
Visuall y Aided Exploration of I nteresting
Association Rules

Bing Liu, Wynne Hsu, Ke Wang, and Shu Chen

School of Computing
National University of Singapore

Lower Kent Ridge Road, Singapore 119260
{ liub, whsu, wangk, chens} @comp.nus.edu.sg

http://www.comp.nus.edu.sg/{ ~liub, ~whsu, ~wangk}

Abstract. Association rules are a class of important regularities in databases. They
are found to be very useful in practical applications. However, the number of asso-
ciation rules discovered in a database can be huge, thus making manual inspection
and analysis of the rules diff icult. In this paper, we propose a new framework to
allow the user to explore the discovered rules to identify those interesting ones.
This framework has two components, an interestingness analysis component, and a
visualization component. The interestingness analysis component analyzes and or-
ganizes the discovered rules according to various interestingness criteria with re-
spect to the user’s existing knowledge. The visualization component enables the
user to visually explore those potentially interesting rules. The key strength of the
visualization component is that from a single screen, the user is able to obtain a
global and yet detailed picture of various interesting aspects of the discovered
rules. Enhanced with color effects, the user can easily and quickly focus his/her
attention on the more interesting/useful rules.

1. Introduction

Association rules, introduced in [2], have received considerable attention in data
mining research and applications. The main strengths of association rule mining are
that the target of discovery is not pre-determined, and that it is able to find all associa-
tion rules that exist in the database. Thus, association rules can reveal valuable and
unexpected information in the database. However, these strengths are also its weak-
ness, i.e., the number of discovered rules can be huge, in thousands or even tens of
thousands, which makes manual inspection of the rules to identify the interesting ones
an almost impossible task. Automated assistance is thus needed.

Determining the interestingness of a rule is not a simple task. A rule can be inter-
esting to one person but not interesting to another. The interestingness of a rule is
essentially subjective. It depends on the user’s existing knowledge about the domain
and his/her current interests.

This paper proposes a new interactive and iterative framework to help the user find
interesting association rules. The proposed framework consists of two components, an
interestingness analysis component and a visualization component. The interestingness
analysis component allows the user to specify his/her existing knowledge. It then uses
this input knowledge to analyze the discovered rules according to various interesting-
ness criteria, and through such analysis to identify those potentially interesting rules
for the user. The visualization component makes it easy for the user to visually ex-

2

plore the potentially interesting rules. The key strength of the visualization component
is that from a single screen, the user is able to obtain a global and yet detailed picture
of various interesting aspects of the discovered rules. This enables him/her to visually
detect any unusual pattern without the need to browse through a large number of rules.
Three main types of information are shown on the screen:
(1) different kinds of potentially interesting rules.
(2) different degrees of rule interestingness and the number of rules in each kind.
(3) interesting items in the conditional part or the consequent part of the rules.
Enhanced with color effects, these types of information can lead the user to easily and
quickly explore various aspects of the discovered rules and to focus his/her attention
on those truly interesting/useful ones. The whole system works as follows:

Repeat until the user decides to stop
1 the user specifies some existing knowledge or modifies the knowledge specified pre-

viously;
2 the system analyzes the discovered rules according to some interestingness criteria;
3 the user inspects the analysis results through the visualization component, saves the

interesting rules, and removes those unwanted rules.

2. Association Rules and Subjective Rule Interestingness

2.1 Generalized association rules

Let I = { i1, …, iw} be a set of items, T be a set of transactions, and G be a set of tax-
onomies or class hierarchies. A taxonomy is a directed acyclic graph on the items in
I, where an edge represents an is-a relationship. A taxonomy example is shown in Fig
1. A generalized association rule [15] is an implication of the form X → Y, where X
⊂ I, Y ⊂ I, and X ∩ Y = ∅. The rule X → Y holds in the transaction set T with confi-
dence c if c% of transactions in T that support X also support Y. The rule has support s
in T if s% of the transactions in T contains X ∪ Y. A transaction t that supports an
item in I also supports all it s ancestors in I. For example, an association rule could be:

cheese, milk → Fruit [support = 5%, confidence = 70%],
which says that 5% of people buy cheese, milk and Fruit together, and 70% of the
people who buy cheese and milk also buy Fruit (of any kind).

2.2 Subjective rule interestingness

Past research has identified two main subjective rule interestingness measures:
Unexpectedness [14, 7]: Rules are interesting if they “surprise” the user.
Actionability [11]: Rules are interesting if the user can do something with them to

his/her advantage.
The two measures of interestingness are not mutually exclusive. Interesting rules

can be classified into three categories [14]:
1: rules that are both unexpected and actionable,
2: rules that are unexpected but not actionable, and
3: rules that are actionable but expected.

Category 1 and 2 can be handled by finding unexpected rules, and category 3 can be

Fooditem

Fruit Dairy_product Meat

grape pear apple milk cheese butter beef pork chicken

Fig 1. An example taxonomy

3

handled by finding the rules that conform to the user’ s knowledge. This paper pro-
poses a new framework to help the user find these two types of rules, i.e., unexpected
rules, and expected rules (or conforming rules).

3. The Interestingness Analysis Component

This component uses the user’ s existing knowledge to analyze and identify various
types of potentially interesting rules from the discovered association rules.

3.1. The specification language
A specification language is designed to enable the user to express his/her existing
knowledge. This language focuses on representing the user’ s existing knowledge
about associative relations on items in the database. The basic syntax of the language
takes the same format as association rules.

This language has three levels of specifications. Each represents knowledge of a
different degree of preciseness. They are: general impressions, reasonably precise
concepts, and precise knowledge. The first two levels represent the user’ s vague
feelings. The last level represents his/her precise knowledge. This division is impor-
tant because a user typically has a mixture of vague and precise knowledge.

The proposed language also uses the idea of class hierarchy (or taxonomy) as in
generalized association rules. The hierarchy in Fig 1 can also be represented by:

{ grape, pear, apple} ⊂ Fruit ⊂ Fooditem
{ milk, cheese, butter} ⊂ Dairy_product ⊂ Fooditem
{ beef, pork, chicken} ⊂ Meat ⊂ Fooditem

Fruit, Dairy_product, Meat and Fooditems are classes (or class names). grape, pear,
apple, milk, cheese, beef, pork, chicken, #Fruit, #Dairy_product, #Meat and
#Fooditems are items. Note that in generalized association rules, class names can also
be treated as items, in which case, we append a “#” in front of a class name. Note also
that in the proposed language, a class hierarchy does not need to be constructed be-
forehand. A class can be created any time when needed by using a set of items (see
the examples below).

gi(<S1, …, Sm>) [support, confidence]
where (1) Each Si is one of the following: an item, a class, or an expression C+

or C* , where C is a class. C+ and C* correspond to one or more, and
zero or more instances of the class C, respectively.

(2) A discovered rule: a1, …, an → b1, …, bk, conforms to the GI if <a1,…,
an, b1,…, bk> can be considered to be an instance of <S1, …, Sm>, oth-
erwise it is unexpected with respect to the GI.

(3) Support and confidence are optional. The user can specify the mini-
mum support and the minimum confidence of the rules that he/she
wants to see.

Example 1: The user believes that there exist some associations among { milk,
cheese} , Fruit items, and beef (assume we use the class hierarchy in Fig 1). He/she
specifies this as:

gi(<{ milk, cheese} * , Fruit+, beef>)
{ milk, cheese} here represents a class constructed on the fly unlike Fruit. The
following are examples of association rules that conform to the specification:

General Impression (GI): It represents the user’ s vague feeling that there should be
some associations among some classes of items, but he/she is not sure how they
are associated. This can be expressed with:

4

apple → beef
grape, pear, beef → milk

The following two rules are unexpected with respect to this specification:
(1) milk → beef (2) milk, cheese, pear → clothes

(1) is unexpected because Fruit+ is not satisfied. (2) is unexpected because beef is
not present in the rule, and clothes is not from any of the elements in the GI.

Reasonably Precise Concept (RPC): It represents the user’ s concept that there
should be some associations among some classes of items, and he/she also knows
the direction of the associations. This can be expressed with:

rpc(<S1, …, Sm → V1, …, Vg>) [support, confidence]
where (1) Each Si or Vj is the same as Si in the GI specification.

(2) A discovered rule, a1, …, an → b1, …, bk, conforms to the RPC, if the
rule can be considered to be an instance of the RPC, otherwise it is
considered as unexpected with respect to the RPC.

(3) Support and confidence are again optional.
Example 2: Suppose the user believes the following:

rpc(<Meat, Meat, #Dairy_product → { grape, apple} +>)
The following are examples of association rules that conform to the specification:

beef, pork, Dairy_product → grape
beef, chicken, Dairy_product → grape, apple

(1) pork, Dairy_product → grape (2) beef, pork → grape
(1) is unexpected because it has only one Meat item, but two Meat items are
needed as we have two Meat’s in the specification. (2) is unexpected because
Dairy_product is not in the conditional part of the rule.

Precise knowledge (PK): The user believes in a precise association. This is ex-
pressed with:

pk(<S1, …, Sm → V1, …, Vg>) [support, confidence]
where (1) Each Si or Vj is an item in I.

(2) A discovered rule: a1, …, an → b1, …, bk [sup, confid], is equal to the
PK, if the rule part is the same as S1, …, Sm→ V1, …, Vg. Whether it
conforms to the PK or is unexpected depends on the support and con-
fidence specifications.

(3) Support and confidence need to be specified (they are not optional).
Example 3: Suppose the user believes the following:

pk(<#Meat, milk → apple>) [10%, 50%]
The discovered rule below conforms to the PK quite well because the supports and
confidences of the rule and the PK are quite close.

Meat, milk → apple [8%, 53%]
However, if the discovered rule is the following:

Meat, milk → apple [4%, 30%]
then it is less conforming, but more unexpected, because its support and confi-
dence are quite far from those of the PK.

3.2. Analyzing the discovered rules using user’s existing knowledge
We now present how to use the user’ s specifications to analyze the discovered rules.
For GIs and RPCs, we only perform syntax-based analysis, i.e., comparing the syn-
tactic structure of the discovered rules with GIs and RPCs. It does not make sense to
do semantics-based analysis because the user does not have precise associations in

The following two rules are unexpected with respect to the specification:

5

mind. Using PKs, we can perform semantics-based analysis (based on support and
confidence) on the discovered rules. Due to space limitations, we could not present
this in the paper (see [9] for details).

Let U be the set of user’ s specifications representing his/her knowledge space. Let
A be the set of discovered association rules. The proposed technique analyzes the
discovered rules by “matching” and ranking the rules in A in a number of ways for
finding different kinds of interesting rules, conforming rules, unexpected consequent
rules, unexpected condition rules and both-side unexpected rules.
Conforming rules: A discovered rule Ai ∈ A conforms to a piece of user’ s knowl-

edge Uj ∈ U if both the conditional and consequent parts of Ai match Uj ∈ U
well . We use confmij to denote the degree of conforming match.

Purpose: conforming rules show us those discovered rules that conform to or are
consistent with our existing knowledge fully or partially.

Unexpected consequent rules: A discovered rule Ai ∈ A has unexpected consequents
with respect to a Uj ∈ U if the conditional part of Ai matches Uj well , but not
the consequent part. We use unexpConseqij to denote the degree of unexpected
consequent match.

Purpose: unexpected consequent rules show us those discovered rules that may be
contrary to our existing knowledge. These rules are often very interesting.

Unexpected condition rules: A discovered rule Ai ∈ A has unexpected conditions
with respect to a Uj ∈ U if the consequent part of Ai matches Uj well , but not
the conditional part. We use unexpCondij to denote the degree of unexpected
condition match.

Purpose: unexpected condition rules show us that there are other conditions that
can lead to the consequent of the specification. We are thus guided to explore
unfamili ar territories.

Both-side unexpected rules: A discovered rule Ai ∈ A is both-side unexpected with
respect to a Uj ∈ U if both the conditional and consequent parts of the rule Ai

do not match Uj well . We use bsUnexpij to denote the degree of both-side un-
expected match.

Purpose: both-side unexpected rules remind us that there are other rules whose
conditions and consequents are not mentioned in our specification. It helps us
to go beyond our existing concept space.

The values for confmij, unexpConseqij, unexpCondij, and bsUnexpij are between 1.00
and 0. 1.00 represents the complete match, either the complete conforming or the
complete unexpectedness match, and 0 represents no match. Let Lij and Rij be the
degrees of condition and consequent match of rule Ai against Uj respectively. We have
(for both GIs and RPCs),

We use Lij – Rij to compute the unexpected consequent match degree because we wish
to rank those rules with high Lij but low Rij higher. Similar idea applies to unexpCon-
dij. The formula for bsUnexpij ensures that those rules with high values in any other
three categories should have low values here, and vice versa.

Due to the space limitation, we are unable to give the detailed computation meth-
ods for Lij and Rij, which depend on whether Uj is a GI or a RPC. The computations

confmij = Lij * Rij; unexpConseqij ;
0

00





>−−
≤−

=
ijijijij

ijij

RLRL

RL

unexpCondij ;
0 - -

0 - 0





>
≤

=
ijijijij

ijij

LRLR

LR

bsUnexpij = 1- max(confmij, unexpConseqij, unexpCondij);

6

can all be done eff iciently. See [9] for full details. After confmij, unexpConseqij, un-
expCondij, and bsUnexpij have been computed, we can rank the discovered rules with
respect to a Uj. It is also possible to rank the rules with respect to the whole set of
specifications U. However, in our applications, we find that such rankings can be
quite confusing, and are thus omitted.

4. The Visualization Component
After the discovered rules are analyzed with the method presented in the last section,
we want to display those different types of potentially interesting rules to the user.
The issue here is how to show the essential aspects of the rules such that we can take
advantage of the human visual capabiliti es to allow the user to identify the truly inter-
esting rules easily and quickly. Let us discuss what the essential aspects are:
1. Types of potentially interesting rules: We should separate them because different

types of interesting rules give the user different information.
2. Degrees of interestingness (“match” values): We should group rules according to

their degrees of interestingness. This enables the user to focus his/her attention on
the most unexpected (or conforming) rules first and to decide whether to view
those rules with low degrees of interestingness.

3. Interesting items: We focus on showing the interesting items rather than the rules.
This is perhaps the most crucial decision that we have made. In our applications,
we find that it is those unexpected items that are most important to the user be-
cause due to 1 above, the user already knows what kind of interesting rules he/she
is looking. For example, when the user is looking at unexpected consequent rules,
it is natural that the first thing he/she wants to know is what are the unexpected
items in the consequent parts. Even if we show the rules, the user still needs to
look for the unexpected items in the rules.

The main screen in the visualization system contains all the above information. Be-
low, we use an example to describe the visualization system.

The visualization system consists of 4 main modules:
1. Class hierarchy builder: it allows the user to build class hierarchies as in Fig 1.
2. GI viewer: it allows the user to specify GIs and to visualize the results produced

by the interestingness analysis system.
3. RPC viewer: it allows the user to specify RPCs and to visualize the results pro-

duced by the interestingness analysis system.
4. PK viewer: it allows the user to specify PKs and to visualize the results produced

by the interestingness analysis system.
Here, we only focus on presenting the RPC viewer. Due to space limitations, we are
unable to show the others. They are similar in concept to the RPC viewer. We will
also not discuss the Class hierarchy builder since it is straightforward.

4.1. The example sett ing

Our example uses a RPC specification. The rules in the example are a small subset of
rules (857 rules) discovered in an exam results database. This application tries to
discover the associations between the exam results of a set of 7 specialized courses
(called GA courses) and the exam results of a set of 7 basic courses (called GB
courses). A course together with an exam result form an item, e.g., GA6-1, where
GA6 is the course code and “1” represents a bad exam grade (“2” represents an aver-
age grade and “3” a good grade). The discovered rules and our existing concept
specification are listed below.

7

• Discovered association rules: The rules below have only GA course grades on
left-hand-side and GB course grades on right-hand-side (we omit their support
and confidence).

R1: GA1-3 → GB2-3 R7: GA4-1 → GB7-2
R2: GA4-3 → GB4-3 R8: GA6-2 → GB7-2
R3: GA2-3 → GB2-3 R9: GA5-1, GA2-2 → GB2-2
R4: GA2-3 → GB5-1 R10: GA5-2, GA1-2 → GB3-2
R5: GA6-1 → GB1-3 R11: GA6-1, GA3-3 → GB6-3
R6: GA4-2 → GB3-3 R12: GA7-2, GA3-3 → GB4-3

• Our existing concept specification
Assume we have the common belief that students good in GA courses are likely to
be good in GB courses. This can be expressed as a RPC (also see it in Fig 2):

Spec1: rpc(GA-good → GB-good)
where the classes, GA-good and GB-good, are defined as follows:

GA-good ⊃ { GA1-3, GA2-3, GA3-3, GA4-3, GA5-3, GA6-3, GA7-3}
GB-good ⊃ { GB1-3, GB2-3, GB3-3, GB4-3, GB5-3, GB6-3, GB7-3}

4.2. Viewing the results

After running the system with the above RPC specification, we obtain the screen in
Fig 2 (the main screen). We see “RPC” in the middle. To the bottom of “RPC”, we
have the conforming rules visualization unit. To the left of “RPC”, we have the unex-
pected condition rules visualization unit. To the right, we have the unexpected conse-
quent rules visualization unit. To the top, we have both-side unexpected rules visuali-
zation unit. Below, we briefly discuss these units in turn with the example.
Conforming rules visualization unit: Clicking on Conform, we will see the complete

conforming rules ranking in a pop-up window:
Rank 1: 1.00 R1 GA1-3 → GB2-3
Rank 1: 1.00 R2 GA4-3 → GB4-3
Rank 1: 1.00 R3 GA2-3 → GB2-3
Rank 2: 0.50 R11 GA6-1, GA3-3 → GB6-3
Rank 2: 0.50 R12 GA7-2, GA3-3 → GB4-3

The number (e.g., 1.00, and 0.50) after each rank number is the conforming match
value, confmi1. The first three rules conform to our belief completely. The last two
only conform to our belief partially because GA6-1 and GA7-2 are unexpected.
This list of rules can be long in a real-li fe application. The following mechanisms
help the user focus his/her attention, i.e., enabling him/her to view rules with dif-
ferent degrees of interestingess (“match” values) and to view the interesting items.
• On both sides of Conform we can see 4 pairs of boxes, which represent sets of

rules with different conforming match values. If a pair of boxes is colored, it
means that there are rules there, otherwise there is no rule. The line connecting
“RPC” and a pair of colored boxes also indicates that there are rules under
them. The number of rules is shown on the line. Clicking on the box with a
value will give all the rules with the corresponding match value and above. For
example, clicking on 0.50 shows the rules with 0.50 ≤ confmi1 < 0.75. Below
each colored box with a value, we have two small windows. The one on the top
has all the rules’ condition items from our RPC specification, and the one at the
bottom has all the consequent items. Clicking on each item gives us the rules
that use this item as a condition item (or a consequent item).

• Clicking on the colored box without a value (below the valued box) brings us
to a new screen (not shown here). From this, the user sees all the items in dif-
ferent classes involved, and also conforming and unexpected items.

8

Fig 2. RPC main visualization screen

Unexpected condition rules visualization unit: The boxes here have similar meanings
as the ones for conforming rules. From Fig 2, we see that there are 4 unexpected
condition rules. Two have the unexpected match value of 1.00 and two have 0.50.
The window (on the far left) connected to the box with a match value gives all the
unexpected condition items. Clicking on each item reveals the relevant rules.
Similarly, clicking on the colored box next to the one with a value shows both the
unexpected condition items and the items used in the consequent part of the rules.
To obtain all the rules in the category, we can click Unexpected Conditions.

Rank 1: 1.00 R5 GA6-1 → GB1-3
Rank 1: 1.00 R6 GA4-2 → GB3-3
Rank 2: 0.50 R11 GA6-1, GA3-3 → GB6-3
Rank 2: 0.50 R12 GA7-2, GA3-3 → GB4-3

1.00 and 0.50 are the unexpCondi1 values. Here, we see something quite unex-
pected. For example, many students with bad grades in GA6 actually have good
grades in GB1.

Unexpected consequent rules visualization unit: This is also similar to the conforming
rules visualization unit. From Fig 2, we see that there is only one unexpected con-
sequent rule and the unexpected consequent match value is 1.00. Clicking on the
colored box with 1.00, we will obtain the unexpected consequent rule:

Rank 1: 1.00 R4 GA2-3 → GB5-1
This rule is very interesting because it contradicts our belief. Many students with
good grades in GA2 actually have bad grades in GB5.

9

Both-side unexpected rules visualization unit: We only have two unexpected match
value boxes here, i.e., 1.00 and 0.50. Due to the formulas in Section 3.2, rules
with bsUnexpij < 1.00 can actually all be seen from other visualization units. The
unexpected items can be obtained by clicking on the box above the one with a
value. All the ranked rules can be obtained by clicking Both Sides Unexpected.

Rank 1: 1.00 R7 GA4-1 → GB7-2
Rank 1: 1.00 R8 GA6-2 → GB7-2
Rank 1: 1.00 R9 GA5-1, GA2-2 → GB2-2
Rank 1: 1.00 R10 GA5-2, GA1-2 → GB3-2
Rank 2: 0.50 R11 GA6-1, GA3-3 → GB6-3
Rank 2: 0.50 R12 GA7-2, GA3-3 → GB4-3

From this ranking, we also see something quite interesting, i.e., average grades
lead to average grades and bad grades lead to average grades. Some of these rules
are common sense, e.g., average to average rules (R8 and R10), but we did not
specify them as our existing knowledge (if “average to average” had been specified
as our knowledge earlier, these rules would not have appeared here because they
would have been removed). This shows the advantage of our technique, i.e., it can
remind us what we have forgotten if the rules are not truly unexpected.

The system also allows the user to incrementally save interesting rules and remove
unwanted rules, and to view them. Whenever a rule is removed or saved (also re-
moved from the original set of rules), the related pictures and windows are updated.

The proposed system has proven to be very useful in a number of applications. In
these applications, there are typically thousands of discovered association rules (the
smallest rule set has 770 rules). Without the proposed system, it would be very hard
for us to analyze these large numbers of rules.

5. Related Work

Traditionally, a query-based approach is used to help the user identify or generate
interesting rules. The approach takes many forms, e.g., templates [6], M-SQL [5],
DMQL [4], and action hierarchy [1]. Although query languages can be quite differ-
ent, a query basically defines a set of rules of a certain type (or constraints on the
rules to be found). To “execute” a query means to find all rules that satisfy the query.
We believe that the query-based approach is insuff icient for two main reasons:
1. It is hard to find the truly unexpected rules. It only finds those anticipated rules

because what the user’ s queries are still within his/her existing knowledge space.
2. The user often does not know or is unable to specify completely what interest

him/her. He/she needs to be stimulated. The query-based approach does not ac-
tively perform this task because it only returns those rules that satisfy the queries.

Our technique not only finds those conforming rules like query-based methods, but
also provides three types of unexpected rules. Our approach also helps the user to
provide more knowledge to the system by reminding him/her what he/she might have
forgotten. If the top ranking rules are not unexpected, then they serve to remind the
user what he/she has forgotten. Our visualization component allows the user to easily
and quickly explore those interesting rules.

[7, 8] report a related technique for analyzing classification rules [13] using user’ s
existing concepts. However, the technique there cannot be used for analyzing asso-
ciation rules. Association rules require a different specification language and different
ways of analyzing and ranking the rules. [7, 8] also do not have visualization systems.

[12] proposes a method of discovering unexpected rules in the rule generation

10

phase by taking into consideration the user’ s expectations. This method is, however,
not as eff icient and flexible as our post-analysis method because the user is normally
unable to specify his/her expectations about the domain completely. User interaction
with the system is needed in order for him/her to provide a more complete set of
expectations and to find more interesting rules. However, user interaction is diff icult
for the approach in [12] because it is not eff icient to run a rule miner whenever the
user remembers another piece of knowledge. The association rule mining is typically
very time consuming. Post-analysis facilit ates user interaction due to its eff iciency.

6. Conclusion

This paper proposes an integrated framework for exploration of discovered rules in
order to find those interesting ones. The interestingness analysis system uses three
types of user’s existing knowledge to analyze the discovered rules and to organize
them in various ways to expose the user to many interesting aspects of the discovered
rules. A simple but powerful visualization system enables the user to view and identify
interesting rules easily and quickly.

References

[1] Adomavicius, G. and Tuzhili n, A. “Discovery of actionable patterns in data-
bases: the action hierarchy approach.” KDD-97, 1997, pp. 111-114.

[2] Agrawal, R., Imielinski, T. and Swami, A. Mining association rules between
sets of items in large databases. SIGMOD-1993, 1993, pp. 207-216.

[3] Fayyad, U., Piatesky-Shapiro, G. and Smyth, P. “From data mining to knowl-
edge discovery: an overview,” In: Advances in knowledge discovery and data
mining, U. Fayyad, G. Piatesky-Shapiro, P. Smyth and R. Uthurusamy, (eds.),
AAA I/MIT Press, 1996, pp. 1-34.

[4] Han, J., Fu, Y., Wang, W., Koperski, K. and Zaiane, O. “DMQL: a data mining
query language for relational databases.” SIGMOD Workshop on KDD, 1996.

[5] Imielinski, T., Virmani, A. and Abdulghani, A. “DataMine: application pro-
gramming interface and query language for database mining.” KDD-96, 1996.

[6] Klemetinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo,
A.I. “Finding interesting rules from large sets of discovered association rules.”
CIKM-94, 1994, pp. 401-407.

[7] Liu, B., and Hsu, W. “Post-analysis of learned rules.” AAAI-96, 1996.
[8] Liu, B., Hsu, W., and Chen, S. “Using general impressions to analyze discov-

ered classification rules.” KDD-97, 1997, pp. 31-36.
[9] Liu, B., Hsu, W., and Wang, K. “Helping user identifying interesting associa-

tion rules” Technical Report, 1998.
[10] Liu, B., Hsu, W. and Ma, Y. M. “ Integrating classification and association rule

mining.” KDD-98, 1998, pp. 80-86.
[11] Piatesky-Shapiro, G., and Matheus, C. “The interestingness of deviations.”

KDD-94, 1994.
[12] Padmanabhan, B., and Tuzhili n, A. “A belief-driven method for discovering

unexpected patterns.” KDD-98, 1998, pp. 94-110.
[13] Quinlan, J. R. C4.5: program for machine learning. Morgan Kaufmann, 1992.
[14] Silberschatz, A., and Tuzhili n, A. “What makes patterns interesting in knowl-

edge discovery systems.” IEEE Trans. on Know. and Data Eng. 8(6), 1996.
[15] Srikant, R. and Agrawal, R. “Mining Generalized association rules.” VLDB-

1995, 1995.
[16] Srikant, R., Vu, Q. and Agrawal, R. “Mining association rules with item con-

straints.” KDD-97, 1997, pp. 67-73.

