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Simple Capacity-Achieving Ensembles of
Rateless Erasure-Correcting Codes

Xiaojun Yuan, Member, IEEE, Rong Sun, and Li Ping, Senior Member, IEEE

Abstract—This paper is concerned with a simple binary
erasure-recovery coding scheme that falls into the family of so-
called semi-random low-density-parity-check (SR-LDPC) codes.
Based on a constrained random-scrambling technique, the
proposed coding scheme is systematic, rateless, and capacity-
achieving. We provide simulation examples comparing the new
scheme with the well-known Luby Transform (LT) and raptor
codes. It is shown that the new scheme has advantages in
complexity and performance over its counterparts especially in
channels with a relatively low erasure rate.

Index Terms—LT codes, raptor codes, tornado codes, SR-
LDPC codes, rateless codes.

I. INTRODUCTION

RATELESS binary erasure codes have been studied for
automatic retransmission and digital fountain applica-

tions [1][2]. A coding scheme is said to be rateless if it
can generate coded bits potentially limitlessly and deliver
good1 performance without knowing the channel condition
at the transmitter. Luby Transform (LT) and raptor codes
are two well-known families of rateless codes which can
asymptotically achieve the capacity of binary erasure channels.

An LT encoder [1] is based on a simple and elegant principle
as follows. Suppose that the encoder is driven by K informa-
tion bits to produce parity bits. Each parity bit is first assigned
with a degree m randomly drawn from a given distribution.
The value of each parity bit is the exclusive-or (XOR) of m
randomly selected information bits. Since the parity bits are
generated independently, LT codes can be expanded by adding
extra parity bits without limitation and hence are rateless. The
encoding and decoding complexities of LT codes (i.e., the
number of XOR operations per bit in encoding and decoding,
respectively) grow at least logarithmically with the number of
information bits to ensure a vanishing bit error probability.

Paper approved by E. Ayanoglu, the Editor for Communication Theory
and Coding Applications of the IEEE Communications Society. Manuscript
received July 28, 2005; revised February 1, 2008, May 27, 2008, and February
11, 2009.

X. Yuan was with the Department of Electrical Engineering, City University
of Hong Kong, HK SAR. He is now with the Department of Electrical
Engineering, University of Hawaii at Manoa, Hawaii, USA, 96822 (e-mail:
xyuan24@hawaii.edu).

R. Sun was with the Department of Electrical Engineering, City University
of Hong Kong, HK SAR. She is now with the State Key Lab of ISN, Xidian
University, Xi’an, 710071, P. R. China (e-mail: rsun@mail.xidian.edu.cn).

L. Ping is with the Department of Electrical Engineering, City University
of Hong Kong, HK SAR (e-mail: eeliping@cityu.edu.hk).

This work was jointly supported by grants from the Research Grant Council
of the Hong Kong SAR, China [Project No. CityU 1182/02E and CityU
117508].

Digital Object Identifier 10.1109/TCOMM.2010.01.050175
1Loosely speaking, "good" means reasonably near-capacity (but not nec-

essarily capacity-achieving) performance. Examples of good codes include
turbo and low-density parity-check (LDPC) codes.

The complexity can be reduced to be linear in the number
of information bits by concatenating a low-density parity-
check (LDPC) precoder before the LT coding scheme [2]. The
resulting concatenated codes are known as "raptor codes".

Both LT and raptor codes are, in their straightforward
forms, non-systematic. Only parity bits are transmitted, and
so a decoding process is necessary regardless of the channel
condition. Upon receiving a sufficient number (that is usually
slightly larger than K) of parity bits, the LT (or raptor) decoder
applies an iterative process to recover the information bits. The
same decoding process is required even for a perfect channel
without any erasure, which implies unnecessary detection cost.
To overcome this problem, a precoding technique is proposed
in [2] for the design of systematic raptor codes. However, this
technique increases the encoding complexity to 𝑂(𝐾2), which
motivates us to seek an alternative low-cost solution. LDPC
codes [3]-[8] and the related irregular repeat-accumulate (IRA)
codes [9][10] are powerful forward-error-control (FEC) codes.
Conventionally, an LDPC code is defined on the kernel of a
parity-check matrix H, rather than directly on the image of a
generator matrix. This implies that, for a randomly generated
low-density H, a small modification of H (for rate adjustment)
may result in a significantly different generation matrix, which
violates the basic requirement of a rateless scheme. Puncturing
techniques [4] have been studied recently to address this issue
at the cost of a certain performance loss.

In this paper, we develop a family of rateless IRA codes for
binary erasure channels using a scrambling technique. The
new scheme is systematic, rateless, and capacity-achieving.
Both the encoding and decoding complexities of the new
scheme are linear with K (i.e., 𝑂(𝐾)). Particularly, due to
its systematic property, the encoding and decoding cost of
the proposed scheme is trivial when no erasure occurs in
transmission. These features are attractive for applications in
transmission environments with rare erasure. For convenience
of discussion, we henceforth refer to the proposed codes as
semi-random LDPC (SR-LDPC) codes, following the nomen-
clature of [11].

II. TORNADO CODES AND DEGREE SEQUENCES

This section outlines the basic principle of tornado codes
[12]. The discussion will prove useful when we introduce our
new scheme in the next section.

A. Channel Models

The following channel models will be used in this paper.

∙ A partial erasure channel allows random erasures only
on information bits.

0090-6778/10$25.00 c⃝ 2010 IEEE



YUAN et al.: SIMPLE CAPACITY-ACHIEVING ENSEMBLES OF RATELESS ERASURE-CORRECTING CODES 111

Kd

3d

..
.

kd

...

1p

jp

.
..

...

Jp

2p2d
1d

Fig. 1. The structure of a two-column tornado code.

∙ A general erasure channel allows random erasures on
both information and parity bits.

B. Tornado Codes

Fig. 1 illustrates a coding scheme, consisting of the first
two columns of the tornado structure introduced in [12]. This
scheme is referred to as a two-column tornado code in this
paper. Nodes {𝑑𝑘} in the left column of Fig. 1 are called
information nodes which represent the information bits. They
are connected to parity nodes {𝑝𝑗} (which represent the parity
bits) in the right column via edges, with the values of parity
nodes determined by the following encoding rule2

𝑝𝑗 =
∑

𝑑𝑘∈𝐵𝑗

𝑑𝑘 mod 2, 𝑗 = 1, 2, ..., 𝐽 (1)

where 𝐵𝑗 = {all 𝑑𝑘 connected via edges to 𝑝𝑗}, and J is
the number of parity nodes. In [12], optimal design rules are
derived for a two-column tornado code over partial erasure
channels. In a general erasure channel, extra protection on
{𝑝𝑗} is required. (For a detailed discussion, see [12].) The
SR-LDPC code studied in this paper will be derived based on
the two-column tornado code. Interestingly, the new coding
structure does not require extra protection on the parity bits
due to its "self-healing property", as will be discussed later.

For the code in Fig. 1, the degree of a node is defined as
the number of the edges connected to it. The left (respectively,
right) degree of an edge is the degree of its left (respectively,
right) node. Let 𝜆𝑖 (respectively, 𝜌𝑖) be the fraction of edges
with left (respectively, right) degree i. Define the left and right
edge degree polynomials respectively as

𝜆(𝑥) ≡
∑
𝑖

𝜆𝑖𝑥
𝑖−1 and 𝜌(𝑥) ≡

∑
𝑖

𝜌𝑖𝑥
𝑖−1. (2)

The following remark is a direct consequence of the above
definitions.

Remark 1: The necessary and sufficient conditions for
realizable 𝜆(𝑥) and 𝜌(𝑥) are:

2Here 𝑝𝑗 and the addend 𝑑𝑘 actually represent the values of nodes 𝑝𝑗 and
𝑑𝑘 , respectively. Similar expressions will be used later without notice.

(a) 𝜆(𝑥) and 𝜌(𝑥) are polynomials with finite orders and non-
negative coefficients; and

(b) 𝜆(1) = 𝜌(1) = 1.

Throughout this paper, we denote by K, J, and E, respec-
tively, the total numbers of information nodes, parity nodes,
and edges. Then 𝜆𝑖𝐸 is the number of edges with left degree
i and 𝜆𝑖𝐸/𝑖 the number of information nodes with degree i.
Therefore, we have

𝐾 = 𝐸
∑
𝑖

𝜆𝑖/𝑖 and 𝐽 = 𝐸
∑
𝑖

𝜌𝑖/𝑖. (3)

Define left and right nodal degree polynomials respectively as

Λ(x ) ≡
∑
i

Λix
i ≡

∑
i 𝜆ix

i/i∑
i 𝜆i/i

=
E

K

∑
i

𝜆ix
i/i (4a)

and

𝑃 (𝑥) ≡
∑
𝑖

𝑃𝑖𝑥
𝑖 ≡

∑
𝑖 𝜌𝑖𝑥

𝑖/𝑖∑
𝑖 𝜌𝑖/𝑖

=
𝐸

𝐽

∑
𝑖

𝜌𝑖𝑥
𝑖/𝑖. (4b)

From (2)-(4), Λi (respectively, 𝑃𝑖) is the fraction of informa-
tion (respectively, parity) nodes with degree i. We also have
the following relationships.

Λ(x ) =
E

K

∫ x

0

𝜆(t)dt and 𝜆(x ) =
K

E

dΛ(x )

dx
(5a)

𝑃 (𝑥) =
𝐸

𝐽

∫ 𝑥

0

𝜌(𝑡)𝑑𝑡 and 𝜌(𝑥) =
𝐽

𝐸

𝑑𝑃 (𝑥)

𝑑𝑥
(5b)

C. Criteria for Capacity-Achieving Codes

We henceforth use post-decoding erasure rate (PDER) [13]
to denote the fraction of un-recovered information bits after
decoding. Theorem 1 below is a fundamental result from [12].

Theorem 1: Let 𝛿 be the erasure rate of a partial erasure
channel. When 𝐾 → ∞, the PDER of a two-column tornado
code (with iterative decoding) goes to zero, provided that

𝜌(1− 𝛿 ⋅ 𝜆(𝑥)) > 1− 𝑥, 0 < 𝑥 ⩽ 1. (6)

D. A New Pair of Optimal Degree Distributions

Based on Theorem 1, optimal degree distributions are
derived in [12]. We now present a new pair of optimal degree
distributions that will be used later in the new scheme. Denote

𝛼 ≡ 1− 𝐽/𝐸 (7)

where J and E are, respectively, the number of parity nodes
and edges. Let

𝜆(𝑥) =
𝐾

𝐸

(
1√
1− 𝑥 − 1

)
(8a)

𝜌(𝑥) =

(
1− 𝛼
1− 𝛼𝑥

)2

(8b)

Λ(x ) =
𝐸

𝐾

∫ 𝑥

0

𝜆(𝑡)𝑑𝑡 = 2− 𝑥− 2
√
1− 𝑥, and (8c)

𝑃 (𝑥) =
𝐸

𝐽

∫ 𝑥

0

𝜌(𝑡)𝑑𝑡 =
(1− 𝛼)𝑥
1− 𝛼𝑥 . (8d)
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The equations (8a) and (8b), respectively, can be expanded
into power series as

𝜆(𝑥) =
𝐾

𝐸

∞∑
𝑖=2

𝑖𝛾𝑖𝑥
𝑖−1 (9a)

𝜌(𝑥) = (1− 𝛼)2
∞∑
𝑖=1

𝑖𝛼𝑖−1𝑥𝑖−1 (9b)

where, for any integer 𝑖 > 1,

𝛾𝑖 ≡ (2𝑖− 3)!!

2𝑖−1 ⋅ 𝑖! . (9c)

It is clear that all the coefficients of 𝜆(𝑥) and 𝜌(𝑥) are positive.
Also, it can be shown that, provided that

𝛿 <
𝐽

𝛼𝐾
, (9d)

the functions defined in (8) satisfy (6). Thus, they may
potentially lead to good codes. However, such codes are
not realizable since, for a finite K, (8a) requires 𝐸 → ∞
for satisfying the constraint of 𝜆(1) = 1 in Remark 1. To
overcome this difficulty, we truncate Λ(x ) to a polynomial
with a finite order. Denote by M the truncation order to which
the left nodal and edge polynomials are clipped. Define

ΛM (x ) ≡ 1

𝐴𝑀

𝑀∑
𝑖=2

𝛾𝑖𝑥
𝑖, and (10a)

𝜆𝑀 (𝑥) ≡ 𝐾

𝐸
⋅ 𝑑Λ𝑀 (𝑥)

𝑑𝑥
=

1

𝐵𝑀

𝑀∑
𝑖=2

𝑖𝛾𝑖𝑥
𝑖−1 (10b)

where

𝐴𝑀 ≡
𝑀∑
𝑖=2

𝛾𝑖 and 𝐵𝑀 ≡
𝑀∑
𝑖=2

𝑖𝛾𝑖. (11a)

Note that E, K, 𝐴𝑀 , and 𝐵𝑀 are related by

𝐸/𝐾 = 𝐵𝑀/𝐴𝑀 . (11b)

It can be shown that3

𝐴𝑀 < 1, lim
𝑀→∞

𝐴𝑀 = 1, and lim
𝑀→∞

𝐵𝑀 = ∞. (12)

From (8a), (9a) and (10b), we have

𝜆𝑀 (𝑥) <
1

𝐵𝑀

(
1√
1− 𝑥 − 1

)
, 0 < 𝑥 ⩽ 1. (13)

Therefore, by some straightforward manipulations, 𝜆𝑀 (𝑥) and
𝜌(𝑥) satisfies

𝜌(1− 𝛿 ⋅ 𝜆𝑀 (𝑥)) > 1− 𝑥, 0 < 𝑥 ⩽ 1 (14a)

provided that

𝛿 < 𝛿𝑀 ≡ 1
𝐾

𝐽𝐴𝑀
− 1

𝐵𝑀

. (14b)

We can construct a realizable two-column tornado code C
as follows: select a finite integer 𝑀 > 0 and 𝛼 ∈ (0, 1);
then construct a code C based on 𝜆𝑀 (𝑥) in (10b) and 𝜌(𝑥) in
(9b). It is straightforward to verify that the criteria in Remark

3From (9c), we have 𝛾𝑖/𝛾𝑖+1 = (2𝑖+2)/(2𝑖−1) = 1+1.5𝑖−1+𝑂(𝑖−2).
According to Gauss’s test (see p.567 in [26]), the series

∑
𝛾𝑖 converges. Thus,

lim𝑀→∞ 𝐴𝑀 = lim𝑀→∞ ΛM (1) = Λ(1) = 1.

1 are met4, and so C is realizable. From (14) and the related
discussions above, we further have the following theorem.

Theorem 2: When 𝐾 → ∞, the PDER of C goes to zero
in a partial erasure channel provided that 𝛿 < 𝛿𝑀 .

Now consider the asymptotic effect of M. From (12) and
(14b), we have

𝛿𝑀 ≡ 1
𝐾

𝐽𝐴𝑀
− 1

𝐵𝑀

<
𝐽𝐴𝑀

𝐾
<
𝐽

𝐾
(15a)

and

lim
𝑀→∞

𝛿𝑀 = 𝐽/𝐾. (15b)

Thus, 𝐽/𝐾 is an upper bound of 𝛿 that is tight when M is
sufficiently large. Note that 𝑅 = 𝐾/(𝐽 +𝐾) = 1/(1+ 𝛿) (or
equivalently, 𝛿 = 𝐽/𝐾) is the capacity of the partial erasure
channel [12]. This implies that C with a finite M cannot
achieve the channel capacity, but the gap diminishes to zero
as 𝑀 → ∞ . In practice, M cannot be too large since 𝐸/𝐾
(as a measure of the encoding and decoding complexities) in
(11b) increases unboundedly with M.

E. Parity-Check Matrix of Two-Column Tornado Code

A two-column tornado code can be defined using a parity-
check matrix. Decompose the codeword of a linear binary
systematic code into c = [p, d], where p = [𝑝𝑗 ] and d = [𝑑𝑘]
contain the parity and information bits, respectively. Accord-
ingly, we decompose the corresponding parity-check matrix H
into H = [H𝑝,H𝑑]. Then[

H𝑝,H𝑑
]
[p, d]𝑇 = 0 (16)

where notation "𝑇 " represents the transpose operation, and "0"
an all-zero vector. For the two-column tornado code, it can be
shown that H𝑝 is an identity matrix, i.e.

H𝑝 =

⎛
⎜⎜⎜⎝

1 0
1

. . .
0 1

⎞
⎟⎟⎟⎠ . (17)

This indicates

𝑝𝑗 =
∑

𝑑𝑘∈𝐵𝑗

𝑑𝑘 mod 2, 𝑗 = 1, 2, . . . , 𝐽 (18)

where 𝐵𝑗 = {𝑑𝑘∣𝐻𝑑
𝑗,𝑘 = 1} with 𝐻𝑑

𝑗,𝑘 being the (𝑗, 𝑘)𝑡ℎ

element in H𝑑. Comparing (18) with (1), we can see that
𝐻𝑑

𝑗,𝑘 = 1 implies that there is an edge between 𝑑𝑘 and 𝑝𝑗
in Fig. 1. Define the weight of a binary vector as the number
of its non-zero entries. Then, Λi and 𝑃𝑖 in (4) are respectively
the fraction of columns and rows in H𝑑 with weight i.

Remark 2: For a two-column tornado code, the column and
row weight distributions of H𝑑 are given by left and right
nodal degree distributions Λ(x ) and 𝑃 (𝑥), respectively. The
total number of ones in H𝑑 equals E, the number of edges.

4Strictly speaking, truncation should also be applied to 𝑃 (𝑥) for finite-
length codes. However, such truncation is not explicitly required in encoding
since the parity nodes are generated using the constrained-random-scrambling
rule described in Appendix A.B. The resulting right nodal degree distribution
asymptotically approaches 𝑃 (𝑥), as detailed in Appendix A.A.
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 d4  d3  p1  d2  d1  d5  p2  d3  p3  p4  d1  d4  p5  p6 d1

1
jk Dd

kjj dpp

   D2    D3    D4      D1       D5    D6

encoding direction

Fig. 2. The encoding line for an SR-LDPC code C. Here 𝐾 = 5, 𝐽 =
6, 𝐸 = 9. The degrees of {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5} are {3, 1, 2, 2, 1}.

III. SR-LDPC CODES

We now proceed to discuss the proposed SR-LDPC codes
using both matrix and graphic representations. We establish a
connection between tornado codes and SR-LDPC codes, based
on which we show that the new codes are systematic, capacity-
approaching, and rateless.

A. Matrix Representation of SR-LDPC Encoder

Reconsider the decomposition H = [H𝑝,H𝑑] as in (16). An
SR-LDPC code defined in [11] has a parity sub-block H𝑝 of
the form

H𝑝 =

⎛
⎜⎜⎜⎝

1 0
1 1

. . .
. . .

0 1 1

⎞
⎟⎟⎟⎠ . (19)

Encoding is based on the following recursion (setting 𝑝0 ≡ 0):

𝑝𝑗 − 𝑝𝑗−1 =
∑

𝑑𝑖∈𝐵𝑗

𝑑𝑖 mod 2, 𝑗 = 1, 2, . . . , 𝐽 (20)

where 𝐵𝑗 = {𝑑𝑘∣𝐻𝑑
𝑗,𝑘 = 1}. The order in which the parity

values in the above recursion are evaluated is referred to as the
encoding direction. The similarities and differences between
(18) and (20) are crucial: the similarity greatly facilitates the
analysis of SR-LDPC codes while the differences result in
some distinctive properties of SR-LDPC codes.

The codes so defined form a sub-class of LDPC codes
[5][14]. Repeat accumulate (RA) codes [9] and concatenated
tree (CT) codes [15][16] both have the structure shown in (19).
We briefly compare these codes in Appendix A.C.

B. Graphic Representation of SR-LDPC Encoder

We now consider an alternative graphic encoding method
for an SR-LDPC code. The encoding line in Fig. 2 is
constructed as follows. Assume that every information bit
𝑑𝑘 is assigned with a degree 𝑚𝑘 randomly drawn from the
distribution ΛM (x ) in (10a). For every 𝑑𝑘, we generate 𝑚𝑘

equivalent white nodes, all labeled by 𝑑𝑘. In total, we obtain
E white nodes. We scramble5 these white nodes together
with J black nodes. Then we label the black nodes by parity
bits {𝑝𝑗} in a sequential order. Let 𝐷𝑗 be the segment of
consecutive white nodes between 𝑝𝑗−1 and 𝑝𝑗 and denote by

5Different scrambling rules are discussed in Appendix A.

∣𝐷𝑗 ∣ the length of 𝐷𝑗 . We say that 𝑑𝑘 ∈ 𝐷𝑗 if a white node
representing 𝑑𝑘 falls in 𝐷𝑗 . The encoding rule is defined by
a recursion as

𝑝𝑗 − 𝑝𝑗−1 =
∑

𝑑𝑘∈𝐷𝑗

𝑑𝑘 mod 2, 𝑗 = 1, 2, . . . , 𝐽. (21a)

Note that: (i) 𝐷𝑗 may contain multiple white nodes labeled
by the same 𝑑𝑘; (ii) 𝐷𝑗 may be empty, such as 𝐷4 in Fig. 2;
(iii) Eq. (21a) can be equivalently rewritten as

𝑝𝑗 =

𝑗∑
𝑚=1

∑
𝑑𝑘∈𝐷𝑚

𝑑𝑘 mod 2. (21b)

For given {𝐷𝑗}, we can construct H𝑑 in (16) as

𝐻𝑑
𝑗,𝑘 = 1, if 𝑑𝑘 ∈ 𝐷𝑗 , for any j and k. (22)

As mentioned above, in (21a), an information bit 𝑑𝑘 can
appear in 𝐷𝑗 more than once. However, the probability of such
an event is arbitrarily close to zero when 𝐾 → ∞, provided
that the truncation length M is finite and the encoding rule in
Appendix A is employed. It is also shown in Appendix A that
the distribution of ∣𝐷𝑗 ∣ → 𝑃 (𝑥) (the row weight distribution
of H𝑑, see Remark 2) when 𝐾 → ∞ (at the same time
maintaining 𝛼 as a constant).

C. Performance in Partial Erasure Channels

Eq. (16) can be rewritten as

H𝑑d𝑇 = H𝑝p𝑇 . (23)

If p is received without erasure, the right hand side of (23)
is fixed. Thus, from a decoding point of view, all linear
systematic codes with the same sub-block H𝑑 are equivalent
in a partial erasure channel. This fact, together with Theorem
2, leads to the following.

Remark 3: Let C be an SR-LDPC code with left and
right nodal degree distributions specified in (10a) and (8d),
respectively. When 𝐾 → ∞, the PDER of C goes to zero in
a partial erasure channel with erasure rate 𝛿 < 𝛿𝑀 .

D. Performance in General Erasure Channels

Now consider a general erasure channel with erasures on
both information and parity bits. Let C be defined in Fig.
2. Suppose that E and J are sufficiently large. We generate
an encoding line with the asymptotic distribution of ∣𝐷𝑗 ∣
defined in (8d) using the constrained random-scrambling rule
in Appendix A.B. Suppose that we randomly delete 𝐽 − 𝐽
black nodes and use the E white nodes together with the
remaining 𝐽 black nodes to form a new code 𝐶. Remark 4
below shows the similarity between C and 𝐶. It is a direct
consequence of the discussion in Appendix A.B.

Remark 4: The right nodal degree distribution of 𝐶 is
𝑃 (𝑥) = (1−𝛼̃)𝑥

1−𝛼̃𝑥 , where 𝛼̃ ≡ 1− 𝐽/𝐸.

Fig. 3 is a graphical illustration of 𝐶 obtained from C in
Fig. 2, where we have re-labeled the remaining parity nodes
as {𝑝′1, 𝑝′2, . . .}. From (21a), it can be shown that

𝑝′𝑗 − 𝑝′𝑗−1 =
∑

𝑑𝑘 mod 2 (24)
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Fig. 3. The residual encoding line formed by erasing 𝐽 − 𝐽 = 2 parity
nodes in Fig. 2. Here {𝑝′𝑗} are the re-sequenced parity node labels and {𝐷′

𝑗}
are the new sets of consecutive white nodes.

where the summation is over all white nodes between 𝑝′𝑗−1

and 𝑝′𝑗 . Eq. (24) shows a "self-healing property", i.e., we can
construct new constraints as in (24) using the received parity
nodes to replace the old ones in (21a). By considering this
together with Remark 4, we have the following property with
respect to the structural equivalence between C and 𝐶 .

Remark 5: 𝐶 and 𝐶 have the same structure except that
the number of parity nodes involved are different. The perfor-
mance of 𝐶 can be determined using Remark 3 with J changed
to 𝐽 .

Let C be an SR-LDPC code in Remark 5. Decompose a
general erasure channel into two cascade sub-channels. After
the first sub-channel, 𝛿prt𝐽 parity bits in C are randomly erased
to form the sub-code 𝐶. After the second sub-channel, 𝛿inf𝐾
information bits in 𝐶 are randomly erased. From Remarks 3
and 5, 𝐶 (or equivalently, C) is recoverable provided that

𝛿inf <
1

𝐾
𝐽𝐴𝑀

− 1
𝐵𝑀

=
1

𝐾
𝐽(1−𝛿prt)𝐴𝑀

− 1
𝐵𝑀

. (25a)

For a general erasure channel, we have 𝛿 = 𝛿prt = 𝛿inf. Thus,
the condition in (25a) indicates that 𝐶 is recoverable provided
that

𝛿 < 𝛿′𝑀 ≡ 1

2

(√
𝐷2

𝑀 + 4𝐵𝑀 −𝐷𝑀

)
(25b)

where 𝐷𝑀 ≡ 𝐾𝐵𝑀

𝐽𝐴𝑀
+ 𝐵𝑀 − 1. It can be verified that

lim𝑀→∞ 𝛿′𝑀 = 𝐽/(𝐽 +𝐾). By definition, the code rate

𝑅 = 𝐾/(𝐽 +𝐾) = 1− 𝐽/(𝐽 +𝐾)

and so, for a sufficiently large M, (25b) becomes 𝑅 < 1 − 𝛿
with 1− 𝛿 being the capacity of the channel [12]. The above
results are summarized as follows.

Theorem 3: Let C be an SR-LDPC code designed using the
left and right nodal degree distributions specified in (10a) and
(8d) respectively. When 𝐾 → ∞, the PDER of C goes to
zero in a general erasure channel provided that 𝛿 < 𝛿′𝑀 . In
particular, the scheme achieves channel capacity when 𝑀 →
∞ and 𝐾 → ∞.

Here is a brief summary of the construction procedure for
SR-LDPC codes. We first select a proper truncation order M

and obtain ΛM (x ) in (10a). Then construct the encoding line
based on ΛM (x ) using random scrambling and generate the
parity bits by random insertion (as detailed in Appendix A).
The information and parity bits are randomly mixed before
transmission. Note that ΛM (x ) is independent of the channel
erasure rate, and that one can generate as many new parity
bits as necessary since, from (21b), adding new parity bits
do not affect the value of the existing ones. This implies that
the resultant code is potentially rateless. However, to claim
ratelessness, it remains to show that SR-LDPC codes have
"good performance" (see Footnote 1) for all rates, as detailed
below.

E. Ratelessness

To compare the proposed codes with LT and raptor codes
in a common platform, we introduce the decoding inefficiency
index 𝜂, defined as the ratio of the number of un-erased
received bits to the information length, i.e.

𝜂 = (1− 𝛿)/𝑅. (26)

Using (26), the constraint in (25b) can be equivalently rewrit-
ten in term of 𝜂 as

𝜂 > 𝜂𝑀 ≡ 1

2

(
Δ𝑀 −

√
Δ2

𝑀 − 4𝐵𝑀

𝐴𝑀𝑅(1−𝑅)

)
(27)

where Δ𝑀 ≡ 𝐵𝑀+1
𝑅 + 𝐵𝑀

𝐴𝑀 (1−𝑅) . Clearly, the threshold 𝜂𝑀
depends on both the code rate R and the truncation order M,
as illustrated in Fig. 4. Note that 𝜂𝑀 is bounded away from
1 for 𝑅 ∕= 1 and M <∞.

We next show the ratelessness of the proposed coding
scheme. It is straightforward to verify that

lim
𝑅→0

𝜂𝑀 =
𝐵𝑀

𝐴𝑀 (𝐵𝑀 + 1)
and lim

𝑅→1
𝜂𝑀 = 1.

Furthermore, it can be shown that 𝜂𝑀 uniformly converges
to 1 (the capacity limit) for 0 < 𝑅 ⩽ 1 when 𝑀 → ∞.
Therefore, the proposed scheme is indeed rateless.6 The above
result is verified numerically in Fig. 4.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are provided to verify
the performance of SR-LDPC codes in general binary erasure
channels. The performance of LT and raptor codes is also
included for comparison. The right nodal degree polynomial
of an LT code is given in [2] as

𝑃𝐿𝑇 (𝑥) = 0.008𝑥+ 0.494𝑥2 + 0.166𝑥3 + 0.073𝑥4

+0.083𝑥5 + 0.056𝑥8 + 0.037𝑥9

+0.056𝑥19 + 0.025𝑥65 + 0.003𝑥66. (28)

Table I lists 𝐸/𝐾 , referred to as the density of SR-LDPC
codes, versus truncation length M. The decoding complexity
of a code is roughly proportional to its density 𝐸/𝐾 . The
LT code realized by (28) has a density of approximately 6.
As shown in simulation, this LT code suffers from a severe
error-floor problem. Raptor codes can solve this problem by

6For a rateless scheme, R can be interpreted as the proportion of information
bits in all received bits. The performance of the proposed SR-LDPC codes
varies slightly with R due to the use of a finite truncation order M.
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Fig. 4. The effect of truncation length M and code rate R on the decoding
inefficiency threshold.

TABLE I
THE DENSITY 𝐸/𝐾 OF SR-LDPC CODES VERSUS TRUNCATION LENGTH
M, WHERE E DENOTES THE NUMBER OF EDGES IN THE BIPARTITE GRAPH

OF THE CODE, AND K THE NUMBER OF INFORMATION BITS.

𝑀 50 100 200 500 1000
𝐸/𝐾 8.28 11.57 16.24 25.51 35.96

concatenating an LDPC pre-coder before the LT encoding
structure. The precoder used in [2] has roughly the same
decoding complexity as the LT code based on (28). For
comparison, we choose 𝑀 = 100 for the SR-LDPC code,
resulting in a density value of 11.6.

In our simulations, we generally follow the principles
outlined in Appendix A.C to construct the SR-LDPC codes.
Analysis in [12] shows that the main contribution of the
error probability in the error-floor region comes from degree-2
information nodes (cf., Lemma 1 in [12] and the discussions
therein). To reduce the error floor, we introduce a small
number of extra parity nodes to further protect the degree-2
information nodes. The proportion of such extra parity nodes
is kept at about 1% of the total number of parity nodes so
that their impact on the overall code rate is negligible. (Note:
A similar treatment of degree-2 nodes is described in [12] for
tornado codes.) More specifically, we generate an extra replica
for each degree-2 information node. We collect these extra
replicas and use them to extend the encoding line (cf., Fig.
2). The extra parity nodes are then randomly inserted into the
extended part of the encoding line7, with the last extra parity
node appended to the end for termination. In this way, we
increase the minimum left degree to 3. Note that, for a fair
comparison, the extra parity nodes have been considered in
determining the code rate in simulation.

The decoding algorithm of the tornado code [12] can be
easily applied to SR-LDPC codes due to their similarity. An
SR-LDPC decoder can recover the erasure bits by searching
through the lost information bits in the residue decoding
line in Fig. 3 based on the following rule: between any two

7Different insertion rules may lead to slightly different performance.

adjacent black nodes, if there is only one lost white node, the
corresponding bit can be recovered together with its replicas.

The performance of the LT, raptor and SR-LDPC codes
is compared in Fig. 5. The information length is fixed at
65536 for all codes. The performance curve of the raptor
code is cited from Fig. 2 in [3] (with 𝜎 = 0 at which the
BIAWGN channel reduces to a perfect channel with erasure
rate 𝛿 = 0). There is only one curve for the raptor code
since the performance of raptor codes in terms of decoding
inefficiency is invariant to the code rate. Conventionally, it is
not necessary to fix the "code rate" for a rateless scheme [3].
However, the theoretical bound in (27) shows that the proposed
SR-LDPC codes performs slightly differently at different code
rates. For easy comparison with this bound, we simulate the
SR-LDPC codes at different code rates, namely,𝑅 = 0.1, 0.36,
0.5, 0.7, 0.9 and 0.95, in Fig. 5. It can be seen in Fig. 5
that the LT code suffers from a severe error-floor problem.
Thus we only compare the SR-LDPC codes with the raptor
code below. From Fig. 5, compared with the raptor code, the
proposed SR-LDPC codes performs slightly better when rate
R is 0.9 or higher, but slightly worse when R is lower. For SR-
LDPC codes, the distance from the capacity at different rates
agree well with the theoretical thresholds shown in Fig. 4. In
particular, the worst code performance occurs at 𝑅 = 0.36. It
is also worth mentioning that, from Fig. 5, one may readily
obtain the performance of SR-LDPC codes against 𝛿 by noting
that 𝜂 and 𝛿 are related by (26).

The SR-LDPC coding scheme requires a lower decoding
complexity than the raptor or LT codes in channels with rare
erasure. This can be seen as follows. For the LT and raptor
codes, only parity bits are transmitted so that an iterative
decoding process is always necessary regardless of channel
condition (even for a perfect channel without any erasure).
On the other hand, the decoding complexity of the SR-LDPC
coding scheme depends on the channel condition. When the
proportion of lost bits is very high, its decoding complexity is
roughly the same as that of the raptor codes compared in Fig.
5. However, when the channel condition is good and only
a few information bits need to be recovered, the decoding
process ends quickly for the SR-LDPC code. In particular,
the decoding process can be completely avoided if there is
no erasure. This clearly shows the advantage of the proposed
scheme for transmission in channels with a low erasure rate.

V. CONCLUSIONS

We have developed a simple erasure-recovery coding
scheme based on the so-called SR-LDPC codes. Similarly to
the LT codes and the more recently proposed raptor codes,
the new scheme is rateless and capacity-achieving. Further-
more, the new scheme is also systematic, which provides
an advantage for transmission over erasure channels with
a relatively low erasure rate. Particularly, the encoding and
decoding process can be completely avoided if there is no
erasure.

APPENDIX A
SCRAMBLING PRINCIPLES

In this appendix, we derive the degree distributions for
different scrambling methods.
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A. Random Scrambling

Suppose that E white nodes and J black nodes are scrambled
to form a circle. For convenience, we call the block of
consecutive white nodes between two adjacent black nodes
a segment, with its length defined as the total number of
white nodes in it. Note that the length of a segment can be
zero, which corresponds to the situation of two consecutive
black nodes. Take a black node as a reference, and let W be
the length of the segment (either clockwise or anticlockwise)
adjacent to it. If the scrambling is random, we obtain that, for
𝑖 = 0, 1, . . . , 𝐸,

Pr{𝑊 = 𝑖} =

(
𝑖−1∏
𝑛=0

𝐸 − 𝑛
𝐽 + 𝐸 − 𝑛− 1

)
⋅ 𝐽 − 1

𝐽 + 𝐸 − 𝑖− 1

=

(
𝑖−1∏
𝑛=0

𝛽 − 𝑛
𝐽+𝐸

1− 𝑛+1
𝐽+𝐸

)
⋅ 1− 𝛽 − 1

𝐽+𝐸

1− 𝑖+1
𝐽+𝐸

(29)

where 𝛽 ≡ 𝐸/(𝐽 + 𝐸). Letting J and E go to infinity
while keeping 𝛽 as a constant, the asymptotic distribution
polynomial of W is given by

𝑃 (𝑥) =
∞∑
𝑖=0

𝛽𝑖(1− 𝛽)𝑥𝑖 = 1− 𝛽
1− 𝛽𝑥 . (30)

Due to the centrosymmetry of a circle, the distribution in (29)
holds for any reference node. Thus, it can be more generally
treated as the distribution of the segment length in the circle.
By breaking the circle at a randomly selected point, we can
obtain the corresponding distribution in a line. This operation
divides the segment containing the breaking point into two
segments while the others remain intact. Note that the total
number of segments is 𝐽 + 1. Thus, the impact of such an
operation can be ignored for a sufficiently long code, which
implies that the asymptotic distribution (30) still holds for
random scrambling on a line. Note that (30) and (8d) are
different only by a factor of x.

B. Constrained Random Scrambling

We now discuss the realization of 𝑃 (𝑥) in (8d). Assume
that 𝐸 ⩾ 𝐽 , which can be ensured by using a sufficiently
large M in (10). Consider the following two methods.

Method a: Randomly scramble 𝐸 − 𝐽 white nodes and J
black nodes to form a line. Then insert an extra white node
right in front of each black node.8 (In total, J extra white
nodes are inserted.)

Method b: Randomly scramble E white nodes and arrange
them into a line. Randomly select (either one by one or in
bunch) J white nodes in this line and insert a black node right
behind each of them.

The equivalence of the above two methods can be seen
from the fact that, if all the nodes are indexed, they have
the same pool of equally possible outcomes. Thus, they also
have the same distribution of segment length W (as defined in
Appendix I.A). Similarly, we can see that Method c below is
also equivalent to the above two methods.

Method c: Apply Method a (or b) to a set of E white nodes
and 𝐽+𝐽 ′ black nodes to form a line, where 𝐽 ′ is an arbitrary
integer. Then randomly delete 𝐽 ′ black nodes from this line.

Before the insertion of extra white nodes in Method a, the
distribution of W is given by (30) as 1−𝛼

1−𝛼𝑥 with 𝛼 = 1 −
𝐽/𝐸 for sufficiently large J and E. After the insertion, the
distribution polynomial is shifted by one position to the higher
order. Thus, we have the following.

Remark 6: Methods a, b and c lead to the same resultant
distribution of the segment length given by 𝑃 (𝑥) = (1−𝛼)𝑥

1−𝛼𝑥
with 𝛼 = 1− 𝐽/𝐸.

Returning to Remark 4, 𝐶 can be obtained by applying
Method c to C and so, based on Remark 6, the right nodal
degree distribution of 𝐶 is 𝑃 (𝑥) = (1−𝛼̃)𝑥

1−𝛼̃𝑥 .

C. Concatenated Tree (CT) Technique

The scrambling methods described in the previous subsec-
tions all fall into the family of IRA codes in which the relative
positions among white nodes are purely random. However, as
shown in the notes below (21a), the contribution of 𝑑𝑘 in
(21a) may be canceled out if 𝐷𝑗 contains an even number of
the replicas of 𝑑𝑘. In this case, the check equation (21a) will
not provide any protection for 𝑑𝑘. Although the probability
of such an event approaches zero for infinitely long codes,
it requires careful consideration for codes with finite length.
The following encoder design provides a treatment to this
problem by segmenting the overall encoding line into several
components. Let𝑊𝑛, for 𝑛 = 1, 2, . . . ,𝑀 , be subsets to which
white nodes will be added, where M is the truncation length
used in (10). Initially, set every 𝑊𝑛 to be empty.

8In an encoding line, "node A is in front of node B" if node A is processed
before node B in the encoding process, and vice versa.
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Step 1: For 𝑘 = 1 to K: randomly draw a number 𝑚𝑘 from
ΛM (x ) as the degree of the information bit 𝑑𝑘; then
randomly select 𝑚𝑘 subsets among {𝑊𝑛} and add
one white node labeled by 𝑑𝑘 to each of the selected
subsets.

Step 2: Randomly scramble the white nodes in each 𝑊𝑛

and arrange them into a line as the nth component.
Concatenate the M components one by one to form
an overall encoding line. Randomly selected J out of
the E white nodes in this line and insert a black node
right behind each of them.

Step 3: Apply the encoding procedure defined in (21).

With the above encoder design, the number of consecutive
white nodes follows the asymptotic distribution 𝑃 (𝑥). Each
𝑊𝑛 does not contain any node with more than one replica.
Thus, only those segments of consecutive white nodes that
bestride two adjacent components may contain nodes with
more than one replica, but the probability of such an event
is marginal. The resulting code belongs to the family of CT
codes as introduced in [15].
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