, they allow a more granu-
lar view of the relationships and directional 
predictions between genes than can be obtained 
with WGCNA [95,102]. A number of studies per-
formed by us and others in a variety of species 
have demonstrated that predictive networks 
such as BN can capture fundamental proper-
ties of complex systems in states that give rise to 
complex phenotypes [42,82,89–91,95,96,102,106–110]. 
Both types of networks provide objective views 
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of the biological systems based on the data, and 
priors, in the case of BN, that they are given. 
Hence, they are an ideal compliment to the spe-
cific hypotheses based on prior experience that 
all scientists carry into an analysis.

Integrative genomics of the  
human liver 
As liver is the most relevant tissue for the phar-
macology of many drugs, functional variations 
and molecular networks of this tissue are of par-
ticular interest for pharmacogenomics. In two 
recent studies, Schadt et al. [42] and Yang et al. 
[82] investigated the genetic architecture of liver 
gene expression, the enzyme activities of CYPs, 
and the network properties using approximately 
500 human liver samples. Through GGE anal-
ysis, more than 3000 eQTL for over 6000 dis-
tinct liver genes were reported, among which 
hundreds of genes encode drug-metabolizing 
enzymes and transporters. In addition to GGE 
analysis, the genetics of the activity measures 
of nine key drug-metabolizing P450 enzymes 
(CYP1A2, CYP2A6, CYP2B6, CYP2C8, 
CYP2C9, CYP2C19, CYP2D6, CYP2E1 and 
CYP3A4) were also studied. With the excep-
tion of CYP2E1, each of these P450 enzymes 
showed variation in activity as a function of 
genotype in this sample, and these relationships 

defined 54 activity SNPs in this cohort. Many 
eSNPs and activity SNPs identified represent 
novel discoveries. For instance, three novel 
long-range SNPs were found to be associ-
ated with both the expression and the enzyme 
activity measurements of CYP2D6 in this 
liver cohort and were confirmed to be associ-
ated with the metabolism of dextromethorphan 
in vivo in an independent human cohort. These 
eSNPs and activity SNPs discovered from the 
human liver studies are of importance for phar-
macogenomics as they help to understand the 
impact of individual genetic variants on drug-
metabolizing enzymes, transporters and liver 
drug targets and in addition, help identify plau-
sible candidate genes underlying the genetic loci 
associated with pharmacogenomic outcomes. 

Using the WGCNA and BN network meth-
odologies and the genetic and gene-expression 
data, coexpression and BN networks have been 
constructed from the same human liver cohort to 
illustrate the gene regulatory network structure 
in the human liver [82]. A total of eight coexpres-
sion network modules comprised of genes with 
similar biological functionalities were identi-
fied and genes involved in particular functional 
categories such as immune response, cell cycle 
and metabolic pathways were enriched in several 
modules. Four modules enriched for P450 genes, 
genes involved in oxidative stress and apopto-
sis, acute-phase response genes and translation-
related genes were found to be highly correlated 
with P450 expression and activity. Through inte-
gration of GGE, two of the four modules were 
implicated as upstream regulatory modules for 
P450s. These modules and the genes within them 
provide additional insights into the regulation 
of P450s. In addition, BN subnetworks which 
incorporated both genetic and gene-expression 
information helped identify a P450 regulatory 
BN subnetwork. Novel candidate P450 regula-
tory genes including EHHADH, SLC10A1 and 
AKR1D1 were highlighted from the analyses of 
both networks. Although in silico validation of 
the P450 regulatory subnetwork has been pre-
sented, the novel regulators nominated are still 
under experimental validation. 

In addition to gene regulatory networks, 
metabolic networks of the liver and hepatocytes 
have also been recently constructed based on 
literature, transcriptomic, proteomic, metabo-
lomic and phenotypic data to help understand 
liver metabolism and physiology [111–113]. These 
liver networks provide a framework for under-
standing how a given gene interacts with other 
genes and how together these genes may impact 

Gene expression 
and drugs

Disease, gene expression 
and drugs

Disease, drugs 
and genetics

Gene expression 
and genetics

Gene expression

Drugs

Disease

Genetics

Figure 2. Networks from different data types useful in pharmacogenomics. 
Drug, disease, gene expression and genetic data generated in different 
combinations in coherent data sets produce reference networks that can be 
accessed by unique queries and inform on distinct biological relationships. Specific 
examples of each network type, methods used to generate them, and references 
are provided in the text. Gene expression and genetics networks include the 
weighted gene coexpression network analysis and Bayesian network approaches 
described under ‘Network biology’, and the remainder are described in the ‘Other 
integrative genomics approaches to data’ section.
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biological functions such as P450 activity and 
hepatic metabolism of compounds, thereby pro-
viding mechanistic insights into individual genes 
and pathways.

Other integrative genomics 
approaches to data
As these liver metabolism network studies 
demonstrate, networks useful in an integrative 
genomics strategy such as described for human 
liver are by no means limited to GGE and genet-
ics of drug response traits. In fact, almost any 
combination of sufficiently rich, coherent and 
orthogonal data in comparable subjects may be 
used to derive a biological network model that 
could be useful when referenced to interpret a 
pharmacogenomic experiment (Figure 2). Most 
obvious are networks that incorporate the effect 
of drugs on the expression of genes. Early surveys 
of the expression of compendia of compounds on 
gene expression have utility and describe basic 
networks, even if their results were at first not 
expressly modeled as networks. Examples of 
this category include a compendium of chemi-
cal signatures as well as individual toxin signa-
tures in yeast [114,115] and the effect of xenobiotic 

compounds in rat liver [116,117]. These early 
efforts clearly demonstrated that drugs have an 
impact on gene expression and that they could 
be classified by that expression. Subsequent pub-
lications referencing these early networks dem-
onstrated the value of referencing them to draw 
conclusions regarding basic biology and drug 
action [55,118–120].

More recently, systematic efforts to screen 
drugs in mammalian cells and model them in 
network-based ways have become a reality. The 
NCI made substantial efforts in this area early 
on by developing a panel of 60 human tumor 
cell lines representing tumors from nine tissues 
and funding diverse experiments to character-
ize them with many molecular techniques under 
diverse experimental conditions [121,122]. These 
cell lines were also SNP genotyped, allow-
ing genome-wide association studies with all 
the molecular traits measured in the NCI60 
cell lines, and similar association studies have 
been performed with cellular phenotypes mea-
sured in the HapMap human cell lines used to 
benchmark human genetic variation [123]. The 
end result of all of this investment has been 
networks encompassing phenotypic response 
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Figure 3. Weighted gene coexpression networks analysis and Bayesian network analysis. (A) Weighted gene coexpression 
network analysis (WGCNA) workflow. Pairwise correlations between genes (shown as genes A, B, C and D in this example) are first 
calculated to construct a correlation matrix across all gene pairs. A connection matrix is then derived from the correlation matrix by 
defining connectivity using a correlation threshold. For example, at a correlation coefficient of absolute value of over 0.6, all gene pairs 
that reach this threshold are defined as being connected. The connectivity matrix is then clustered and a dynamic cut-tree algorithm 
applied to construct the coexpression network and define network modules. Each network module consists of genes that are highly 
interconnected with one another. (B) Bayesian network (BN) workflow. Joint probability distribution of genes based on the conditional 
dependencies is calculated to identify a maximum likelihood network given the observed data. Prior information such as genetic 
regulation, transcription factor binding and protein–protein interaction can then be incorporated to infer directionality between genes. 
Examples of WGCNA and BN analysis applied to biological data sets and references to the analysis methods themselves are given in 
the text.
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to many natural products, experimental com-
pounds, US FDA-approved anticancer agents, 
gene expression and genetics that has in turn 
shown relationships between genetic loci, prolif-
eration and viability phenotypes, and drugs such 
as statins and paclitaxel in these cells [124,125].

Among the most popular of these efforts is the 
connectivity map (cmap), a systematic effort to 
profile the effect of compounds in human cell 
lines and then make the results accessible to a 
broad community of bioinformaticians and 
bench laboratory researchers [118,126]. A cur-
rent download of the cmap database contains 
information on 1309 compounds in five can-
cer cell lines, for a total of 6100 combinations, 
each assayed by gene-expression microarray. 
Although the genetic and phenotypic diversity 
of the cell lines is limited, the number of com-
pounds profiled and the accessibility of the data 
are unprecedented. Accordingly, the cmap has 
featured in publications seeking to understand 
the mechanisms by which drugs act and their 
linkage to disease phenotypes and biological 
processes. For example, the map has been used 
to support mechanistic studies of trastuzumab 
desensitization in breast cancer and extended to 
identify combinatorial effects between retinoids 
and histone deacetylase inhibitors in promoting 
differentiation and increasing survival in xeno-
graft models of neuroblastoma [127,128]. However, 
the cmap networks are valuable outside of can-
cer as well. For instance, Loboda et al. inter-
sected signatures of natural diurnal variation in 
metabolism, the effects of the weight loss drug 
sibutramine and genes repressed by two mTOR 
inhibitors in the cmap, supporting the relation-
ship between sibutramine and diurnal varia-
tion in metabolism and identifying a previously 
unappreciated relationship between mTOR sig-
naling and circadian variation in metabolism 
[129]. This intersection of drug signatures from 
cmap with other gene-expression signatures and 
networks is one of the most promising appli-
cations of the cmap data since it can test the 
ability of the highly controlled, cell line cmap 
data for a broad collection of drugs to gener-
alize to whole organisms under less controlled 
conditions. One can imagine that the combi-
nation of modern, comprehensive cmap drug 
signatures with eQTL linking to a particular 
locus should yield results even more informative 
than those discriminating the effects of rosigli-
tazone and a Alox5-targeted mutation through 
intersection with metabolic QTL and associ-
ated eQTL in a mouse cross [55]. Similar benefit 
would be expected by intersecting cmap, NCI60 

and HapMap cell line data with many of the 
other recently developed network models dis-
cussed in this review. Since many cmap-derived 
results have yet to be widely replicated, it will be 
interesting over time to catalog which cellular 
phenotypes and networks underlying them are 
robust across laboratories and which consistently 
reproduce biology of whole tissues and organ-
isms; key questions that define the utility of any 
laboratory or computational model of biology. 

Networks potentially useful for pharmaco
genomics have also been built around diseases 
and symptoms. Initially, these were text-mining 
applications on semi-structured databases such 
as Online Mendelian Inheritance in Man [130,131], 
and Medical Subject Headings [132]. Because of 
their less quantitative nature they were useful in 
generating hypotheses regarding links between 
diseases, disease mechanisms and potential ther-
apeutic approaches. However, as more quantita-
tive and systematic data has become accessible 
for each disease, more quantitative approaches 
to describe relationships between diseases that 
leverage annotated gene-expression profiles and 
combinations of annotated gene-expression pro-
files with protein–protein interaction data have 
become available [133,134]. These most recent 
efforts show robust statistical relationships 
between networks associated with particular 
diseases and the drugs used to treat them, and 
provide testable, quantitative hypotheses about 
which drugs will be useful for which diseases. 

These disease networks, however, at present 
lack a description of the individual-level vari-
ability we customarily think about when dis-
cussing pharmacogenomics since they, by defi-
nition, treat each disease as a coherent whole. 
This is beginning to change, however, in two 
ways. First, as more molecular and clinical data 
are available for patients on each disease, it is 
becoming possible to subtype diseases more pre-
cisely. For instance, cardiovascular health is now 
routinely assessed through the measurement of 
high-density lipoprotein cholesterol, low-density 
lipoprotein cholesterol, C‑reactive protein, blood 
glucose and HBA1c, triglycerides and blood 
pressure [135,136]. It may even include an imag-
ing component if disease is suspected [137]. In 
total, this data, measured over time, represents 
far more information than was routinely avail-
able on patients in the past, and can in theory be 
used to identify patient populations with distinct 
subtypes of cardiovascular disease. However, it is 
clear that most studies intended to test enhance-
ments to standard risk prediction tools such as 
the Framingham Risk Score have to date not 
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been performed with designs rigorous enough to 
exploit this information on its own [138], under-
scoring the potential value of analyzing clinical 
measurements in the context of genetic informa-
tion and network models derived from molecu-
lar measurements across populations. In cancer, 
where important molecular subtypes of cancers 
have long been recognized, there is a similar 
growth in the molecular and other information 
available on tumors [139–141]. Second, obtaining 
a good picture of a patient’s genetic informa-
tion is becoming increasingly routine. This has 
long been instrumental in the characterization of 
Mendelian disorders, but is now routine for com-
mon diseases such as Alzheimer’s disease, where 
the ApoE genotype has long been appreciated 
to be strongly associated with age of onset and 
course of disease [142], and recent GWAS have 
now implicated a number of loci that appear rel-
evant to immune function, cell membrane func-
tion and lipid metabolism [143,144]. The recent 
advent of inexpensive genome sequencing will 
also make such determinations possible for many 
diseases and be a significant aid to diagnosis, 
as has already been shown in the genetic dif-
ferential diagnosis of Bartter’s syndrome and 
congenital chloride diarrhea [145]. A combina-
tion of multifactorial molecular, clinical and 
genetic parameters measured in an individual 
patient generates a comprehensive profile of that 
patient. As data and network models grows more 
complete and better organized, this suggests an 
opportunity to compare that individual’s profile 
to a reference collection of network models built 
from population-level data to derive increasingly 
tailored lifestyle and therapeutic interventions 
for that individual (Figure 4).

Nowhere is the potential impact of integra-
tive genomics approaches to pharmacogenomics 
greater than in cancer. Tumors are frequently 
accessible for molecular investigation, and 
their great diversity in symptoms and response 
to therapy provide strong motivation to apply 
pharmacogenomics approaches. Hence, many 
projects are underway across the globe to char-
acterize, at the molecular level, many of these 
individual tumor types [146,147]. A hint of where 
this rich information may lead is provided by 
a case study in glioblastoma. Early work based 
entirely on gene-expression profiling of high-
grade gliomas led to the identification of three 
subtypes, of which the mesenchymal subtype 
had the worst prognosis, with post-treatment 
survival as the end point [148,149]. Application 
of the Algorithm for the Reconstruction of 
Accurate Cellular Networks to define modules 

of genes related by coexpression, followed by the 
Master Regulator Inference algorithm to search 
for transcriptional regulators of these modules 
identified a hierarchical grouping of transcrip-
tion factors that controlled more than 74% of 
the transcription in the mesenchymal signature 
[150]. This regulatory structure was then sup-
ported by chromatin immunoprecipitation in a 
human glioma cell line, gain and loss of function 
experiments in cell lines and tumor production 
in mice. Importantly, high expression of mas-
ter regulators of this mesenchymal signature, 
Stat3 and C/EBPb, increased markers of tumor 
aggressiveness in all these assays and decreased 
survival of human glioma patients [150]. With 
several other glioblastoma data sets containing 
coherent molecular and clinical information now 
available, there will be many opportunities to 
refine the structure of these predictive networks 
and test their reproducibility across different sets 
of patients [149,151,152]. These genes will undoubt-
edly also be investigated by copy number varia-
tion analysis in glioblastomas, and the Cancer 
Targeted Discovery and Development Network 
(CTD2) program is seeking small molecule vali-
dation of these targets as well [146]. Impressive 
as these results are, the data on which they are 
based is scant and imprecise in comparison to 

Therapy:
Drug A
Reduced salt in diet

Therapy:
Drug B
Bike to work

Figure 4. Using genetic, clinical and environmental data for individualized 
risk assessment and therapy. Measurements in individuals of biological network 
states using acute laboratory tests or longitudinal mining of clinical data will reveal 
motifs that map to known disease- and treatment-associated network modules 
determined from population-based studies. Here, the motifs are shown as the small 
networks next to the individuals in the upper corners of the figure, and they map 
to subnetworks outlined in red within the encircled reference modules at the center 
of the figure. These reference modules were derived from studies of populations 
that did not include the individuals shown in this figure. This mapping of motif to 
module subnetwork can then in principal be used to guide individualized 
recommendations for pharmacological and lifestyle interventions.
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what is coming. Already, it is cost effective to 
sequence adjacent normal and tumor tissue for 
some research studies [205], something that was a 
noteworthy achievement as recently as 2010 [153], 
and collections of hundreds of cancer genomes 
have been analyzed in combination to identify 
networks of genes not previously implicated in 
distinct cancer types [154,155]. This rich informa-
tion will surely allow us to make much better 
predictions about which of an increasing array 
of targeted cancer therapies are appropriate for 
a given cancer patient. The difficulty of getting 
clinical benefit from such predictions is not to 
be underestimated, however. First, these results 
have not yet been widely confirmed in many 
independent cohorts. Second, many factors 
combine to make introduction of genomic infor-
mation into clinical settings a challenging and 
time consuming process in general, and the huge 
diversity of individual tumors make each case 
a unique challenge to each individual patient 
and his or her physicians that require detailed 
and comprehensive investigation to understand, 
interpret and present [156,157].

Conclusion & future perspective 
At present, there are no real examples of mov-
ing prospectively from biological network 
approaches to diversity of drug response in 
humans. This contrasts with many strong 
examples of prospective drug-target discovery 
by network methods and is certainly a reflection 
of the fact that the clinical studies take time to 
complete. However, our ability to access large 
amounts of clinical data in a structured way 
to rigorously test hypotheses stemming from 
integrative genomics approaches in the clinic 
is improving rapidly and should become rou-
tine in at least some cases within the next 5–10 
years. Even modest improvements in data cap-
ture, such as those investigating the pharmaco
genomics of cisplatin-induced deafness, hydro-
codone toxicity and other drugs through a 
focused effort in Canada clearly shows the ben-
efit of a focused search for drug reactions in an 
ambulatory population [158–161]. Although mov-
ing more slowly than many would like, there is 
a global trend towards increased electronic data 
capture into electronic medical records (EMRs) 
and higher quality of the coding in those EMRs 
[162,163]. As more and more EMR data become 
available, it will be a well-powered resource for 
mining in combination with the increasingly 
precise and voluminous molecular data made 
cheaply available by advances in sequencing 
technology. 

One widely quoted estimate is that over 10,000 
human genomes will have been sequenced world-
wide by the end of 2011, in comparison with tens 
of human genomes at the end of 2009 [164], and 
that genome sequencing will start to make an 
appearance in clinical diagnosis [145,165,166]. In 
combination with what is likely to be a substan-
tially even greater number of RNA-Seq experi-
ments as well as existing volumes of other high 
information content medical data such as images, 
EEGs and ECGs, this represents a vast set of data 
to be mined. Add to that the likely advances in 
all manner of sensor technologies and potentially 
better descriptions of social and environmental 
interactions that leverage our increasing docu-
mentation of our activities online, and there is 
clearly a demand to apply both the lessons in data 
management and mining that have been learned 
from large internet firms and to develop analyti-
cal and data mining methods specific to biologi-
cal and health data [167–169,206,207]. Although they 
will surely be viewed as infant steps a decade 
from now, we are nevertheless seeing progress in 
both areas. For instance, an analysis optimized to 
minimize the multiple-testing issues of a GWAS 
demonstrated well over an order of magnitude 
improvement in the ratio of true to false-positive 
marker-trait associations [170]. Similarly, mining 
even a relatively small hospital’s EMR demon-
strated a clear retrospective association between 
rosiglitazone and COX‑2 inhibitors and adverse 
cardiovascular outcomes [171,172]. Clearly, the 
potential benefits of postmarket surveillance in 
the coming information-rich heathcare environ-
ment are on par with the potential benefits in 
discovery of new therapeutic modalities and their 
individualized and cost-effective application to 
appropriate patient subpopulations. Properly 
harnessed, better capture and open sharing of 
clinical measurements, environmental condi-
tions, social circumstances and molecular phe-
notypes of patients hold out the possibility of 
better health and safer, more effective therapies. 

What stands in the way of this vision? Although 
there are technological challenges to delight 
legions of clever people in fields as diverse as com-
puter science, clinical medicine, pharmacology, 
genetics, economics, epidemiology, nanotechnol-
ogy and statistics, it is our opinion that those 
will be overcome in a reasonably efficient way if 
sufficient data is openly available to address chal-
lenges as they appear. Rather, the main barriers to 
realizing the promise of truly integrating genomic 
technologies with information-rich medical 
practice will be social. Data from research stud-
ies need to be captured and accessible for reuse 
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by future investigators, but this is neither widely 
instilled across the academic community nor 
funded by most research sponsors. The security 
and rights of individuals cannot be compromised 
if their medical, molecular and other data are 
used in research, and this is not easy to achieve, 
let alone harmonize internationally to support 
the sort of global collaborative efforts that are 
a natural consequence of intersecting data with 
whatever other information is most constructive 
in gaining new insight. Perhaps most difficult 
is the fact that humans have never before been 
confronted with so much definite information 
on health and prognosis as the coming data and 
decision support systems built on it will eventu-
ally provide. Figuring out what interventions to 
pursue as a consequence of this information and 
determining who pays for it all in the fragmented 
healthcare delivery systems across much of the 
world are nontrivial undertakings. These social 
challenges do not have to be resolved all at once 

or immediately; however, the benefits of a systems 
approach to pharmacotherapy will be paced by 
how successfully they are addressed.
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Executive summary

Full mechanisms behind pharmacogenomic effects are often opaque 
�� Although there are well-understood examples of pharmacogenetic effects with drugs such as clopidogrel, warfarin, abacavir, flucloxacilin 

and others, it is frequently difficult to obtain a solid understanding of the full mechanism by which genetics affects the action of a drug. 
�� Even when a mechanism is understood, there is other variation in drug response that is not explainable by that mechansim, so there is 

an opportunity to apply integrative genomics approaches that leverage relationships frequently observed between genes, drugs, diseases 
and other concepts in population studies.

Fuctional genomics & network biology
�� Genetics of gene expression and other techniques for relating genetic variation and gene level or activity often suggest mechanisms 

underlying associations between genetic variation and drug effects in genome-wide association studies. This has been observed 
for warfarin, lumiracoxib, flucloxacilin and statins, demonstrating that the genetics of gene expression has general utility to probe 
pharmacogenetic associations.

�� Incorporation of Bayesian and weighted gene coexpression network analysis methods routinely used to structure the analysis and 
application of functional genomics data enhances the interpretation of disease-related genome-wide association study results. 

Integrative genomics of the human liver 
�� Networks derived from genetics of gene expression in human liver demonstrate many genes robustly associated with the function and 

activity of CYP450s.
�� Human and mouse networks, used in combination, identify previously unappreciated potential regulators of CYP450s and can be used 

to address other liver-expressed genes of pharmacogenomic interest in an analogous manner.
Other integrative genomics approaches to data
�� Networks built from other data combinations are also tools with the potential to improve our understanding of any given drug response.
�� Notable examples include systematic cell-based connectivity map screening approaches that marry drug effects on cells with gene 

expression in those cells, copy number variation analysis of tumors with gene expression and clinical end points and database mining of 
clinical records and the published literature in combination with public molecular data repositories.

Conclusion & future perspective
�� Although functional genomics approaches have shown benefit in understanding pharmacogenetic associations for several drugs, at 

present we lack examples of going prospectively from biological network models to diversity of drug response in humans. This contrasts 
with many examples of target discovery, and we anticipate that prospective evidence for the utility of these approaches to drug response 
will emerge as the lengthy process of clinical testing progresses.

�� Data relevant to pharmacogenomics will become ubiquitous with improved clinical data capture in electronic medical records, affordable 
personal genomes and the continued development of new technologies for assaying and imaging patients in a near-continuous fashion.

�� Fortunately, better analytics coupled to increasingly available computing power will enable better discrimination of informative patterns 
in all this data and their application to clinical practice. 

�� If coupled with open-data availability and sharing of materials needed to replicate laboratory results, these trends promise not only more 
effective use of existing therapeutics, but also less expensive and more rapid development of new therapies, including conventional 
drugs as well as, or in combination with, other therapeutic modalities.
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