
ACM Reference Format
Wei, X., Zhang, P., Chai, J. 2012. Accurate Realtime Full-body Motion Capture Using a Single Depth Cam-
era. ACM Trans. Graph. 31 6, Article 188 (November 2012), 12 pages. DOI = 10.1145/2366145.2366207
http://doi.acm.org/10.1145/2366145.2366207.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2012 ACM 0730-0301/2012/11-ART188 $15.00 DOI 10.1145/2366145.2366207
http://doi.acm.org/10.1145/2366145.2366207

Accurate Realtime Full-body Motion Capture Using a Single Depth Camera

Xiaolin Wei Peizhao Zhang
Texas A&M University

Jinxiang Chai∗

Figure 1: Our system automatically and accurately reconstructs 3D skeletal poses in real time using monocular depth data obtained from a
single camera. (top) reference image data; (bottom) the reconstructed poses overlaying depth data.

Abstract

We present a fast, automatic method for accurately capturing full-
body motion data using a single depth camera. At the core of our
system lies a realtime registration process that accurately recon-
structs 3D human poses from single monocular depth images, even
in the case of significant occlusions. The idea is to formulate the
registration problem in a Maximum A Posteriori (MAP) framework
and iteratively register a 3D articulated human body model with
monocular depth cues via linear system solvers. We integrate depth
data, silhouette information, full-body geometry, temporal pose pri-
ors, and occlusion reasoning into a unified MAP estimation frame-
work. Our 3D tracking process, however, requires manual initial-
ization and recovery from failures. We address this challenge by
combining 3D tracking with 3D pose detection. This combina-
tion not only automates the whole process but also significantly
improves the robustness and accuracy of the system. Our whole
algorithm is highly parallel and is therefore easily implemented on
a GPU. We demonstrate the power of our approach by capturing a
wide range of human movements in real time and achieve state-of-
the-art accuracy in our comparison against alternative systems such
as Kinect [2012].

Keywords: motion capture, performance-based animation, human
motion tracking, 3D pose detection, vision-based motion modeling

Links: DL PDF

∗e-mail: xwei|stapz|jchai@cs.tamu.edu

1 Introduction

The ability to accurately reconstruct 3D human poses in real time
would allow interactive control of human characters in games, vir-
tual environments, and teleconferences. Such a system would also
facilitate natural user interaction with computers, robots, and ma-
chines. A major milestone in realtime full-body pose reconstruction
is achieved by the recent launch of Microsoft Kinect [2012], which
automatically infers 3D joint positions from a single depth image.
The Kinect system is appealing because it is robust, superfast, low-
cost, and fully automatic. In addition, it is non-intrusive and easy to
set up because the system requires no markers, no motion sensors,
and no special suits.

Kinect, despite its high popularity and wide applications, does not
provide an accurate reconstruction for complex full-body move-
ments. In particular, the system often produces poor results when
significant occlusions occur. This significantly limits the applica-
tion of Kinect because depth data from a single camera frequently
contains significant occlusions. The primary contribution of this
paper is a robust full-body motion capture system that accurately
reconstructs 3D poses even in the case of significant occlusions (see
Figure 1). Our system advances the state of the art because it shares
the same advantages of Kinect but significantly improves the accu-
racy of the capturing system.

At the core of our system lies a realtime full-body motion tracking
process that accurately reconstructs 3D skeletal poses using monoc-
ular depth images obtained from a single camera. The idea is to
formulate the tracking problem in a Maximum A Posteriori (MAP)
framework and iteratively register a 3D articulated human model
with depth data via linear system solvers. The system is accurate
because we integrate depth data, silhouette information, full-body
geometry, and temporal pose priors into a unified framework. In
addition, we incorporate occlusion reasoning into MAP estimation
in order to handle significant occlusions caused by a single camera.

Our 3D pose tracking process, however, requires manual initial-
ization and might be prone to local minima because it initializes
current poses with previously reconstructed poses. We address this
challenge by complementing tracking with 3D pose detection. 3D
pose tracking and detection are complementary to each other. At

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

http://doi.acm.org/10.1145/2366145.2366207
http://portal.acm.org/ft_gateway.cfm?id=2366207&type=pdf

one end, 3D pose tracking can produce more accurate results but
often requires manual initialization and recovery. At the other end,
3D pose detection can automatically infer 3D human poses from
single depth images but often with less accurate results. An ap-
propriate combination of both techniques provides benefits at both
ends. To achieve this, we introduce a hybrid motion capture scheme
that automatically switches between 3D pose tracker and 3D pose
detector. We apply the 3D pose tracker to reconstruct the poses for
all the frames except the starting frame and failure frames, which
are initialized/reset by the 3D pose detector automatically. Such
a combination not only automates the whole capturing process but
also improves the accuracy and robustness of the capturing system.

We implement our hybrid algorithm on GPU to ensure the whole
system runs in real time (44 frames per second). In addition, we
introduce a simple yet effective skeleton calibration process that
automatically computes 3D human skeleton models from depth im-
ages of a single reference pose. This enables the system to work for
subjects of different skeletal sizes. Our final system for full-body
motion capture is robust and fully automatic, runs in real time, and
allows for accurate motion capture for different subjects.

We demonstrate the power and effectiveness of our system by cap-
turing a wide range of human movements in real time using a sin-
gle depth camera. Our system achieves state-of-the-art accuracy in
our comparison against alternative systems such as [Kinect 2012;
Shotton et al. 2011; Ganapathi et al. 2010]. We assess the qual-
ity of reconstructed motions by comparing them with ground truth
data simultaneously captured with a full marker set in a commer-
cial motion capture system [Vicon Systems 2011]. We also evalu-
ate the importance of each key component of our 3D pose tracking
process. And lastly, we evaluate the robustness of our system and
analyze possible failure modes of the entire system.

1.1 Related Work

Our work builds upon a rapidly growing body of recent literature on
3D pose tracking and detection with depth data. One possibility to
track 3D human poses is to sequentially register an articulated hu-
man body model with depth data via Iterative Closest Point (ICP)
techniques. Grest and colleagues [2007] explored how to apply ICP
techniques to register an articulated mesh model with monocular
depth data along with silhouette correspondences between the hy-
pothesized and observed data. The ICP algorithm was also been
used in [Knoop et al. 2006] to fit a degenerated cylindrical 3D body
model to depth data. However, the ICP algorithm is often sensitive
to initial poses and prone to local minima, thereby failing to track
3D human poses from noisy depth data obtained from a single cam-
era (for details, see comparison results in Section 7.2).

An alternative solution is to take a bottom-up approach to pre-
dict/estimate 3D joint positions directly from a single depth im-
age. This approach is appealing because it does not assume any
3D human body model, does not require any pose initialization,
and does not get trapped in any local minima. For example, Plage-
mann and colleagues [2010] constructed 3D meshes to detect inter-
est points in depth images and then learned patch classifiers in order
to automatically label them as “head”, “hands” or “feet”. Shotton
et al. [2011] formulated 3D pose estimation as a per-pixel classi-
fication problem and trained randomized decision trees based on a
large database of synthetic depth images rendered from prerecorded
motion data for automatic pixel labeling. More recently, Girshick
and colleagues [2011] presented an efficient regression forest-based
method for detecting 3D human poses from single depth or silhou-
ette images.

Among all the systems, our work is most similar to [Shotton et al.
2011], which forms a core component of the Kinect system [2012].

Both systems focus on automatic realtime reconstruction of full-
body poses using a single depth camera. Like their system, we for-
mulate 3D pose detection as a per-pixel classification problem and
apply randomized decision trees to automatic pixel labeling. Our
work, however, is significantly different from theirs in that we de-
velop a realtime 3D tracking process to complement 3D pose detec-
tion. Our system, therefore, shares the same advantages of Kinect
but significantly improves the accuracy of the reconstructed poses.
In addition, our solution of reconstructing 3D poses from classified
pixels is different from theirs. We explicitly remove the misclassi-
fied pixels and apply our 3D tracking algorithm to reconstruct 3D
poses in joint angle space, while their system estimates 3D joint
positions using probabilistic clustering techniques via meanshift.
The comparison results show that our system produces much more
accurate results than [Shotton et al. 2011] as well as the Kinect sys-
tem [2012] for depth data with or without significant occlusions (see
Section 7.2).

Our work builds upon the success of combining 3D pose track-
ing and detection to benefit from each other. Siddiqui and
Medioni [2010] combined bottom-up detection results and top-
down likelihood in a data-driven MCMC framework for upper-body
pose estimation. Ganapathi and colleagues [2010] developed an in-
teractive online motion capture system using a single depth camera.
Their algorithm used body part proposals from [Plagemann et al.
2010] to track the skeleton with kinematic and temporal informa-
tion in a probabilistic framework. Baak et al. [2011] proposed to use
detection results obtained from [Plagemann et al. 2010] to search
similar poses in a prerecorded motion database and combined pose
hypothesis with local optimization to reconstruct the final solution.
Ye and colleagues [2011] utilized a data-driven pose detection tech-
nique to first identify a similar pose in the pre-captured motion
database and then refined the pose through non-rigid registration
techniques. Our system is unique because it builds upon our highly
accurate 3D tracking algorithm and state-of-the-art 3D pose detec-
tion algorithm. Our system is advantageous because it is robust and
fully automatic, runs in real time, and allows for accurate recon-
struction of full-body poses even under significant occlusions.

Our work is related to techniques of tracking 3D human poses using
conventional intensity/color cameras (for more details, we refer the
reader to [Moeslund et al. 2006]). One notable solution is to per-
form sequential pose tracking based on 2D image measurements
(e.g., [Bregler et al. 2004]), which initializes 3D human poses at
the starting frame and sequentially updates 3D poses by minimiz-
ing the inconsistency between the hypothesized poses and observed
measurements. This approach, however, is often vulnerable to oc-
clusions, cloth deformation, illumination changes, and a lack of
discernible features on the human body because 2D image mea-
surements are often not sufficient to determine high-dimensional
3D human movement.

Our work is also relevant to recent efforts in realtime full-body
motion capture using only a few sensors [Chai and Hodgins 2005;
Slyper and Hodgins 2008; Liu et al. 2011; Tautges et al. 2011].
Reconstructing human poses from a small number of sensors is of-
ten an ill-posed problem. One good way to reduce the ambigu-
ity is to utilize prior knowledge embedded in prerecorded motion
data. A number of researchers have explored how to utilize prere-
corded motion capture data to reduce the reconstruction ambiguity
from low-dimensional control signals obtained from a sparse num-
ber of markers [Chai and Hodgins 2005] or inertial sensors [Slyper
and Hodgins 2008; Liu et al. 2011; Tautges et al. 2011]. Our work
is different because we focus on markerless motion capture using a
single depth camera. Our system, therefore, is easy to set up and
requires no markers, no motion sensors, and no special suits.

188:2 • X. Wei et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

Skeleton
Calibration

Yes No

3D Pose
Detection

Acquisition
3D Pose
Tracking

Act out!

Error
drifting?

3D motion

Acquisition

Posing

Figure 2: System overview.

1.2 Overview

We develop an automatic realtime system that accurately captures
3D full-body motion data using a single depth camera. Here we
highlight the issues that are critical for the success of this endeavor
and summarize our approach for addressing them (see Figure 2).

3D pose tracking. The core of our system is a realtime tracking
process that accurately reconstructs 3D skeletal poses using input
data obtained from a single depth camera. Our idea is to formulate
the problem in a Maximum A Posteriori (MAP) framework and in-
crementally register 3D skeletal poses with monocular depth data
via linear system solvers. One unique property of our tracking pro-
cess is its sensible reasoning about occlusions in depth data. This
allows us to reconstruct 3D human poses under significant occlu-
sions, a capability that has not been demonstrated in the state-of-
the-art systems such as Kinect [2012].

3D pose detection. 3D pose tracking often requires manual ini-
tialization and recovery. This motivates us to develop a 3D pose
detection algorithm, which automatically infers 3D poses from sin-
gle depth images, to complement our tracking process. We for-
mulate 3D pose detection as a per-pixel classification problem and
apply randomized decision trees [Amit and Geman 1997] to asso-
ciate each depth pixel with particular bone segments. In addition,
we have introduced an efficient reconstruction technique to estimate
3D joint angle poses from classified depth pixels.

Combining tracking with detection. Our final system combines
the advantages of 3D pose tracking and detection. Specifically, we
design a hybrid motion capture scheme that automatically switches
between 3D pose tracker and 3D pose detector. We apply the 3D
pose tracker to reconstruct the poses for all the frames except the
starting frame and failure frames, which are initialized/reset by the
3D pose detector automatically. Such a combination not only auto-
mates the whole capturing process but also significantly improves
the accuracy and robustness of the system.

Skeleton calibration. Skeleton calibration ensures the system
works for users of different skeletal sizes. We approximate the ge-
ometry of each bone segment with a cylindrical model. The calibra-
tion process automatically estimates the length and radius of cylin-
drical models for each bone segment. Each user needs to perform
the skeleton calibration step only once.

We describe these components in detail in the next sections.

Figure 3: Our human skeleton models contain 15 bone segments.
We define a full-body pose using a set of independent joint coordi-
nates q ∈ R34, including absolute root position and orientation as
well as the relative joint angles of individual joints.

2 Depth Data Acquisition and Preprocessing

Current commercial depth cameras are often low-cost and can
record 3D depth data at a high frame rate. For example, Microsoft
Kinect cameras, which cost roughly one hundred dollars, give a
320 × 240 depth image at 30 frames per second (fps) with depth
resolution of a few centimeters. In our experiment, we have tested
the system on depth data obtained from two types of depth cameras,
although our system is applicable to other types of depth cameras as
well. We recorded depth image data using a Swissranger SR4000
Time-of-Flight camera, which was set to capture depth data at 25
fps with a resolution of 176 × 144 pixels. We also employed the
Kinect camera for full-body motion capture. Pixels in a depth im-
age store calibrated depth data in the scene, rather than a measure
of intensity or color. In our experiment, each pixel x = [u, v]t in
the depth image stores not only the depth value D(x) but also the
corresponding x-y-z coordinates p = [x, y, z]T in the 3D space.

Silhouette extraction. The system requires segmenting foreground
pixels from background pixels in depth images, though clean seg-
mentation results are not required for system success. We apply the
background subtraction algorithm in the OpenCV library to remove
background pixels for the Swissranger camera. For the Kinect cam-
era, we use the Kinect API [2012] to extract foreground pixels. The
system then converts foreground/background information into a bi-
nary silhouette image S(x) by setting foreground and background
pixels to ones and zeros, respectively. The silhouette images S(x)
will later be used for 3D tracking and detection.

Full-body representation. We approximate full-body geometry
with a human skeleton model of 15 rigid body segments (see Fig-
ure 3). We approximate geometry of each bone segment with a
cylindrical model except that the torso is modeled by an elliptic
cylinder. The full-body geometry model of a human figure can thus
be defined by the radius and length of each bone segment. We de-
scribe a full-body pose using a set of independent joint coordinates
q ∈ R34, including absolute root position and orientation as well
as the relative joint angles of individual joints. These joints are the
head (3 Dof), lower neck (2 Dof), lower back (3 Dof), and left and
right clavicle (2 Dof), humerus (3 Dof), radius (1 Dof), femur (3
Dof), tibia (1 Dof).

3 Realtime 3D Pose Tracking

This section describes our tracking algorithm which sequentially
reconstructs 3D human poses q ∈ R34 from input depth data D(x)
and silhouette data S(x) obtained from a single depth camera. Our
idea is to formulate the tracking problem in the MAP framework
and iteratively register a 3D articulated human geometry model
with observed data via linear system solvers. In the following,

Accurate Realtime Full-body Motion Capture Using a Single Depth Camera • 188:3

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

(a) (b) (c) (d)

Figure 4: Automatic labeling of depth pixels for likelihood evaluation. Black and gray circles represent the silhouettes of “observed” and
“rendered” depth images, respectively. The pixels used for evaluating the depth image term are visualized in red. (a) Without self-occlusion,
the depth image term is evaluated by pixels located in the overlapping region. (b) When self-occlusion occurs, pixels in region B2 need
to be excluded from the depth image term evaluation because they might be associated with different bone segments in the “rendered” and
“observed” images. (c) For all the non-red pixels which were excluded for the depth image term evaluation, we categorize them into four
different groups and use them to evaluate the extra depth term. Note that pixels in type “1”, “2”, “3” and “4” are visualized in green,
orange, magenta, and blue, respectively. (d) To evaluate the silhouette image term, we discard pixels with zero gradients and focus the
evaluation on the pixels with non-zero gradients in the foreground of the “rendered” region (see solid-blue pixels and half-blue pixels).

we explain how to incorporate depth data, silhouette information,
full-body geometry information, and pose priors into the MAP es-
timation framework. We also discuss how to incorporate occlusion
reasoning into MAP estimation in order to handle significant occlu-
sions caused by a single camera.

Let Ci be the input data at the current frame i consisting of a depth
map Di and a binary silhouette image Si. We want to infer from
Ci the most probable skeletal poses qi ∈ R

34 for the current frame
given the sequence of m previously reconstructed poses, denoted
as Qim = [qi−1, ..., qi−m]. Dropping the index i for notational
brevity, we aim to estimate the most likely poses q∗ by solving the
following MAP estimation problem:

q∗ = arg max
q

Pr(q|C,Qm), (1)

where Pr(·|·) denotes the conditional probability.

Using Bayes’ rule, we obtain

q∗ = arg max
q

Pr(C|q, Qm)·Pr(q|Qm). (2)

Assuming that C is conditionally independent of Qm given q, we
can write

q∗ = arg max
q

Pr(C|q)︸ ︷︷ ︸
Likelihood

·Pr(q|Qm)︸ ︷︷ ︸
Prior

, (3)

where the first term is the likelihood term which measures how well
the reconstructed pose q matches the current observation data C,
and the second term is the prior term which describes the prior
distribution of the current pose q given the previous reconstructed
poses Qm. Maximizing the posteriori produces a most probable
skeletal pose q∗ which is consistent with both observation data C
and previous reconstructed poses Qm.

We adopt an “analysis-by-synthesis” strategy to measure how well
the reconstructed poses q match observed data C, including depth
data D and silhouette data S. By assuming conditional indepen-
dence, we can model the likelihood distribution in Equation 3 as the
product Pr(C|q) = Pr(D|q)Pr(S|q). The two factors capture
the alignment of reconstructed poses with depth data and silhouette
data, respectively. The rest of this section focuses on discussion
on how to model Pr(D|q) and Pr(S|q), as well as the prior term
Pr(q|Qm). We model the distribution of each term as a product of
Gaussians, treating each pixel from input data independently.

Depth image term. In general, the evaluation of the likelihood
term Pr(D|q) requires identifying the correspondences between

the “hypothesized” depth data and “observed” depth data. Previ-
ous approaches (e.g., [Knoop et al. 2006; Grest et al. 2007]) often
apply Iterative Closest Points (ICP) techniques to find the corre-
spondences between the two. However, ICP techniques often pro-
duce poor results for human pose registration (for details, see Sec-
tion 7.2). To address this challenge, we project 3D depth data onto
the 2D image plane and register the “hypothesized” and “observed”
depth images via image registration techniques, which avoids build-
ing explicit correspondences between the two.

In an analysis-by-synthesis loop, we first use the “hypothesized”
joint angle pose q along with the 3D human body model to render
all the surface points on the human body. We define the 3D position
of a surface point as p = f(q; k, p0), where the vector function f
is the forward kinematic function which maps the local coordinates
of the surface point p0 on the k-th bone segment to the global 3D
coordinates p. For notational brevity, we denote the 3D global coor-
dinates of the “rendered” surface point as p(q). We further project
all the “rendered” 3D points p(q) onto 2D image space with the
calibrated camera parameters to obtain a “rendered” depth image
Drender under the current camera viewpoint.

Assuming Gaussian noise with a standard deviation of σdepth for
each depth pixel x, we obtain the following likelihood term for
depth image registration:

Pr(D|q) =
∏ 1√

2πσdepth
exp(−‖Drender(x(q), q)−D(x)‖2

2σ2
depth

),

(4)
where x(q) is a column vector containing the pixel coordinates of
the “rendered” depth image. Note that unlike color image registra-
tion, pixel values in the “rendered” depth image Drender are not
fully dependent on pixel coordinates x(q) because the depth values
of pixels also directly vary with the reconstructed pose q. This is
due to reparameterization of 3D point data p(q) on 2D image space.

A critical issue for the depth image term evaluation is to determine
which pixels in the “rendered” image should be included for eva-
lution. This is very important to our tracking process because we
adopt gradient-based methods for MAP estimation. Including in-
appropriate pixels into the depth image term will mislead MAP es-
timation and cause the optimizer to fall in local minima. A simple
solution is to use all the foreground pixels, denoted as x ∈ R, in
the “rendered” depth images (Figure 4(a)). This solution, however,
often causes inappropriate updates to the current poses because a
foreground pixel in the “rendered” depth image might be located in
the background region of the “observed” depth image. To address
the issue, our system automatically excludes those pixels from the

188:4 • X. Wei et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

depth term evaluation by checking whether a foreground pixel in
the “rendered” image is located in the background region of the
“observed” image. In Figure 4(a), those pixels are located in region
B1 = {x ∈ R; x 6∈ O}, where region O includes all foreground
pixels in the “observed” image.

When self-occlusion occurs, a pixel located in the overlapping re-
gion R ∩ O might associate with different bone segments in the
“rendered” and “observed” images. Imagine crossing the left arm
in front of the chest. Some pixels on the “left arm” in the “rendered”
image might inevitably overlap the “chest” pixels in the “observed”
image. We illustrate the situation in Figure 4(b), where the “left
arm” and “chest” are visualized as the “small” elliptical region and
“large” elliptical region, respectively. Similarly, those pixels would
mislead MAP estimation and should be excluded from evalua-
tion because they are associated with different bone segments in
the “rendered” and “observed” depth images. In our experiment,
we adopt a simple yet effective idea to detect those pixels, denoted
as x ∈ B2 (Figure 4(b)). We calculate the depth difference for
each pixel in the overlapping region and exclude the pixels from
the depth image term evaluation if their depth differences are larger
than a specific threshold, which is experimentally set to 8 cm. In
Figure 4(b), we visualize all the pixels G = {x ∈ R; x 6∈ B1∪B2}
used for the depth image term evaluation in red.

Extra depth term. In practice, even with ground truth poses, the
“rendered” depth images might not precisely match the “observed”
depth images due to camera noise, cloth deformation, and an ap-
proximate modeling of full-body geometry. As a result, the depth
image term alone is often not sufficient to produce satisfactory re-
sults, particularly when significant occlusions occur. This motivates
us to introduce an extra depth term to evaluate all the depth pixels
that were excluded from the depth image term evaluation. Besides
the regionB1 andB2, we will also consider the pixels in the region
B3 = {x ∈ O; x 6∈ R}.

We categorize all the pixels that were excluded from the depth im-
age term evaluation, denoted as x ∈ B1 ∪B2 ∪B3, into four dif-
ferent groups and use them to obtain a number of correspondences
between the “rendered” depth data and the “observed” depth data
as follows (Figure 4(c)):

Type 1. For a “rendered” pixel x(q) ∈ B1, we find the closest point
xc1 ∈ O in the “observed” data and push the “rendered” pixel x(q)
towards the “observed” pixel xc1 (“green” arrow).

Type 2. For an “observed” pixel x ∈ B3, we search the closest
point xc2(q) ∈ R in the “rendered” depth image and pull the “ren-
dered” pixel xc2(q) to the “observed” pixel x (“orange” arrow).

Type 3. For a “rendered” pixel x(q) ∈ B2, if its “rendered” depth
value is smaller than its “observed” depth value, then the “ob-
served” pixel is occluded by the “rendered” pixel. Therefore, we
use the “rendered” pixel x(q) to find the closest point xc3 ∈ O in
the “observed” image and push the “rendered” pixel x(q) towards
the “observed” pixel xc3 (“magenta” arrow).

Type 4. For a “rendered” pixel x(q) ∈ B2, if its “rendered” depth
value is larger than the “observed” depth value, then the “rendered”
pixel is occluded by the “observed” pixel. We thus use the “ob-
served” pixel x to search the closest point xc4(q) ∈ R in the “ren-
dered” depth image and pull the “rendered” pixel xc4(q) to the “ob-
served” pixel x (“blue” arrow).

We define the extra depth term in 3D space instead of 2D image
space. This is because the extra depth term is defined for pixels
located in non-overlapping regions while correspondence informa-
tion in non-overlapping regions cannot be estimated on 2D image
space via image gradients. We find the correspondences by di-
rectly searching the closest points in 3D space as depth pixels in

the “rendered” and “observed” depth images also contain corre-
sponding x-y-z coordinates in 3D space. In our implementation,
we find the closest points with bidirectional distance measurement
to ensure one-to-one correspondences. Meanwhile, we exclude the
correspondences from the extra depth term evaluation if their depth
differences are larger than a specific threshold (8 cm). The “ar-
rows” in Figure 4(c) visualize the correspondences associated with
each type of pixels.

We now can define the extra depth term as follows:

Prextra(D|q) =
∏ 1√

2πσextra
exp(−‖p(q)− p∗‖2

2σ2
extra

), (5)

where p(q) is a 3D point in the “rendered” depth image and p∗ is
the closest point in the “observed” depth image.

Silhouette image term. The silhouette image term Pr(S|q) en-
sures that the “rendered” silhouette map Srender matches the “ob-
served” silhouette map S extracted from input depth data. This
term complements the depth image term and extra depth term, nei-
ther of which penalizes the mismatch between the “rendered” and
“observed” silhouette images. The silhouette image term is particu-
larly helpful for tracking human poses under significant occlusions.
Figure 11 in Section 7.3 shows the importance of the silhouette im-
age term.

Similarly, evaluating the silhouette image term requires building
the correspondences between the “rendered” and “observed” sil-
houettes. We choose to evaluate the silhouette image term on 2D
image space in the same way as the depth image term. This avoids
finding explicit correspondences between the “rendered” and “ob-
served” silhouettes, and therefore is less prone to local minima. As-
suming Gaussian noise with a standard deviation of σsilhouette for
each pixel x ∈ R, we obtain the likelihood term for silhouette reg-
istration:

Pr(S|q) =
∏ 1√

2πσsilhouette
exp(−‖Srender(x(q))− S‖2

2σ2
silhouette

),

(6)
where x(q) represents 2D pixel coordinates in the “rendered” sil-
houette image. Since our system applies iterative gradient solvers
to estimate the reconstructed poses, we can discard pixels with zero
gradients and focus the evaluation on the pixels with non-zero gra-
dients (see solid-blue and half-blue pixels in Figure 4(d)).

Prior term. We evaluate the prior term Pr(q|Qm) by measur-
ing how well the current pose q is placed after previous m poses
[q̃−1, ..., q̃−m]. We assume that the pose at the current time de-
pends only on the poses at previous two frames. The prior term
is

Pr(q|Qm) =
1√

2πσs
exp(

−‖q− 2q̃−1 + q̃−2‖
2

2σ2
s

), (7)

where q̃−1 and q̃−2 are the reconstructed poses in the previous two
frames. The prior term assumes a constant acceleration model and
thus penalizes the velocity change of 3D human poses.

3.1 Realtime Optimization

We solve the MAP estimation problem defined in Equation (3) by
minimizing the negative logarithm of the posteriori probability den-
sity function, yielding the following energy minimization problem:

q∗ = arg min
q

Edepth + Eextra + Esilhouette + Eprior (8)

where

Edepth =
‖Drender(x(q), q)−D‖2

2σ2
depth

, (9)

Accurate Realtime Full-body Motion Capture Using a Single Depth Camera • 188:5

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

Eextra =
‖p(q)− p∗‖2

2σ2
extra

, (10)

Esilhouette =
‖Srender(x(q))− S‖2

2σ2
silhouette

, (11)

Eprior =
‖qi − 2q̃i−1 + q̃i−2‖

2

2σ2
s

. (12)

This requires minimizing a sum of squared nonlinear function val-
ues. Our idea is to extend the Lucas-Kanade algorithm [Baker and
Matthews 2004] to solve the above non-linear least squares prob-
lem. Lucas-Kanade algorithm, which is a Gauss-Newton gradient
descent non-linear optimization algorithm, assumes that a current
estimate of q is known and then iteratively solves for increments to
the parameters δq using linear system solvers.

In our implementation, we initialize the current pose using the pre-
viously estimated pose and iteratively perform the following steps
until the change of the pose is smaller than a specified threshold:

• Step 1: Given the current pose q and the full-body human
mesh model, we render a depth image Drender(x(q), q) and
a silhouette image Srender(x(q)) under the current camera
viewpoint.

• Step 2: For a pixel x ∈ R in the “rendered” depth image, we
use OpenGL’s selection buffer to determine which bone seg-
ment (k) the pixel is associated with as well as the local co-
ordinates of the corresponding surface point (p0) on the k-th
bone segment. This step is necessary for evaluating the partial
derivatives ∂p/∂q because the global coordinates of surface
points p = f(q; k, p0) are dependent on the local coordinates
p0 as well as the associated bone segment k.

• Step 3: We calculate the gradients of the “rendered” depth
image and the “rendered” silhouette image and other partial
derivatives in Equations (9), (10), (11), and (12) to form linear
equations (for details, see Appendix A).

• Step 4: We compute the optimal increment δq using linear
system solvers and update the current pose: q = q + δq.

The algorithm usually converges within five iterations as we initial-
ize the solution using the previous reconstructed poses.

Realtime GPU implementation. The fact that each step in the
tracking algorithm can be executed in parallel allows implementing
a fast solver on modern graphics hardware. By using CUDA to im-
plement our tracking algorithm, the current system runs in real time
(48 frames per second) on a machine with Intel Core i7 3.40GHz
CPU and GeForce GTX 580 graphics card. For each iteration, the
typical computational times for rendering depth/silhouette images,
forming and solving linear questions are about 1ms, 1.6ms, and
1.4ms, respectively.

4 3D Pose Detection

One limitation of the tracking process is that it requires manual ini-
tialization of the starting poses. In addition, it cannot automatically
recover from failures once the system gets stuck in the local mini-
mum. This section describes an efficient 3D pose detection process
for automatic initialization/reset of our 3D pose tracking process.

Similar to [Shotton et al. 2011], we formulate the 3D pose detection
problem as a per-pixel classification problem. During training, we
construct a setK = {k1, ..., kN} ofN classes of pixels. Each class
corresponds all pixels located on a particular bone segment except
for low-body bone segments, where upper legs and lower legs are

(a) (b) (c) (d)

Figure 5: 3D pose detection and reconstruction: (a) classified pix-
els; (b) classified pixels after outlier removal; (c) pose reconstruc-
tion with inverse kinematics; (d) 3D pose refinement via tracking.

divided into two classes to allow for more accurate detection of 3D
poses. At runtime, given an input patch w(xinput) centered at a
“foreground” depth pixel xinput ∈ O, we want to decide whether
or not its measurement matches one of the N classes of pixels. In
other words, we want to find for w(xinput) its class label Y (w) ∈
C = {1, 2, ..., N}.

In practice, no classifier is perfect. The classified pixels are often
noisy and frequently corrupted by outliers due to classification er-
rors (see Figure 5(a)). We, therefore, develop an efficient technique
to automatically remove misclassified pixels (Figure 5(b)). We then
process the classified depth pixels to compute the centroid of each
labeled cluster and reconstruct the pose in joint angle space with
inverse kinematics techniques (Figure 5(c)). Lastly, we apply the
3D tracker described in Section 3 (Figure 5(d)) to refine the recon-
structed poses. We discuss each step in detail in the rest of this
section.

4.1 Automatic Pixel Labeling with Randomized Trees

We use randomized decision trees [Amit and Geman 1997] to train
a classifier for automatic labeling of depth pixels. We advocate the
use of randomized trees because they naturally handle multi-class
problems and are robust and fast, while remaining reasonably easy
to train. A randomized forest is an ensemble of L decision trees
T1, ..., TL. Each node in the tree contains a simple test that splits
the space of data to be classified, in our case the space of depth
patches. Each leaf contains an estimate based on training data of
the posterior distribution over the classes. A new patch is classified
by dropping it down the tree and performing an elementary test at
each node that sends it to one side or the other. When it reaches a
leaf, it is assigned probabilities of belonging to a class depending
on the distribution stored in the leaf.

Once the trees T1, ..., TL are built, their responses are combined
during classification to achieve a better recognition rate than a sin-
gle tree could. More formally, the tree leaves store posterior proba-
bilities Prλ(l,w)(c|w), where c is a label in C and λ(l,w) is the leaf
of tree Tl reached by the patch w. Such probabilities are evaluated
during training as the ratio of the number of patches of class c in the
training set that reach λ and the total number of patches that reach
λ. The whole forest achieves an accurate and robust classification
by averaging the class distributions over the leaf nodes reached for
all L trees:

c̃ = arg max
c

1

L

∑
l=1,...,L

Prλ(l,w)(c = Y (w)). (13)

Node testing. The tests performed at the nodes are simple binary

188:6 • X. Wei et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

tests based on simple functions of raw pixels taken in the neighbor-
hood of the classification pixel. Similar to [Lepetit and Fua 2006],
our feature function calculates the difference of depth values of a
pair of pixels taken in the neighborhood of the classification pixel
x: D(x + ∆x1) − D(x + ∆x2). We normalize the offset of each
pixel (i.e., ∆x1 and ∆x2) by its depth valueD(x) to ensure the fea-
tures are depth invariant. If the value of a splitting function is larger
than a threshold, go to left child and otherwise go to right child. In
all our experiments, the patches are of size 50 × 50. And the opti-
mal threshold for splitting the node is automatically determined by
maximizing the information gain for particular features.

Training data. To learn a classifier for automatic depth pixel label-
ing, we need to construct a training database containing a large set
of synthetic depth images. Every pixel in the depth images needs to
be annotated with an appropriate class label c ∈ 1, ..., N . To con-
struct the training database, we first use a polygon mesh model to
render “synthetic” depth images corresponding to different poses,
camera viewpoints, and human skeletal models. Synthetic depth
pixels are automatically annotated with class information because
every pixel in the “rendered” depth images is associated with a par-
ticular bone segment thus a class label. Our training database con-
sists of approximately 20k poses from 65 sequences of human ac-
tions such as dancing, sitting, kicking, running, boxing, and tennis.

Randomized trees learning. We use the randomized trees algo-
rithm to learn binary forests. Each tree is trained separately on a
small random subset of the training data. The trees are constructed
in the classical, top-down manner, where the tests are chosen by
a greedy algorithm to best separate the given examples. At each
node, several candidates for a feature function are generated ran-
domly, and the one that maximizes the expected gain in informa-
tion about the node categories is chosen. The process of selecting a
test is repeated for each nonterminal node, using only the training
examples falling in that node. The recursion is stopped when the
node receives too few examples, or when it reaches a given depth.

4.2 Automatic 3D Pose Reconstruction

Our next task is to infer a 3D joint angle pose from classified depth
pixels. One way to achieve this is to estimate the centroid of each
class and use them for finding the inverse kinematics solution. In
practice, no classifier is perfect, so kinematic constraints derived
from the classified pixels are often noisy and frequently corrupted
by outliers due to classification errors. Figure 5(a) shows the clas-
sification result on a test depth image. It is noticeable that some
pixels on the “left arm” are misclassified to the “left leg” while
some pixels on the “left leg” are incorrectly labeled as the “torso”.
In practice, direct use of the classified pixels for joint angle pose
estimation often produces noisy reconstruction results.

Outlier removal. To address the issue, we formulate the problem
as a robust fitting problem and apply random sampling techniques
to automatically detect and remove misclassified depth pixels. We
choose random sampling techniques because it allows for robust
fitting of a model (i.e. a rigid-body bone segment in our applica-
tion) in the presence of a high percentage of outliers. Specifically,
we parameterize the location and orientation of each bone segment
with two end points (i.e. inboard and outboard joints) and fit to the
classified depth pixel by randomly selecting a pair of depth pixels
associated with the same class and counting the number of inliers
(i.e. the number of “foreground” depth pixels that are located on or
within the bone segment). To speed up the robust fitting process,
we discard random samples without counting the number of inliers
if the Euclidean distance between the selected depth pixels is larger
than the bone length or smaller than one fifth of the bone length.
The exact number of samples for each bone heavily depends on the

total number of pixels within the projection region of each bone,
but we found 2500 samples to be more than enough for all of the
testings we tried. Figure 5(b) shows the classified depth pixels after
outlier removal.

3D pose reconstruction and refinement. We now can apply in-
verse kinematics techniques to transform classified depth pixels to
a 3D joint angle pose. We calculate the centroid of all the inlier
pixels categorized into each of the classes and use them as kine-
matic constraints for 3D pose estimation. However, when only a
small percentage of inliers are detected or bone segments are self
occluded, the solution becomes noisy due to inaccurate centroid
locations (see Figure 5(c)). We apply the 3D tracker described in
Section 3 to refine the solution. Figure 5(c) and (d) show the recon-
structed pose before and after 3D pose refinement.

Realtime GPU implementation. We achieve realtime perfor-
mance (about 44 fps) by executing every step of 3D pose detection
process in CUDA. The computational times for pixel classification,
outlier removal, and 3D pose reconstruction and refinement (three
iterations) are about 3.3ms, 6.7ms, and 13ms, respectively.

5 Combining Tracking with Detection

This section discusses how to combine 3D pose tracker with 3D
pose detector to improve the robustness and accuracy of our full-
body motion capture system. One possible solution is to apply the
3D pose detector to every single depth image and then refine the re-
constructed poses using the 3D pose tracker. While such a combi-
nation produces a fully automatic reconstruction system, the quality
of the reconstructed poses is highly dependent on the accuracy of
3D pose detectors. When significant occlusions occur, the system
often produces poor results because current 3D pose detectors often
fail to handle occlusions effectively.

In practice, a majority of frames can be successfully tracked by
our tracking process while only a few frames require 3D pose
re-initialization. This observation leads us to apply the 3D pose
tracker to reconstruct the poses for all the frames except the start-
ing frame and failure frames, which can be initialized/reset by the
3D pose detector. Briefly, the system first uses the detector to ini-
tialize the starting pose of the tracker and invokes the tracker to
sequentially register 3D skeletal poses to input data. The system
automatically monitors the status of the tracker. Once it detects the
“failure” mode, the system switches back to the detector, uses the
detector to re-initialize the tracker, and then starts a new tracker for
online motion reconstruction.

A remaining issue is to determine when the tracker fails and when
to switch to the detector. The system automatically identifies track-
ing failures by measuring how well the reconstructed poses match
the current input data, which is achieved by evaluating the sum of
the likelihood terms defined in Equation (9), (10) and (11). To be
specific, the system automatically switches to the detector if one of
the following two conditions is satisfied:

• when the “rendered” depth data is not consistent with the “ob-
served” depth data. More specifically, if the average error for
the depth image term and extra depth term is higher than a
specific threshold ε1, the system will automatically switch to
the “detector”.

• when the silhouette image term is not well satisfied. On other
words, the number of pixels in the overlapping region (R∩O)
is smaller than a certain percentage ε2 of the total number of
pixels in the region R ∪O.

The specific thresholds often depend on sensor noise, the size and
proportions of full body geometric models, and the accuracy of

Accurate Realtime Full-body Motion Capture Using a Single Depth Camera • 188:7

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

(a) (b)

Figure 6: Automatic skeleton calibration. (a) the per-pixel labeling
result on the calibration pose; (b) the calibrated bone segments
(before averaging over symmetric bones).

skeleton geometric models. Since our system provides realtime
feedback, we can experimentally determine suitable values that
achieve stable performance. For all our results we use the same
settings: ε1 = 2.5 cm and ε2 = 90%.

6 Automatic Skeleton Calibration

In this section, we introduce an automatic skeleton calibration
method to ensure the system works for users of different skele-
tal sizes. We approximate geometry of each bone segment with
a cylindrical model except the torso, which is modeled by an el-
liptic cylinder. We choose to approximate geometry of each bone
segment with cylindrical models because they are easy to general-
ize to full-body geometry of different users. The calibration process
automatically estimates the length and radius of cylindrical models
for each bone segment (Figure 6). Each user needs to perform the
skeleton calibration step only once.

The whole process consists of two steps:

• We instruct the subject to perform a reference pose shown
on the screen. We apply the randomized decision trees de-
scribed in Section 4.1 to automatically label input depth pix-
els. Unlike the 3D pose detection process, here we restrict
the training data sets of randomized trees to the calibration
pose only and therefore achieve more accurate pixel labeling
results (Figure 6(a)).

• To remove the effect of misclassified pixels, we adopt a sim-
ilar random sampling technique described in Section 4.2.
Briefly, for each bone segment, we randomly sample a ra-
dius value and select a pair of depth pixels associated with
the bone. The sampled radius value and the pair of depth pix-
els define a cylinder in 3D space. We evaluate each sample by
counting the number of inliers Ni and outliers Ñi within the
2D projection of the sampled cylinder. Mathematically, we
define the following cost function to evaluate each sample:

Q = Ni − Ñi (14)

whereNi are the number of depth pixels associated with bone
i (i.e. inliers) and Ñi is the total number of pixels which are
not associated with bone i, including both misclassified pixels
and background pixels.

We implement the whole skeleton estimation process in CUDA,
which provides realtime feedback on the calibrated skeleton. To
improve the accuracy of our calibration process, we assume sym-
metric human skeletons and average the parameters estimated from
the left and right limbs.

0.5

0.6

0.7

0.8

0.9

1

Ganapathi et al. Shotton et al. Our Algorithm

Figure 7: Comparison against Shotton et al. [2011] and Ganapathi
et al. [2010]. The vertical bars show the estimation accuracy of
different joints from three different algorithms.

7 Results

In this section, we demonstrate the power and effectiveness of our
system by capturing a wide range of human movements using a sin-
gle depth camera (section 7.1). Our comparison against alternative
methods shows the system achieves state-of-the-art accuracy (Sec-
tion 7.2). We assess the performance of our tracking process by
dropping off each term in the cost function (Section 7.3). Finally,
we evaluate the robustness of the entire system and examine its po-
tential failures by testing on the user playing a number of Kinect
games (Section 7.4).

7.1 Test on Real Data

We have evaluated our system on two types of depth cameras:
Kinect camera and SwissRanger SR4000 Time-of-Flight camera.
We test the system on capturing a wide range of human activities,
including locomotion such as walking and running, sports activities
such as warming up exercises, golf, tennis, soccer, and Tai-Chi, and
everyday actions such as picking, sitting on ground, kicking, danc-
ing, arm crossing, and hand clapping. Our results are best seen
in video form, although we show several frames of a few results
here. In the video, we annotate the results obtained from Kinect
and SwissRanger with “KS” and “SR”, respectively.

The system works for users with different body size and propor-
tions. The accompanying video includes the reconstruction results
from six different subjects, including five males and one female.
Another notable feature of the system is to handle significant oc-
clusions caused by a single depth camera. We show the system can
accurately capture a wide range of human movements even in the
case of significant occlusions, including sitting down on the ground,
standing up, Tai-Chi, kicking, picking, walking with 360-degrees ro-
tation, arm crossing, and so on. For example, in the “arm crossing”
example, we demonstrate that the system is able to track complex
arm movements even in the case of significant occlusions. Note that
the “detector” in our system was triggered only once to initialize the
starting pose for capturing the “arm crossing” action.

7.2 Comparisons Against Alternative Methods

We have evaluated the performance of our system by comparing
against alternative methods.

Comparison against [Shotton et al. 2011; Ganapathi et al.
2010]. The authors of [Ganapathi et al. 2010] provided their
test data and results for direct comparison. Shotton and col-
leagues [2011] also evaluated their algorithm on the same data sets.

188:8 • X. Wei et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

Figure 8: Comparison against Kinect [2012]. (top) reference image data; (middle) Kinect results; (bottom) our results.

Figure 9: Comparison against ICP. (top) the result obtained from
the ICP algorithm; (bottom) our result.

In this experiment, we make a comparison between our method and
[Shotton et al. 2011; Ganapathi et al. 2010]. Figure 7 shows our al-
gorithm significantly improves average precision of reconstruction
results. Our comparison is based on the same evaluation metric as
in [Ganapathi et al. 2010; Shotton et al. 2011]. In particular, the
bars in Figure 7 show estimation accuracy of different joints. The
joint position within D meters of the ground truth is counted as
“true positive” (correct). Otherwise, it is counted as “false posi-
tive”. The precision of one joint is the fraction of joint positions
that are correct (within D meters of the ground truth). We set D
to 0.1m. This is because Ganapathi and colleagues [2010] found
that individual marker errors of 10 cm or lower can be interpreted
as perfectly tracked markers, since this corresponds to the approxi-
mate accuracy of the recorded ground truth data.

Comparison against Kinect [2012]. We compare the system
against the state-of-the-art in motion capture using a single depth
camera [Kinect 2012]. We download the most recent version of Mi-
crosoft Kinect for windows [2012] and test both systems on captur-
ing a wide range of human movements. Here, we focus our compar-

ison on capturing human movements in the presence of significant
occlusions because almost all the benchmark data sets [Ganapathi
et al. 2010] in the previous comparison do not involve signifi-
cant occlusions. The accompanying video highlights a side-by-side
comparison between our system and Kinect. Figure 8 shows several
sample frames for a side-by-side comparison between our result and
the result obtained by Kinect. The comparison results clearly show
the advantage of our system over Kinect. Note that the Kinect sys-
tem [2012] builds on Shotton et al. [2011].

Comparison against ICP techniques. We also compare our 3D
pose tracking process described in Section 3 with Iterative Clos-
est Point (ICP) techniques [Knoop et al. 2006; Grest et al. 2007].
We start both algorithms with the same initial pose. The compar-
ison result shows that our tracking process is much more robust
and accurate than the ICP algorithm. In the hand clapping example
shown in Figure 9, our tracking process successfully tracks the en-
tire motion sequence while ICP fails to track most of frames. This
is because ICP is often sensitive to initial poses and prone to local
minimum, particularly involving tracking high-dimensional human
body poses from noisy depth data.

Comparison against Vicon [2011]. In this experiment, we quan-
titatively assess the quality of the captured motion by comparing
with ground truth motion data captured with a full marker set in
a twelve-camera Vicon system [2011]. The average reconstruction
error, which is computed as average 3D joint position discrepancy
between the estimated poses and the ground truth mocap poses, was
about 5.0 cm per joint per frame. Figure 10 shows a side-by-side
comparison between our result and the result obtained by Vicon.

7.3 Evaluation on Tracking Process

We have evaluated the performance of our tracking process by drop-
ping off each term of the cost function described in Equation 8.

The importance of occlusion handling. We compare results ob-
tained by the tracking process with or without “occlusion handling”
(See Figure 11(a)). Tracking without “occlusion handling” includes
all the pixels in x ∈ B2 to evaluate the depth image term. In con-

Accurate Realtime Full-body Motion Capture Using a Single Depth Camera • 188:9

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

Figure 10: Comparison against Vicon [2011]. (top) ground truth
data captured with a full marker set in a twelve-camera Vicon sys-
tem; (bottom) our result.

(a) (b)

Figure 11: Evaluation on the tracking process. (a) the importance
of occlusion handling: the top and bottom rows show the tracking
results with and without occlusion handling. (b) the importance
of the silhouette image term: the top and bottom rows show the
tracking results with and without the silhouette term.

trast, tracking with “occlusion handling” excludes all the pixels in
x ∈ B2 from the depth image term evaluation and instead includes
them into the extra depth term evaluation. Our video shows that
tracking without “occlusion handling” gets stuck in wrong results
several seconds after the tracking starts. With “occlusion handling,”
the algorithm can accurately reconstruct 3D poses across the entire
sequence.

The importance of silhouette image term. We evaluate the impor-
tance of the silhouette image term. The side-by-side comparison in
Figure 11(b) shows that the silhouette image term ensures better
silhouette registration, thereby producing more accurate results for
the reconstructed poses.

7.4 Evaluation of System Robustness

We have evaluated the robustness of the system by testing on real
subjects playing five Kinect games, including Adventure, Star War,
Fruit Ninja, Dance Central (easy), and Dance Central (hard). Ta-
ble 1 reports the statistics of our analysis on system failure.

Tracking failure analysis. For each game, we compute the per-

Kinect games Tracking failure pct System failure pct
Adventure 0.17% 0
Star War 0.26% 0

Fruit Ninja 0.23% 0.01%
Dance Central (easy) 0.35% 0.01%
Dance Central (hard) 1.28% 0.52%

Average 0.46% 0.11%

Table 1: Evaluation of system robustness.

centage of the total frames which were switched to the detector.
The tracking failure percentage indicates the effectiveness of the
tracking process. On average, 0.46% of the total frames were re-
initialized by the detector while the rest of the frames were au-
tomatically reconstructed by the tracker. This confirms our as-
sumption that a majority of frames can be successfully recon-
structed by 3D tracker while only a few frames require 3D pose
re-initialization. We have observed two typical failure modes in the
tracking system. The tracking system often gets stuck in local min-
ima and fails to produce good results when tracking extremely fast
movement due to poor initialization of the tracking poses and noisy
depth measurement caused by fast motion. In addition, the system
might fail to reconstruct accurate joint angle poses for disoccluded
bone segments. This is mainly because of poor initialization of the
current poses. Note that we initialize the current poses using the
previous poses. However, when a bone segment is not visible to
the current camera, its 3D joint angle value is often ambiguous and
cannot be reliably estimated.

System failure analysis. We evaluate the robustness of the entire
system by calculating the percentage of the total failure frames. In
our evaluation, we ask the user to manually label all failure frames
across the entire sequence of each testing motion. The system fail-
ure percentage measures the effectiveness of the whole system as
neither tracking process nor detection process is able to estimate the
pose reliably. The average system failure percentage is about 0.1%
(about 1 failure pose every 33 seconds). The whole system fails
when neither tracking process nor detection process is able to pro-
duce good results. The detection system often fails to generate good
results when the testing pose is very different from training data sets
and/or when human bodies are under significant occlusions.

8 Conclusion

In this paper, we have developed an end-to-end full-body motion
capture system using a single depth camera. Our system is appeal-
ing because it is low-cost and fully automatic, runs in real time,
and can accurately reconstruct 3D poses even in the case of signif-
icant occlusions. The system is also non-intrusive and easy to set
up because it requires no markers, no sensors, and no special suits.
We have demonstrated the power of our approach by capturing a
wide range of complex human movements. The system achieves
state-of-the-art accuracy in our comparison against Kinect.

Complementing tracking with detection not only automates the cap-
turing process but also improves the accuracy and robustness of the
whole system. Our framework for combining human pose tracking
and the detection process is very flexible. We believe that any effi-
cient 3D pose detector such as [Shotton et al. 2011] can be plugged
into our framework to allow for automatic and robust reconstruction
of 3D human poses from single-camera depth data.

Our detection process follows the same pixel classification frame-
work as described in [Shotton et al. 2011]. However, our solution
of reconstructing 3D poses from classified pixels is different from

188:10 • X. Wei et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

theirs. Unlike their system, which estimates 3D joint positions us-
ing probabilistic clustering techniques via meanshift, we utilize a
3D human body mesh model obtained from our skeleton calibration
process to remove the misclassified pixels and apply inverse kine-
matic techniques to reconstruct human poses in joint angle space.
We also employ our 3D tracking process to refine the reconstructed
poses in joint angle space, thereby further improving the accuracy
of 3D pose estimation.

Our skeleton calibration process enables our system to work for
human subjects of different skeletal sizes. We choose to approx-
imate the geometry of each bone segment with cylindrical models
because they are easy to calibrate and easy to generalize to different
body size and proportions. In the future, we plan to model geome-
try of human bodies with skinned mesh models. This will certainly
improve the performance of our 3D pose tracking and detection
process. We also plan to increase the size of training datasets to im-
prove the generalization ability of our pose detector, as the current
training datasets are much smaller than those used in [Shotton et al.
2011].

Another way to improve the accuracy and robustness of the system
is to combine depth data with color image data. We are particularly
interested in incorporating color and texture information obtained
from a video camera in the current tracking framework. One possi-
ble solution is to integrate the model-based optical flow equations
derived from color image data into the cost function. In addition, as
noted by prior research [Chai and Hodgins 2005; Liu et al. 2011],
kinematic priors learned from prerecorded motion data could be
used to constrain the pose in the solution space of natural appear-
ance to further improve the quality of reconstruction poses.

APPENDIX

A Linear Approximation

In this section, we show how to linearize the nonlinear expres-
sions in Equation (9), (10), (11) and (12) so that the nonlinear least
squares problem can be iteratively solved via linear system solvers.
Similar to Lucas-Kanade algorithm, we perform a first-order Taylor
expansion for nonlinear expressions and obtain the following linear
equations on δq:

1

δdepth
(∇Drender

∂x
∂p

+
∂Drender

∂p
)
∂p
∂q
δq =

1

δdepth
(D−Drender),

(15)

1

δsilhouette
∇Srender

∂x
∂p

∂p
∂q
δq =

1

δsilhouette
(S − Srender),

(16)

1

δextra

∂p(q)

∂q
δq =

1

δextra
(p∗ − p), (17)

1

δs
δq =

1

δs
(2q̃i−1 − q̃i−2 − q), (18)

where image gradients ∇Drender and ∇Srender are evaluated on
the “rendered” depth and silhouette images, respectively. Note that
the standard deviations δdepth, δsilhouette, δextra and δs are used to
control the weights for each term are experimentally set to 1, 100,
0.29, and 14.3, respectively.

Acknowledgement

The authors would like to thank Hui Lou for her assistance of ex-
periments. We would also like to thank all of our motion capture
subjects. This work was supported in part by the National Science
Foundation under Grants No. IIS-1065384 and IIS-1055046.

References

AMIT, Y., AND GEMAN, D. 1997. Shape quantization and recog-
nition with randomized trees. Neural Computation. 9(7):1545–
1588.

BAAK, A., MÜLLER, M., BHARAJ, G., SEIDEL, H.-P., AND
THEOBALT, C. 2011. A data-driven approach for real-time full
body pose reconstruction from a depth camera. In IEEE 13th In-
ternational Conference on Computer Vision (ICCV), 1092–1099.

BAKER, S., AND MATTHEWS, I. 2004. Lucas-kanade 20 years
on: A unifying framework. International Journal of Computer
Vision. 56(3):221–255.

BREGLER, C., MALIK, J., AND PULLEN, K. 2004. Twist based
acquisition and tracking of animal and human kinematics. Inter-
national Journal of Computer Vision. 56(3):179–194.

CHAI, J., AND HODGINS, J. 2005. Performance animation
from low-dimensional control signals. In ACM Transactions on
Graphics. 24(3):686–696.

GANAPATHI, V., PLAGEMANN, C., KOLLER, D., AND THRUN,
S. 2010. Real time motion capture using a single time-of-flight
camera. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 755–762.

GIRSHICK, R., SHOTTON, J., KOHLI, P., CRIMINISI, A., AND
FITZGIBBON, A. 2011. Efficient regression of general-activity
human poses from depth images. In Proceedings of IEEE 13th
International Conference on Computer Vision, 415–422.

GREST, D., KRUGER, V., AND KOCH, R. 2007. Single view
motion tracking by depth and silhouette information. In Pro-
ceedings of the 15th Scandinavian Conference on Image Analy-
sis (SCIA), 719–729.

KINECT, 2012. Microsoft Kinect for Xbox 360.

KNOOP, S., VACEK, S., AND DILLMANN, R. 2006. Sensor fu-
sion for 3D human body tracking with an articulated 3D body
model. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1686–1691.

LEPETIT, V., AND FUA, P. 2006. Keypoint recognition using ran-
domized trees. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence. 28(9): 1465–1479.

LIU, H., WEI, X., CHAI, J., HA, I., AND RHEE, T. 2011. Real-
time human motion control with a small number of inertial sen-
sors. In Symposium on Interactive 3D Graphics and Games,
ACM, I3D ’11, 133–140.

MICROSFT KINECT API FOR WINDOWS, 2012.
http://www.microsoft.com/en-us/kinectforwindows/.

MOESLUND, T. B., HILTON, A., AND KRUGER, V. 2006. A
survey of advances in vision-based human motion capture and
analysis. Computer Vision and Image Understanding. 104:90–
126.

PLAGEMANN, C., GANAPATHI, V., KOLLER, D., AND THRUN,
S. 2010. Realtime identification and localization of body parts

Accurate Realtime Full-body Motion Capture Using a Single Depth Camera • 188:11

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

from depth images. In Proceedings of International Conferences
on Robotics and Automation (ICRA 2010), 3108–3113.

SHOTTON, J., FITZGIBBON, A., COOK, M., SHARP, T., FINOC-
CHIO, M., MOORE, R., KIPMAN, A., AND BLAKE, A. 2011.
Real-time human pose recognition in parts from a single depth
image. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1297–1304.

SIDDIQUI, M., AND MEDIONI, G. 2010. Human pose estimation
from a single view point, real-time range sensor. In CVCG at
CVPR.

SLYPER, R., AND HODGINS, J. 2008. Action capture with ac-
celerometers. In ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 193–199.

TAUTGES, J., ZINKE, A., KRÜGER, B., BAUMANN, J., WE-
BER, A., HELTEN, T., MÜLLER, M., SEIDEL, H.-P., AND
EBERHARDT, B. 2011. Motion reconstruction using sparse ac-
celerometer data. ACM Transactions on Graphics. 30(3): 18:1–
18:12.

VICON SYSTEMS, 2011. http://www.vicon.com.

YE, M., WANG, X., YANG, R., REN, L., AND POLLEFEYS, M.
2011. Accurate 3D pose estimation from a single depth image.
In Proceedings of IEEE 13th International Conference on Com-
puter Vision, 731–738.

188:12 • X. Wei et al.

ACM Transactions on Graphics, Vol. 31, No. 6, Article 188, Publication Date: November 2012

