
0-7803-7016-3/01/$10.00 ©2001 IEEE

�
UF : Tag-based Unified Fairness

Antoine Clerget, Walid Dabbous

Abstract—Finding an appropriate end-to-end congestion control scheme
for each type of flow, such as real-time or multicast flows, may be diffi-
cult. But it becomes even more complex to have these schemes be friendly
among themselves and with TCP. The assistance of routers within the net-
work for fair bandwidth sharing among the flows is therefore helpful. How-
ever, most of the existing mechanisms that provide this fair sharing imply
complex buffer management and maintaining flow state in the routers. In
this paper, we propose to realize this fair bandwidth sharing without per-
flow statein the routers, using only a trivial queueing discipline. Packets
are tagged near the source, depending on the nature of the flow. In the core
of the network, routers use FIFO queues, and simply drop the packet with
the highest tag value in case of congestion. Contrarily to other stateless fair
queueing algorithms in the core routers, we do not try to maintain instan-
taneous flow rates equal. Instead, we take into account the responsiveness
nature of the flows, and adjust loss rates such that average rates are equal.
The novel approach of our scheme, called � UF , Tag-Based Unified Fair-
ness, not only improves the overall fairness but enables us to maintain it in
realistic environments, with non-negligible round trip times or bursty traf-
fic, where other schemes fail. The corresponding cost is the need for models
of the end-to-end responsive natures of the flows.

Keywords—Stateless fair queueing, end-to-end congestion control, mul-
ticast, responsive flows, TCP, max-min fairness.

I. INTRODUCTION

One of the challenges in the design of modern networking
applications today is the efficient and cooperative use of net-
work resources. With the increasing greediness of multimedia
applications over the Internet, one must be concerned both with
fairness with other applications and adapting the sending rate to
the receiver’s capacities - in other words with congestion and
flow control. There are basically three ways to consider how an
application should determine its sending rate :� Send at a fixed rate.� Estimate network conditions and adapt accordingly in the end
hosts, either through a specific protocol (TCP) or by the appli-
cations (adaptive applications). This is the end-to-end approach.� Rely on mechanisms in the routers to ensure fairness. This is
the network approach.

The first approach, unfortunately adopted by most multimedia
applications today, is not satisfactory, as it is not efficient and
fair. In the best case, these propose the user to select among
a set of predefined rates, such as for audio applications, LPC,
GSM, ADPCM. The two other approaches are discussed below.

A. Relaxing the end-to-end dogma

To share network resources among competing flows, we have
so far mostly relied on pure end-to-end mechanisms, in particu-
lar TCP. Fairness is achieved by congestion avoidance schemes
in the end hosts. By reacting to aggregate feedback from the net-
work, usually in an additive increase - multiplicative decrease
manner, we reach a “fair” allocation of the critical resource, i.e.
the bottleneck bandwidth [1]. TCP sources sharing a common
bottleneck tend to synchronize because they undergo the same
loss rate.

However, the success of this approach, with the widespread
use of TCP, relies on the following assumptions :

� Applications all use a TCP-friendly adaptation scheme.
To ensure fairness, all flows should use a TCP-friendly adap-
tation scheme [2]. With additive increase, multiplicative de-
crease (AIMD) schemes, resources are not necessarily evenly
shared if the AIMD parameters are not chosen equal in the end
hosts. Using an AIMD adaptation scheme for all types of flows,
such as multimedia flows with real-time constraints and data
transfers with bandwidth requirements, is not appropriate [3].
Hence, equation-based congestion control protocols, such as
TCP-Friendly Rate Control (TFRC) [4] have been proposed to
change rates more smoothly. However, these adapt more slowly
to transient changes in congestion. Their implementation for all
kinds of flows, such as audio flows, may not be convenient. We
believe it is more realistic to consider that we will always be
confronted to the presence of flows with varying agressivity or
responsiveness.� A same aggregate feedback from the network enables the
TCP-friendly flows to converge
The upcoming of new media, such as dynamic mobile networks,
and new types of flows, such as multicast flows, causes this as-
sumption to fail. In the case of multicast flows, our source is
sharing multiple bottlenecks with different flows at the same
time, making rate adaptation non-trivial. Should we adapt to
the slowest receiver ? Finding this TCP-equivalent rate is not as
simple as just finding the largest round trip time and the worst
loss rate or equivalent window size [5], [6]. Moreover, the in-
teraction of adaptive multicast flows, sender-driven or receiver-
driven [7], among themselves or with other unicast flows is not
only non-trivial but maybe somewhat hazardous. In the case of
dynamic mobile networks, such as ad-hoc networks or satellite
constellations, there is no fixed bottleneck and the set of com-
peting flows changes due to route instability. In this case, not
only is the feedback (network conditions estimate) difficult to
obtain and unstable, but so are the real conditions.

Proposing some help from the network and relaxing the end-
to-end dogma will prove to be more and more interesting if not
necessary with the advent of new links and media in the Internet,
and with the increase of heterogeneity among the hosts in the
network.

B. The network approach

Using network mechanisms such as fair queueing has the ad-
vantage of protecting flows from other aggressive or ill-behaved
flows. Most of these fair queueing algorithms such as Stochastic
Fair Queueing (SFQ) [8], [9], [10] share the bandwidth between
the flows by maintaining a queue per flow. Among these, Deficit
Round Robin (DRR) [11] achieves nearly perfect fairness with
limited complexity.

However, maintaining that flow state has a cost and raises
scalability issues in high speed networks that can jeopardize the
massive deployment of these techniques. The success of the
Internet is partly due to the fact that most of the intelligence

498 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

Main Flow A

Goodput = R / 3

Competing Flow B

instead of 2R/3
Goodput = R/2

Competing Flows C,D
Goodputs = R/3, R/3

����
�
����
� ���������������������� ������������������	�	�	�	�		�	�	�	�	
�
�
�
�
�������������

�

�������
��
�������
��

����
�
����
�

����
�
����
�
�������
��
�������
��

R/2

R/3

Links capacity = R

Fig. 1. Inefficient use of the network

was kept in the boundaries of the network and only light mech-
anisms were introduced in the core of the network. Moreover,
dealing with individual flows while routing aggregate flows, for
example within IP tunnels where packets are encapsulated, is
non trivial. Recently, Stoica et al. proposed Core-Stateless Fair
Queueing (CSFQ) [12], in order to approximate fair queueing
while limiting flow state to the edge of network and removing it
from core routers. Cao et al. proposed Rainbow Fair Queueing
(RFQ) [13], a similar scheme that avoids fair share rate calcu-
lation in the core routers and that is better adapted to layered
encoding applications. Both schemes remove flow state but still
require computation to determine dropping thresholds for exam-
ple. CHOKe (CHOose and Keep) [14] defines mechanisms as
simple as Random Early Discard (RED) [15] in the core routers.
However, it improves but doesn’t solve the fairness issue.

C. A hybrid approach

Relying exclusively on the network leads to inefficiency, since
the network will use resources to transport packets eventually
dropped. In figure 1, the main flow � shares a first link with flow�

and a second link with flows � and � . Using exclusively Fair
Queuing mechanisms will lead to an unfairness for flow

�
that

could obtain ������� instead of ����� if the main flow � adopted an
end-to-end congestion control. It is thus preferable to combine
network mechanisms with end-to-end congestion control.

Existing network mechanisms ignore the end-to-end behav-
iors of the flows they try to regulate, and consider these flows
to be unresponsive. A first class of algorithms, in particular
all stateless fair queueing algorithms, try to keep instantaneous
rates equal. They are therefore unfair to responsive flows that
use less than their fair share rate when reacting to losses (see
section II-B). A second class of algorithms focus on average
rates, but then need to maintain flow state.

To address these issues, this paper proposes a new stateless
fair queueing mechanism. The strength of our approach relies
on the following points :� The mechanisms introduced in the core routers are very light
and introduce no flow state. Compared to the other approaches
that achieve reasonable fairness, we believe that our scheme has
one of the lowest implementation cost in the core routers.� Contrarily to other stateless fair queueing algorithms, we
do not consider all the flows to be unresponsive CBR flows,

and try maintain instantaneous rates equal. Instead, we take
into account the responsive nature of the flows (e.g. TCP
friendliness) and maintain loss rates such that average rates re-
main equal. This novel approach makes it possible to maintain
fairness in heterogenous environments with various adaptation
schemes.

The paper is structured as follows : in section II we describe
our fair bandwidth sharing mechanism, named UF (Tag-based
Unified Fairness). Section III describes implementation and de-
ployment issues. Section IV presents simulations results, com-
paring UF to other fair queueing mechanisms. Section V de-
scribes our current Linux implementation and experimentations,
and section VI concludes the paper.

II. UF : TAG-BASED UNIFIED FAIRNESS

A. Objectives

As with Fair Queueing [8] [9] [10], our primary objective is to
allocate network resources fairly among the flows in a congested
core router. Let’s suppose that we have ! flows, "$#�%'&(&'&'%)"+* .
Let ,�.- be the rate of flow "/- upstream (arriving at the router),
and � - be the rate of the flow downstream (leaving the router).
The bandwidth allocation is fair if 0213%)�4-658791:!<; ,�.-=%>�@?BAC-ED(F ,
where �@?BAC-GD is the fair share rate at the router, i.e. the maximum
bandwidth a flow can get. �@?HAI-GD is such that it fills the router’s
capacity � ; it is the unique solution to :�J5LK - �4-+5LK - 7M1:!<; ,�.-=%)�.?BAC-ED(F

A flow " - is either :� Constrained : the bandwidth downstream is, as for all con-
strained flows, equal to the fair share rate, and is larger than
that obtained by unconstrained flows. 0ONP%)"RQ constrained, �.-<5� Q 5S� ?BAC-ED� Unconstrained : the bandwidth upstream is less than the fair
share rate. The router therefore forwards all its packets and the
local loss rate is T . 0UNV%)"RQ constrained, �.-+5 ,�4-$WX�YQZ5S�.?BAC-ED

Combined with end-to-end congestion control, we can
achieve our fairness objective : global max-min fairness [16].
This qualitative property can be summarized as follows : we
say that we allocate bandwidth max-min fairly if it is not possi-
ble to increase the satisfaction of a flow without simultaneously
causing the decrease in the satisfaction of a less satisfied flow.
The satisfaction of a flow is here measured in terms of average
bandwidth.

B. Adjusting instantaneous rates and fairness

We are concerned with fairness between elastic flows for
which the satisfaction is measured in terms of average rate. Con-
straining the flows’ instantaneous rates will not lead to fairly
distributed average rates. Indeed, when reacting to congestion
signals, responsive flows reduce their rate and do not use at all
time their fair share. We call this first cause of unfairness the
variation effect. This is depicted on figure 2, where the band-
width is shared between a responsive flow such as a TCP-Reno
flow, and a very greedy CBR flow.

The performance of responsive flows such as TCP flows can
be drastically worsened by the very sudden increase in the loss

499 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

TCP Flow

CBR Flow

Time

Average TCP share

Fair share

Average CBR share

Bandwidth share

50 %

100 %

0 %

Fig. 2. The variation effet

CBR Flow

Time

Fair share

Bandwidth share

50 %

100 %

0 %

Average TCP share

Average CBR share

{ { {

Congestion signals
received

Congestion signals
received

Congestion signals
received

TCP losses TCP lossesTCP losses

TCP Flow

Fig. 3. The burst effect

rate as the flow’s rate exceeds the fair share rate. We call this
second cause of unfairness the burst effect. When the round
trip time becomes non-negligible, TCP flows take time to reduce
their rate, and will therefore undergo bursts of losses. These
bursts also occur after a sudden decrease in the fair share rate,
due for example to the sudden arrival of new flows. The burst
effect will have a serious and durable effect on the average rate
as depicted on figure 3.

In UF , we avoid adjusting instantaneous rates, and adjust
loss rates, taking into account the end-to-end behavior of the
protocol.

C. Overview

To provide fair bandwidth allocation between flows sending
at different rates, we differentiate their loss rates. As no state
is present in the routers, state has to be present in the packets
to enable distinct behaviors (i.e. loss probability) between the
flows. That state is a “Tag”, a numeric value carried in one of
the packet’s field. The congested core router only uses the tags
of the packets present in its queue to make a drop decision. A
tagging entity, called the “tagger” is responsible for placing a
tag in each packet (comparable to the DS-codepoint in diffserv).
This entity, that maintains flow state, is either a router at the
edge of the network, or ideally the source itself. Tagging should
not depend on the state of the network : we do not want specific
feedback from the routers in the network. Figure 4 presents our
global architecture.

In section II-D, we define the core router’s queueing disci-
pline, and in section II-E the tagging algorithm.

Tagger

Source Destination

Core
Routers

Fig. 4. Our tagging architecture

New packet

TUF Queueing Discipline

Highest Tag
Dropped

Tag Value

Fig. 5. The queueing discipline in a � UF router

D. Core Routers : The UF queueing discipline

The Tag is a numeric value carried in a field, in the packet
header. It is used by the routers to decide if they should enqueue
or drop a packet. We chose to give high values to the tags of
the packets that are more eligible for discard, and low values
to the tags of packets that are less eligible for discard. The tag
therefore represents a drop precedence. As FIFO queues, our
queueing discipline preserves packet order to avoid negative im-
pact on protocols such as TCP. In case of congestion, i.e. when
a packet arrives and the queue is full, the router drops the packet
with the highest tag (figure 5). Note that for a same incoming
traffic, this queueing discipline will give the same overall loss
rate and carried load than the FIFO queue. We here propose a
model of this queueing discipline behavior.

The UF filter model
In the simulation of the UF queueing discipline (figure 6),

the UF queue is fed with a uniform tag distribution between 0
and 1, an offered load of [\5J� , and poisson arrival and service
times. As the queue size increases, the UF queueing discipline
approximates the behavior of a low-tag filter. The packets with
the lowest tags, i.e. with tag values below a threshold] , are
forwarded, and the others are dropped. The threshold] is such
that it fills the router’s capacity. Due to lack of space, the formal
proof is not included here, but is available upon request. We now
consider that the queue size is large enough (e.g. 64 packets) for
the UF filter model to be a good approximation of the router’s
behavior. The complexity of the search grows linearly with the
queue size. We can however limit the search to a high enough
number of packets at the head of the queue (e.g. 128) while still
approximating the behavior of a low-tag filter.

500 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2

Lo
ss

 R
at

e

Tag

Queue Size 16
Queue Size 32
Queue Size 64

Queue Size 256
TUF filter model

Fig. 6. Tag loss probabilities for the M/M/1/N � UF queue

Filter^ UF

Threshold

Tag
value

Packets from 4 flows Already filtered

Fig. 7. A � UF router, modeled as a simple filter

E. Taggers : The tagging algorithm

This section describes how packets are tagged to achieve fair
queueing in UF routers, modeled as low-tag filters. One of our
objectives is to enable the coexistence of different end-to-end
adaptation schemes. We start by proposing a model for conges-
tion control algorithms. We then describe our tagging algorithm
and prove that we converge towards a fair state.

E.1 Modeling end-to-end congestion control algorithms

We consider end-to-end congestion control algorithms that
adapt the sending rate based on loss rate feedback. We sup-
pose that we know the average goodput achieved by our sources_ #�%'&'&(& _ * when submitted to a Bernouilli loss rate with an in-
tensity ` :

� # ;a`bFC%(&'&'&(% � * ;a`bF . The functions
� - ;a`2F are strictly

decreasing continous functions, and
� - ;cTPFd5e� - % � - ;=fBFg5T , where �.- is the maximum sending rate. When sub-

mitted to a constant loss rate intensity ` , the goodput con-
verges towards

� ;a`2F , and the throughput towards
� ;h`2F>�U;=fji`2F . For the TCP-friendly adaptation scheme,

� ;a`2Fk5l;mf\i`2FI& no1:!<;qpsrtACuv���. Y Y%)w(���. Y .x `yF .
Figure 8 shows the behavior of the global system. The dy-

namics of the system is modeled as follows :� Sources send at rate - ;{zmF , bounded by � - .� Packets are tagged following the cumulative distribution " - :"/->;}|2F~5S�@�����C�O�31��{1:z��R;{ Z�P��Wk|bF .� If the router is congested, the highest tags (above]k;{zmF) are
dropped, filling the router’s capacity.� Sources receive feedback in terms of packet loss` - 5dfti�" - ;c]�;{zmF>F (1)

+
T Fi i(K)Goodput

i

T 2

T 1

T 3

p1

p2

p3

Tag Dist. F 1

Tag Dist. F

Tag Dist. F 3

2

TUF router

Low Tag Filter

Capacity CΣ T i

=

Loss Rates

Rate

Rate

Rate

Feedback :Source

Source

Source 3

2

1 ~

~

~

~Threshold K

~

~

~

Min (C,)Σ Ri

Fig. 8. Modeling end-to-end adaptation schemes

TCP CBR

K̂

T
ag

(X
)=

CBR
Tag (X)

CBR losses
TCP losses

Packets forwarded

Packets dropped

X X

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

B
(X

)
in

 p
kt

s/
s

X

Goodput/Loss functions for a TCP and CBR source

B[TCP] RTT=50ms Wmax=8K

X

B[CBR] Rate=100 pkts/s

Fig. 9. Tags for TCP and UDP flows

� Sources raise or reduce their sending rate accordingly. We
suppose that they try to converge exponentially towards their
instantaneous target rate .�- 5 � - ;h` - F)�O;mfti9` - F : (���XT)� R-� z 5S�~&�;{ �- i� - F (2)

E.2 The tagging strategy

Theorem 1: Let X be a stochastic variable, uniformely dis-
tributed between 0 and 1. Given a set of sources

_ - , modeled by
the loss-goodput functions

� ->;h`2F , tagging packets from source_ - with Z�P� - 5 � - ;}��F leads to a stable and fair bandwidth
sharing between the flows.

The tagger proceeds as follows :� When a packet arrives, it identifies the flow’s behavior, i.e.
its function

� ;h`2F . This flow’s behavior is either carried in the
packet, or known directly by the tagger when tagging is done at
the source.� The tagger selects a random number � between 0 and 1 and
computes the packet’s tag

� ->;}��F .
Figure 9 and 10 show how tags are chosen for a TCP flow with

a round trip time of �. Y =50ms and a CBR flow sending f(TVT
packets per second. Using the UF filter model with a constant
threshold ,] , we see on figure 9 that in a stationary state, we get
a fair bandwidth sharing, both goodputs being precisely equal
to ,] . Here is a proof of this theorem, stating that we reach this
stable and fair bandwidth sharing.

PROOF :
Since the tags are set according to Z�P�V-$5 � -);{��F , where �

is uniformely distributed between 0 and 1, the tag distribution
function " - is :

501 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

K
^

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

Pr
ob

(T
ag

<
t)

Cumulative tag distributions for a TCP and CBR source

F[CBR] Rate=100 pkts/s

F[TCP] RTT=50ms Wmax=8K

t (pkts/s)

Fig. 10. Tag cumulative distributions for TCP and UDP flows

� TU%C��� �V�iy� � T�%'f'�� �� " - ; � F~5�� fti ��� #- ; � F if
� W �4-f if
�¢¡ � -

And thus,
� -m;mfYi�"+-); � FmF<5Lno1q!<; � %)�4-qF

Following the fluid filter model of the UF router with a
threshold]�;}zmF , the downstream rate is the router’s capacity �
if at least one flow is constrained, £ - �.- otherwise:

K - - & " - ;}]�F<5Sno1:!<;c�.% K - � - F<5 ,� (3)

The flows’ dynamics are modeled by (equations 1, 2):� R-� z 5¤�~&�; � -3;a`2-cFfYiM`2- i¥ - F~5¤�~&�; no1:!<;}]s%>�.-qF"/-);}]�F i¥ - F (4)

Replacing equation 4 in the derivative of equation 3 :

K - � R-� z & "+-);}]¥F§¦ K - R-m& �]� z & "©¨- ;c]�F<5¤T�]� z 5diY� £ - no1q!<;c]ª%)� - F/i� - & " - ;c]�F£ - - & " ¨- ;}]¥F
Let «�-);}]¥F�5¬7M1:!<;c]ª%>�.-:F and «�;}]�F�5­£ - 791:!<;}]s%>�.-cF .« is a strictly increasing and continous function between T andnJ�®|y-);}�.-qF . Besides, «¯;}T®FZ5gT and «�;cnJ�®|y->;}�.-qF>F ¡ ,� . The

equation «�;}]�F<5 ,� therefore has a unique solution ,] . Thus,�]� 5JiY� «�;}]�F/i ,�£ - R-=& " ¨- ;c]�F 5diY� «¯;c]�F$i�«¯; ,]sF£ - R-=& " ¨- ;c]�F
� ;}]°i ,]�F=±� z 5giZ�O& � ;}«¯;c]�F/i�«¯; ,]¥FmFI;c]°i ,]¥F£ - R-m& " ¨- ;}]¥F W T² ;}]�F�5³;}]´iµ,]�Fm± is therefore a decreasing - and positive

- function. Thus, ;}]­i ,]sFm± converges and since H strictly in-
creasing, ¶3·¶)¸ �´Tº¹´]8� ,] . We can now easily prove that all
the flows’ sending rate converge:

K
max

-1K
max

-1

R min

0

R max

Rates

Tags
0

min
R

max
R Rates

Tags

Fig. 11. The tag-rate conversion function

Let , R-+5¼» ��½O¾¿tÀ� ��½O¾¿tÀ and ��5Á R-Ri , R- .� �� z ¦k�Â& ��5Á�Ã;}« - ;}]¥F>��" - ;c]�F$i�« - ; ,]�F>��" - ; ,]¥FmF<�´T (5)

One can easily prove that (5) implies that ���´T , i.e. R-§� , R- .
To conclude,� All sending rates converge towards a stable value , R-� The goodput of flow 1 is then , R-m&E;mf�i�`y-qF�5 , R-}"/->; ,]�F�5« - ; ,]sF~5Á7M1:!<; ,]¯%>� - F . All constrained flow get the fair share

rate ,] and unconstrained flow get their maximum throughput�.- .
III. EXTENSIONS AND IMPLEMENTATION ISSUES

A. The tag field

We have so far considered tags to be a real value. A packet
tagged � will be forwarded through all the routers whose fair
share rate (threshold) is at least � . A tag is therefore representa-
tive of a rate. To represent a wide range of rates in the Internet
while minimizing the uncertainty, we use a logarithmic scale to
map rates between �4rÄ-E* and �4rtACu to discrete integer values
between T and]\rtACu@iXf . With a 16 bits field, we can map the
rates between � � #=Å and ��±)± packets per second (i.e. f Byte/s
to Æ GBytes/s for packets of 1KByte) with an approximation
bounded by 0.04%. The general expression of the tag-rate con-
version function is (figure 11) :Ç ;{��FÂ5­È>]\rtACuO& �}�H�R;{��F$i��}�H�R;}�.rÃ-E*UF�}�H�R;}� rÄAIu F$i��}�H�R;}� rÃ-E* FBÉ

For the specific values chosen above :Ç ;{��F~5ËÊ}� #># &E;c�}�H� ± ;}��F+¦¤f(TPF�Ì
The tagger actually inserts the integer

Ç ; � ;{��F>F in the IP
packet header. We could add a fHÍ bits IP option in the IP
packet header. This would however significantly increase the
packet’s processing time. As pointed out in [17], very few pack-
ets (0.22%) are actually fragmented. It is possible to use the IP
identifier field for the tag when the pair (More Fragment and
Fragment Offset) are both set to zero (i.e. the packet is not
fragmented). Fragmented packets are ignored by UF and for-
warded as usual. A reserved value of the TOS byte is used to
indicate that the packet is transporting a UF tag.

B. Tagging TCP and UDP flows

TCP Flows :
Models of TCP throughput depending on the loss rate and

round trip time have been proposed in the literature. The TCP
model presented in [18] is a good approximate model for TCP
(b is the number of acknowledged packets by a received ACK,
and z Å is the timeout timer) :

502 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

Version HdrLen TUF TOS=0x28 IP Packet Length

Fragment Offset=001

TTL Protocol Checksum

Destination Address

Source Address

... IP options

TUF Tag (IP Fragment ID)

Fig. 12. IP header for TUF packets

� ;a`bF>�O;mftiM`bFl5Á791:!�;}p rtACu ���. Y Y%#ÎRÏyÏyÐhÑ Ò:ÓEÔÕºÖ ¸{× Ð rÃ-E* ½ #CØ Ù Ñ Õ ÓEÔÚ À�Û ½ # Ö Ù ± Û Ò À3Ü
The tagger needs to keep track of the connection’s RTT. It

updates, exactly as the TCP source, the value of the timeout
timer based on the RTT estimations. This becomes very simple
if tagging is done at the source, since the source already keeps
track of these parameters.

 Z�P� ¸}Ý Û 5 Ç ;>;mfti���FI& 791:!�;}psrtACuv���. Y Y%#ÎRÏ2Ï�Ð x Ò:ÓßÞÕªÖ ¸ × Ð rÄ-G* ½ #3Ø Ù x Õ ÓßÞÚ À}à ½ # Ö Ù ± à Ò À ÜYÜ
UDP Flows :

Estimating the goodput as a function of the loss rate is very
simple for a CBR source whose rate � is known:� Ý�á DV;h`2Fl5 �j&E;mftiM`bF Z�P� Ý�á Dâ5 Ç ;c�6&�;=fti¥��F>F

This formula can be used for unresponsive flows, considered
equivalent to CBR sources over short time periods. The tagger
must estimate the rate � of the flow. For that purpose, it up-
dates the rate estimation using an exponential averaging. The
rationale for using this kind of averaging has been discussed in
[12]. � *Pã�ä 5g;=fti�å �2æ ¸}ç ¿ F>��è6zé¦¯å �bæ ¸}ç ¿ & �.êmë ¶
where è6z is the packet interarrival time, and]ì5dfHTVT�7îí .

Other Flows :
For responsive flows, that use their own congestion control

protocol, we propose three methods to set the tag :� Tag is set at the source.� The behavior of the end-to-end congestion protocol is de-
scribed in an IP option, used and then removed by the tagger.
Packets follow the slow path only between the source and the
tagging edge router.� A new IP protocol can be defined, with its own IP protocol
number. Information regarding the end-to-end behavior can then
be carried in the first bytes of this protocol’s header, and is used
for the tagging.

C. Improving the loss pattern

The tagging function presented in section II-E uses a stochas-
tic variable � uniformly distributed between 0 and 1. This can
be a random value. However, by choosing the value of � (still
uniformly distributed between 0 and 1) so as to interleave low
tag values with high tag values, we can improve the loss pattern
and avoid bursts of losses. Since

�
is a decreasing function, low

tag values are obtained with values of � close to f , and high tag
values with values of � close to T . We propose to choose the
sequence of values ��* taken by � for a flow as follows :

The value of the variable � for packet ! from flow " is ��*�5ï ;{!9¦ � � F , where � � is a random integer, used to avoid flow
synchronization, and :ï�ð ñ ib� � T�%'f �£Sò-GóRÅ �C-=&ô� - �� £Sò-EóRÅ �I-=&ô� � - � #

For example, with � � 5õf , � would take the following
values : fB�V�O%(fB�BÆy%>�v�BÆ�%(fB��öO%)÷®�BöU%)�P��öO%CøV�Bö�%'fH�Of'ÍU%'&'&'& , alternating
high and low tags.

D. Incremental deployment UF can be incrementally deployed, since :� Non-tagged packets can traverse UF routers. Minimum
bandwidth should be reserved for these packets. We can use
two separate queues served in a weighted round-robin manner :
the queue with tagged packets, and the queue with non-tagged
packets.� Tagged-packets can go though non- UF routers. Of course,
fair bandwidth sharing is not assured in non- UF routers.

E. Multiple congested routers

Our mechanism is clearly not affected by the presence of
non-congested routers along the flow’s path, since these do not
change the tags and do not drop packets. But it is also inter-
esting to notice that having multiple congested routers along a
flow’s path is equivalent to having only the bottleneck router
congested. Indeed serializing low-tag filters is equivalent to
having only the filter with the lowest threshold. However, as
the number of hops increases, modeling the succession of UF
routers as one UF filter becomes more and more approximate.
Fortunately, simulations show our algorithm remains satisfac-
tory, even when the number of hops reaches 20.

F. UF and layered encoding

If tagging is done at the source, layered encoding applica-
tions can benefit from UF by having packets from the higher
layers dropped first. Suppose that our application sends its data
into three layers, at the same rate in each layer. To send data in
the first layer, the application chooses � uniformely distributed
in the interval

� �P���U%'f � and computes the tag. For the second
and third layers, � is uniformely distributed in the intervals� fB����%)�®��� � , and

� T�%'f���� � . As long as the application sends at an
equal rate in each layer, the overall � is uniformely distributed
between T and f , and we achieve fairness. The packets dropped
first will be those of the last layer (corresponding to low values
of �). This can be generalized to any number of layers with
various rates.

503 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

IV. SIMULATIONS

In this section, we evaluate our proposal with simulations
done using the !§íZi�� simulator [19]. In these simulations, we
used the following algorithms to compare the throughputs and
fairness achieved :� UF : Our Tag-based Unified Fairness scheme.� .ù©"+ú ¶ Û : A diminished version of UF , where all flows are
tagged as unresponsive UDP flows.� CSFQ : Core Stateless Fair Queueing [12]. We used the re-
leased code of CSFQ for the ns simulator [20].� FIFO : The standard FIFO router� RED : The Random Early Discard router [15].� DRR : The Deficit Round Robin router [11]. DRR serves as a
reference in terms of fairness for our simulations.� SFQ : The Stochastic Fair Queueing router. Another imple-
mentation of Fair Queueing. .ù@"/ú ¶ Û is the same algorithm as UF , except all flows are
tagged as unresponsive flows. We introduce this scheme to show
that not taking into account the responsive nature of the flow is a
cause of inefficiency in existing stateless schemes, as explained
in section II-B. Indeed, as we show below, UF , although state-
less, has similar performances than DRR, SFQ, and better per-
formances than other stateless schemes .ù©"+ú ¶ Û , CSFQ[12],
and thus RFQ [13], . . .

In the two first set of simulations, we reproduced some of the
scenarios presented in [12] for better comparison. In these set
of simulatons, we prove the correct Fair Queueing behavior of UF in non-hostile homogeneous environments, where round
trip time (RTT) is low (2ms), and traffic is not bursty. In the third
set of simulation, we introduce larger round trip times and bursty
traffic that have a serious impact on responsive flows. UF is
the only stateless fair queueing algorithm that maintains fairness
in these environments.

By default in our simulations, links have a capacity of 10
Mbps, and a propagation delay of 1ms. Our buffers length is 64
KBytes, and all packets are 1000 bytes long (!§í default values).
For DRR and SFQ, we set the number of buckets to 1024. The
queue size for SFQ is set to 2MBytes. The default simulation
time is 60 seconds.

A. A single congested link

The first set of simulations is run with the topology shown on
figure 13. We evaluate the fairness of the different mechanisms
when a number of UDP and TCP connections share the same
link.

In the first simulation (figure 14), 32 UDP flows with varying
aggressivity share the same 10Mbps bottleneck link. The arrival
rate for the UDP flow number 1 is ;{1<¦JfHF times the fair share
rate, i.e. ;}1$¦gfHF<û6f(T®nd�:`2í����P� . Figure 14 shows the normal-
ized bandwidth1 achieved by all the UDP flows. The RED and
FIFO queueing disciplines do not ensure fairness, and the most
aggressive flows (with the greatest flow IDs) achieve the best
throughputs. On the other hand, SFQ, DRR, CSFQ, and UF
propose comparable output rates to all the UDP flows.

The second simulation (figure 15) evaluates the impact of an
ill-behaved UDP flow (Flow ID=0) on a set of 31 TCP connec-ü

the ratio between the goodput and the fair share rate

10 Mbps
1ms delay

RouterRouter

Sinks

Queue Size=64pkts

TCP/UDP sources

Packet Size = 1KByte

Fig. 13. The single congested link topology

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

A
llo

ca
te

d
B

an
dw

id
th

 /
Id

ea
l B

an
dw

id
th

Flow Number

TUF
DRR
SFQ

CSFQ
RED
FIFO

Fig. 14. 32 CBR flows sharing a 10 Mbps links.

tions. The UDP flow is a CBR source whose rate is the link’s
capacity, i.e. 10Mbps. Again, apart from RED and FIFO, that
give most of the bandwidth to that flow, SFQ, DRR, CSFQ and UF limit the rate of the UDP connection to its fair share, as all
the other connections.

In the third simulation (figure 16), we evaluate the normalized
bandwidth of a single TCP connection subject to the pressure
of an increasing number of concurrent UDP connections. The
UDP connections all send at twice the fair share rate. Note that,
as explained in [12], the performances of DRR are significantly
affected when the number of flows exceeds 22, because of the
limited buffer space reserved for the TCP connection. Although
all fair queueing algorithms propose reasonable performances
for the TCP connection (that receives at least 60% of its fair
share rate), .ù@" ú ¶ Û and CSFQ propose a lower bandwidth than UF , DRR, or SFQ. This is typically a symptom of the vari-
ation effect, which, for TCP-Reno, would limit the normalized
bandwidth to 75%.

B. Multiple congested links

The second set of simulations is run with the topology shown
on figure 17. The purpose of these simulations is to evaluate the
robustness of the algorithms when flows traverse more than one
congested link. 10 cross CBR sources send at 2 Mbps on each
of the congested links. This cross traffic enters the path in one
of the router and exits at the next. The main source is a TCP
source or a UDP source sending at its fair share rate (909Kbps).

The first simulation (figure 18) with a TCP connection

504 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

0

1

2

3

4

5

0 5 10 15 20 25 30

A
llo

ca
te

d
B

an
dw

id
th

 /
Id

ea
l B

an
dw

id
th

Flow Number

TUF
DRR
SFQ

TUFudp
CSFQ

RED
FIFO

Fig. 15. A 10 Mbps CBR flow (ID=0) sharing the link with 31 other TCP flows.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20 25 30

A
llo

ca
te

d
B

an
dw

id
th

 /
Id

ea
l B

an
dw

id
th

Total Number of Flows

TUF
DRR
SFQ

TUFudp
CSFQ

RED
FIFO

Fig. 16. TCP flow sharing the link with 0..31 UDP flows

demonstrates the robustness of UF to multiple congested links.
As in figure 16, @ù@"+ú ¶ Û and CSFQ propose reasonnable fair-
ness (around 60%) that rapidly decreases in the case of CSFQ.
Surprisingly, DRR and SFQ performances also degrade as the
number of hops increases. RED and FIFO routers do not enable
the TCP connection to achieve a significant throughput.

In the second simulation (figure 19), the main UDP source
is not affected by the cross traffic, and achieves perfect fairness
in all scenarios (UF , CSFQ, SFQ and DRR) , whereas RED
and FIFO are unable to maintain a significant throughput. (Note
that UF and .ù@"/ú ¶ Û are equivalent here). SFQ and DRR very
slightly improve the fairness compared to UF and CSFQ. This

Router Router Router RouterRouter

UDP 2a..2j UDP 4a..4jUDP 3a..3jUDP 1a..1j

Cross-traffic Sources

UDP 1a..1j UDP 2a..2j UDP 3a..3j UDP Na..Nj

Cross-traffic Sinks

10Mbps

Main Source Main Sink

Fig. 17. The multiple congested link topology

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16 18 20

A
llo

ca
te

d
B

an
dw

id
th

 /
Id

ea
l B

an
dw

id
th

Number of Congested Links

TUF
DRR
SFQ

TUFudp
CSFQ

RED
FIFO

Fig. 18. TCP connection through N=1..20 congested links

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16 18 20

A
llo

ca
te

d
B

an
dw

id
th

 /
Id

ea
l B

an
dw

id
th

Number of Congested Links

TUF
DRR
SFQ

CSFQ
RED
FIFO

Fig. 19. CBR connection through N=1..20 congested links

is probably due to the slight inaccuracy of the flow rate estima-
tions, that do not exit in SFQ and DRR.

C. Heterogenous environments

This third set of simulation shows the vulnerability of net-
work mechanisms that try to adjust instantaneous rates, such
as stateless fair queueing algorithms, in heterogeneous environ-
ment. Hereby, we want to show that taking into account the
end-to-end congestion control protocol is mandatory to obtain
fairness. We here put emphasis on the burst effect presented in
section II-B : in the first simulation through the introduction of
large round trip times, in the second with bursty cross traffic that
cause large variations in the fair share rate.

C.1 Large round trip times

In this simulation (figure 20), we use the single link topology
(figure 13). 8 CBR flows, sending at twice their fair share rate,
share the link with a TCP flow, whose round trip time varies
from 2ms, as in the previous simulations, to 1s. Figure presents
the normalized bandwidth achieved by the TCP flow. Due to the
very large round trip time and to have significant statistics on the
losses, the duration of the simulation was significantly increased
to 10000 seconds.

505 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

A
llo

ca
te

d
B

an
dw

id
th

 /
Id

ea
l B

an
dw

id
th

Round Trip Time (ms)

TUF
DRR
SFQ

TUFudp
CSFQ

RED
FIFO

Fig. 20. TCP flow round trip times and fairness

0

50

100

150

200

250

0 10 20 30 40 50 60

N
um

be
r

of
 lo

ss
 e

ve
nt

s

Time interval between two consecutive losses

TUF (206 losses)
DRR (196 losses)
SFQ (206 losses)

TUFudp (949 losses)
CSFQ (1875 losses)

Fig. 21. Distribution of the interval between consecutive losses

Figure 21 presents the distribution of the time interval be-
tween two consecutive losses. The X-axis represents the time
interval and the Y-axis the number of loss events. These graphs
confirm that losses are very bursty for CSFQ and .ù@"/ú ¶ Û : the
number of losses are 5 to 10 times more important, and an im-
portant proportion of losses occur just after another loss. This is
not the case for UF , DRR or SFQ.

In figure 20 we see the impact of this burst effect on fair-
ness. It is particularly interesting to notice the difference be-
tween the fairness of .ù@" ú ¶ Û and UF , since these implement
the same algorithm except that the only the latter takes into ac-
count the nature of the TCP flow. .ù©"+ú ¶ Û performances, as
well as CSFQ performances, become significantly low when the
round trip time increases. DRR and SFQ that maintain average
rates using flow state realize performances similar to those of UF .

C.2 Bursty cross traffic

This simulation is run on the multiple congestion link topol-
ogy (figure 17) with 5 congested link. The CBR sources that
formed the cross traffic are now replaced with ON/OFF sources.
The burst (ON) and idle (OFF) time periods are both exponen-
tially distributed with the same average chosen between 5ms and
1s. The cross traffic’s average intensity is the same than for the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
llo

ca
te

d
B

an
dw

id
th

 /
Id

ea
l B

an
dw

id
th

Average burst/idle time of ON/OFF sources (in seconds)

TUF
DRR
SFQ

TUFudp
CSFQ

RED
FIFO

Fig. 22. TCP flow subject to bursty cross traffic.

previous set of simulations : the UDP ON/OFF sources send at
4 Mbps during the ON period.

Figure 22 once again depicts the poor performances of .ù@"/ú ¶ Û or CSFQ compared to that of UF , DRR and SFQ. In
CSFQ, performances become particularly poor when we reach
100ms for the burst and idle time, which precisely corresponds
to the averaging window for the “instantaneous” rate estimation.

V. IMPLEMENTATION

We implemented UF in Linux version 2.2. Tagging is done
in the source, at the IP layer, for all packets whose TOS byte
is 0x28, the TOS value chosen for UF packets. It is therefore
transparent for the application. We consider only two flow be-
haviors : TCP flows and unresponsive UDP flows. For UDP
packets, state is maintained at the source on a per socket basis
to evaluate the flow’s rate. For TCP packets, the round trip time,
the retransmission timer, and the maximum window size are al-
ready evaluated by the kernel. The computation of a TCP or
UDP tag requires less than 90 elementary operations (addition or
multiplication). We experimented our UF algorithm on a small
Y-topology. We introduced greedy CBR flows, TCP flows, and
non greedy flows, such as RAT2 audio flows. As we activate the
queueing discipline in the core router, the throughput achieved
by the TCP flow and the quality of the audio session become
significantly better, and fairness is obtained with the other CBR
flows. Experimenting UF on a larger scale would be interest-
ing.

VI. CONCLUSION

In this paper, we presented UF , our Tag-Based Unified Fair-
ness algorithm. Our scheme enables us to do fair bandwidth
sharing among flows of different types, such as TCP and greedy
UDP flows, without requiring flow-state in the high-speed back-
bone routers. Packets are tagged at the edge of the network, or
at the source, with a value that represent the minimum fair share
rate a router must support to forward the packet. The queue-
ing discipline in the UF router is very simple and consists in
dropping the highest tag value when the queue is full. This be-
haves as a bufferless filter, that lets through packets with tagý

http://www-mice.cs.ucl.ac.uk/multimedia/software/rat

506 IEEE INFOCOM 2001

0-7803-7016-3/01/$10.00 ©2001 IEEE

below a threshold] . We simulated UF , and it achieves ap-
proximately fair bandwidth sharing, as CSFQ, DRR and SFQ.
However, it adapts specifically to any form of responsive flow
whose throughput can be determined as a function of the loss
rate. In heterogenous environments, with non-negligible round
trip times or bursty traffic, it thus provides much better fairness
than other stateless fair queueing algorithms that try to adapt in-
stantaneous rates, such as CSFQ or RFQ. We believe that, by
its simplicity and efficiency, UF is an interesting approach to
a hybrid network and end-to-end congestion control.

REFERENCES

[1] D.M Chiu and R.Jain, “Analysis of the increase and decrease algorithms
for congestion avoidance in computer networks,” Computer Networks and
ISDN Systems, vol. 17, pp. 1–14, 1989.

[2] Sally Floyd and Kevin Fall, “Promoting the use of end-to-end congestion
control in the internet,” IEEE/ACM Transactions on Networking, August
1999.

[3] W. Tan and A. Zakhor, “Real-time internet video using error resilent scal-
able compression and tcp-friendly transport protocol,” IEEE Transactions
on Multimedia, vol. 1, no. 2, pp. 172–186, June 1999.

[4] Sally Floyd, Mark Handley, Jitendra Padhye, and Jorg Widmer, “Equation-
based congestion control for unicast applications,” in Proceedings of ACM
SIGCOMM’2000, May 2000.

[5] S. Jamaloddin Golestani and Krishan K. Sabnani, “Fundamental observa-
tions on multicast congestion control in the internet,” in Proceedings of
IEEE Infocom’99, March 1999, pp. 990–1000.

[6] Mark Handley and Sally Floyd, “Strawman specification for tcp friendly
(reliable) multicast congestion control (tfmcc),” proposed to the RM mail-
ing list, November 1998.

[7] Steven McCanne, Van Jacobson, and Martin Vetterli, “Receiver-driven
layered multicast,” in Proceedings of ACM SIGCOMM’96, 1996, pp. 117–
130.

[8] Alan Demers, Srinivasan Keshav, and Scott Shenker, “Analysis and simu-
lation of a fair queueing algorithm,” in Proceeding of ACM SIGCOMM’89,
1989, pp. 3–12.

[9] Jon C.R. Bennett and Hui Zhang, “Wf2q : Worst-case fair weighted fair
queueing,” in Proceedings of IEEE Infocom’96, San Francisco, CA, March
1996, pp. 120–128.

[10] Jon C. R. Bennett and Hui Zhang, “Hierarchical packet fair queueing al-
gorithms,” in Proceedings of ACM SIGCOMM’96, October 1996, vol. 26,
pp. 143–156.

[11] George Varghese, “Efficient fair queuing using deficit round robin,” in
Proceedings of ACM SIGCOMM’95, 1995, vol. 25, pp. 231–243.

[12] Ion Stoica, Scott Shenker, and Hui Zhang, “Core-stateless fair queue-
ing: Achieving approximately fair bandwidth allocations in high speed
networks,” in Proceeding of ACM SIGCOMM’98, 1998, vol. 28, pp. 118–
130.

[13] Zhiruo Cao, Zheng Wang, and Ellen Zegura, “Rainbow fair queueing:
Fair bandwidth sharing without per-flow state,” in Proceedings of IEEE
Infocom’2000, March 2000.

[14] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis, “Choke, a state-
less active queue management scheme for approximating fair bandwidth
allocation,” in Proceedings of IEEE Infocom’2000, March 2000.

[15] Sally Floyd and Van Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, August 1993.

[16] Dimitri Bertsekas and Robert Gallager, Data Networks, chapter 6, pp.
524–529, Prentice-Hall, 1987.

[17] Ion Stoica and Hui Zhang, “Providing guaranteed services without per
flow management,” in Proceedings of ACM SIGCOMM’99, 1999.

[18] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose, “Modeling
tcp throughput: A simple model and its empirical validation,” in Proceed-
ings of ACM SIGCOMM’98, 1998.

[19] Steve McCanne and Sally Floyd, “Ucb/lbnl/vint network simulator (ns)
2.1b5,” http://www-mash.cs.berkeley.edu/ns/.

[20] Ion Stoica, “Csfq simulation scripts for ns-2,” http://www.cs.cmu.edu/ is-
toica/csfq/, 1998.

507 IEEE INFOCOM 2001

