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Optimization of Single  Expressions in a  Relational 
Data Base System 

Abstract: This  paper  examines optimization within a relational data base system.  It  considers  the optimization of a single query de- 
fined by an  expression of the relational algebra.  The  expression is transformed into  an equivalent expression or sequence of expres- 
sions that  cost  less  to  evaluate.  Alternative transformations, and  combinations of several  transformations,  are  analyzed.  Measurements 
on  an experimental data  base showed improvements, especially in cases  where  the original expression would be impracticably  slow in 
its execution. A small overhead was  incurred, which would be negligible for large data  bases. 

Introduction 
Relational data  base  systems  provide  the  user with  a 
tabular view of the  data, a view that is independent of 
any machine or implementation. The  user need know 
nothing of the implementation in formulating his query. 
Thus  he  cannot be held responsible for  the efficiency 
with which his query is answered. 

Complex  queries  on large  volumes of data  take a long 
time to  answer. But the  speed of reply should  not de- 
pend  critically on  the way the  query  or  other  request  for 
processing is formulated. The intention of the  user 
should  be preserved,  but  the  details of the  query should 
be transformed to  ensure a faster  response;  casual  users 
would thus be protected from catastrophicly  expensive 
queries. At the  same time, an  experienced  user, who 
may well express his query concisely  and not  require 
optimizations,  should not  be penalized by an  unneces- 
sary  overhead.  However,  even  the experienced user 
may sometimes  express  complex  queries inappropriately 
and  thus benefit from such optimization. 

This  paper  addresses  the optimization of single que- 
ries to a relational data  base. A query is written as a rela- 
tional expression, which is transformed into  an equiva- 
lent expression (or sequence of expressions).  In this 
paper we explore  the variety of transformations  that  are 
practicable.  We then  present  the  results of an experi- 
mental  implementation of the  transformations designed 
to investigate whether  the  transformations  can  be 
achieved with negligible overhead  and  whether they can 
successfully catch  the unfortunately  formulated query 
and transform it into  one  that  can be answered effective- 
ly. It will be seen  that in both  cases  the  answer is affir- 
mative. 

The investigation into optimization reported  here  has 
244 been specifically aimed at  an experimental prototype 

relational data  base system [ I ] .  We investigated only 
one  facet of the optimization  problem. There  are longer 
term optimization methods,  such  as repositioning data 
on disk [2-41, retaining data  once it has been comput- 
ed in case  it is required again [ 51, etc. 

The optimization methods  considered  here  are neces- 
sarily  biased towards  the particular system  that  we were 
attempting  to optimize. A first essential is to  arrange  that 
all relational operations  occur  as efficiently as possible, 
using suitable storage strategies for relations (sorting, 
indexing,  encoding, etc.) . Whereas most of the optimiza- 
tion methods  to be  discussed are not dependent upon 
implementation  details, some knowledge of the  PRTV 
system  implementation is necessary.  (Additional infor- 
mation about  PRTV is provided in [ 11). 

The  PRTV  system  uses  two levels of language. The 
external interface  language (ISBL) is a  relational alge- 
bra  that  uses symbolic names for relations  and  for  com- 
ponents of tuples.  At a lower level there is an internal 
language (CIL) in which  relations are referred to by 
position. Various implementation aspects  intrude  at  the 
CIL level, because  the positions of components  deter- 
mine  a sort  order.  In  the  PRTV implementation rela- 
tions are stored as indexed  sequential files, and  opera- 
tions  are performed where possible by merging these 
files, exploiting the internally  known sort  orders.  The 
files are  sorted  on column 1 ,  then  on column 2 for identi- 
cal values in column 1, and so on.  Projections not only 
reduce  the number of components;  where  components 
are  re-ordered, a sort  operation is induced. Complex 
expressions  are evaluated a tuple at a  time, with all the 
merges  performed  together. Intermediate  results  are 
only formed  when essential-for a sorting  projection or 
at  the second argument  to a join. 
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The optimization methods considered in this paper  are 
transformations of algebraic expressions in CIL.  These 
expressions  can, in fact, be very large,  much larger than 
any expression  that a user would write. This  comes 
about  because of another efficiency feature of the  PRTV 
system, deferred execution. When an ISBL expression 
is written and the result  assigned to  some variable, the 
expression is not evaluated but merely “semicompiled” 
into  a CIL expression, with arguments in ISBL being 
replaced by their  corresponding CIL expressions. CIL 
expressions  are only evaluated when it becomes  essen- 
tial to  do  so-for example, when the result is to be dis- 
played for a user. 

In this paper we write expressions using a  self-ex- 
planatory  notation built on the  operations: 

A U B - set union of relations A and B of the same type. 
A ~ B - set difference of relations A and B of the  same 

type. 

type. 
A 5% T-projection of relation A onto  the  components 

given in projection list T = Ci , . . ., Ci,,!. 
A : F-selection of a subset of relation A of tuples for 

which filter F is true,  where F is a logical ex- 
pression involving the  components of the 
tuples of A .  

A * A-Cartesian  product  or “join” of relations A 
and B. 

A n B- set intersection of relations A and B of the same 

The  sequence of a Cartesian  product followed by a 
selection is a  common  compound operation recognized 
within the implementation  and executed  as a single oper- 
ation.  The  above notation is not that used for CIL  (CIL 
is an  unreadable prefix polish) but is equivalent to it. 

The  transformations of expressions  to be  considered 
are: 

1 .  Change  the  order in which the  operations  are  per- 
formed while ensuring that  the  correct result is ob- 
tained. For example,  make  selections occur  as early 
as possible. 

2. Recognize common  subexpressions and evaluate 
some of them separately first. 

The legitimate transformations  for use in 1 )  can be 
expressed using algebraic  laws that show which expres- 
sions are equivalent to  one  another.  For 2 )  we must  be 
able to recognize  when sequences of expressions and 
assignments are  equivalent.  Then  our problem becomes 
that of selecting,  from  among all those  expressions 
equivalent to  the original, that  expression  or  sequence of 
expressions  that is the  cheapest  to  evaluate. 

A  basic requirement is thus  to be able  to  measure  the 
cost of evaluating  a  given expression  or  sequence of 
expressions.  This is studied in the  Appendix,  where we 

find that estimating the  cost of evaluating expressions is 
extremely difficult; instead of attempting to find the  best 
possible expression  to  evaluate, we are forced into 
weaker, heuristic procedures  for finding expressions  that 
we might reasonably expect  to be better. 

These ameliorating transformations  are discussed in 
successive  sections.  First  we  cover transformations that 
produce only  a single expression from a  given single 
expression, using algebraic  transformations.  We also 
discuss  the  detection of common subexpressions and the 
replacement of a single expression by a sequence of 
expressions.  Next we discuss  the various forms of op- 
timizer used in the  PRTV  prototype  and  present  the 
results of an initial evaluation of three different levels of 
optimizer. 

Ameliorating and optimizing transformations 
Because of the difficulty of estimating  evaluation cost, it 
seems  best  to avoid any transformations that  depend 
critically upon  cost.  Thus  our  approach  has been to 
make  ad  hoc  transformations  that  are generally felt to be 
useful, as well as applying those few rules that  are al- 
ways  guaranteed  to improve performance. 

In discussing the various  transformations, it  is both 
conceptually and analytically useful to view expressions 
as  trees in which the leaves are  the  stored relations, fil- 
ters,  or projection  lists, whereas  the internal nodes  are 
the  operators. A first simple  example appears in Fig. 1. 
Later  we view the  existence of common subexpressions 
in terms of lattices formed  from the  expression  trees. 

We consider ameliorating transformations in two 
stages. First we examine  transformations of a single 
expression  that retain the single expression, and then 
consider  transformations  that  break up the  expression 
into a sequence of expressions. Finally we consider  the 
order in which to apply the transformations. 

Transformations within a single expression 
The simplest transformations  that  are generally  applica- 
ble are  the combination of sequences of projections  into 
a single projection  and the combination of sequences of 
selections into a single selection. 

The  more complex  generally  applicable  transforma- 
tions  involve the removal of null relations  and redundant 
operations,  such  as A - A  and A U A .  At first sight this 
appears trivial,  but in fact it rests  on  the identification of 
common subexpressions, followed by the application of 
various  algebraic  laws that  remove  the  redundancies. 
Later we discuss  these laws, the identification of com- 
mon subexpressions, and how to combine these  opera- 
tions. 

Only one heuristic  transformation is considered. All 
selections  must be moved so that they are performed as 
early as possible; that is,  they are moved down  the 245 
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where  the T ,  T I ,  . . ., T ,  are projection  lists. List T is 
formed from T,, . . ., T ,  using the following algorithm. 
Each projection list has  the form 

where ikj is an integer, being the  jth  component number 
of the T ,  list. 

For example, consider  the  expression 

A % C,. C,. C ,  % C,,  C, % C,. 

Tracing through the  expression we see  that  the  last 
projection, ( )  %C,, requires  that we place in position 1 
of the result the value that  was in position 2 previously; 
from  the previous  projection, ()'%dl, C:j, we  see  that this 
value came from position 3 earlier.  Thus  the  expression 
reduces  to 

/"\ <->'I 
A B 

( C )  

Figure 1 ( a )  Expression tree of [ ( A  U B )  - ( B  U A ) ]  U B; 
(b)  intermediate step in converting to lattice; and (c)  lattice 
resulting from removal of common  subexpressions. 

expression  tree,  as  far  as  the leaves if possible. The  jus- 
tification is that selections usually reduce cardinality 
significantly, but we will see examples where  these 
transformations do  not help. Some of the manipulations 
involved in moving selections  are quite  complex (nota- 
bly, where  joins  are  involved).  The  movement of selec- 
tions is discussed  later. 

Combining sequences of projections and selections 
A sequence of selections can very simply be  replaced by 
a single selection with a  larger  filter. The new filter is 
simply the conjunction of the original filters. The  whole 
transformation can be captured in the formula 

{ . . . [ A  : F,)  : F , ] . . . F , } = A  : ( F , & F , & . . . & F , )  . 
We are assuming that it is cheaper  to  test a  tuple of rela- 
tion A using the combined filter than  to  test it first 
against F,, then against F,, and so on. It is cheaper  for 
the implementation of PRTV  but could  conceivably not 
be  for other implementations. The collection of all the 
filters has  other  advantages  when moving filters down 
the  expression  tree,  as will be seen. 

A similar combination of sequences of projections  into 
a single projection is possible: 

246 A 7% T I  9% T, T , , = A  % T ,  
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A 9% C,, C,.  C, 96 C,. 

Working backwards  another  step,  the  expression finally 
reduces  to 

A % C,. 

The general  algorithm works in exactly  this  way. It 
combines T ,  and T,_, into  a single projection  list, calling 
this Tn-l; then it combines  this with T,-,, and so on, un- 
til a single projection list is left. The combination of 
projection  lists is essentially  a  composition of functions. 

Algorithm1 -projection  sequence reduction 
Projection  sequences  and lists are  as defined above. 

D O k F R O M n T O 2 B Y - 1 ;  
DO j FROM 1 T O  n,; 

Replace T,- ,  by T,;  
k +   k -  1 ;  

END;  

The saving from combining sequences of projections 
could  be dramatic. Storing all relations in sort order 
means  that projections  could cause  the  complete  resort- 
ing of a  relation.  A sequence of n projections  could in- 
volve as many as n sort  operations, which is reduced to 
at  most  one  sort by the reduction of the  sequence  to a 
single projection. We could even  reduce n sorts  to  no 
sorts, if the final projection  fortuitously led to a  relation 
in the  same  sort  order  as  the original. 

Idempotency and null relations 
Any relational operation involving a null relation 0 as 
one of its arguments is a redundant  operation  and  can be 
removed.  The  appropriate  reductions  for  each  operation 
are shown in Table 1 .  Note  that  these  laws would need 
application from the bottom of a large expression up- 
wards. so that  expressions like 
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( A  n 0 )  U A  

would get reduced as  far  as possible. This  bottom up 
reduction is expressible recursively, by first using a re- 
cursive  invocation to  remove  the null relations  from the 
subexpressions  that  are  the  arguments  to  the  top  opera- 
tion, followed by the application of the reductions of 
Table 1 .  

Some relational operations not involving null rela- 
tions,  but involving the  same argument repeated,  are 
redundant  and  can be  eliminated. These laws are known 
as idernpotency laws and  are shown in Table 2 .  Notice 
that  for differences we obtain  a null relation as  the re- 
sult, so the idempotency laws should  be  applied concur- 
rently  with the removal of the null relations. 

However,  the application of idempotency is not so 
simple, because we could encounter idempotency at any 
level in the  expression  due  to  the  presence of common 
subexpressions.  Thus 

Table 1 Reduction of relational expressions involving null 
relations. 

Expwssion Redrlc,cs t o  

[ ( A U B ) - ( B U A ) ] U B  

should be reduced to a 6, which means recognizing the 
common  subexpression ( A  U B ) .  Thus  an integral part 
of the application of the idempotency  laws must be the 
recognition of common subexpressions.  It is not enough 
to recognize  common subexpressions first  and then  ap- 
ply idempotency  and null relation  removal, because  we 
would fail to  reduce 

{ ( A U B ) - [ ( B U 0 ) U A ] } U B .  

Thus  common  subexpression recognition and idempo- 
tency and null relation  removal  must be performed con- 
currently.  Moreover, we need to  extend  our  processes 
for  common  subexpression recognition to all parts of the 
relational expression, in particular to filters, which are 
Boolean expressions with their own idempotency  and 
null expression  laws,  as shown in Table 3. 

How  do we recognize  common subexpressions? Solu- 
tions to this have been exp1ore.d  in depth in an earlier 
paper [ 61, but  the method is sketched  here  for complete- 
ness.  The point of departure in the method is to notice 
that  expression  trees in which a common  subexpression 
occurs really have  a lattice  structure, in which edges 
converge  onto  common  subexpressions.  Figure 1 (a )  
shows an  expression  tree,  whereas  Fig.I(c)  shows this 
tree  redrawn  as a lattice  to  emphasize  the  common sub- 
expression.  The  process of analyzing an  expression  for 
common subexpressions is equivalent to converting 
from a tree  as in Fig. 1 (a )  to a  lattice in which no nodes 
are  redundant,  as in Fig. 1 (c) . This  conversion  can  best 
be achieved by working  from the bottom level of the 
tree,  the  leaves,  upwards a level at a  time,  introducing all 
convergences possible at  each level before moving up to 
the  next level. Thus, in automatically  converting the  tree 

-~ ~ ~ 

0 U A = A U 0  
0 n ~  = ~ n 0  
A - 0  
@ - A  
O % T  
0 :  F 
A : true 
A : false 
A * 0  O * A  

~ 

A 
0 
A 
0 
0 
0 
A 
0 
0 

Table 2 Idempotency laws of relational algebra. 

Expwssion Redrcc.c.s f o  

A U A  
A n A  
A - A  

A 
A 
4 

Table 3 Null expression and idempotency  laws of Boolean 
algebra. 

Exppr-rssiotr Rrdrrc,es t o  

A & true = true & A 
A & false = false & A 
A V true = true V A 
A V false = false V A 
A & A  
A V A  
A & - . A = - A & A  
A V - A = - A V A  

A 
false 
true 
A 
A 
A 
false 
true 

of Fig. 1 (a) into the  lattice of Fig. 1 (c )  , we first note 
that leaf A appears twice and remove one, and note  that 
leaf B appears  three times, and  remove two of these,  the 
result having considerable  convergence,  as shown in 
Fig. 1 (b) . Then stepping  up  a level from the leaves, we 
find that of the  three U s  only two should be considered 
because  these two have both arguments in the previous 
level. These two Us have  the  same  arguments and give 
the  same result when  we  take into account  that  the 
union operation is commutative.  Thus  one of these is 
redundant and can be removed, leading to  the lattice of 
Fig. 1 (c) . 

The final algorithm is then as shown  below. 247 
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U /:\fi 

A /-\ B 

A / \  F B /-\ F 

(b) 

Figure 2 Distributing a filter through a union, viewed as 
“moving the filter down  the  expression  tree.”  Expression 
( A  U B) : F is shown at (a) before distribution;  at (b ) ,  after 
distribution,  we have (A  : F) U ( B  : F) . 

Algorithm  2-common  subexpression  identijication,  idem- 
potency  application,  and null relation  removal 
Start  at  the  leaves of the  tree, and  work  up the  tree a 
level at a time,  removing any  repeated  common  subex- 
pressions and  applying the various  algebraic laws of 
Tables 1, 2, and 3,  until no  further  reductions in the 
expression  occur. For a full account of this, see [ 61. 

Performing  selections  as  early  as  possible 
We try, if possible, to  transform  the  expression so that 
all selections  are performed as early as possible, moving 
them so that they are directly associated with  primitive 
stored relations. Thus,  for  example, if a union is fol- 
lowed by a  selection, we would distribute  the selection 
through the union, to  obtain  the following transforma- 
tion: 

( A  U B )  : F = ( A  : F )  U ( B  : F ) ,  

where A and B are  relations, U means union, and F is a 
filter or selection logical expression.  This  can be  viewed 
graphically as moving the filter down through the union, 
as illustrated in Fig. 2 .  

For  each  operation  there  is a similar distribution  law. 
All the  laws  are shown in Table 4. To transform an 
expression, we would then  recursively  apply the  appro- 
priate  transformation as  set  out in Table 4, pushing the 
filters down  the  tree  as  far  as they will go. They will 
move down  as  far  as  the  leaves  unless they get  stuck  at a 
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Algorithm 3 -moving  Jilters  down  expression  trees 
TRANSFORM:  PROCEDURE(EXPRESSI0N) 

RECURSIVE; 
IF  EXPRESSION is atomic THEN  RETURN; 
IF  EXPRESSION of form SUBEXP;  FILTER 

THEN distribute  FILTER  into  SUBEXP using 
Table 1 to form expression (SUBEXPl  OP 
SUBEXP2) ; FILTER  RESIDUE; 

ELSE  EXPRESSION already of form SUBEXPl 

TRANSFORM(SUBEXP1);  TRANSFORM 
OP  SUBEXP2; 

(SUBEXP2) ; 

The distribution  laws in Table 4 are  obvious  for union, 
intersection,  and difference. Some  alternatives  are given 
that  require  less filtering, but  these  are  not preferred for 
two reasons. First,  the  reason  for  the  transformations 
is that filters reduce cardinality significantly and so 
should be  worth  the repetition. Second, by making a 
symmetric distribution we do not destroy common  sub- 
expressions  that lead to a  successful  application of the 
idempotency  laws discussed in the  last  section.  The 
combination of pairs of selections into a single selection 
was  discussed  but  has been  included in Table 4 for  com- 
pleteness. 

TO change the  order of filters and  projections requires 
modifying the filter so that  the  references  to  components 
of tuples within the filter remain correct.  Thus if the 
projection  places the ith component of tuples of relation 
A into the jth position of tuples of A % T (i.e.,  projection 
tuple T has  an i in its  jth  position), then every  reference 
in filter F to  component j must be changed to a reference 
to  component i in filter F’.  

The only  really  complex transformation  occurs  for 
joins.  In general the filter associated with a join refers to 
both of the relations being joined.  However,  there may 
be  parts of it that  refer only to  one  or  the  other of the 
argument relations, and this part could  possibly  be  fac- 
tored  out  and moved down through the  join.  Thus we 
wish to transform filter F into  an equivalent F ,  & F ,  & F,, 
where filter F ,  refers only to  components of relation A ,  
filter F,  refers only to  components of relation B ,  where- 
as filter F ,  refers to  both  relations A and B. Clearly F ,  
and F ,  should  be as large as possible.  A  detailed analysis 
of how  this can  be  done is given in [7],  where a couple 
of examples  are given to  show how the method works. 
Filters F ,  and F ,  can  be moved down through the  join, 
leaving behind filter F,, which contains only the  essen- 
tial parts of the filter that  select  on information  jointly 
from  both  arguments to the join. The  combined  opera- 
tion A’  % B’ : F,  is performed as a single operation  and, 
if F ,  is in the  appropriate  form, this operation  can be 
performed  very efficiently. Thus F ,  should be  further 
analyzed  and  transformed to  ensure  an efficient join. 
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Table 4 Distribution  laws  for moving filters  down  expression  trees. 

Operution 

selection : 

Expression  Trunsfbrmrd t o  

( A  : F )  : G 
~ _ _ _ ~  -~ - - ~~ 

A :  ( F & G )  

union U ( A  U B )  : F (A : F )  U ( B  : F )  

intersection n ( A  n s )  : F ( A  : F )  n ( B  : F )  ( A  : F )  n B ,  A n ( B  : F )  

difference - ( A ” )  : F ( A  : F )  - ( B  : F )  ( A  : F )  - B 

projection % ( A  % T )  : F ( A  : F ’ )  % T (F’ is derived  from F ;  see text.) 

join * ( A  * B )  : F ( ( A  : F , )  * ( B  : F , ) )  : F ,  
where 
F = F, & F, & F, (See text), 

In general the  join  operation  has  to be  performed as a 
full Cartesian  product  (the so-called quadratic  join)  to 
produce n ( A ’ ) n ( B ‘ )  tuples from which the  relevant  tu- 
ples are  selected.  In  our  experimental  system  the rela- 
tions are  stored in sorted  order  and, if the filter F ,  is 
“nice,”  the whole join  can  be  executed  as a  merge pro- 
cess with no  more effort than  required for  an  intersec- 
tion. In  fact,  intersection can be viewed as  an  extreme 
best  case of join in which the filter belonging to  the  join 
equates  component 1 of A’ with component 1 of B ‘ ,  
component i of A ‘  with component i of B ’ ,  for all i .  If 
only the leading few components  are  equated, we still 
can  do  the  join  almost  as efficiently. Thus filter F, 
should be re-expressed in the form 

for  as large a k as possible. The p is any comparison 
operator  other than =. More complicated arrangements 
than this would be advantageous but were  thought  to  be 
so unlikely that they were not  worth the computational 
overhead  necessary  to  detect them. The method for 
achieving the  above  transformation is exactly the  same 
as  that used for performing  the  factorization of F into F ,  
& F ,  & F ,  described in [ 71. 

Now  transformations like the distribution of a filter 
into a  union do not  necessarily  improve  things. If A and 
B are disjoint,  then the cardinality of their union is the 
sum of their individual cardinalities and filter F is ap- 
plied as many times both with and without  the  transfor- 
mation. Thus applying the distribution  must always  be 
favorable. But if A and B overlap,  then for some  tuples, 
if the filter is distributed, it will be applied twice, which 
may not  compensate  for  the saving of work in the union 
obtained by performing the filtering first. In  some  cases, 
the filter may not change  the cardinality  much,  and  then 
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we lose by moving the filter down  the  expression  tree. 
For  intersection and  difference  this  worsening of the sit- 
uation when  the filter does not change  the cardinality 
significantly is even  more  marked.  However,  for  joins, 
especially where  the  join is necessarily a full quadratic 
join,  the transformation almost  always  improves things, 
because  that  part of the filter moved  through the  join is 
executed I I  ( A  ) times rather  than n ( A  ) n ( B )  times (or 
n ( B )  times rather than n (A  ) n ( B )  times).  Note, however, 
that  attaching filters to  leaves  has an important  added 
advantage. During the evaluation,  the  relation at a leaf is 
stored, and the  presence of a filter would enable the sys- 
tem  to  use any indexes  or inversions present.  This could 
lead to significant savings compared to the alternative of 
reading  through all the tuples of the relation  and select- 
ing those desired using the filter. This  latter  course is the 
only course available for filters positioned at  nodes  other 
than leaves. 

Trunsjormutions o j  u s i n g l e  rxprc.ssion into (1 se- 
quence o f  expressions 
A subexpression  that  occurs in several  different  places 
within an  expression need only be  evaluated once. Eval- 
uating  a subexpression  once, storing the  result, and  then 
using it many times has a cost  overhead in storing and 
retrieving the  intermediate  result.  This must  be com- 
pared  to  the saving  obtained by not  evaluating the 
expression  repeatedly.  Not all common subexpressions 
are worth separate  evaluation,  and  the decision to  store 
the result of one  subexpression affects the decisions 
concerning other  subexpressions. We have a complicat- 
ed discrete optimization  problem. 

The identification of common subexpressions is a nec- 
essary  step.  This would be achieved by the method giv- 
en earlier  and  can  be  viewed as a by-product of Algo- 
rithm 2. Because, as we will see  later, Algorithm 2 is 249 
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executed before  any methods of this section, we do  not 
consider  the recognition of common  subexpressions fur- 
ther, but assume  that  these  have been  located and  repre- 
sented by a lattice, as in  Fig. 1 (c) . 

We have two considerations  to  explore.  How much do 
we save by  evaluating a common  subexpression only 
once? If we  have many possible common  subexpres- 
sions,  which do we select? 

Deciding  which common subexpressions to eliminate 
Can we decide when a common subexpression is worth 
eliminating and when it is not?  For this  decision we need 
to find a  formula for  the saving that might be  obtained 
and  satisfy ourselves that this formula is sufficiently 
robust given any uncertainties about its validity. 

Suppose  that a subexpression  occurs M times within 
some large expression.  Suppose  that  we  have 

C, = cost of evaluating the  subexpression only once, 
C,  = cost of storing the result of the  subexpression. 
C,  = cost of retrieving the result of the expression once 

it has been  evaluated and stored. 

Our two  choices  are 1 )  Evaluate  the  subexpression 
each of the M times its value is required (which  costs 
M C , ) ;  2 )  evaluate  the  subexpression  once  only,  store 
the  result, and  then  read it back each time it is required 
(which costs C, + CI + MC,) .  

We decide upon choice 2) if it costs  less;  that is, if 

MC, > C, + C, + MC,. 

or if 

A =  ( M  - 1 )  C ,  - C,  - M C ,  > 0. 

The A is the discriminant  function,  which computes  the 
saving obtained by choice 2) ,  namely  evaluating the 
common  subexpression only once. 

Decisions  concerning  multiple  subexpressions 
In general expressions contain  many  common  subex- 
pressions, and decisions about  one  common  subexpres- 
sion affect the decisions  regarding the  others.  Thus, 
when  considering  a large expression containing many 
common subexpressions,  we would not be  able  to exam- 
ine  each subexpression independently of any decisions 
made  concerning  the rest.  We must consider all possible 
combinations  and evaluate them as a whole. For N 
common subexpressions,  we  have 2N possible selections, 
and  to  examine  each of these exhaustively would be 
prohibitive.  We  need a more  structured  approach  and 
must  either  select  the  best possible  combination using 
some  general purpose  discrete optimization method, 
such  as dynamic programming or branch-and-bound 
methods,  or we must resort  to  fast  methods  that  produce 
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Because the general purpose  exact  approaches  are 
complex to implement  and  often are inefficient in execu- 
tion,  heuristic methods  were  studied.  The simplest ad 
hoc method that  does  not involve  any form of blind 
guess is to “hill-climb” towards  the  “best.”  The idea is 
to  select  the  best  subexpression  to be  evaluated once 
and  stored,  and  then to look  for  the  next  best  subject to 
this first decision,  and so on until no  further improve- 
ments can be made. This method  involves of order N‘ 
work.  However,  it  can  not  be  guaranteed  to find the 
global optimum,  although it will  find a local optimum. 

Working  through  several examples, it was always 
found that  the hill-climb method leads to the global opti- 
mum. Thus this  method has been  implemented. In pro- 
gramming this method, various  implementation conve- 
niences have resulted  in modification of the basic  idea. 
This  has led to  the following algorithm, which evaluates 
a  common subexpression  as early as possible and  uses 
the information  gained to modify all the cost estimates 
for  successive decisions. 

Algorithm 4 -common subexpression  evuluation Let 
the lattice  formed  from the  expression be L .  

L, +- L ;  
k + I ;  
WHILE k > 0 DO; 

Let N = { n ,  . . ., nm} be the  nodes of L, such that  for 
each ni ,  storing the intermediate  result  formed at ni 
leads  to an improvement in evaluation. 
CASE N # 0; 
Select  that ni in N that yields maximum improvement. 

Let Lk+l be  the lattice contained in L, with ni as 
supremum. 

k + k + l ;  
CASE N = 0 

Evaluate  subexpression L,. Use  correct cardinality 
thus obtained to  correct  the  current  estimates of 
cardinality  and costs in the remaining lattices. 

k t  k -  1 ;  
END: 

Order of  transformations 
Table 5 summarizes the  transformations  that we have 
discussed. Ideally, the  order in which the transforma- 
tions are  made should be unimportant.  We would like a 
situation in which  any order  leads  to  the  same  result. 
Such a situation is known as  Church-Rosser [8] but 
unfortunately does  not apply here. 

As we move filters down  the  expression  tree,  we  can 
bring together projections  previously separated by a 
selection. Hence  transformations of Algorithm 3 should 
be  done before those of Algorithm 1 ,  although of course 
these could  be done within the  same  recursive traversal 
of the  expression  tree. 
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If we start with an  expression containing a repeated 
common subexpression and if we transform it using 
Algorithms1 and 3 before  detecting the  common subex- 
pressions,  etc., using Algorithm 2, we may have  de- 
stroyed  or  at  least radically  reduced  any common  subex- 
pressions. Consider  the  expressions 

( A  % T % S )  + ( A  % T )  

( A  U B )  : F S  ( A  U B )  ; G. 

In  the first case, combining the projections  loses the 
common subexpression ( A  % T )  , whereas in the second 
case, moving the filters loses  the common subexpression 
( A  U B ) .  

Fortunately  the  common  subexpressions  necessary 
for  the application of idempotency  and null relation 
removal are not affected if either Algorithms 1 or 3 are 
executed before Algorithm 2, providing only that  the 
standard symmetrical transformations of Table 4 are 
used. Thus between  Algorithms 1 and 2, and  between 
Algorithms 3 and 2, we  have a  mutual Church-Rosser 
property,  and the local order of application is unimpor- 
tant.  This is not proved,  because it is felt to  be obvious. 
It is important, however, for it influences our  decisions 
concerning the final order in which we should  apply our 
four transformation  algorithms. The  order of application 
of the algorithms  considered thus  far would be Algo- 
rithm 3, then Algorithm l ,  then Algorithm 2. 

Once we break up the large expression  into a  se- 
quence of expressions  as  part of the common subexpres- 
sion  elimination of Algorithm 4, we find that  we  have a 
conflict, The  movement of filters down  the  expression 
tree  can  produce  enormous savings, yet this destroys 
many common subexpressions.  Consider  the  expression 

(BI : C,  = ‘computing’) n (BI : C5 = ‘mathematics’), 

where  the BI is itself a large  expression. If we move the 
filters first, the work is dramatically  reduced. But dif- 
ferent filters move down  the two branches. and the large 
common subexpression BI disappears, although there 
may still be  a  considerable  residue in common. 

In this example, it is clearly best  to move the  selec- 
tions  first, because  these lead to a far  more dramatic 
improvement  than the common subexpression elimina- 
tion. In general  both  possibilities as well as all intermedi- 
ate possibilities would need individual consideration and 
costing. However, it was felt that this  was  not  worth the 
effort involved, so a  blanket  decision  was  taken to  move 
filters first, and only afterwards eliminate common sub- 
expressions. 

Thus  the  order of application of the various transfor- 
mations  that has been  used in the  PRTV relational data 
base  system is: 
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Table 5 Summary of optimizing transformation  algorithms. 

3 

1 Combine  sequences of projections into a single 
projection. 

2 Identify  common  subexpressions. 

potency  and  identity removal). 
Remove redundant relation operations (idem- 

Remove redundant  operations in filters. 

Perform  selections as early as possible. 
Combine  sequences of selections into a single 

selection. 

4 Common subexpression  evaluation. 
Select those common subexpressions  that  are 

worth  evaluating once only and  storing.with 
the result  retrieved as required. 

- 

1 
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First Algorithm 3. Move selections down  the  expres- 
sion tree so that they are performed as early as 
possible. 

S e c ~ ~ n d  Algorithm I .  Combine  sequences of projections. 
Third Algorithm 2. Eliminate redundant operations. 

idempotency.  and null relations. 
Fourth Algorithm 4. Eliminate  common  subexpressions. 

Note  that  once a  transformation  has  been  performed, 
it does not  need to be repeated  later.  Our  chosen  order 
of application ensures  this.  In Algorithm 2, where a  need 
to  cycle during  common subexpression  detection  and 
redundancy  removal  emerged, we avoided cycling by 
doing the transformations  during the  same  pass through 
the  expression. 

Experimental validation of the “optimizing” trans- 
formations 
The ameliorating transformations  presented in the  pre- 
ceding  sections have been  implemented within the 
PRTV  system.  The implementation has  proceeded in 
three  phases, giving three levels of optimizer. These 
phases were dictated primarily by the  degree of integra- 
tion necessary with the  rest of the  system.  In  phase l no 
access to the  data  base is necessary; in phase 2 the data 
base must  be accessed  to  obtain  the  degree of the rela- 
tion, whereas in phase 3 cardinality  must  be  obtained 
and  intermediate  results computed  and  stored. 

Phmse I :  Mini-optimizer 
This  phase  makes  no  access  to  the  data  base, transform- 
ing the  expression purely at  the  syntactic level. It  uses 
Algorithm 3 without the manipulation of filters at  joins, 
and it uses Algorithm I .  25 
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Figure 3 Relationship  among  the three levels of optimizer and the  transformations. 

Phase 2: Midi-optimizer 
This  phase  accesses  the  data  base  to  obtain  degrees of 
the relations. It  uses all of Algorithm 3 and Algorithm 1 
and Algorithm 2.  

Plzase 3:  Faxi-optimizer 
This  phase  accesses  the  data  base  for  degree  and cardi- 
nality of the  stored relations to  evaluate intermediate 
results. All algorithms are used. 

Figure 3 2hows how the  three levels of optimizer re- 
late  to  the algorithms presented earlier. Note  that  each 
level includes all the  transformations of the lower  levels. 

The implementation of the  transformations was under- 
taken  as  part of the  process of validation of the transfor- 
mations. To obtain  some feel for  the gains that might be 
obtained by the transformations, we  ran a  series of tests 
using the  three levels of optimizer. These  tests  are not 
intended to  measure  accurately  the savings  obtained by 
using the  transformations  but  rather  to verify that 

1. Extreme  cases  that might arise in practice with the 
use of the  system  for complicated queries,  or  queries 
made by personnel unfamiliar with data processing, 
are  caught by the  transformations  and radically im- 
proved. 

2. Queries from users  who would write them efficiently 
are not degraded. 

The  tests were also  undertaken  to pinpoint  any  prob- 
lem areas  where  further  transformations would be 
useful. 

To evaluate completely the ameliorating transforma- 
tions would require “typical”  patterns of data  base activ- 
ity or alternatively the setting up of a  trial  application 
specifically for  test  purposes. Information  obtained  from 
traditional data processing systems regarding  typical 
queries  cannot be extrapolated  to relational data  base 
systems  because  the  greater flexibility of the relational 
systems  promotes  more complex  queries. No real expe- 
rience of relational data  base  systems  over a wide vari- 
ety of applications has been obtained,  and  thus  one is 
forced  into  evaluating the levels of the optimizer using 
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For  the  test, a library  problem  was  simulated.  Rela- 
tions ACQ, B R W ,  DDC, and HIST  were modeled by 
generating random numerical data  for  them, using distri- 
butions  judged reasonable.  The details are shown in 
Table 6. 

A set of queries  was timed using these  data.  The que- 
ries were partly  selected to  stretch  the facilities of the 
levels of optimizer  and  were  partly drawn from the que- 
ries that could arise in practice. The times taken  to ac- 
cess  the  data  base and return  the result without storing it 
were obtained  without the optimizer and with the  three 
levels of optimizer. CPU time  was recorded; this fluc- 
tuated from trial to trial, and  the smallest of a  series of 
trials was taken. 

Table 7 shows  the various expressions  that  were used 
as  queries,  together with the transformed expressions 
actually  evaluated in the  three levels of optimizer. 

The times  obtained  during the  experiments  are  shown 
in Table 8. Let us work through these  and  account  for 
the  observed times. 

Query 1 is H I S T - H I S T .  The relation HIST  is sub- 
tracted from itself. This kind of pathological query could 
arise in practice as a  means of setting the  contents of 
a  relation to the empty  set.  Due to deferral of operations, 
in general  the query would be of the form X - X ,  where 
X is a large expression, with X - X itself being buried 
inside  a large expression.  Here HIST has a  cardinality of 
1000, and  evaluating HIST-HIST  means reading 
through HIST once  (it is only once,  because of buffering). 
This  takes 2 seconds of CPU time  and overhead of 0.2 
s for the  mini-optimizer, 0.7 s for the  midi-optimizer, and 
0.8 s for the  maxi-optimizer. These  latter times are a 
pure  overhead,  because  no  access  to the data  base is 
made. 

Query 2 involves  three  projections. The relation HIST 
has the  three components  (name,  address, borrower’s 
number) projected out,  and from this (name, borrower’s 
number)  are  chosen, followed by a final selection of 
(name).  This kind of query  has been found when using 
a  position-independent  query  language with component 
names  rather than numbers; projections are inserted in 
the  translation into the ISBL language that we  have  used, 
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Table 6 Relations used in tests of optimizers. 

Relations  Components 
name  degree  cardinality I 2 3 4 
-~ ~ ~ 

A CQ 4 1000 acquisition number  author title Dewey code 

~~ ~~~~~~~ ~-~ ~ ~ .~ 

sequence 1 to 1000 uniform 1, 10000 uniform I, 100000 uniform 1 ,  200 

BR  W 4 10 borrower  number  name  address  status 
sequence 1 to 10 uniform 1 ,  10000 uniform 1, 10000 uniform I ,  10000 

DDC 2 200 Dewey  code  subject 
sequence 1 to 2000 uniform I ,  10000 

H I S T  4 I000 acquisition  number borrower number date in date out 
uniform 1, 1000 uniform 1, 10 uniform 1 ,  10000 uniform 1, 10000 

Table 7 Expressions used as  queries in testing  optimizers. The original expressions  are  shown  together with the  expressions  to which 
they are transfornied by the three levels of optimizer. 

~ 

1 

2 

3 

4 

5 

6 

7 

Test no .  Level 
~ ~~ ~~~~~ ~ ~ 

original H l S T  - H I S T  
Mini H I S T  - H l S T  
Midi 0 
Maxi 0 

original ( ( H I S T  % C,, C,, C , )  % C,,   C,)  % C,  
Mini H I S T  % C ,  
Midi H I S T  % C ,  
Maxi H I S T  % C, 

original 
Mini 
Midi 
Maxi 

original 
Mini 
Midi 
Maxi 

original ( (  ( B R W  E:: H I S T  ::: ACQ :!: D D C )  : C, = C ,  & C ,  = C ,  & C,, = CI3) % C , ,  C,,  C,,  C,,  C,,) : C,= 3927)  

n(((BRW*HlST::-ACQ-~DL)C):C,=C,&C,=C,&C,,=C,,)%C,,C,,C,,C,,C,,):C,=9315) 
% c,, C,. C,, C ,  

% c,.  c,, c,, C ,  
Mini { ( B R W  ::. H I S T  * ACQ * D D C )  : ( C ,  = C ,  & C ,  = C ,  & C,, = C,,) & C, ,  = 3927)  % C , ,  C,, C,, C ,  

Midi ( (  ( B R W  :I: H l S T  : C ,  = C,)  * ACQ : C ,  = C,) * (DDC : C, = 3927)  : C,, = C,,  % C, ,  C,, C,, c, 
n ( (  ( B R W  :!: H l S T  : C, = C,) ::: ACQ : C, = C,) 8: (DDC : C ,  = 9 3 1 5 )  : C,, = % C , ,  C,,  C,, C ,  

Maxi D D C : C 2 = 9 3 1 5 + T E M P l  
DDC : C,  = 3921 + T E M P 2  
( B R W  :% H l S T  : C ,  = C,) ::: ACQ : C ,  = C., + T E M P 3  
( T E M P 3  * T E M P 2  : C,, = C,,) % C,, C,. e,, C ,  n ( T E M P 3  ::: T E M P  1 : C,, = C,,) % C , ,  C,, C,, C ,  

n ( ( B R W  *: H I S 7  :i: ACQ * D D C )  : ( C ,  = C ,  & C ,  = C!, & C,,  = Cl,) & C,,  = 93 % C, ,  C,, C,, c, 
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Table 8 Times taken to answer the queries of Table 7 without 
optimizers and with the three levels of optimizer.  Times shown 
are the smallest of a series of trials (excepting query 7, in which 
only one trial was made), The measurements were made on an 
ISM System 370, model 14.5 using multi-access system CMS, 
with between 10 and 1.5 active users during the trials. 

Query CPU time  tuken (s) 
no. no-opt Mini  Midi  Maxi 

1  2.01 
2  10.37 
3  3.78 
4  5.49 
5 4.13 
6  3.87 
7 estimated 

10 days 

2.2 1 0.73 0.8 I 
1.20 1.69 2.22 
2.73 2.74 2.9.5 
5.73 5.83 8.41 
4.36 3.60 3.76 
4.12 4.25 3.23 
estimated 140 1 693 

10 days 

and  three  projections in succession are  not unusual. On 
this particular query  each projection causes a sort of 
1000 degree-4 tuples, but when the projections are  com- 
bined into a single projection, no sorting is necessary. 
This  accounts  for the considerable  savings  with all 
levels of optimizer. The result for the  maxi-optimizer is 
much higher than  that  for the midi-optimizer because the 
maxi-optimizer does, in fact,  store the result unnecessari- 
ly  in this pilot implementation. 

Thus query 2 is an  example in which an end user  or 
language translator  can be allowed to  generate  code with 
no thought of performance. Query 7 is a second  example. 

Queries 3  and 4 test the movement of selections 
through set  operations. Relations ACQ, B R   W ,  and H I S T  
are  combined, and  a subset of the result is selected as a 
function of the values in component 3. From the  dis- 
tributions  shown in Table 6, i t  is seen that in query 3 the 
relations are drastically  reduced in cardinality,  but in 
query 4 very little reduction in cardinality occurs - hence 
the small improvement in 3  and small degradation in 4. 
Note that had the selection been on  component 1 and  not 
component 3, the times after transformation would have 
been significantly reduced due to the  use of indexes on 
component 1 (the relations are  stored using an indexed 
sequential organization).  For  example,  the mini-optimizer 
time  for (ACQ U BRW U H I S T ) )  : C ,  < 3 is 1.94 s. 

Query 5 demonstrates the  movement of a  selection 
through a join. Relation ACQ is joined to H I S T  on 
equal  values in their respective first components, 
acquisition  number (C, in the result is C ,  from H I S T ! ) ,  
and  various other conditions are imposed to select a 
subset of the result. The savings are small, because the 
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ing components of relations ACQ and H I S T .  An n2 join, 
for example, with C, = C,, would have produced much 
more  dramatic savings. Query 7 is such  an example. For 
query 5, the maxi-optimizer uses  an  intermediate rela- 
tion TEMP for  the  second argument to  the  join - this is 
simply making explicit  what happens  anyway with the 
midi-optimizer. The difference between  the maxi- and 
midi-levels of optimizer is due,  rather,  to  extra  overhead, 
plus the  redundant storage of the final result. 

Query 6 is an example in which  evaluating  common 
subexpressions  must  always  improve things. This is seen 
to  be  the  case, although the savings are not significantly 
large. The  example is highly artificial: a set combination 
of ACQ, BRW, and H I S T  is projected onto C ,  and  onto 
C, to  produce two  intermediate  relations,  which are 
differenced. 

Query 7 is adapted from a query  that could arise in 
practice.  Such a large expression would not  be entered 
in one  step-it would be built up in stages as a  result of 
the  deferred evaluation  mechanism, as  the  user  formed 
“views” of the  data.  In this example  the  requirement is 
to find out who are both  mathematics readers  and  com- 
puting readers in the  library. Initially all the  information 
in the  library data  base  was joined  together and  the in- 
teresting components (C,,  C,, C,, C,) projected out. 
Then the readers of mathematics (C ,  = 39A) and  com- 
puting (C ,  = 93 1 5 )  were  defined. The final intersection 
determines  the people common to the two sets of readers. 
This lead to query 7 ,  which was not  practical to answer 
without  some  transformation. Moving the  selection 
through  the joins  was sufficient to make  the query 
feasible,  with  common subexpression evaluation and 
intermediate storage giving only an  extra twofold im- 
provement over the  situation  obtained with the midi- 
optimizer. This  spectacular saving arises  due to the re- 
moval of the extremely large joins implied by the query. 
This particular  query arose  because of the  extremely 
flexible query formulation  capabilities of PRTV  -any 
system  that  permitted such  queries would have to make 
similar transformations. 

From  these  tests we conclude  that  the  transformations 
do  catch  the  extreme  cases  without degrading well for- 
mulated queries.  In  practice  the sizes of relations would 
be orders of magnitude  larger, and  the savings would be 
more  significant. The  overhead  for the  optimizer would 
become completely insignificant. From  Table 8 we see 
that  the midi-optimizer level is the best,  with  possibly  a 
conditional continuation  to full common subexpression 
exploitation for large expressions. 

These  tests  do,  however, suggest that  more  attention 
is concentrated  on  the  expensive  operations, projection 
and  join.  The injection of sorts  at a join  to  change a 
“quadratic  join” of order n2 into  an equi-join of order n 
is worth exploring, as is the delaying of projections until 
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the  last  moment possible. These ideas will be taken up in 
later  studies of data  base optimization. 

Conclusions 
In this paper we have examined a particular  data  base 
problem, the amelioration or “optimization” of access  to 
data in a  relational data base.  Only single accesses (sin- 
gle queries)  have been  considered. In this respect  the 
problem  studied is similar to  that studied elsewhere, in 
DlAM [ 9 ] ,  in language processing [ lo ] ,  and generally 
within relational systems [ 1 1  - 131. 

In this paper we saw a series of transformations  that 
can be  applied to a  relational expression  to  produce  an 
equivalent expression  or  sequence of expressions  that 
can be executed  faster.  These  transformations  were 
ameliorating rather than  optimizing, because they  could 
not be guaranteed  to improve the time taken  to  compute 
the result. However, we argued that  the  chosen transfor- 
mations were reasonably likely to improve  performance. 

We  then saw  the  results of experiments on a prototype 
relational data  base  system and saw how well the  trans- 
formations  performed within the prototype when access- 
ing a data  base of random test  data.  These  experiments 
showed the essential validity of the  approach  taken.  At 
the  cost of a small overhead  that would become negligi- 
ble for large data  bases, severely  bad expressions  were 
recognized and transformed  into acceptable  expressions, 
whereas  other  expressions were in general  improved. 
We saw one  example in which the  performance  was  de- 
graded by the  transformations. 

It is clear  that  further  study is required,  because  there 
are  transformations involving projections that may well 
be worth making. It is also worth  considering the longer 
term storage of intermediate results, using these in later 
expressions if possible. The  methods used for common 
subexpression  detection provide the  techniques neces- 
sary for determining if suitable intermediate  results  have 
been  previously computed. 
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Appendix: Cost of evaluating an expression 
What  does it cost  to  evaluate a  given  relational expres- 
sion E? Evaluation means successively  producing all the 
complete tuples of the relation at some  location within 
main storage. If the  expression E is  of the form F op G ,  
then clearly the  cost of evaluating E would be the  cost of 
evaluating F and G plus  some extra  cost  for evaluating 
the final operation.  Thus  we  expect 

c ( E  = F o p  F )  = c ( F )  + c(op, F ,  G ) .  

This decomposition of the cos ;t of evaluating the  expres- 
sion E is true  for  the  PRTV implementation  but could 
conceivably  not  be true  for  some unusual  implementa- 
tion of a  relational data  base system. 

For relations that  are explicitly stored on disk, their 
cost is simply the  cost of moving them into main storage 
from  disk. Thus  for  stored relation A we would have 

c ( A )  = 6 . n ( A ) . d ( A ) ,  

where 6 is some constant  associated with I /0, n ( A  ) is 
the cardinality of A ,  and d ( A )  is the  degree of A .  The 
constant 6 is the  cost of reading in one  component of 
one tuple of the relation. In  the  PRTV  system this cost 
calculation is complicated by compression  techniques 
used  for  disk storage, but here we overlook  this  consid- 
eration. 

Operations  themselves  are CPU bound. We take this 
into  account by assuming  tuple at a  time  evaluation 
without the explicit storage of intermediate results. Let 
us look at  PRTV  set union. Suppose  that we have  two 
relations A and B ,  either  stored  on disk or  produced by 
the evaluation of two  expressions.  We  suppose  that 
these relations are produced a tuple at a  time for  input 
to  the union procedure.  They  are produced in the  same 
sort  order, so that  the union operation  can be  performed 
by a simple merge of the  two sorted sequences.  The 
union procedure  also  produces a sequence of tuples,  one 
at a time, in the  same  sort  order.  The  code  for UNION 
might look as follows: 

FIRST: X = FIRST  TUPLE OF ( A ) :  
Y = FIRST  TUPLE OF ( B ) ;  

NEXT:  CASE 
x= Y OU’ 

X < Y  ou 

PUT(X) ; X = NE .XT 
T U P L E   O F  ( A )  
Y = NEXT 
T U P L E   O F  ( B )  

TUPLE OF ( A ) ;  
PUT(X) ; X = NEXT 

X > Y OUTPUT(Y);  Y =  NEXT 
T U P L E   O F  ( B ) ;  

ESAC; 

We assume  that  each relation is terminated  with  some 
“infinitely large”  value, so that  the merge continues  to 
completion.  Let us estimate  the  cost of the union  from 
this code.  The  three  alternatives within the  CASE  state- 
ment  are  executed respectively n ( A  n B ) ,  n ( A )  - 
n ( A  fl B ) ,  n ( B )  - n ( A  n B) times. Suppose  that the first 
path costs rn units per  component per  tuple,  and  the 
second and third cost p units. Then the total cost is 

c ( U N I O N , A , B )  = n ( A  f l B ) u d +  [ n ( A )  - n ( A  n B ) ] p d  
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where d is the  degree of the relation.  Using the identity 

n ( A  U B )  = n ( A )  + n ( B )  - n ( A  n B ) ,  

and substituting 

a = u - p , p = 2 p - u a ,  

we find that 

( ,(UNION, A ,  B )  = a [ n ( A )  + n ( B ) ] d +  @ ( A  U B )  d. 

We assume  that  the  costs of all operations  take  the gen- 
eral form 

+ P,,,,n(A OP B )  d(A OP B )  

for suitable constants a,,,, and p,,,,. The  important point 
to  note  about  these  cost functions is that they are func- 
tions of cardinality,  and in general the cardinality is not 
known. 

Obviously if the  operands A and B are explicitly stored, 
their  cardinality is known, but what is the cardinality of 
A U B ,  A n B ,  etc.? All we know is 

max[n(A), n ( B ) ]  5 n ( A  U B )  5 n ( A )  + n ( B ) ,  

0 5 n ( A  n B )  5 min[n(A), n ( B ) ] .  

The variability in the cardinality of the result can be 
considerable. And when the  operands A and B are them- 
selves  the result of evaluating expressions,  the variabili- 
ty is much  worse. 

The  cost of evaluating  a complete  expression includes 
an 1 / 0  component associated with the input of the 
stored  relations, the  storage of the  result  (if this is 
done),  and  the storage of the  intermediate  results  that 
require storage.  There is a CPU  component, partly asso- 
ciated with each  operation  and partly with the  access  to 
disk. All components of the  cost  depend upon the  cardi- 
nalities of the relations being processed by that  part of 
the  expression. Only the cardinalities of the stored rela- 
tions are known  precisely,  and to  estimate  the  cost of 
evaluating an  expression we must  be able  to  estimate  the 
cardinalities of the various  relations  formed  during the 
evaluation. 

How  do we estimate cardinality? As  we  have  seen, 
the cardinality of the result of as simple an  operation as 
intersection  can vary from zero  to  the smaller of the  two 
cardinalities of the  operands.  What precisely happens 
depends upon the detailed content of the  operand rela- 
tions. To estimate  the cardinality we could do something 
very crude,  such  as 

n (A nB) = 0 min[n(A), n ( B ) ] ,  

where 0 is a “suitable”  constant.  This may be easy  to 
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mation adequately,  we really need to  store information 
about  the distribution of data within the relations as 
samples  from some underlying  common  population. 

In the  PRTV optimizer, cost  estimates  have been 
avoided  where  possible. However,  sometimes  cost esti- 
mates  are  necessary, in which case they are  computed 
recursively using the  above  equations, calculating  cardi- 
nalities by this  very crude  method.  Generally,  our op- 
timization methods  are not  based on cost  estimates,  but 
rather on transformations  that  can be guaranteed  to im- 
prove  performance  or  that  can be expected usually to 
improve performance on the basis of some  heuristic ar- 
gument. Only in special cases  are cardinality  and cost 
estimates used to guide  decisions. 

Although the estimation of the  cost of evaluating an 
expression has been abandoned  for this paper, it remains 
an  important problem,  not  only for optimization. It is 
also desirable  to be able  to  estimate  costs of queries so 
that they  can  be  referred  back to a  user  before  actually 
undertaking the work (see,  for example, [ 141 ).  Any 
cost  estimate  to within an order of magnitude would be 
better than none. 
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