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Abstract 

The biggest single obstacle to building effective 
augmented reality (AR) systems is the lack of accurate 
wide-area sensors for trackers that report the locations 
and orientations of objects in an environment. Active 
(sensor-emitter) tracking technologies require powered-
device installation, limiting their use to prepared areas 
that are relatively free of natural or man-made 
interference sources. Vision-based systems can use 
passive landmarks, but they are more computationally 
demanding and often exhibit erroneous behavior due to 
occlusion or numerical instability. Inertial sensors are 
completely passive, requiring no external devices or 
targets, however, the drift rates in portable strapdown 
configurations are too great for practical use. In this 
paper, we present a hybrid approach to AR tracking that 
integrates inertial and vision-based technologies. We 
exploit the complementary nature of the two technologies 
to compensate for the weaknesses in each component. 
Analysis and experimental results demonstrate this 
system's effectiveness. 

1. Introduction 

One of the key technological challenges for creating an 
augmented reality (AR) is to maintain accurate 
registration and tracking between real and computer-
generated objects. As users move their viewpoints, the 
graphic virtual elements must remain aligned with the 
observed 3D positions and orientations of real objects.  
The alignment depends on accurately tracking the 
viewing pose, relative to either the environment or the 
annotated object(s) [15]. The tracked viewing pose 
defines the virtual camera pose used to project 3D 
graphics onto the real world image, so the tracking 
accuracy directly determines the visually-perceived 
accuracy of AR alignment and registration [1, 3]. 

A wealth of research, employing a variety of sensing 
technologies, deals with motion tracking and registration as 
required for augmented reality applications. Each 
technology has unique strengths and weaknesses.  Tracking 
technologies may be grouped into three categories: active-
target, passive-target, and inertial. Active-target systems 
incorporate powered signal emitters and sensors placed in a 
prepared and calibrated environment. Examples of such 
systems use magnetic, optical, radio, and acoustic signals. 
Passive-target systems use ambient or naturally occurring 
signals.  Examples include compasses sensing the Earth’s 
field and vision systems sensing intentionally placed 
fiducials (e.g., circles, squares) or natural features. Inertial 
systems are completely self contained, sensing physical 
phenomena created by linear acceleration and angular 
motion. See [1, 12] for more complete overviews of 
tracking technologies. 

Each tracking approach has limitations. The signal-sensing 
range as well as man-made and natural sources of 
interference limit active-target systems. Passive-target 
systems are also subject to signal degradation, for example 
poor lighting or proximity to steel in buildings can defeat 
vision and compass systems. Inertial sensors measure 
acceleration or motion rates, so their signals must be 
integrated to produce position or orientation. Noise, 
calibration error, and the gravity field impart errors on 
these signals, producing accumulated position and 
orientation drift. Position requires double integration of 
linear acceleration, so the accumulation of position drift 
grows as the square of elapsed time. Orientation only 
requires a single integration of rotation rate, so the drift 
accumulates linearly with elapsed time. 

Hybrid systems attempt to compensate for the 
shortcomings of each technology by using multiple 
measurements to produce robust results. Active-target 
magnetic and passive-target vision are combined in [18]. 
Inertial sensors and active-target vision are combined in 
[2]. These and other examples are presented in Table 1. 



Vision is commonly used for AR tracking and registration 
[11, 13, 17, 20]. Unlike other active and passive 
technologies, vision methods estimate camera pose 
directly from the same imagery observed by the user. The 
tracked pose (position and orientation) is often relative to 
the object(s) of interest, not a sensor or emitter attached to 
the environment. This has several advantages: a) tracking 
may occur relative to moving objects; b) tracking 
measurements made from the viewing position often 
minimize the visual alignment error; and c) tracking 
accuracy varies in proportion to the visual size (or range) 
of the object(s) in the image [13]. The ability to both track 
pose and manage residual errors is unique to vision, 
however vision suffers from a notorious lack of 
robustness and high computational expense. Combining 
vision and inertial technologies offers one approach to 
overcoming these problems. 

Our long-term goal is to develop stable, accurate and 
robust tracking methods for wide-area augmented 
realities, especially in unprepared indoor or outdoor 
environments. To achieve this, our laboratory explores a 
range of related issues, including robust natural feature 
detection and tracking methods [16], extendible vision 
tracking with natural features and new-point estimation 
techniques [14], and Kalman filters for pose estimation. 
This work combines our methods for fiducial and natural 
feature tracking with inertial gyroscope sensors to 
produce a hybrid tracking system. The two basic tenets of 
this work are: 

1) Inertial gyro data can increase the robustness and 
computing efficiency of a vision system by providing 
a frame to frame prediction of camera orientation. 

2) A vision system can correct for the accumulated drift 
of an inertial system. 

We consider the case when the scene range is many 
multiples of the camera focal length.  Under this 
condition, the 2D motion of image features is more 
sensitive to camera rotation than camera translation. 
People can rotate their heads very quickly, so in the case 
of a head-mounted camera, the 2D image motions are 
often mainly due to head rotation.  Vision pose tracking 

methods often compute 2D-image motion.  Since these 
motions are often due to rotation, inertial gyro sensors can 
aid the vision system in tracking these motions.  Vision can 
in turn correct the long term drift of the inertial sensors.   

The remainder of the paper describes our approach and 
method for camera and gyro calibration.  We also present 
the results of our analysis and experiments. 

2. Problem Statement 

2.1 Inertial Tracking 

The basic principles behind inertial sensors for determining 
orientation and position rest on Newton's laws [19, 4]. Two 
devices, gyroscopes and accelerometers, are contained in 
an inertial sensor, affixed to the three perpendicular axes of 
a body. Accelerometers measure linear acceleration vectors 
with respect to the inertial reference frame. In order to 
subtract the acceleration component due to gravity, the 
orientation of the linear accelerometers must be accurately 
known at all times. We focus on gyro devices that measure 
rotation rate. The gyro outputs are integrated over time to 
compute relative changes of orientation within the 
reference frame. The integration of signal and error gives 
rise to a linearly increasing orientation drift. Correction 
techniques may include magnetic compass measurements 
[7, 19].  However, compass signals are also noisy and 
especially subject to errors induced by ferrous materials. 
Indoor or urban compass signals are consequently 
unreliable. We attempt vision-based corrections in the hope 
that this approach will generalize to a wide range of 
environments. 

2.2 Error Sensitivity of Inertial AR Tracking 
System 

In this section, we analyze the error sensitivity of inertial 
tracker in an augmented reality tracking system. The 
inertial device we used for experiment is a three-degree of 
freedom (3DOF) orientation tracker produced by 
InterSense (Model IS-300). This device incorporates three 
orthogonal gyroscopes to sense angular rates of rotation 
along its three perpendicular axes. It also has sensors for 
the gravity vector and a compass [7] to compensate for 
gyro drift. The measured angular rates are integrated to 
obtain the three orientation measurements (Yaw, Pitch, and 
Roll). This system is specified to achieve approximately 1° 
RMS static orientation accuracy and 3° RMS dynamic 
accuracy, with a 150Hz maximum update rate. Although 
adequate for interactive applications in virtual reality, this 
accuracy is inadequate for AR tracking. To demonstrate 
this, we map the specified error into the 2D image domain.   

Let ( xf , yf ) be the effective horizontal and vertical focal 

lengths of a video camera (in pixels), ( xL , yL ) represent 

the horizontal and vertical image resolutions, and ( yx θθ , ) 

Hybrid Approach  

Active-Active vision-magnetic [3] 
Active-Passive magnetic-vision [18] 
Active-Inertial vision-inertial [2] 

acoustic-inertial [8] 
Passive-Passive  
Passive-Inertial compass-inertial [7][21] 

vision-inertial* 
Inertial-Inertial  
Table 1 – Examples of hybrid tracking 
approaches (including *this work) 



be the field-of-view (FOV) of the camera, respectively. If 
pixels sample the rotation angles uniformly (Yaw and 
Pitch), the ratio of image pixel motion to the rotation 
angles (pixel/degree) is 
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To illustrate a concrete example of this relationship, 
consider the Sony XC-999 CCD video camera with an     
F 1:1.4, 6 mm lens. Through calibration, we determine the 
effective horizontal and vertical focal lengths as 

xf =614.059 pixels, and yf =608.094 pixels, with a 

640×480 image resolution. The ratios are xxL θ =11.625 

pixel/degree, and yyL θ =11.143 pixel/degree.  That is, 

each degree of orientation angle error results in about 11-
pixels of alignment error in the image plane. In our actual 
use experience, the error of the inertial tracker may 
become larger than the specified one-degree. Increasing 
the FOV of the camera by using a wide-angle lens reduces 
the pixel error proportionately, however wide-angle 
lenses produce significant radial distortions that also 
contribute to pixel error [3]. 

Figure 1 illustrates the dynamic accuracy we measured 
experimentally with the inertial tracker. In our 
experiment, the 3DOF inertial gyro sensor is attached to a 
video camera to continually report the camera orientation. 
We do not attempt to measure a ground-truth absolute 
pose of the sensor/camera; rather we track visual feature 
motions to evaluate the gyro sensor accuracy relative to 
the image. By back-projecting the 3D orientation changes 
reported by the inertial sensor, we compare the gyro 
motion estimates with the observed feature motions in the 
image plane. Changes in the image-space distances are 
proportional to the errors accumulated by the inertial 
system. We believe this method simulates an AR system 
annotating visual features. The experiment allows us to 
evaluate the tracking of orientation-only inertial sensors. 
The error measure is appropriate since the ultimate metric 
of any augmented reality is the perceived image. Two 
different sequences, a far-view (>100 feet) and near-view* 
(Figure 3 (a), (b)), each of 500 frames, are used for the 
test. Figure 1 illustrates the average error distributions for 
the two scenes. It clearly shows the dynamic drifts 
between the gyro data and tracked features. 

                                                        
* We only consider pure rotation of the camera.  Although we carefully 
pan the camera to avoid translations, minor translation is injected by the 
offset between the rotation axis and the optical center of the camera. For 
completeness, we consider both a far-view (campus) scene with feature 
ranges of over 100 feet and a near-view (office) scene that is more 
sensitive to minor translation.   

3. Hybrid Inertial-Vision Tracking  

Our prototype hybrid tracker fuses inertial orientation 
(3DOF) data with vision feature tracking to stabilize 
performance and correct inertial drift. We treat the fusion 
as an image stabilization problem. Approximate 2D 
feature-motion is derived from the inertial data, and vision 
feature tracking corrects and refines these estimates in the 
image domain. Furthermore, the inertial data also serves as 
an aid to the vision tracking by reducing the search space 
and providing tolerance to interruptions.   

While our current experiments focus on a hybrid of 3DOF 
inertial and vision-based technologies, the methods are 
useful for 6DOF systems incorporating gyros as well as 
other sensors such as accelerometers, GPS, compass, and 
pedometer measurements. 

3.1 Camera Model and Coordinates  

The configuration of our system includes a CCD video 
camera with a rigidly mounted 3DOF inertial sensor. There 
are four principal coordinate systems, as illustrated in 

(a) Far-view scene 
 

 
(b) Near-view scene 

 
Fig. 1 – Average pixel differences between 
tracked features and back-projected features 
for Fig.3 (a) distant and Fig. 3 (b) near scenes. 



Figure 2: the world coordinate system ),,(: zww zyxW , 

the camera-centered coordinate system ),,(: ccc zyxC , 

the inertial-centered coordinate system ),,(: III zyxI , 

and the 2D image coordinate system ),(: uu yxU . 

A pinhole camera models the imaging process. The origin 
of C is at the projection center of camera. The 
transformation from W to C is  

W:→ C:
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where the rotation matrix wcR  and the translation vector 

wcT  characterize the orientation and position of the 
camera with respect to the world coordinate frame. Under 
perspective projection, the transformation from W to U is  

W:→ U:
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where the matrix K 

K =
α x f 0 u0

0 αy f v0

0 0 1

 

 

 
 
 

 

 

 
 
 

      (4) 

contains the intrinsic parameters of the camera*, f is the 

focal length of camera, yx αα ,  are the horizontal and 

vertical pixel sizes on the imaging plane, and ( )00 ,vu  is 
the projection of camera center (principal point) on the 

                                                        
* For simplicity we omitted the lens distortion parameters from the 
equation.  A complete form can be found in [13] for the method we 
used. 

image plane. The intrinsic parameters are calibrated offline. 

Camera orientation changes are reported by the inertial 
tracker, so the transformation between the C and I is 
needed to relate inertial and camera motion.  For rotation 

cIR  and translation cIT the transformation is 

I :→ C :
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Since we only use the 3DOF orientation motion of the 
inertial tracker, only the rotation transformation needs to be 
determined. Our automatic calibration method is detailed 
below. 

3.2 Static Calibration 

3.2.1  Camera Parameters 

Camera calibration determines the intrinsic parameters K 
and the lens distortion parameters.  We use the method 
described in [13]. A planar target with a known grid pattern 
is imaged at measured offsets along the viewing direction.  
The intrinsic parameters and coefficients of radial lens 
distortion are computed by an iterative least-squares 
estimation. These parameters remain constant during our 
tracking experiments.  

3.2.2  Transformation Between Inertial Frame and 
Camera Frame 

The transformation between the inertial and the camera 
coordinate systems relates the inertial data to the camera 
motion, and hence to the image feature motions. Measuring 
this transformation is difficult, especially with optical see-
through display systems [1]. We describe a motion-based 
calibration, as opposed to the boresight techniques 
presented in [2, 3]. For previously stated reasons, only the 
rotation component of the transformation needs to be 
determined. 

Equation (5) relates the position transformation between 
the inertial tracker frame and the camera coordinate frame. 
The rotation motion relationship between the two 
coordinates can be derived  

ωC = R Ic[ ]ωI     (6) 

where, Cω  and Iω  denote the angular velocity of scene 
points, relative to the camera coordinate frame and the 
inertial coordinate frame, respectively. 

The angular motion Iωω , relative to the inertial coordinate 
system, is obtained from the inertial tracker output.  We 
need to compute the camera's angular velocity Cωω in some 
way, in order to determine the transformation matrix 

cIR based on equation (6).  

 
Fig. 2 - Camera model and the related 
coordinate systems of the hybrid system. 



General camera motion can be decomposed into a linear 

translation VC = VCx, ,VCy, VCz[ ]T  and an angular motion 

ωC = ω Cx ,ω Cy ,ω Cz[ ]T .  Under perspective projection, the 

2D-image motion resulting from camera motion can be 
written as 
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where ),( uu yx &&  denotes the image velocity of point 

),( uu yx  in the image plane, Cz is the range to that point, 
and f is the focal length of camera. Eliminating the 

translation term and substituting from equation (6), we 
have 

Ý x u = Λ R I c[ ]ω I    (8) 

where  
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In words, given knowledge of the internal camera 
parameters, the inertial tracking data Iωω , and the related 

2D motions [ ]yu yx && , of a set of image features, the 

transformation cIR between the camera and the inertial 

coordinate systems can be determined from equation (8). 
This approach can also be used to calibrate the translation 
component of position tracking devices.   

3.3 Dynamic Registration 

The static registration procedure described above 
establishes a good initial calibration, however the inertial 
tracker accumulates drift over time and errors with 
motion. The distribution of drift and error is difficult to 
model for analytic correction. Our strategy of dynamic 
registration is to minimize the tracking error in the image 
plane, relative to the visually-perceived image. 

Suppose N points are annotated in the scene. Their 
projections in the image are ),( ii yx , Ni L2,1= . Our 
goal is to automatically track these features as the camera 
moves in the following frames. Our method computes a 
tracking prediction from the inertial data, followed by a 
tracking correction with vision. 

3.3.1 Tracking Prediction 

Let Cω  be the camera rotation from frame )1,( −tI x  to 

frame ),( tI x .  For the scene points iO , their 2D positions 

in the image frame 1−t are T
tititi yx ],[ 111 −−− =x . The 

positions of these points in the frame t , due to the related 
motion (rotation) between the camera and the scene, can be 
estimated  

x i t = x i t−1 + ∆ x i t  

∆ x
i t = Λ ω C                                     (9) 

where ΛΛ is determined by equation (8).  

3.3.2 Tracking Correction 

Inertial data predicts the motion of image features. The 
correction refines these predicted image positions by doing 
local searches for the true features. A robust motion 
tracking approach is used for the correction strategy. The 
novel part of the approach [16] is it integrates three motion 
analysis functions, feature selection, tracking, and 
verification, in a closed-loop cooperative manner to copy 
with complicated imaging conditions. Firstly, in the feature 
selection module, 0D and 2D tracking features are selected 
for their reliable tracking and motion estimation suitability. 
The selection and evaluation processes also use data from a 
tracking evaluation function that measures the confidence 
of the last tracking estimation. 

Once selected, features are ranked according to their 
evaluation values and fed into the tracking module. The 
tracking method is a differential-based local optical-flow 
calculation that utilizes normal-motion information in local 
neighborhoods to perform a least-squares minimization to 
find the best fit to motion vectors. Unlike traditional single-
stage implementations, the approach adopts a multi-stage 
robust estimation strategy. For every estimated result, a 
verification and evaluation metric assesses the confidence 
of the estimation. If the estimation confidence is poor, the 
result is refined iteratively until the estimation error 
converges.  

To achieve robust tracking, a novel motion verification and 
feedback strategy is proposed in a closed-loop tracking 
architecture. Two different verification strategies are used 
for the two kinds of tracking features and motion models. 
Basically, in both cases, they depend on the estimated 
motion field to generate an evaluation frame that measures 
the estimation residual. The difference between the 
evaluation frame and the true target frame measures the 
error of the estimate. This error information is fed back to 
the tracking module for motion correction and to the 
feature detection module for feature re-evaluation. The 
closed-loop control of the tracking system is inspired by the 
use of feedback for stabilizing errors in non-linear control 
system. The process acts as “selection-hypothesis-
verification-correction” strategy that make it possible to 
discriminate between good and poor estimation features, 
which maximizes the quality of the final motion estimation. 

 



4. Results 

We conducted extensive experiments to test the proposed 
fusion approach. Two prototype systems were built; one 
is based on the InterSense's 3DOF inertial tracker (Model 
IS-300), and another is based on a hybrid 3DOF sensor 
system developed by HRL Laboratories [21].  The current 
fusion systems achieve about 9 frames/second on a SGI 
O2 workstation. Figure 3 shows three frames from video 
sequences captured from three different geographical 
locations. In these frames, black dots identify the feature 
points that we want to track and annotate. The yellow 
boxes are annotation text banners positioned only with 
inertial data (fused output of each tracker), while the red 
boxes denote the vision-corrected positions. The 
resolution of the images is 640x480. 

4.1. Inertial-Only Tracking 

In this test, only inertial data is used for tracking. Ten 
distinct features are manually selected in initial frames to 
establish visual reference points. The selected features are 
back-projected in each frame based on the camera 
orientation reported by the inertial tracker. The average 
differences between the back-projected image positions 
and the observed (vision-tracked) feature positions are the 
measure of tracking accuracy in each frame.  Figure 4 
illustrates the average error distributions for the three 
scenes confirming that substantial errors occur.  

4.2. Hybrid Inertial-Vision: case 1 

This test performs inertial tracking with vision correction 
of the integrated gyro error. As described in section 3.3, 
the prediction of 2D-image motion is based on the motion 
equation (9). This test corrects a feature's motion based on 
its integrated inertial predicted position. This approach 
has the disadvantage that inertial drift accumulates; 
however the drift is unaffected by any errors in the 
correction process, and this simulates the effect of 
prolonged occlusion of the vision system. This test shows 
how well the method corrects the accumulated gyro drifts 
over long periods of time. Figure 4 illustrates the results 
for the test scenes. 

4.3. Hybrid Inertial-Vision: case 2 

The alternative error correction is incremental correction.  
In this case, each correction results in an adjustment of 
the gyro state, consequently, the gyro error accumulation 
(for perfect corrections) is limited to periods between 
corrections. The reduced period of drift integration often 
results in lower accumulated error and better registration 
as illustrated in figure 4. A drawback of this approach is 
the possibility that a spurious correction error produces a 
lingering bias in the result. 

 

(a) Campus scene 
 

 

 

(b) Office scene 
 

 

 

(c) Pepperdine University scene 
 
Fig. 3 – Virtual labels annotated over landmarks for 
three video sequences showing vision-corrected  (red 
labels), and inertial only (yellow labels) tracking results. 
Note: (a) and (b) are based on InterSense’s IS-300 
inertial tracker, while (c) uses HRL’s hybrid tracker. 



5. Conclusions  

We presented a hybrid approach for AR registration with 
integrated inertial and vision tracking technologies. 
Inertial tracking has advantages of robustness, range, and 
a system that is passive and self-contained. Its major 
disadvantage is its lack of accuracy and drift over time. 
Vision tracking is accurate over long periods, but it 
suffers from occlusion and computation expense. We 
exploit the complementary nature of these two tracking 
technologies to compensate for the weakness in each 
separate component. 

We quantitatively analyzed the sensitivities of orientation 
tracking error. To integrate the inertial and vision 
subsystems, accurate calibration of the two coordinate 
systems is critical, and we presented a motion based 
registration method that automatically computes the 
orientation transformation. 

We applied vision corrections to both the accumulated 
and the incremental gyro error, and we presented our test 
results for two image sequences. 
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