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Abstract 
 A number of ion channels and transporters are expressed in both, the inner ear and the 
kidney. In the inner ear, K+ cycling and endolymphatic K+, Na+, Ca2+ and pH homeostasis are 
critical for normal organ function. Ion channels and transporters involved in K+ cycling include 
K+ channels, Na+,2Cl-,K+ cotransporter, the Na+/K+ ATPase, Cl- channels, connexins and KCl 
cotransporters. Further, endolymphatic Na+ and Ca2+ homeostasis depends on the Ca2+ ATPase, 
Ca2+ channels, Na+ channels and a purinergic receptor channel. Endolymphatic pH homeostasis 
involves H+ ATPase and Cl-/HCO3

- exchangers including pendrin. Defective connexins (GJA1, 
GJB6), pendrin (SLC26A4), K+ channels (KCNJ10, KCNQ1, KCNE1, KCNMA1), Na+,2Cl-

,K+ cotransporter (SLC12A2), KCl cotransporters (KCC3, KCC4), Cl- channels (BSND, 
CLCNKA+CLCNKB) and H+ ATPase (ATP6V1B1, ATPV0A4) cause hearing loss. All these 
channels and transporters are also expressed in the kidney and support renal tubular transport or 
signaling. The hearing loss may thus be paralleled by various renal phenotypes including subtle 
decrease of proximal Na+ coupled transport (KCNE1/KCNQ1), impaired K+-secretion 
(KCNMA1), limited HCO3

- elimination (SLC26A4), NaCl wasting (BSND, CLCNKB), renal 
tubular acidosis (ATP6V1B1, ATPV0A4, KCC4) or impaired urinary concentration 
(CLCNKA). Thus, defects of channels and transporters expressed in the kidney and the inner 
ear result in simultaneous dysfunctions of these seemingly unrelated organs. 
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Introduction 
The inner ear is the sensory system for sound, motion and gravity. It is housed within 

the temporal bone and consists of cochlea, vestibular labyrinth and the endolymphatic sac (Fig. 
1). The inner ear comprises an array of interconnected fluid compartments that are enclosed by 
a multitude of highly specialized epithelial cells. The luminal fluid, endolymph, differs in 
composition between different parts of the inner ear (Table 1).  The epithelial cells enclosing 
the endolymph are highly diverse as shown in more detail for the cochlea in Fig. 2.  Among 
them are the sensory inner and outer hair cells (Fig. 2B,C)  and stria vascularis (Fig. 2D).  The 
sensory hair cells transduce mechanical stimuli into electrical signals and release 
neurotransmitter to activate sensory neurons. Stria vascularis is a multilayered epithelium in the 
cochlea (Fig. 2A,D), which secretes K+ into endolymph and generates the endocochlear 
potential that contributes significantly to the driving force of sensory transduction.  In addition, 
the inner ear contains and depends on a multitude of highly specialized epithelial cells that 
control the ionic composition of endolymph and the magnitude of the transepithelial potential. 

Different compartments of the inner ear serve the transduction of specific stimuli. The 
cochlea transduces mechanical stimuli associated with sound and provides the basis for 
hearing.  The utricle, saccule and ampullae of the semicircular canals belong to the vestibular 
labyrinth (Fig. 1), which transduces mechanical stimuli associated with head position and head 
motion.  Vestibular sensory transduction provides input to the vestibular system that controls 
balance, posture and eye movements. Sensory transduction in the cochlea and the vestibular 
labyrinth has different electrochemical requirements although all depend on the cycling of K+

between endolymph and perilymph. In addition to the fluid compartments that house sensory 
hair cells, the vestibular labyrinth contains another fluid compartment, the endolymphatic sac 
(Fig. 2), which is devoid of sensory hair cells. The function of the endolymphatic sac is poorly 
understood although evidence suggests that it controls endolymph fluid volume (219). 

Several epithelia in the cochlea appear to have functional equivalents in the vestibular 
labyrinth. Among such homology pairs are cochlear (Fig. 2A) and vestibular hair cells, strial 
marginal cells (Fig. 2D) and vestibular dark cells, outer sulcus cells (Fig. 2A, OS), vestibular 
transitional cells, Reissner’s membrane (Fig. 2A) and semicircular canal epithelial cells (163; 
303). Several recent reviews have focused on ion transport in different inner ear epithelia (163; 
304), hereditary hearing loss (197), cochlear fluid volume regulation (219) and ototoxicity 
(217). 

Similarity between epithelial transport in inner ear and kidney was first suggested by 
the observation more than 30 years ago that treatment with high doses of the loop diuretic 
furosemide causes reversible hearing loss (81; 248). Obviously, the inner ear and kidney have 
very different functions. Nevertheless, most of the genes encoding the epithelial transporters or 
channels in the inner ear are similarly expressed and/or similarly sensitive to pharmacological 
intervention in renal tubular epithelia. More importantly, defects of those genes can lead 
simultaneously to hearing loss and deranged renal tubular transport. Thus, even though several 
of the channels and transporters expressed in inner ear epithelia are similarly found in other 
epithelia or even in excitable tissues such as the heart, the pathophysiologically significant 
overlap is particularly striking between inner ear and kidney. In several channelopathies, the 
renal defect is subtle and clinically overlooked in face of striking hearing loss or life 
threatening cardiac arrhythmia. Closer functional analysis reveals, however, the respective 
defect in renal function. Thus, much can be learned from a comparison of the transport 
organization in these two organs. The comparison could further serve as a paradigm that 
channels and transporters could serve different functions in different organs and that genetic 
defects or pharmacological inhibition of those channels and transporters could lead to 
seemingly unrelated functional consequences. 

The present review first describes the channels and transporters required for inner ear 
function. The second part of the review is dedicated to the function of those transporters in 
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renal epithelia. The function and pathophysiological significance of the channels and 
transporters expressed in both, inner ear and kidney is compiled in Table 2. 
 
K+ cycling in the inner ear 
 Sensory transduction in the cochlea and the vestibular labyrinth depends on the cycling 
of K+ between endolymph and perilymph (Fig. 2A). K+ cycling in the cochlea consists of K+

flux from endolymph through sensory hair cells into perilymph, uptake of K+ from perilymph 
into fibrocytes of the spiral ligament, funneling of K+ via gap junctions into basal and 
intermediate cells of stria vascularis, efflux of K+ from intermediate cells into the intrastrial 
fluid, and secretion of K+ by marginal cells of stria vascularis into endolymph (163; 304) (Fig. 
2A). Similarly, K+ cycling in the vestibular labyrinth consists of K+ flux from endolymph 
through hair cells into perilymph and uptake of K+ from perilymph and secretion into 
endolymph by vestibular dark cells (163; 304). K+ cycling in the cochlea and vestibular 
labyrinth, however, is not limited to K+ efflux through hair cells and K+ secretion by stria 
vascularis and vestibular dark cells. Additional pathways accomplish K+ and Na+ reabsorption 
from endolymph. In the cochlea, these additional pathways are provided by Reissner’s 
membrane and by outer sulcus epithelial cells (Fig. 2A), and in the vestibular system, by 
semicircular canal and by transitional epithelial cells (163; 304). 
 
K+ flux through hair cells 

Sensory transduction in the cochlea and the vestibular labyrinth depends on 
mechanically-gated ion channels of hitherto elusive molecular identity that are located in the 
hair bundles of the hair cells (32). Potential candidates include the acid sensing ASIC ion 
channels (194), members of the epithelial Na+ channel/degenerin (ENaC/DEG) superfamily, 
which are widely distributed in the central and peripheral nervous system and are also found in 
the cochlea (34; 70; 174; 335) and vestibular labyrinth (138; 202; 334). The current view, 
however, appears to favour the involvement of transient receptor potential (TRP) channels 
TRPN1, TRPV4, TRPML3 and TRPA1 for mechanotransduction (32). Opening of the 
transduction channels supports influx of K+ from endolymph into the hair cells, which 
depolarizes the basolateral membrane of the hair cell (Fig. 2B,C). Influx of K+ from endolymph 
into the hair cells is balanced by efflux of K+ from the hair cells via K+ channels into interstitial 
spaces that are continuous with perilymph. The molecular entities of K+ efflux channels depend 
on the type of hair cell. 

K+ efflux from cochlear inner hair cells involves the voltage-gated K+ channel KCNQ4 
and the large conductance Ca2+-activated K+ channel KCNMA1 (BK channel) (48; 121; 122; 
240; 278) (Fig. 2B). In addition, KCNQ4 contributes to the resting membrane potential of inner 
hair cells and thereby ensures the maintenance of the resting cytosolic Ca2+ concentration (156; 
157; 189). Several splice variants of KCNQ4 are expressed in the inner ear of which one 
variant, KCNQ4v3, is preferentially expressed in the high frequency region base of the cochlea 
(12; 142; 143). Mice lacking KCNQ4 or expressing dominant negative mutations develop 
normal hearing but later in life suffer progressive hearing loss, which indicates that KCNQ4 is 
non-essential for basic inner hair cell function but required for maintenance of hearing (107). 
Consistently, mutations of KCNQ4 cause progressive high frequency hearing loss in people 
(33; 123; 269). Similarly, mice lacking KCNMA1 develop normal hearing but then suffer 
progressive hearing loss, indicating that also KCNMA1 is non-essential for basic inner hair cell 
function (190; 216). Loss of the β-subunit KCNMB1, which associates with the α-subunit 
KCNMA1, appears to have no effect on hearing (216). 

The K+ channels KCNQ4 and KCNMA1 also mediate K+ efflux from outer hair cells 
(Fig. 2C). In contrast to inner hair cells, both channels play a critical role for basic cell function 
in outer hair cells (24; 87; 155; 158). Mice lacking KCNMA1 or KCNQ4 loose outer hair cells, 
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but not inner hair cells, during the progressive loss of hearing (52; 107; 216). The K+ channels 
KCNMA1 and KCNQ4 are apparently essential for the survival of outer hair cells. 

KCNQ4 associates with the β-subunit KCNE1 and possibly with other KCNE subunits 
that are expressed in hair cells (255). This interaction may be critical for KCNQ4 function 
given that the KCNE1 mutation KCNE1(D76N) impairs KCNQ4 function and causes Jervell 
and Lange-Nielsen syndrome (JLNS), life-threatening cardiac arrhythmias and deafness. Other 
mutations, such as KCNE1(S74L), which does not impair KCNQ4 function, causes Romano-
Ward syndrome, arrhythmias without deafness (255). 
 
K+ buffering near hair cells 

Hair cells and neurons in the cochlea and vestibular labyrinth maintain their resting 
membrane potential via K+ channels in conjunction with high cytosolic and low extracellular 
K+ concentrations. Uncontrolled increases of the K+ concentration in the extracellular fluid are 
expected to affect the membrane potential and responsiveness of the hair cells and neurons. 
Stimulation of cochlear and vestibular hair cells leads to measurable increases in the 
extracellular K+ concentration in the surrounding perilymph (104; 282). It is conceivable that 
K+ buffering mechanisms limit the magnitude of these increases. In general, multiple 
mechanisms have been recognized to limit the amplitude of K+ concentration changes in the 
extracellular environment near neurons. The predominant mechanism is diffusion into 
unobstructed open fluid spaces. Current measurements in scala tympani perilymph support the 
concept that perilymph serves as unobstructed open fluid space in the buffering of K+ (336). 
Further, a strategic localization of K+ channels that differ in their rectification can provide 
buffering of localized K+ increases. Inward-rectifying K+ channels are well suited as uptake 
mechanisms in K+ buffering since they conduct K+ influx more efficiently than K+ efflux. A 
local increase in the extracellular K+ concentration may set the local K+ equilibrium potential 
below the membrane potential, which promotes K+ influx into the buffering cell. The ensuing 
elevation of the cytosolic K+ concentration sets the K+ equilibrium potential above the 
membrane potential and promotes K+ efflux preferentially through less inward-rectifying K+

channels or outward-rectifying K+ channels. Such a mechanism has been described in Müller 
glia of the retina (116; 208). It is conceivable that a similar mechanism is present in the organ 
of Corti. Deiter’s cells have a membrane potential of -76 mV (186), which is near the K+

equilibrium potential. They express the inward-rectifying K+ channel KCNJ10 (Kir4.1), which 
is particularly abundant in the membrane area that faces KCNQ4 expressed in outer hair cells 
(83; 216) (Fig. 2C, DC). K+ exit mechanisms in Deiter’s cells may include outward rectifying 
K+ channels (181) and the K/Cl cotransporters SLC12A6 (KCC3) and SLC12A7 (KCC4) (15; 
16) (Fig 2C). Moreover, Deiter’s cells are connected to neighboring supporting cells via gap 
junctions. K+ could thus be dispersed via gap junctions among epithelial cells that include 
Deiter’s cells (Fig 2A, DC), Claudius’ cells (Fig2A, CC), Hensen’s cells (Fig 2A, HC) and 
outer sulcus cells (Fig 2A, OC). 

SLC12A6 and SLC12A7 may serve as a release mechanism for KCl not only in K+

buffering but also in cell volume regulation (131). The recent claim that SLC12A6 and 
SLC12A7 serve as a K+ uptake mechanism in Deiter’s cells, however, would require an 
unusually low cytosolic Cl-, which has not been shown thus far (15; 16). Consistent with a role 
of SLC12A6 and SLC12A7 in cell volume regulation is the finding that mice lacking either 
transporter hear normal at the onset of hearing but suffer from a more or less early onset of 
hearing loss (15; 16). 
 
K+ uptake from perilymph 

K+ released from the sensory hair cells may travel along multiple pathways toward the 
spiral ligament in the lateral wall (246) (Fig 2A). Pathways that avoid supporting cells or that 
involve buffering by Deiter’s or neighboring cells and lead through the open perilymph space 
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of scala tympani are supported by current measurements (336). An additional pathway may 
involve uptake of K+ into Deiter’s cells, dispersion of K+ among Deiter’s, Hensen’s, outer 
sulcus and root cells (Fig 2A) via gap junctions and release of  K+ from root cells into the 
interstitial space of the spiral ligament that is continuous with perilymph (110). 

Uptake of K+ from interstitial space of the spiral ligament occurs via specialized 
fibrocytes (named I-V within the spiral ligament in Fig 2A). Fibrocytes types II, IV and V 
express Na+/K+ ATPase, the Na+,2Cl-,K+ cotransporter SLC12A2 (NKCC1) and the Cl-

channels CLCNKA and CLCNKB (36; 154; 177; 206; 230) (Fig 2D). Although functional data 
from fibrocytes are lacking, the resemblance of this array of transporters with the basolateral 
membrane of strial marginal cells and vestibular dark cells suggests that fibrocytes take up K+

from perilymph. Gap junctions, in particular GJB2 (CX26) and GJB6 (CX30), connect 
fibrocytes types II, IV and V among each other as well as to fibrocytes type I, basal and 
intermediate cells of stria vascularis. Gap junctions form a network in the lateral wall that is 
thought to provide a pathway for K+ from the sites of uptake into fibrocytes types II, IV and V 
to the sites of release from strial intermediate cells into the intrastrial fluid space. 
 
K+ secretion into endolymph 

Strial marginal cells and vestibular dark cells take up K+ from the intrastrial fluid space 
and secrete it into endolymph (Fig. 2D). K+ secretion by strial marginal cells and vestibular 
dark cells occurs via equivalent mechanisms (311). Both epithelial cells take up K+ across the 
basolateral cell membrane via the Na+,2Cl-,K+ cotransporter SLC12A2 (NKCC1) and the 
Na+/K+ ATPase and secrete K+ across the apical membrane via the K+ channel 
KCNQ1/KCNE1 (Fig. 2D). Na+ and Cl- taken up via the Na+,2Cl-,K+ cotransporter is recycled 
in the basolateral membrane via the Na+/K+ ATPase and the Cl- channels CLCNKA/BSND 
(ClC-Ka/barttin) and CLCNKB/BSND (ClC-Kb/barttin) (Fig 2D). The following paragraphs 
focus on the Na+,2Cl-,K+ cotransporter, the K+ channel and the Cl- channels that are essential 
for K+ secretion in strial marginal cells and vestibular dark cells. 
 
Na+/K+ ATPase and K+/H+ ATPase 

Strial marginal cells and vestibular dark cells absorb K+ from the intrastrial space and 
from perilymph via the Na+/K+ ATPase and the Na+,2Cl-,K+ cotransporter (170; 306). The 
Na+/K+ ATPase takes up K+ and establishes a Na+ gradient that energizes further uptake of K+

via SLC12A2. The Na+/K+-ATPase in strial marginal cells and vestibular dark cells as well as 
in fibrocytes of the spiral ligament consists of the subunits ATP1A1, ATP1B1 and ATP1B2 
(173; 230) (Fig 2D) 

Inhibition of Na+/K+ ATPase with ouabain inhibits K+ secretion and consequently 
abolishes the endocochlear potential (126; 129). Strial marginal cells appear to express gastric 
K+/H+ ATPase in addition to Na+/K+-ATPase (135; 235). The functional significance of K+/H+

ATPase for the generation of the endocochlear potential is currently unclear since very high 
concentrations of K+/H+ ATPase inhibitors were necessary to affect the endocochlear potential. 
 
Na+,2Cl-,K+ cotransporter 

Strial marginal cells and vestibular dark cells absorb K+ from the intrastrial space and 
from perilymph via the Na+,2Cl-,K+ cotransporter SLC12A2 (NKCC1) (162; 306; 313) (Fig 
2D). SLC12A2 is sensitive to the loop-diuretics furosemide and bumetanide and to their analog 
piretanide (162; 313). SLC12A2 is an essential transporter for K+ secretion and endolymph 
production. Mice that lack SLC12A2 fail to produce endolymph, which leads to the collapse of 
Reissner’s membrane onto stria vascularis and the organ of Corti (41; 43; 57). 
 
K+ channels 
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Strial marginal cells and vestibular dark cells secrete K+ into endolymph via the K+

channel KCNQ1/KCNE1 (165; 306) (Fig 2D). KCNQ1/KCNE1 is a slowly activating delayed 
rectifier that carries the IKs current and requires the assembly of the pore-forming α-subunit 
KCNQ1 with the β-subunit KCNE1 (11; 223). Mice lacking functional KCNE1 or KCNQ1 fail 
to produce endolymph, which leads to a collapse of Reissner's membrane onto stria vascularis 
and the organ of Corti due to loss of K+ secretion in the presence of ongoing reabsorptive 
processes (22; 139; 140; 294). Similar observations have been made in human patients (61). 
Homozygous or heterozygous compounding mutations of KCNE1 or KCNQ1 lead to Jervell 
and Lange-Nielsen syndrome, characterized by deafness, prolonged cardiac action potentials 
and potentially fatal cardiac arrhythmias (103; 182; 231; 233). Consistently, pharmacologic 
inhibition of the KCNQ1/KCNE1 channel leads to hearing loss (79). 

Transepithelial currents and currents through the apical KCNQ1/KCNE1 K+ channel are 
enhanced by lowering the apical or increasing the basolateral K+ concentration or by lowering 
the osmolarity on the basolateral side (161; 306; 308; 317). Further, the rate of K+ secretion is 
increased by β1-adrenergic receptors via cAMP dependent stimulation of the KCNQ1/KCNE1 
K+ channel (258; 259; 309; 310). Conversely, muscarinic and purinergic receptors suppress K+

secretion (307). Purinergic P2Y4 receptors decrease currents through the KCNQ1/KCNE1 K+

channel via protein kinase C (160; 166). Finally, KCNE1/KCNQ1 K+ channel activity is 
stimulated by the serum and glucocorticoid inducible kinase SGK1 (20; 50), which may 
contribute to the stimulation of cochlear ion transport and hearing improvement by 
glucocorticoids and mineralocorticoids (137; 280). KCNE1 is inhibited by estrogens (298), 
which may contribute to the inhibitory effect of those hormones on cochlear transport (136). 

The rate of K+ secretion may further be regulated by trafficking of KCNE1/KCNQ1 K+

channels to the apical membrane of strial marginal cells, which requires the participation of 
LIMPII (115). LIMPII is a transmembrane glycoprotein that is mainly located in lysosomal and 
endosomal membranes (127). Mice lacking LIMPII suffer from progressive hearing loss 
correlated with a loss of surface expression of KCNQ1/KCNE1 in the apical membrane of the 
marginal cells (115). In addition, mice lacking LIMPII suffer from uni- or bilateral 
hydronephrosis due to hypertrophy of the smooth muscle layer at the ureteropelvic junction 
(65). 
 
Cl- channels 

K+ secretion by strial marginal cells and vestibular dark cells require Cl- to recycle in 
the basolateral membrane via a Cl- conductance (306; 314) (Fig. 2D). This Cl- conductance is 
comprised of the Cl- channels CLCNKA/BSND (ClC-Ka/barttin) and CLCNKB/BSND (ClC-
Kb/barttin) (6; 53; 154; 167; 206; 218; 264; 265). The Cl- channels CLCNKA/BSND and 
CLCNKB/BSND consist of the pore-forming α-subunits CLCNKA and CLCNKB and the β-
subunit BSND (53; 228). Mutations of BSND reduce channel conductivity and surface 
expression and thereby cause Bartter’s syndrome type 4, which is characterized by deafness 
and renal salt wasting (14; 53). Similarly, simultaneous mutations of CLCNKA and CLCNKB 
also lead to Bartter’s syndrome type 4, whereas mutations of CLCNKB lead to Bartter’s 
syndrome without deafness (171; 226; 237). This observation is consistent with the finding that 
CLCNKA and CLCNKB are coexpressed in cells of the inner ear but not the kidney and with 
the notion that the two channels can substitute for each other in the inner ear (206) but not in 
the kidney (see below). 
 

K+ and Na+ reabsorption 
 
Homeostasis of the high K+ and low Na+ concentrations in endolymph is maintained by 

K+ secretion and Na+ and K+ reabsorption. Reabsorption of K+ is not limited to the pathways 
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through inner, outer and vestibular hair cells. Indeed, currents generated by the stria vascularis 
in the cochlea flow not only through hair cells but also through the outer sulcus and through 
Reissner’s membrane (222; 336). Consistently, outer sulcus and Reissner’s membrane 
epithelial cells reabsorb Na+ and K+ from the endolymph (138; 159). Outer sulcus cells take up 
Na+ and K+ via apical non-selective cation channels, large conductance (BK) and small 
conductance K+ channels as well as P2X2 receptor-gated non-selective cation channels.  They 
release Na+ and K+ across the basolateral membrane via a Na+/K+ ATPase and K+ channels, 
respectively (25; 26; 136). Subunits of ENaC may contribute to the apical non-selective cation 
channels (Fig 2A), although the channel involved is not the typical Na+ selective and amiloride-
sensitive ENaC channel (25; 70). 

Reissner’s membrane epithelial cells take up Na+ via the amiloride-sensitive Na+

channel ENaC and extrude Na+ across the basolateral membrane via the Na+/K+ ATPase (138) 
(Fig 2A). The endocochlear potential contributes to the driving force of cation reabsorption in 
outer sulcus and Reissner’s membrane epithelial cells much like it contributes to the 
transduction current through inner and outer hair cells. 

Na+ and K+ reabsorption has also been found in the vestibular labyrinth. Cation 
reabsorption in vestibular transitional cells and semicircular canal epithelial cells bear some 
resemblance to cation reabsorption in outer sulcus and Reissner’s membrane epithelial cells, 
respectively. Vestibular transitional cells reabsorb Na+ and K+ via apical P2X2 receptor-gated 
non-selective cation channels and extrude Na+ and K+ across the basolateral membrane via the 
Na+/K+ ATPase and K+ channels, respectively (136; 312; 318). 

Semicircular canal epithelial cells in the vestibular labyrinth reabsorb Na+ via the 
ENaC, release Na+ across the basolateral membrane via the Na+/K+ ATPase and recycle K+ in 
the basolateral membrane via K+ channels (201; 202). Na+ reabsorption in semicircular canal 
epithelial cells is under the control of glucocorticoids but not mineralocorticoids (201; 202). 
ENaC is activated by the transmembrane serine protease TMPRSS3 (72). A defect of 
TMPRSS3 leads to deafness (72), which may, however, involve dysregulation of further 
transporters or channels besides ENaC activity. Loss of function mutations of ENaC do not 
lead to an inner ear phenotype, which is consistent with the presence of alternative Na+

reabsorption pathways in outer sulcus epithelia cells and transitional cells (136; 159). 
 

Generation of the endocochlear potential 
 
Mechanical stimuli associated with sound, head position or gravity are transduced into 

electrical signals by the sensory hair cells in the cochlea and the vestibular labyrinth. 
Mechanically-induced channel openings permit an influx of K+ from endolymph into the hair 
cell. The driving force of this current is roughly the sum of the basolateral membrane potential 
of the hair cell and the transepithelial potential. The transepithelial potential in the cochlea, 
called the endocochlear potential is as high as + 80 mV (Fig 2A). For cochlear inner and outer 
hair cells the driving force for sensory transduction is 145 mV (145 mV = 65 mV + 80 mV), 
respectively (38; 189). Driving forces for sensory transduction in the vestibular labyrinth are 
smaller due to the smaller endovestibular potential of 3-7 mV (130; 185; 220). 

The endocochlear potential is a transepithelial potential that is generated by the stria 
vascularis (275; 295; 316). The stria vascularis is functionally a two layered epithelium 
comprised of a layer of marginal cells and a layer of basal cells that is penetrated by a capillary 
network (99). Marginal cell junctions contain a multitude of different claudins, whereas tight 
junctions between basal cells contain only CLDN11 (claudin 11) (58; 114). Tight junctions 
among basal cells define an inner membrane facing the intrastrial space and an outer membrane 
facing the spiral ligament (Fig. 2). The inner membrane is connected via gap junctions to strial 
intermediate cells and strial intermediate cells are connected via gap junctions to strial 
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pericytes and endothelial cells (108; 262). Gap junctions ensure that intermediate cells are 
electrically a part of the basal cell barrier. The outer membrane of basal cells is connected by 
gap junctions to type I fibrocytes of the spiral ligament. 

The endocochlear potential is essentially a K+ equilibrium potential that is generated by 
the K+ channel KCNJ10 (Kir4.1) in intermediate cells of stria vascularis (Fig 2D) in 
conjunction with a very low K+ concentration of intrastrial fluid and a high cytosolic K+

concentration in intermediate cells (169; 263). A number of key findings provide support for 
this model. First, the endocochlear potential and the KCNJ10 K+ channel in intermediate cells 
share the same sensitivities to a panel of K+ channel blockers (164; 262; 266). Second, the 
endocochlear potential can be measured across the basal cell barrier (221). Third, expression of 
KCNJ10 correlates with the presence of the endocochlear potential in KCNJ10 knockout and 
pendrin knockout mouse models and in normal development (82; 169; 215; 305; 315). Fourth, 
loss of CLDN11 (claudin 11), which is the only known claudin in the basal cell tight junctions, 
renders the basal cell barrier leaky and leads to a loss of the endocochlear potential (67; 114). 
Fifth, increases of the K+ concentration in the intrastrial fluid space suppress the endocochlear 
potential. Such increases can be achieved by vascular perfusion of solutions containing 
elevated K+ concentrations, inhibitors of the Na+/K+ ATPase (ouabain) or inhibitors of the 
Na+,2Cl-,K+ cotransporter (furosemide or bumetanide) (118; 126; 128; 129; 164). Sixth, loss of 
GJB6 (CX30), which renders the capillaries in stria vascularis leaky to the intrastrial space, 
leads to a loss of the endocochlear potential (31). Collectively, these findings support the model 
that the endocochlear potential is a K+ equilibrium potential that is generated by the K+ channel 
KCNJ10. 

Marginal cells of stria vascularis and fibrocytes of the spiral ligament play important 
supporting roles in the generation of the endocochlear potential. Fibrocytes of the spiral 
ligament, which are connected via basal cells to intermediate cells, ensure a high cytosolic K+

concentration in strial intermediate cells. Strial marginal cells reabsorb K+ from the intrastrial 
fluid spaces and keep the K+ concentration in the intrastrial fluid spaces as low as 2 mM (164; 
263; 306). 
 

Gap-junctional networks 
 

Several major networks of cells that are connected by gap junctions have been 
recognized in the cochlea (109). Notably excluded from these networks are marginal cells of 
stria vascularis, inner hair cells and outer hair cells that are neither connected among each other 
nor to any of their neighbors. The importance of gap junctions for cochlear function is 
underscored by the fact that mutations of GJB2 (CX26) and GJB6 (CX30) are the most 
prevalent causes of hereditary childhood deafness consistent with the contribution of GJB2 and 
GJB6 to all major gap junctional networks in the cochlea (39; 42; 68; 73; 191; 193; 331). 

One major network of gap junction interconnected cells links different types of 
fibrocytes in the spiral ligament as well as basal and intermediate cells, pericytes and 
endothelial cells of stria vascularis (Fig 2A, spiral ligament). A major purpose of this network 
is to connect sites of K+ uptake in fibrocytes types II, IV and V to the site of K+ release in 
intermediate cells of stria vascularis. Most gap junctions in this network are formed by 
heteromeric complexes of GJB2 and GJB6 (2; 59; 109; 134; 325). In addition, endothelial cells 
of stria vascularis express GJA1 (CX43) and GJA7 (Cx45) (29; 134; 260) and fibrocytes of 
spiral ligament express GJB3 (CX31) and GJB1 (CX32) (150; 326). Mutations of GJA1, GJB1 
and GJB3 are also associated with deafness (147; 148; 251; 326). 

Mice that lack GJB6 are profoundly deaf despite the continued presence of GJB2 (277). 
The assumed limited gap junction coupling mediated by the remaining GJB2 and other 
connexins appears to be sufficient for the cycling of K+ but insufficient to prevent leakiness of 
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strial capillaries and breakdown of the endocochlear potential (31). Consequently, mice lacking 
GJB6 failed to develop an endocochlear potential but had normal endolymphatic K+

concentrations at least at young age (277). Interestingly, the insufficiency of gap junction 
coupling, which is associated with leaky capillaries in mice lacking GJB6 can be restored by 
overexpression of GJB2. Mice lacking GJB6 and overexpressing GJB2 develop a normal 
endocochlear potential and have normal hearing (3). 

Two further networks are formed by the epithelial cells in and adjacent to the organ of 
Corti, the medial and the lateral network (98; 109; 247). Most gap junctions in these networks 
are formed by GJB2 and GJB6 (2; 59; 109; 134; 325). In addition, some cells express GJA1 
(147; 260). The lateral network of gap junction interconnected cells in the organ of Corti 
includes outer pillar cells, Deiter’s, Hensen’s, Claudius’, outer sulcus and root cells (98; 109) 
(Fig 2A). The major purpose of this network may be metabolic coupling in addition to 
buffering of K+ that is released from outer hair cells in response to sound stimulation (104). 

The medial network includes inner pillar cells, supporting cells of the inner hair cells 
and interdental cells (Fig 2A,B). A major purpose of this network is to buffer glutamate, which 
is the neurotransmitter released from the inner hair cell. Expression of the glutamate uptake 
transporter SLC1A3 (GLAST) is limited to the immediate neighbor of the inner hair cell, 
whereas glutamine synthase, a key enzyme in the detoxification of glutamate, is mainly 
expressed in adjacent cells but not in SLC1A3-expressing cells (55). Gap junctions between 
SLC1A3-expressing cells and their glutamine synthase expressing neighbors may be required 
for transcellular metabolism of glutamate. Support for the concept of transcellular glutamate 
buffering comes from the finding that mice lacking SLC1A3 fail to buffer glutamate, which 
leads to an accumulation of glutamate in scala tympani perilymph during sound stimulation 
(76). SLC1A3-expressing supporting cells are also the first cells in the organ of Corti to 
undergo apoptosis in mice that lack GJB2 in this region of the cochlea (30). Further, several 
deafness-causing mutations of GJB2 and GJB6 impair the transfer of organic molecules but do 
not impede ionic coupling, which implies that these mutations do not affect K+ cycling but 
could impair metabolic coupling and glutamate buffering (31; 332). It is not clear, why 
glutamate is not metabolized in the cells immediately adjacent to the hair cells. One could 
speculate that the accumulation of glutamate with accompanying cations would impose a 
considerable osmotic burden, eliciting untoward cell swelling.  

Several reasons may account for the intriguing observation that the loss of function of 
either GJB2 or GJB6 leads to deafness rather than simply being compensated by the remaining 
connexin forming homomeric gap junctions (30; 124; 277). First, loss of GJB6 has been shown 
to suppress protein expression of GJB2, which reduces intercellular coupling more than 
predicted by the simple omission of GJB6 (3). Mutations may also exert dominant negative 
effects on the function of wildtype isoforms (68; 210). Second, heteromeric gap junctions 
formed from GJB2 and GJB6 have slightly different biophysical properties than homomeric 
gap junctions (257). The finding that overexpression of GJB2 can rescue hearing of mice 
lacking GJB6 suggests that the biophysical differences between hetero- and homomeric GJB2 
gap junctions are less important than the fact that loss of GJB6 leads to a loss of GJB2 
expression and a reduction in intercellular coupling (3).  
 

Ca2+ homeostasis 
 

The transduction channel in hair cells is a Ca2+-permeable non-selective cation channel. 
Although K+ is the major charge carrier, the transduction current is in part carried by Ca2+ and 
the reliability of the transduction process itself depends on the constancy of Ca2+ concentrations 
in endolymph (Table 1). Both, elevated and reduced concentrations of Ca2+ have been shown to 
suppress transduction currents and microphonic potentials (187; 271). Further, Ca2+ 
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homeostasis of vestibular endolymph during development affects the formation of otoconia, 
that are necessary for the detection of gravity and linear acceleration (106; 152). Consistent 
with the importance of Ca2+ homeostasis in endolymph are the observations that mice and 
guinea pigs with reduced or elevated endolymphatic Ca2+ concentrations are deaf and have 
vestibular deficits (120; 185; 315; 324). 

The endolymphatic Ca2+ concentration appears to be controlled by secretory and 
reabsorptive mechanisms. Ca2+ reabsorption may occur through paracellular and transcellular 
pathways and may at least in part be driven by the endocochlear potential (91). In general, 
transepithelial Ca2+ transport may employ Ca2+ permeable channels as Ca2+ uptake 
mechanisms, Ca2+ binding proteins as Ca2+ buffers in the cytosol, and Ca2+ ATPases or 
Na+/Ca2+ exchangers as Ca2+ extrusion mechanisms. Ca2+ ATPases appear to be most suitable 
for Ca2+ extrusion into endolymph due to the low Na+ concentration in endolymph (Table 1), 
which does not provide a driving force for Ca2+ extrusion via Na+/Ca2+ exchangers. 
Consistently, Ca2+ secretion into endolymph has been shown to depend on Ca2+ ATPases rather 
than on Na+/Ca2+ exchangers (92; 324) and loss of function of the Ca2+ ATPase ATP2B2 
(PMCA2) leads to deafness and to a reduction in the endolymphatic Ca2+ concentration (253; 
324). 

Among the many different epithelial cells lining cochlear and vestibular endolymph, 
cells best understood to be involved in the homeostasis of endolymph Ca2+ include the outer 
hair cells in the cochlea and the semicircular canal duct epithelial cells in the vestibular 
labyrinth, although it is currently unclear whether outer hair cells contribute to the homeostasis 
of bulk endolymph or only to the homeostasis of endolymph in the nearest vicinity of the hair 
bundle. Nevertheless, outer hair cells have been shown to secrete Ca2+ into endolymph (328). 
This Ca2+ secretion is required to remove Ca2+ from the cytosol of the hair bundle and to 
maintain an appropriate Ca2+ concentration in endolymph surrounding the bundle (7; 84). Outer 
hair cells express the Ca2+ ATPase ATP2B2 in the stereocilia (49; 64) (Fig 2C), a high 
concentration of Ca2+ binding proteins in the cytosol (74), and Ca2+ permeable channels in the 
basolateral membrane including TRPC, TRPV1, TRPV4, L-type and non-L-type Ca2+ channels 
(45; 144; 157; 207; 234; 333). Mice lacking TRPV4 develop normal hearing consistent with a 
redundancy of Ca2+ permeable channels. However, they suffer from a delayed-onset hearing 
loss and vulnerability to acoustic injury (261). It is currently unclear whether the delayed-onset 
hearing loss and vulnerability to acoustic injury is due to the loss of TRPV4 in outer hair cells 
or due to the loss of the channel from other cells including inner hair cells, and spiral ganglion 
neurons (234). 

Semicircular canal duct epithelial cells in vestibular labyrinth have been shown to 
reabsorb Ca2+ from endolymph (180). Ductal epithelial cells express Ca2+ permeable TRPV5 
and TRPV6 channels, Ca2+ binding proteins, Na+/Ca2+ exchangers and Ca2+ ATPases (327). 
Consistent with an apical membrane expression of the pH-sensitive TRPV5 and TRPV6 Ca2+ 
channels is the finding that the transepithelial Ca2+ flux was pH-sensitive and that the 
endolymph Ca2+ concentrations were elevated in mice that have acidic endolymph due to loss 
of pendrin (180). 

Other epithelial cells in the cochlea and vestibular labyrinth may be involved in 
endolymph Ca2+ homeostasis since they express Ca2+ ATPases and Ca2+ permeable channels. 
Whether these cells secrete or reabsorb Ca2+ is currently not clear. Inner hair cells, in contrast 
to outer hair cells, may be involved in Ca2+ reabsorption (84). The transduction channel may 
serve as an uptake channel and the Ca2+ ATPase ATP2B1 (PMCA1) in the basolateral 
membrane may serve as a release mechanism (49). Similarly, vestibular hair cells express in 
their basolateral membrane ATP2B1 and ATP2B3 (PMCA3). However, inner and vestibular 
hair cells express also ATP2B2 in hair bundles (49) (Fig 2B). It is thus unclear whether inner 
and vestibular hair cells support a transcellular Ca2+ flux. The stria vascularis expresses 
ATP2B1 and Ca2+ permeable TRPV4, TRPV5 and TRPV6 channels (1; 37; 144; 268; 315; 
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324). Reissner’s membrane and interdental cells express Ca2+ ATPases (37; 64; 324). Outer 
sulcus cells express ATP2B2 (64) and inner and outer sulcus epithelial cells as well as ductal 
epithelial cells of the semicircular canals express TRPV5 and TRPV6 Ca2+ channels (180; 
315). The TRPV5 and TRPV6 Ca2+ channels may be located in the apical membrane of at least 
some cochlear epithelial cells (315). 
 

pH homeostasis 
 

The pH of endolymph varies greatly between different regions in the inner ear. In the 
cochlea and utricle the endolymphatic pH is slightly alkaline [pH 7.5] (93; 180; 315). In the 
endolymphatic sac, on the other hand, the pH is more acidic [pH 6.6 -7.1] (35; 281). The 
functional significance of these differences is largely elusive. The presence of these 
differences, however, underscores that fluid homeostasis in different compartments of the inner 
ear is controlled by local ion transport in the adjacent epithelia rather than via a fluid flow 
between different compartments of the inner ear (219). 

Homeostasis of the endolymphatic pH depends on the secretion of H+ and HCO3
-.

Epithelial cells that express H+ ATPase in their apical membrane include interdental cells of the 
spiral limbus (Fig. 2A), strial marginal cells (Fig. 2D) and endolymphatic duct and sac 
epithelial cells (46; 105; 250). Further, epithelial cells that express in their apical membrane the 
HCO3

- permeable anion exchanger SLC26A4 (pendrin) include spiral prominence and outer 
sulcus epithelial cells, spindle cells of stria vascularis and endolymphatic duct and sac 
epithelial cells (46; 54; 305; 330). 

The main buffer, at least in cochlear endolymph, appears to be CO2 and HCO3
-.

Glycosaminglycans, which are found in high concentrations in endolymph of the 
endolymphatic sac, may contribute to pH buffering (89; 203). Proteins, however, which 
contribute to the buffering capacity of blood plasma, appear to play a lesser role in the 
buffering of cochlear endolymph due to their low concentration (Table 1). Marginal cells of the 
stria vascularis are a significant local source of CO2 due to their high metabolic rate and their 
use of the hexose monophosphate pathway (168). Carbonic anhydrases in stria vascularis, 
spiral ligament and spiral limbus capture metabolically-derived CO2 and convert it to HCO3

-

(146; 188; 245). HCO3
- generated within the fibrocyte gap junction network may be secreted 

into endolymph via the HCO3
- permeable anion exchanger pendrin (SLC26A4). Consistent 

with HCO3
- secretion into endolymph is the observation that mice lacking pendrin have an 

acidic endolymphatic pH consistent with a lack of HCO3
- secretion (180; 315). Further, 

increased metabolic rates during acoustic stimulation cause an alkalization of endolymph, 
which is consistent with an increased rate of HCO3

- secretion (92). 
Endolymphatic pH homeostasis is necessary for hearing and the prevention of hearing 

loss, although effects of pH may be indirect. For example, acidification of endolymph inhibits 
Ca2+ reabsorption via pH-sensitive TRPV5 and TRPV6 Ca2+ channels and elevates the 
endolymphatic Ca2+ concentration, which impairs cochlear function (180; 315). Further, 
acidification enhances free radical stress and promotes hearing loss (270). 

Whether mutations of the B1 subunit (ATP6V1B1) or the A4 subunit (ATPV0A4) of 
H+-ATPase cause an alkalinization of endolymph pH is currently unknown. Nevertheless, 
mutations of either subunit may cause in humans a progressive sensorineural hearing loss in 
addition to renal tubular acidosis (105; 252; 288). The etiologies of these hearing losses, 
however, are unclear, in particular, since mice lacking the B1 subunit (ATP6V1B1) develop 
normal hearing and show no overt morphological abnormalities in the inner ear (44). 
 
Water transport 
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Water transport follows osmotic gradients that are established by the transport, 
metabolism or catabolism of solutes (131). Water can permeate most membranes freely with 
the notable exception of the apical membrane of thick ascending limb and of the cortical 
collecting duct of the kidney in the absence of the antidiuretic hormone, vasopressin. The water 
permeability of cell membranes depends to a significant extent on the presence of aquaporins, 
which are water-permeable channels. According to a recent review, thirteen different 
aquaporins (AQP0-12) have so far been identified (184). 

A multitude of aquaporins is expressed in the inner ear including AQP1, AQP2, AQP3, 
AQP4, AQP5, AQP7 and AQP9 (88; 149; 175; 176; 224; 249; 267; 334). The functional 
significance of inner ear water channels is largely unclear. Loss of function of AQP1 associated 
with the Colton blood group does not cause an overt clinical phenotype although it is 
associated with a reduction of the urinary concentration capacity (113; 205). Hearing loss or 
balance difficulties have not been reported in association with the Colton blood group. Neither 
have hearing loss or balance disorders been reported to be associated with diabetes insipidus 
due to loss of AQP2. Mice lacking AQP1, AQP3 or AQP5 have normal hearing, however, mice 
lacking AQP4 have a minor hearing loss of 10 dB at 4-5 weeks of age (141)  (Fig. 2A). 
Whether hearing was impaired at the onset of hearing, is currently unknown. 
 

Function of inner ear channels and transporters in renal epithelia  
 

Many of the channels, carriers, and pumps accomplishing tranport in the inner ear are 
similarly expressed in the kidney and participate in renal tubular transport. Accordingly, the 
hearing loss in patients carrying genetic defects of defined transport molecules may be 
paralleled by deranged renal acid or electrolyte excretion that affects acid-base or electrolyte 
homeostasis of the body. Moreover and possibly related to the different organization and 
function of the two organs, some of the transport proteins are used for quite different cellular 
functions in the inner ear and the kidney as discussed below.  
 The proximal tubule of the kidney (Fig. 3A) reabsorbs about 60% of the filtered NaCl 
and fluid and most of the filtered amino acids and glucose. K+ channels in the apical cell 
membrane of proximal tubules (Fig. 3A) contribute to the maintenance of the cell membrane 
potential during depolarizing Na+-coupled transport (e.g. cotransport of Na+ with amino acids 
or glucose), thereby stabilizing the electrical driving force for electrogenic Na+ reabsorption. 

The Henle´s Loop contributes to the generation of a hypertonic kidney medulla, a 
prerequisite for urinary concentration. Most importantly, the thick ascending limb of Henle´s 
Loop reabsorbs about 25% of the NaCl filtered by the glomeruli without accompanying water 
reabsorption, thus enhancing interstitial osmolarity (Fig. 3B). The medullary collecting ducts 
(Fig. 3D) pass the hypertonic kidney medulla. During water retention water channels allow 
water to leave the lumen of the collecting ducts thus leading to urinary concentration. 
 The distal convoluted tubule (Fig 3C), the connecting tubule (not explicitly shown) and 
the collecting duct (Fig 3D,E) allow the fine tuning of renal acid, fluid, and electrolyte 
excretion. In all nephron segments, proximal tubule, Henle´s Loop, distal tubule and collecting 
duct K+ channels maintain the cell membrane potential and thus the driving force for 
electrogenic transport. 
 
K+ channels 

K+ channels expressed in both inner ear and kidney include KCNE1/KCNQ1, KCNJ10 
and BK channels (KCNMA1/KCNMB1) (Table 2) 

KCNE1 and KCNQ1 have been localized to the brush border of the mid to late 
proximal tubule (256; 283) (Fig. 3A). Besides their potential role in net K+ secretion into the 
early proximal tubule (284), they may polarize the brush border membrane and thus maintain 
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the electrical driving force for Na+ coupled transport (132; 133). Studies in knockout mice 
indeed revealed that lack of functional KCNE1/KCNQ1 K+ channels leads to moderate 
impairment of electrogenic Na+,glucose cotransport in proximal tubules (283; 284) (see Fig. 
3A). KCNE1 may interact with additional K+ channels especially in the early proximal tubule 
where most of the glucose, amino acids and phosphate is reabsorbed by electrogenic 
cotransport with Na+ and where KCNE1 but not KCNQ1 was detected. In the early proximal 
tubule KCNE1 is likely to coassemble with another KCNQ isoform (Fig 3A) similar to what 
was recently shown for the outer hair cells (255). KCNQ1-independent function of KCNE1 
may explain the more severe phenotype (e.g. renal Na+ and glucose loss) in mice lacking 
KCNE1 compared with KCNQ1 (283; 284). Thus, whereas KCNQ1/KCNE1 K+ channels serve 
to establish high K+ concentrations in the endolymph of the inner ear, they serve the very 
different function of stabilizing the membrane potential and thus electrogenic reabsorption of 
Na+ in the proximal tubule of the kidney, with the secreted K+ being subsequently reabsorbed 
by paracellular routes. 

KCNJ10 is expressed in the basolateral cell membrane of renal distal tubules including 
the thick ascending limb (97; 151; 272; 273) (see Fig. 3B). The channels are highly sensitive to 
cytosolic pH and are thus thought to link K+ metabolism with acid-base balance (21). To our 
knowledge, however, no data are available on K+ or acid-base balance in mice lacking 
KCNJ10. Whereas KCNJ10 is considered to be of primary importance for the endocochlear 
potential of the inner ear, its precise role in the kidney remains to be defined. 

BK channels (KCNMA1) are expressed in the renal vasculature and the tubular system 
(71; 198) (Fig 3D). In the latter, they contribute to K+ secretion into the luminal fluid. BK 
channels in the luminal membrane of the distal nephron (Fig. 3D) are involved in K+

homeostasis in response to a high K+ diet (9; 179; 212) and mediate renal K+ excretion in 
response to enhanced tubular flow rates (71; 198-200; 212; 274; 323). In the mouse, the β1-
sbunit KCNMB1 was found exclusively in the connecting tubule (200). Notably, this β1-
subunit confers protein kinase G activation of BK channels, dramatically increases the Ca2+ 
sensitivity of the channel, and leads to activation of the channel at more negative potentials, 
thereby presumably enhancing the ability of the pore-forming α-subunit to induce significant 
K+ excretion in the distal nephron under physiological conditions (for review see (198)). 
Moreover, mice lacking the α-subunit  (KCNMA1) (212) but also mice deficient in the β1-
subunit (KCNMB1) (199) exhibited blunted flow-induced renal K+ excretion. These studies 
implied a role for BK channels (KCNMA1/KCNMB1) in flow-induced renal K+ excretion and 
K+ homeostasis. BK channels are also expressed in other tubular segments where their function 
is less clear. Whether circulation or flow of endolymph similarly affects BK channel activity in 
the inner ear remains to be determined. 
 
Na+,2Cl-,K+ cotransporter 

The Na+,2Cl-,K+ cotransporter NKCC1 (SLC12A2) is highly expressed in glomeruli of 
more mature nephrons (286) and may participate in the macula densa-dependent regulation of 
renin release (23; 66; 302). A closer look at SLC12A2 knockout mice more recently revealed 
that they suffer from hypotension, which was proposed to relate in part to an impaired 
responsiveness of the kidney to aldosterone and vasopressin (302). 

The Na+,2Cl-,K+ cotransporter NKCC2 (SLC12A1), which is strongly expressed in the 
luminal membrane of the thick ascending limb (40)(Fig. 3B), is responsible for most of the 
NaCl reabsorption in that segment and is a prerequisite for the ability of the kidney to dilute 
and concentrate the urine. Accordingly, genetic defects of SLC12A1 lead to isosthenuria and 
severe renal salt loss (80; 204; 238; 287). SLC12A1 is not expressed in the inner ear and lack 
of functional SLC12A1 does not lead to hearing loss. Conversely, SLC12A2 deficiency, as 
discussed above, leads to deafness without leading to overt renal salt wasting (43; 57). 
Importantly, both SLC12A1 and SLC12A2 are inhibited by loop diuretics such as furosemide 
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and thus inhibition of the Na+,2Cl-,K+ cotransport in the inner ear during excessive doses of 
loop diuretics leads to an accumulation of K+ in the intrastrial space, which abolishes the 
endocochlear potential (129) and leads to hearing loss (81; 96; 322). Much lower doses are 
sufficient to inhibit the luminal SLC12A1 in the thick ascending limb, since the drug 
accumulates in the tubular fluid as a consequence of efficient secretion into proximal tubular 
fluid and fluid reabsorption along the tubule. Thus, natriuretic and diuretic actions can be 
achieved without hearing loss. 
 
Cl- channels 

The Cl- channel CLCNKA/BSND (ClC-Ka/barttin) is expressed in the basolateral 
membrane of thin ascending limbs (not shown) whereas the Cl- channel CLCNKB/BSND 
(ClC-Kb/barttin) is expressed in the basolateral membrane of thick ascending limbs of Henle´s 
Loop (53; 297) (see Fig. 3B). In the mouse, ClC-K1 (the rodent orthologue of CLCNKA) is 
also expressed in the thin ascending limb. Knockout of ClC-K1 in mice results in nephrogenic 
diabetes insipidus establishing that ClC-K1 has a role in urine concentration, and that the 
countercurrent system in the inner medulla is involved in the generation and maintenance of a 
hypertonic medullary interstitium (171). In the thick ascending limb, basolateral CLCNKB 
/BSND contributes to transcellular NaCl reabsorption. Defects of CLCNKB lead to renal salt 
wasting of classical Bartter syndrome without hearing impairment (119; 237). The phenotype 
of patients suffering from defective CLCNKB (119; 237), however, is less severe than the 
phenotype of patients suffering from antenatal Bartter syndrome due to defective SLC12A1 
(238) or apical K+ channel ROMK (239). Genetic defects of BSND lead to renal salt wasting 
together with deafness (14) (Table 2). 

Voltage clamp experiments disclosed that a common (prevalence 20 % in Caucasians, 
and 40 % in Africans) variant of the CLCNKB gene leading to the replacement of threonine by 
serine at the amino acid position 481 of the ClC-Kb protein (ClC-KbT481S), dramatically 
increases ClC-Kb chloride channel activity (100). Expression of the mutated channels should 
decrease cytosolic Cl- concentration and thus enhance the driving force and transport rate of 
Na+,2Cl-,K+ cotransport. As a result, the gene variant may lead to enhanced transport in inner 
ear and kidney. The gene variant was associated with increased blood pressure in one study on 
a population of largely young, healthy individuals (101), but not in two others on more elderly 
populations (117; 244). The same gain of function mutation was associated with a slight but 
significant delay of hearing loss in female humans, while no significant differences were 
observed between male carriers and noncarriers of the mutation (60).  

Thus, whereas CLCNKA/BSDN and CLCNKB/BSDN serve the recycling of Cl- across 
the basolateral membrane of marginal cells of the inner ear in order to maintain the uptake of 
K+ via SLC12A2, in the kidney the two channels serve the very different function of 
basolateral net transport of Cl- along the ascending thin and thick limb.   
 
KCl cotransport 
The K+/Cl- cotransporter KCC4 (SLC12A7) is found along the basolateral cell membrane in 
several nephron segments (289) (see Fig. 3A, E). KCC4 is colocalized with KCC3 (SLC12A6) 
in basolateral cell membranes of the proximal tubule (15; 47) (Fig 3A), where it may contribute 
to proximal tubular cell volume regulation. This cotransporter is also important for Cl-

recycling in type A intercalated cells (Fig. 3E). In accordance with a crucial role of SLC12A7 
for KCl release in K+ buffering and volume regulation in both the kidney and inner ear, mice 
lacking KCC4 suffer from renal tubular acidosis (15; 102; 196) and deafness (15; 16)(Table 2). 
Whether KCC4 is of similar pathophysiological significance in man, remained elusive. 
 
ENaC 
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ENaC (Fig. 3D, SCNN1) is mainly expressed in the luminal membrane of the aldosterone-
sensitive distal nephron, where about 1-3% of the filtered Na+ is reabsorbed. ENaC is of critical 
importance for renal Na+ reabsorption and secondary K+ excretion and, thus, for salt and K+

homeostasis and blood pressure regulation. Patients carrying loss of function mutations of 
ENaC (“dominant” pseudohypoaldosteronism type 1, PHA 1) as well as knockout mice for the 
ENaC subunits (SCNN1A, SCNN1B, SCNN1C) suffer from renal salt wasting (69; 90). As 
mutant mice die soon after birth it is still elusive whether the mutated gene would induce 
hearing loss. Patients with gain of function mutations of ENaC (Liddle´s syndrome) suffer from 
hypertension (19; 77; 145; 225; 319; 320) but are not known to suffer from deafness. 
 
Gap junctional channels 

The classic gap junction channels have been shown by freeze fracture studies in 
proximal tubule (125), and some of the ubiquitous connexin isoforms (GJA4 (CX37), GJA5 
(CX40), GJA1 (CX43), and GJA7 (CX45)) have subsequently been identified in the kidney 
and localized to mainly vascular and glomerular components (8; 10). In the so-called 
juxtaglomerular apparatus, Cx40 and Cx43 have been implicated in the regulation of renin 
secretion (75; 296). 

Moreover, GJB6 protein (CX30), probably in the form of luminal hemichannels, was 
found to be expressed in renal tubular epithelial cells (Fig. 3E) and inserted into the apical cell 
membrane particularly of intercalated cells (172). GJB6 proteins were upregulated by high salt 
diet in the distal nephron (172) (Fig. 3E). It has thus been speculated that GJB6 may function 
as an apical hemichannel allowing the passage of ATP and having a potential inhibitory role in 
the regulation of salt reabsorption in the distal nephron (172). Along those lines, a recent study 
showed that mice deficient for the ATP receptor P2Y2 present a salt resistant form of arterial 
hypertension that is associated with facilitated renal Na+ and fluid reabsorption (211). It would 
be interesting to learn whether renal electrolyte excretion and/or blood pressure are altered in 
patients with defective GJB6 or in GJB6 knockout mice. 
 
Ca2+ homeostasis 
 Together with intestine and bone, the kidney is of primary importance for body Ca2+ 
homeostasis. Hormone-regulated renal Ca2+ reabsorption is mainly localized to the late distal 
convoluted tubule and the connecting tubule, where TRPV5 channels, expressed in the luminal 
membrane (Fig. 3C), accomplish Ca2+ uptake and Ca2+ ATPases (PMCA1B) (Fig. 3C) as well 
as Na+/Ca2+ exchangers (NCX1) basolateral exit (85). Accordingly, TRPV5 deficient mice 
suffer from impaired Ca2+ reabsorption leading to renal Ca2+ loss (86; 209). Notably, TRPV6, 
which mediates Ca2+ reabsorption in the intestine, is also expressed in the luminal membrane of 
the collecting duct (i.e. downstream of the segments primarily expressing TRPV5) (Fig. 3D) 
and may contribute to renal tubular Ca2+ reabsorption. Accordingly, Ca2+ reabsorption in the 
collecting duct limits renal Ca2+ loss in mice lacking TRPV5 (86) and mice lacking TRPV6 
also loose some Ca2+ into the urine (13). 
 Renal TRPV4 is expressed mainly in the basolateral cell membrane of thin and thick 
ascending limbs and distal convoluted tubule (28; 279) (Fig. 3B). TRPV4 channels were 
presumed to participate in the cellular response to alterations of extracellular osmolarity (195; 
254). TRPV4 knockout mice tend to be hypercalcemic, which would indicate that TRPV4 
rather decreases net renal Ca2+ reabsorption (63). 

Together these findings suggest that Ca2+ transport pathways that serve to stabilize the 
Ca2+ concentration of the endolymph in the inner ear, are involved in kidney function to 
regulate the Ca2+ homeostasis of the whole body. 
 
pH homeostasis 
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The kidney is of pivotal importance for the regulation of the acid-base balance of the 
body. Renal regulation of acid base balance primarily involves the reabsorption, generation or 
excretion of HCO3

- as well as the generation and excretion of NH4
+. Vacuolar H+-ATPase 

(ATP6V), H+/K+-ATPase (ATP4A), and the Cl-/HCO3
- exchangers pendrin (SLC26A4) and 

AE1 (SLC4A1) are all expressed in the kidney, where they contribute to acid-base balance. 
Gastric (and colonic) H+/K+-ATPase is expressed in the collecting duct (Fig. 3E). It is 
responsible for H+ secretion and K+ reabsorption under normal conditions and may be 
stimulated by acid-base perturbations and/or K+ depletion. The regulation may be species 
specific (for review see (236)). 
 Vacuolar H+-ATPase, H+/K+-ATPase, and the Cl-/HCO3

- exchangers SLC26A4 and 
SLC4A1 are all expressed in the intercalated cells of the kidney (Fig. 3E), which are critically 
involved in acid-base balance (for review see (4; 232; 299)). The localization of the H+-ATPase 
in the apical or basolateral membrane can vary between cortical intercalated cells indicating 
that subpopulations of these cells have opposite polarities of an H+-ATPase, consistent with the 
presence of both proton- and bicarbonate-secreting cells (17; 18). Along those lines, type A, 
type B or non-A, non-B intercalated cells are defined according to the presence or absence of 
the Cl-/HCO3

- exchanger SLC4A1, and the subcellular distribution of the H+-ATPase (5; 111). 
Type A intercalated cells mediate net secretion of H+ through an apical H+-ATPase (ATP6V), 
which functions in series with basolateral SLC4A1 (51; 276; 321). Particularly during 
metabolic alkalosis, type B intercalated cells mediate secretion of HCO3

- by employing the 
apical Cl-/HCO3

- exchanger, pendrin (SLC26A4), which functions in series with basolateral 
H+-ATPase (5; 51; 62; 111; 112; 214; 243; 276; 300; 321). Non-A, non-B intercalated cells 
may be HCO3

- or H+ secreting cells or may interconvert between the two functions (111; 276). 
They express both pendrin as well as H+-ATPase in the apical membrane (300). 
 Under basal unstimulated conditions, persons with genetic disruption of pendrin 
(SLC26A4; Pendred syndrome) and mice lacking SLC26A4 exhibit no change in arterial pH, 
renal function or fluid balance (213). Under conditions of dietary NaCl restriction or 
administration of mineralocorticoids, however, pendrin expression is increased in type B 
intercalated cells in rodents, and under these conditions mice lacking SLC26A4 show evidence 
for impaired renal HCO3

- excretion as well as impaired Cl- retention, which results in elevated 
arterial pH and serum HCO3

- and lower blood pressure compared with wild-type mice (213; 
293; 301). In contrast to the inner ear where SLC26A4 mutations lead to hearing loss in men 
and mice (Everett et al., 1999), in the kidney pendrin is essential for a normal response to low 
salt conditions (Table 2), indicating that pendrin may be a new target for antihypertensive 
therapy. In humans, loss of pendrin leads in addition to defective iodide uptake into thyroid 
glands and thus in later life to goiter (54). The latter is not found in mice and is in humans of 
much later onset than the hearing loss. 
 Autosomal-dominant and –recessive forms of distal tubular acidosis are caused by 
mutations in ion transporters of acid secreting type A intercalated cells (for review see (4)). 
These include at least two subunits of the apical H+-ATPase (Fig. 3E, Table 2). Loss of 
function mutations of the genes encoding for the B1 subunit of the H+-ATPase lead to recessive 
distal tubular acidosis with sensorineural hearing loss (105; 241). Bicarbonate therapy 
successfully treats systemic symptoms of distal renal tubular acidosis but fails to correct 
deafness suggesting that transepithelial acid secretion is required for normal cochlear 
development and hair cell survival. Mice lacking the B1 subunit (ATP6V1B1) have preserved 
hearing but exhibit impaired maximal urinary acidification (56). Although patients with distal 
renal tubular acidosis due to homozygous B1-subunit mutations typically present as infants 
with spontaneous metabolic acidosis and failure to thrive (105), mice lacking ATP6V1B1 
raised on a standard rodent diet were healthy, grew normally, and did not develop metabolic 
acidosis (56). The phenotypic discrepancy may be related to dietary differences since a 
standard rodent diet provides a large net dietary alkali load whereas the typical Western human 
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diet, which has higher protein content, imposes a net acid load (56). On the other hand, apical 
expression of the alternative B-subunit isoform B2 is increased in the medulla of mice lacking 
ATP6V1B1 and may partially although not completely compensate for the loss of 
ATP6V1B1(56). 

Mutations in ATP6N1B, encoding a new kidney vacuolar H+-ATPase subunit, which 
was also localized to the apical membrane of type A intercalated cells, cause recessive distal 
renal tubular acidosis with preserved hearing (241). Similarly, multiple mutations have been 
described for the Cl-/HCO3

- exchanger, SLC4A1, which are associated with distal renal tubular 
acidosis in the absence of deafness (for review see (4)). 
 In conclusion, many transport proteins that stabilize the pH of the endolymph of the 
inner ear are also involved in the renal transport of HCO3

- and H+ and, thus, contribute to the 
acid-base homeostasis of the body. 
 
Water transport 
 The aquaporins AQP1 to AQP4 play a central role in water reabsorption of the kidney 
(for review see (183)). AQP1 is particularly expressed along the proximal tubule (Fig, 3A) and 
near-isosmolar fluid reabsorption, a hallmark of proximal tubular function, is dramatically 
impaired in mice lacking AQP1 indicating that proximal tubular fluid reabsorption is largely 
due to transcellular water movement through AQP1 (227; 285). AQP1 is the principal water 
channel in thin descending limbs of Henle's loop and is also expressed in outer medullary 
descending vasa recta, where it facilitates water transport and is thus an important component 
of the urinary concentrating mechanism (27; 153; 192; 291). Very recent studies provided 
evidence for the involvement of AQP1 in migration of proximal tubule cells and possibly in the 
response of the proximal tubule to injury (78). In comparison, AQP2 is exclusively expressed 
in the principal cells of the connecting tubule and collecting duct and is the predominant 
vasopressin-regulated water channel (Fig. 3D). AQP3 and AQP4 are both present in the 
basolateral plasma membrane of collecting duct principal cells (Fig. 3D) and represent exit 
pathways for water reabsorbed apically via AQP2. Studies in patients have demonstrated that 
AQP2 is essential for urinary concentration (183; 229; 290). Loss of function mutations of 
AQP2 cause nephrogenic diabetes insipidus (329). The inheritence is usually autosomal-
recessive but may in some patients be autosomal-dominant (AD-NDI) (329), and could be 
related to a dominant-negative monomer that leads to a missorting of AQP2 to the basolateral 
instead of the apical plasma membrane of the collecting duct cells (242)(Table 2). Moreover, 
mice lacking AQP2, AQP3 or AQP4 suffer from various degrees of nephrogenic diabetes 
insipidus (292).  
 

Conclusions 
 

Epithelial transport in the inner ear and kidney is critical for the function of both organs. 
Many of the proteins accomplishing ion transport within inner ear and kidney are encoded by 
the same genes, as listed in Table 2. Most of the transporters are involved in K+ cycling within 
the inner ear and simultaneously participate in renal tubular transport of Na+ and K+. Other 
transport systems are involved in regulating and stabilizing the Ca2+ concentration or the pH of 
the endolymph and in the regulation of renal tubular transport of Ca2+, HCO3

- and H+ and thus 
participate in Ca2+ homeostasis and acid-base balance of the whole body. The different 
arrangement of the channel proteins may lead to completely different transport functions. For 
example, KCNQ1/KCNE1 K+ channels serve to establish high K+ concentrations in the 
endolymph of the inner ear, whereas in the proximal renal tubules, they stabilize the membrane 
potential across the apical cell membrane and thus contribute to the maintenance of the 
electrical driving force for Na+ coupled electrogenic transport. The comparison of the transport 
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processes in the inner ear and kidney thus illustrates the amazing versatility of biology in the 
use of individual molecules. Moreover, the comparison leads to pathophysiological insight into 
syndromal genetic disease as well as into side effects of drugs targeting those channels and 
transporters and it may provide clues to new therapeutic approaches. Our knowledge, though, is 
still far from complete and many mechanisms are a matter of speculation. It is an aim of this 
brief synopsis to stimulate future interdisciplinary research in this exciting and clinically 
important area of physiology. 
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Table 1: Fluid composition of cochlear endolymph and perilymph as well as endolymph of the endolymphatic sac and cerebrospinal fluid.
Values are taken from a recent review (316) and amended by additional data (35; 93-95; 178; 281; 315).

Cochlear Cochlear Sac Cerebro-
Perilymph Endolymph Endolymph spinal Fluid

Na+ (mM) 148 1.3 129 149
K+ (mM) 4.2 157 8-13 3.1
Cl- (mM) 119 132 124 129
HCO3

- (mM) 21 31 - 19
Ca2+ (mM) 1.3 0.023 - -
Protein (mg/dl) 178 38 - 24
pH 7.3 7.5 6.7-7.1 7.3
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Table 2: Channels, transporters and pumps expressed in both, inner ear and kidney

Function Consequences of loss of functionGene
Symbol Aliases Inner ear Kidney Inner ear Kidney

Channels and associated proteins
KCNJ10 Kir4.1 or

Kir1.2
formation of endocochlear
potential unknown deafnessb unknown

KCNQ1/
KCNE1

KvLQT1 /
mink or ISK

K+ secretion into endolymph;
endolymph formation

maintain PT brush border
membrane potentialb deafnessa,b

no (KCNQ1) or modest
(KCNE1) urinary loss of
Na+ and glucoseb

KCNMA1/
KCNMB1

BK channel,
alpha 1 and
beta 1

K+ efflux from cochlear inner
hair cells

(flow-dependent) K+ secretion
in CNT and CDb

progressive hearing loss
(only KCNMA1)b

impaired flow-dependent
renal K+ excretionb

CLCNKA chloride
channel Ka

nephrogenic diabetes
insipidusb

CLCNKB chloride
channel Kb

deafness when both
CLCNKB and
CLCNKA are
defectivea Bartter syndromeab

BSND Barttin

recycling of Cl- in strial marginal
cells and vestibular dark cells;
endolymph formation

basolateral Cl- reabsorption in
thin (CLCNKA) or thick
(CLCNKB) ascending limb or
both (BSND)b

deafnessa Bartter syndromeab

SCNN1A,
SCNN1B,
SCNN1G

ENaC, alpha,
beta & gamma

uptake of Na+ into epithelial
cells of Reissner’s membrane
and semicircular canal

Na+ reabsorption and
secondary K+ excretion in
CNT and CDab

no known inner ear
phenotype

pseudohypoaldosteronism
type 1ab

GJA1 gap junction
protein, CX43 regulation of renin secretionb deafness unknown

GJB6 gap junction
protein, CX30

metabolic coupling & glutamate
buffering in the lateral and
medial network; buffering of K+

released from outer hair cells
(GJA1, GJB6);
endocochlear potential (GJB6)

pathway for ATP release from
intercalated cells?b deafness unknown

TRPV4 cellular response to alterations
of extracellular osmolarity?b

delayed-onset hearing
loss & vulnerability to
acoustic injuryb

unknown

TRPV5 CaT2

TRPV6 CaT1

Ca2+ homeostasis of endolymph Ca2+ reabsorption
in late DCT & CNT (TRPV5)
or CD (TRPV6)b

unknown urinary Ca2+ lossb

AQP1 aquaporin 1,
CHIP28 unknown water transport in PT, TDL &

OMDVRb no overt phenotypeab
impaired near-isotonic
reabsorption in PT and urine
concentrationb

AQP2 aquaporin 2 unknown unknown
AQP3 aquaporin 3 unknown

water reabsorption in CNT &
CD (apical: AQP2; no overt phenotypeb

urinary concentrating
defectb (AQP2a)
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AQP4 aquaporin 4 unknown basolateral: AQP3,AQP4)b minor hearing lossb

Transporters

SLC12A2
Na+,2Cl-,K+

transporter,
NKCC1

K+ uptake into strial marginal
cells and vestibular dark cells;
endolymph formation

regulation of renin releaseb deafness hypotensionb

SLC12A7
KCl
transporter,
KCC4

K+ exit (or uptake) in Deiter’s
cells?

Cl- recycling in type A
intercalated cellsb deafness distal renal tubular acidosisb

SLC26A4a
Cl-/HCO3

-

exchanger,
Pendrin

HCO3
- secretion into endolymph

HCO3
- secretion and Cl-

reabsorption in type B and
non-A, non-B intercalated
cellsb

acidic endolymphatic
pH; deafness

no basal phenotypeab;
elevated arterial pH &
serum HCO3

- & lower blood
pressure with NaCl
restrictionb

Pumps
PMCA1B Ca2+-ATPase Ca2+ homeostasis of endolymph Ca2+ reabsorption

in late DCT and CNT unknown unknown

ATP6V1B1,
ATP6V0A4a

H+-ATPase
(B1, A4) acidification of endolymph acidification of urinea deafness distal renal tubular acidosisa

a observed in humans; b observed in mouse models; CD, collecting duct; CNT, connecting tubule; DCT, distal convolted tubule; OMDVR, outer
medullary descending vasa recta; PT, proximal tubule; TDL, thin descending limb
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Figures 
 
Fig. 1. 
Most important compartments of the inner ear, including cochlea, vestibular system and 
endolymphatic sac. 
 
Fig. 2 
Compartments of the cochlea. (A) A cross section through the cochlear duct, (B) the inner hair 
cell, (C) the outer hair cell, and (D) the stria vascularis. Gene names of expressed ion channels 
and transporters are illustrated within the approximate position.  
IHC, inner hair cell; OHC, outer hair cell; DC, Deiter`s cell; CC, Claudius Cell; HC, Hensen 
Cell; OS, outer sulcus cells; SC, supporting cell. 
 
Fig. 3 
Individual segments of the tubular and collecting duct system of the kidney. Positions within 
the nephron are indicated. Gene names of expressed ion channels and transporters are 
illustrated within the approximate position. S, Substrate for Na+-coupled electrogenic transport.  
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