
P. A. V. Hall

Optimization of Single Expressions in a Relational
Data Base System

Abstract: This paper examines optimization within a relational data base system. It considers the optimization of a single query de-
fined by an expression of the relational algebra. The expression is transformed into an equivalent expression or sequence of expres-
sions that cost less to evaluate. Alternative transformations, and combinations of several transformations, are analyzed. Measurements
on an experimental data base showed improvements, especially in cases where the original expression would be impracticably slow in
its execution. A small overhead was incurred, which would be negligible for large data bases.

Introduction
Relational data base systems provide the user with a
tabular view of the data, a view that is independent of
any machine or implementation. The user need know
nothing of the implementation in formulating his query.
Thus he cannot be held responsible for the efficiency
with which his query is answered.

Complex queries on large volumes of data take a long
time to answer. But the speed of reply should not de-
pend critically on the way the query or other request for
processing is formulated. The intention of the user
should be preserved, but the details of the query should
be transformed to ensure a faster response; casual users
would thus be protected from catastrophicly expensive
queries. At the same time, an experienced user, who
may well express his query concisely and not require
optimizations, should not be penalized by an unneces-
sary overhead. However, even the experienced user
may sometimes express complex queries inappropriately
and thus benefit from such optimization.

This paper addresses the optimization of single que-
ries to a relational data base. A query is written as a rela-
tional expression, which is transformed into an equiva-
lent expression (or sequence of expressions). In this
paper we explore the variety of transformations that are
practicable. We then present the results of an experi-
mental implementation of the transformations designed
to investigate whether the transformations can be
achieved with negligible overhead and whether they can
successfully catch the unfortunately formulated query
and transform it into one that can be answered effective-
ly. It will be seen that in both cases the answer is affir-
mative.

The investigation into optimization reported here has
244 been specifically aimed at an experimental prototype

relational data base system [I] . We investigated only
one facet of the optimization problem. There are longer
term optimization methods, such as repositioning data
on disk [2-41, retaining data once it has been comput-
ed in case it is required again [51, etc.

The optimization methods considered here are neces-
sarily biased towards the particular system that we were
attempting to optimize. A first essential is to arrange that
all relational operations occur as efficiently as possible,
using suitable storage strategies for relations (sorting,
indexing, encoding, etc.) . Whereas most of the optimiza-
tion methods to be discussed are not dependent upon
implementation details, some knowledge of the PRTV
system implementation is necessary. (Additional infor-
mation about PRTV is provided in [11).

The PRTV system uses two levels of language. The
external interface language (ISBL) is a relational alge-
bra that uses symbolic names for relations and for com-
ponents of tuples. At a lower level there is an internal
language (CIL) in which relations are referred to by
position. Various implementation aspects intrude at the
CIL level, because the positions of components deter-
mine a sort order. In the PRTV implementation rela-
tions are stored as indexed sequential files, and opera-
tions are performed where possible by merging these
files, exploiting the internally known sort orders. The
files are sorted on column 1 , then on column 2 for identi-
cal values in column 1, and so on. Projections not only
reduce the number of components; where components
are re-ordered, a sort operation is induced. Complex
expressions are evaluated a tuple at a time, with all the
merges performed together. Intermediate results are
only formed when essential-for a sorting projection or
at the second argument to a join.

P. A. V. HALL IRM J. RES. DEVELOP.

The optimization methods considered in this paper are
transformations of algebraic expressions in CIL. These
expressions can, in fact, be very large, much larger than
any expression that a user would write. This comes
about because of another efficiency feature of the PRTV
system, deferred execution. When an ISBL expression
is written and the result assigned to some variable, the
expression is not evaluated but merely “semicompiled”
into a CIL expression, with arguments in ISBL being
replaced by their corresponding CIL expressions. CIL
expressions are only evaluated when it becomes essen-
tial to do so-for example, when the result is to be dis-
played for a user.

In this paper we write expressions using a self-ex-
planatory notation built on the operations:

A U B - set union of relations A and B of the same type.
A ~ B - set difference of relations A and B of the same

type.

type.
A 5% T-projection of relation A onto the components

given in projection list T = Ci , . . ., Ci,,!.
A : F-selection of a subset of relation A of tuples for

which filter F is true, where F is a logical ex-
pression involving the components of the
tuples of A .

A * A-Cartesian product or “join” of relations A
and B.

A n B- set intersection of relations A and B of the same

The sequence of a Cartesian product followed by a
selection is a common compound operation recognized
within the implementation and executed as a single oper-
ation. The above notation is not that used for CIL (CIL
is an unreadable prefix polish) but is equivalent to it.

The transformations of expressions to be considered
are:

1 . Change the order in which the operations are per-
formed while ensuring that the correct result is ob-
tained. For example, make selections occur as early
as possible.

2. Recognize common subexpressions and evaluate
some of them separately first.

The legitimate transformations for use in 1) can be
expressed using algebraic laws that show which expres-
sions are equivalent to one another. For 2) we must be
able to recognize when sequences of expressions and
assignments are equivalent. Then our problem becomes
that of selecting, from among all those expressions
equivalent to the original, that expression or sequence of
expressions that is the cheapest to evaluate.

A basic requirement is thus to be able to measure the
cost of evaluating a given expression or sequence of
expressions. This is studied in the Appendix, where we

find that estimating the cost of evaluating expressions is
extremely difficult; instead of attempting to find the best
possible expression to evaluate, we are forced into
weaker, heuristic procedures for finding expressions that
we might reasonably expect to be better.

These ameliorating transformations are discussed in
successive sections. First we cover transformations that
produce only a single expression from a given single
expression, using algebraic transformations. We also
discuss the detection of common subexpressions and the
replacement of a single expression by a sequence of
expressions. Next we discuss the various forms of op-
timizer used in the PRTV prototype and present the
results of an initial evaluation of three different levels of
optimizer.

Ameliorating and optimizing transformations
Because of the difficulty of estimating evaluation cost, it
seems best to avoid any transformations that depend
critically upon cost. Thus our approach has been to
make ad hoc transformations that are generally felt to be
useful, as well as applying those few rules that are al-
ways guaranteed to improve performance.

In discussing the various transformations, it is both
conceptually and analytically useful to view expressions
as trees in which the leaves are the stored relations, fil-
ters, or projection lists, whereas the internal nodes are
the operators. A first simple example appears in Fig. 1.
Later we view the existence of common subexpressions
in terms of lattices formed from the expression trees.

We consider ameliorating transformations in two
stages. First we examine transformations of a single
expression that retain the single expression, and then
consider transformations that break up the expression
into a sequence of expressions. Finally we consider the
order in which to apply the transformations.

Transformations within a single expression
The simplest transformations that are generally applica-
ble are the combination of sequences of projections into
a single projection and the combination of sequences of
selections into a single selection.

The more complex generally applicable transforma-
tions involve the removal of null relations and redundant
operations, such as A - A and A U A . At first sight this
appears trivial, but in fact it rests on the identification of
common subexpressions, followed by the application of
various algebraic laws that remove the redundancies.
Later we discuss these laws, the identification of com-
mon subexpressions, and how to combine these opera-
tions.

Only one heuristic transformation is considered. All
selections must be moved so that they are performed as
early as possible; that is, they are moved down the 245

OPTIMIZING DATA BASE QUERIES MAY 1976

where the T , T I , . . ., T , are projection lists. List T is
formed from T,, . . ., T , using the following algorithm.
Each projection list has the form

where ikj is an integer, being the jth component number
of the T , list.

For example, consider the expression

A % C,. C,. C , % C,, C, % C,.

Tracing through the expression we see that the last
projection, () %C,, requires that we place in position 1
of the result the value that was in position 2 previously;
from the previous projection, ()'%dl, C:j, we see that this
value came from position 3 earlier. Thus the expression
reduces to

/"\ <->'I
A B

(C)

Figure 1 (a) Expression tree of [(A U B) - (B U A)] U B;
(b) intermediate step in converting to lattice; and (c) lattice
resulting from removal of common subexpressions.

expression tree, as far as the leaves if possible. The jus-
tification is that selections usually reduce cardinality
significantly, but we will see examples where these
transformations do not help. Some of the manipulations
involved in moving selections are quite complex (nota-
bly, where joins are involved). The movement of selec-
tions is discussed later.

Combining sequences of projections and selections
A sequence of selections can very simply be replaced by
a single selection with a larger filter. The new filter is
simply the conjunction of the original filters. The whole
transformation can be captured in the formula

{ . . . [A : F,) : F ,] . . . F , } = A : (F , & F , & . . . & F ,) .
We are assuming that it is cheaper to test a tuple of rela-
tion A using the combined filter than to test it first
against F,, then against F,, and so on. It is cheaper for
the implementation of PRTV but could conceivably not
be for other implementations. The collection of all the
filters has other advantages when moving filters down
the expression tree, as will be seen.

A similar combination of sequences of projections into
a single projection is possible:

246 A 7% T I 9% T, T , , = A % T ,

P. A. V. HALL

A 9% C,, C,. C, 96 C,.

Working backwards another step, the expression finally
reduces to

A % C,.

The general algorithm works in exactly this way. It
combines T , and T,_, into a single projection list, calling
this Tn-l; then it combines this with T,-,, and so on, un-
til a single projection list is left. The combination of
projection lists is essentially a composition of functions.

Algorithm1 -projection sequence reduction
Projection sequences and lists are as defined above.

D O k F R O M n T O 2 B Y - 1 ;
DO j FROM 1 T O n,;

Replace T,- , by T,;
k + k - 1 ;

END;

The saving from combining sequences of projections
could be dramatic. Storing all relations in sort order
means that projections could cause the complete resort-
ing of a relation. A sequence of n projections could in-
volve as many as n sort operations, which is reduced to
at most one sort by the reduction of the sequence to a
single projection. We could even reduce n sorts to no
sorts, if the final projection fortuitously led to a relation
in the same sort order as the original.

Idempotency and null relations
Any relational operation involving a null relation 0 as
one of its arguments is a redundant operation and can be
removed. The appropriate reductions for each operation
are shown in Table 1 . Note that these laws would need
application from the bottom of a large expression up-
wards. so that expressions like

1BM J . RES. DEVELOP.

(A n 0) U A

would get reduced as far as possible. This bottom up
reduction is expressible recursively, by first using a re-
cursive invocation to remove the null relations from the
subexpressions that are the arguments to the top opera-
tion, followed by the application of the reductions of
Table 1 .

Some relational operations not involving null rela-
tions, but involving the same argument repeated, are
redundant and can be eliminated. These laws are known
as idernpotency laws and are shown in Table 2 . Notice
that for differences we obtain a null relation as the re-
sult, so the idempotency laws should be applied concur-
rently with the removal of the null relations.

However, the application of idempotency is not so
simple, because we could encounter idempotency at any
level in the expression due to the presence of common
subexpressions. Thus

Table 1 Reduction of relational expressions involving null
relations.

Expwssion Redrlc,cs t o

[(A U B) - (B U A)] U B

should be reduced to a 6, which means recognizing the
common subexpression (A U B) . Thus an integral part
of the application of the idempotency laws must be the
recognition of common subexpressions. It is not enough
to recognize common subexpressions first and then ap-
ply idempotency and null relation removal, because we
would fail to reduce

{ (A U B) - [(B U 0) U A] } U B .

Thus common subexpression recognition and idempo-
tency and null relation removal must be performed con-
currently. Moreover, we need to extend our processes
for common subexpression recognition to all parts of the
relational expression, in particular to filters, which are
Boolean expressions with their own idempotency and
null expression laws, as shown in Table 3.

How do we recognize common subexpressions? Solu-
tions to this have been exp1ore.d in depth in an earlier
paper [61, but the method is sketched here for complete-
ness. The point of departure in the method is to notice
that expression trees in which a common subexpression
occurs really have a lattice structure, in which edges
converge onto common subexpressions. Figure 1 (a)
shows an expression tree, whereas Fig.I(c) shows this
tree redrawn as a lattice to emphasize the common sub-
expression. The process of analyzing an expression for
common subexpressions is equivalent to converting
from a tree as in Fig. 1 (a) to a lattice in which no nodes
are redundant, as in Fig. 1 (c) . This conversion can best
be achieved by working from the bottom level of the
tree, the leaves, upwards a level at a time, introducing all
convergences possible at each level before moving up to
the next level. Thus, in automatically converting the tree

-~ ~ ~

0 U A = A U 0
0 n ~ = ~ n 0
A - 0
@ - A
O % T
0 : F
A : true
A : false
A * 0 O * A

~

A
0
A
0
0
0
A
0
0

Table 2 Idempotency laws of relational algebra.

Expwssion Redrcc.c.s f o

A U A
A n A
A - A

A
A
4

Table 3 Null expression and idempotency laws of Boolean
algebra.

Exppr-rssiotr Rrdrrc,es t o

A & true = true & A
A & false = false & A
A V true = true V A
A V false = false V A
A & A
A V A
A & - . A = - A & A
A V - A = - A V A

A
false
true
A
A
A
false
true

of Fig. 1 (a) into the lattice of Fig. 1 (c) , we first note
that leaf A appears twice and remove one, and note that
leaf B appears three times, and remove two of these, the
result having considerable convergence, as shown in
Fig. 1 (b) . Then stepping up a level from the leaves, we
find that of the three U s only two should be considered
because these two have both arguments in the previous
level. These two Us have the same arguments and give
the same result when we take into account that the
union operation is commutative. Thus one of these is
redundant and can be removed, leading to the lattice of
Fig. 1 (c) .

The final algorithm is then as shown below. 247

DATA RASE QUERIES MAY 1976 OPTIMIZING I

U /:\fi

A /-\ B

A / \ F B /-\ F

(b)

Figure 2 Distributing a filter through a union, viewed as
“moving the filter down the expression tree.” Expression
(A U B) : F is shown at (a) before distribution; at (b) , after
distribution, we have (A : F) U (B : F) .

Algorithm 2-common subexpression identijication, idem-
potency application, and null relation removal
Start at the leaves of the tree, and work up the tree a
level at a time, removing any repeated common subex-
pressions and applying the various algebraic laws of
Tables 1, 2, and 3, until no further reductions in the
expression occur. For a full account of this, see [61.

Performing selections as early as possible
We try, if possible, to transform the expression so that
all selections are performed as early as possible, moving
them so that they are directly associated with primitive
stored relations. Thus, for example, if a union is fol-
lowed by a selection, we would distribute the selection
through the union, to obtain the following transforma-
tion:

(A U B) : F = (A : F) U (B : F) ,

where A and B are relations, U means union, and F is a
filter or selection logical expression. This can be viewed
graphically as moving the filter down through the union,
as illustrated in Fig. 2 .

For each operation there is a similar distribution law.
All the laws are shown in Table 4. To transform an
expression, we would then recursively apply the appro-
priate transformation as set out in Table 4, pushing the
filters down the tree as far as they will go. They will
move down as far as the leaves unless they get stuck at a

248 join. This is embodied in the following algorithm.

P. A. V. HAL1

Algorithm 3 -moving Jilters down expression trees
TRANSFORM: PROCEDURE(EXPRESSI0N)

RECURSIVE;
IF EXPRESSION is atomic THEN RETURN;
IF EXPRESSION of form SUBEXP; FILTER

THEN distribute FILTER into SUBEXP using
Table 1 to form expression (SUBEXPl OP
SUBEXP2) ; FILTER RESIDUE;

ELSE EXPRESSION already of form SUBEXPl

TRANSFORM(SUBEXP1); TRANSFORM
OP SUBEXP2;

(SUBEXP2) ;

The distribution laws in Table 4 are obvious for union,
intersection, and difference. Some alternatives are given
that require less filtering, but these are not preferred for
two reasons. First, the reason for the transformations
is that filters reduce cardinality significantly and so
should be worth the repetition. Second, by making a
symmetric distribution we do not destroy common sub-
expressions that lead to a successful application of the
idempotency laws discussed in the last section. The
combination of pairs of selections into a single selection
was discussed but has been included in Table 4 for com-
pleteness.

TO change the order of filters and projections requires
modifying the filter so that the references to components
of tuples within the filter remain correct. Thus if the
projection places the ith component of tuples of relation
A into the jth position of tuples of A % T (i.e., projection
tuple T has an i in its jth position), then every reference
in filter F to component j must be changed to a reference
to component i in filter F’.

The only really complex transformation occurs for
joins. In general the filter associated with a join refers to
both of the relations being joined. However, there may
be parts of it that refer only to one or the other of the
argument relations, and this part could possibly be fac-
tored out and moved down through the join. Thus we
wish to transform filter F into an equivalent F , & F , & F,,
where filter F , refers only to components of relation A ,
filter F, refers only to components of relation B , where-
as filter F , refers to both relations A and B. Clearly F ,
and F , should be as large as possible. A detailed analysis
of how this can be done is given in [7], where a couple
of examples are given to show how the method works.
Filters F , and F , can be moved down through the join,
leaving behind filter F,, which contains only the essen-
tial parts of the filter that select on information jointly
from both arguments to the join. The combined opera-
tion A’ % B’ : F, is performed as a single operation and,
if F , is in the appropriate form, this operation can be
performed very efficiently. Thus F , should be further
analyzed and transformed to ensure an efficient join.

IBM J. RES. DEVELOP.

Table 4 Distribution laws for moving filters down expression trees.

Operution

selection :

Expression Trunsfbrmrd t o

(A : F) : G
~ _ _ _ ~ -~ - - ~~

A : (F & G)

union U (A U B) : F (A : F) U (B : F)

intersection n (A n s) : F (A : F) n (B : F) (A : F) n B , A n (B : F)

difference - (A ”) : F (A : F) - (B : F) (A : F) - B

projection % (A % T) : F (A : F ’) % T (F’ is derived from F ; see text.)

join * (A * B) : F ((A : F ,) * (B : F ,)) : F ,
where
F = F, & F, & F, (See text),

In general the join operation has to be performed as a
full Cartesian product (the so-called quadratic join) to
produce n (A ’) n (B ‘) tuples from which the relevant tu-
ples are selected. In our experimental system the rela-
tions are stored in sorted order and, if the filter F , is
“nice,” the whole join can be executed as a merge pro-
cess with no more effort than required for an intersec-
tion. In fact, intersection can be viewed as an extreme
best case of join in which the filter belonging to the join
equates component 1 of A’ with component 1 of B ‘ ,
component i of A ‘ with component i of B ’ , for all i . If
only the leading few components are equated, we still
can do the join almost as efficiently. Thus filter F,
should be re-expressed in the form

for as large a k as possible. The p is any comparison
operator other than =. More complicated arrangements
than this would be advantageous but were thought to be
so unlikely that they were not worth the computational
overhead necessary to detect them. The method for
achieving the above transformation is exactly the same
as that used for performing the factorization of F into F ,
& F , & F , described in [71.

Now transformations like the distribution of a filter
into a union do not necessarily improve things. If A and
B are disjoint, then the cardinality of their union is the
sum of their individual cardinalities and filter F is ap-
plied as many times both with and without the transfor-
mation. Thus applying the distribution must always be
favorable. But if A and B overlap, then for some tuples,
if the filter is distributed, it will be applied twice, which
may not compensate for the saving of work in the union
obtained by performing the filtering first. In some cases,
the filter may not change the cardinality much, and then

MAY 1976

we lose by moving the filter down the expression tree.
For intersection and difference this worsening of the sit-
uation when the filter does not change the cardinality
significantly is even more marked. However, for joins,
especially where the join is necessarily a full quadratic
join, the transformation almost always improves things,
because that part of the filter moved through the join is
executed I I (A) times rather than n (A) n (B) times (or
n (B) times rather than n (A) n (B) times). Note, however,
that attaching filters to leaves has an important added
advantage. During the evaluation, the relation at a leaf is
stored, and the presence of a filter would enable the sys-
tem to use any indexes or inversions present. This could
lead to significant savings compared to the alternative of
reading through all the tuples of the relation and select-
ing those desired using the filter. This latter course is the
only course available for filters positioned at nodes other
than leaves.

Trunsjormutions o j u s i n g l e rxprc.ssion into (1 se-
quence o f expressions
A subexpression that occurs in several different places
within an expression need only be evaluated once. Eval-
uating a subexpression once, storing the result, and then
using it many times has a cost overhead in storing and
retrieving the intermediate result. This must be com-
pared to the saving obtained by not evaluating the
expression repeatedly. Not all common subexpressions
are worth separate evaluation, and the decision to store
the result of one subexpression affects the decisions
concerning other subexpressions. We have a complicat-
ed discrete optimization problem.

The identification of common subexpressions is a nec-
essary step. This would be achieved by the method giv-
en earlier and can be viewed as a by-product of Algo-
rithm 2. Because, as we will see later, Algorithm 2 is 249

OPTIMIZING DATA BASE QUERIES

executed before any methods of this section, we do not
consider the recognition of common subexpressions fur-
ther, but assume that these have been located and repre-
sented by a lattice, as in Fig. 1 (c) .

We have two considerations to explore. How much do
we save by evaluating a common subexpression only
once? If we have many possible common subexpres-
sions, which do we select?

Deciding which common subexpressions to eliminate
Can we decide when a common subexpression is worth
eliminating and when it is not? For this decision we need
to find a formula for the saving that might be obtained
and satisfy ourselves that this formula is sufficiently
robust given any uncertainties about its validity.

Suppose that a subexpression occurs M times within
some large expression. Suppose that we have

C, = cost of evaluating the subexpression only once,
C, = cost of storing the result of the subexpression.
C, = cost of retrieving the result of the expression once

it has been evaluated and stored.

Our two choices are 1) Evaluate the subexpression
each of the M times its value is required (which costs
M C ,) ; 2) evaluate the subexpression once only, store
the result, and then read it back each time it is required
(which costs C, + CI + MC,) .

We decide upon choice 2) if it costs less; that is, if

MC, > C, + C, + MC,.

or if

A = (M - 1) C , - C, - M C , > 0.

The A is the discriminant function, which computes the
saving obtained by choice 2) , namely evaluating the
common subexpression only once.

Decisions concerning multiple subexpressions
In general expressions contain many common subex-
pressions, and decisions about one common subexpres-
sion affect the decisions regarding the others. Thus,
when considering a large expression containing many
common subexpressions, we would not be able to exam-
ine each subexpression independently of any decisions
made concerning the rest. We must consider all possible
combinations and evaluate them as a whole. For N
common subexpressions, we have 2N possible selections,
and to examine each of these exhaustively would be
prohibitive. We need a more structured approach and
must either select the best possible combination using
some general purpose discrete optimization method,
such as dynamic programming or branch-and-bound
methods, or we must resort to fast methods that produce

250 acceptable suboptimal results.

Because the general purpose exact approaches are
complex to implement and often are inefficient in execu-
tion, heuristic methods were studied. The simplest ad
hoc method that does not involve any form of blind
guess is to “hill-climb” towards the “best.” The idea is
to select the best subexpression to be evaluated once
and stored, and then to look for the next best subject to
this first decision, and so on until no further improve-
ments can be made. This method involves of order N‘
work. However, it can not be guaranteed to find the
global optimum, although it will find a local optimum.

Working through several examples, it was always
found that the hill-climb method leads to the global opti-
mum. Thus this method has been implemented. In pro-
gramming this method, various implementation conve-
niences have resulted in modification of the basic idea.
This has led to the following algorithm, which evaluates
a common subexpression as early as possible and uses
the information gained to modify all the cost estimates
for successive decisions.

Algorithm 4 -common subexpression evuluation Let
the lattice formed from the expression be L .

L, +- L ;
k + I ;
WHILE k > 0 DO;

Let N = { n , . . ., nm} be the nodes of L, such that for
each ni , storing the intermediate result formed at ni
leads to an improvement in evaluation.
CASE N # 0;
Select that ni in N that yields maximum improvement.

Let Lk+l be the lattice contained in L, with ni as
supremum.

k + k + l ;
CASE N = 0

Evaluate subexpression L,. Use correct cardinality
thus obtained to correct the current estimates of
cardinality and costs in the remaining lattices.

k t k - 1 ;
END:

Order of transformations
Table 5 summarizes the transformations that we have
discussed. Ideally, the order in which the transforma-
tions are made should be unimportant. We would like a
situation in which any order leads to the same result.
Such a situation is known as Church-Rosser [8] but
unfortunately does not apply here.

As we move filters down the expression tree, we can
bring together projections previously separated by a
selection. Hence transformations of Algorithm 3 should
be done before those of Algorithm 1 , although of course
these could be done within the same recursive traversal
of the expression tree.

P. A. V. HALL IBM J . RES. DEVELOP.

If we start with an expression containing a repeated
common subexpression and if we transform it using
Algorithms1 and 3 before detecting the common subex-
pressions, etc., using Algorithm 2, we may have de-
stroyed or at least radically reduced any common subex-
pressions. Consider the expressions

(A % T % S) + (A % T)

(A U B) : F S (A U B) ; G.

In the first case, combining the projections loses the
common subexpression (A % T) , whereas in the second
case, moving the filters loses the common subexpression
(A U B) .

Fortunately the common subexpressions necessary
for the application of idempotency and null relation
removal are not affected if either Algorithms 1 or 3 are
executed before Algorithm 2, providing only that the
standard symmetrical transformations of Table 4 are
used. Thus between Algorithms 1 and 2, and between
Algorithms 3 and 2, we have a mutual Church-Rosser
property, and the local order of application is unimpor-
tant. This is not proved, because it is felt to be obvious.
It is important, however, for it influences our decisions
concerning the final order in which we should apply our
four transformation algorithms. The order of application
of the algorithms considered thus far would be Algo-
rithm 3, then Algorithm l , then Algorithm 2.

Once we break up the large expression into a se-
quence of expressions as part of the common subexpres-
sion elimination of Algorithm 4, we find that we have a
conflict, The movement of filters down the expression
tree can produce enormous savings, yet this destroys
many common subexpressions. Consider the expression

(BI : C, = ‘computing’) n (BI : C5 = ‘mathematics’),

where the BI is itself a large expression. If we move the
filters first, the work is dramatically reduced. But dif-
ferent filters move down the two branches. and the large
common subexpression BI disappears, although there
may still be a considerable residue in common.

In this example, it is clearly best to move the selec-
tions first, because these lead to a far more dramatic
improvement than the common subexpression elimina-
tion. In general both possibilities as well as all intermedi-
ate possibilities would need individual consideration and
costing. However, it was felt that this was not worth the
effort involved, so a blanket decision was taken to move
filters first, and only afterwards eliminate common sub-
expressions.

Thus the order of application of the various transfor-
mations that has been used in the PRTV relational data
base system is:

MAY 1976

Table 5 Summary of optimizing transformation algorithms.

3

1 Combine sequences of projections into a single
projection.

2 Identify common subexpressions.

potency and identity removal).
Remove redundant relation operations (idem-

Remove redundant operations in filters.

Perform selections as early as possible.
Combine sequences of selections into a single

selection.

4 Common subexpression evaluation.
Select those common subexpressions that are

worth evaluating once only and storing.with
the result retrieved as required.

-

1

OPTIMIZING DATA BASE QUERIES

First Algorithm 3. Move selections down the expres-
sion tree so that they are performed as early as
possible.

S e c ~ ~ n d Algorithm I . Combine sequences of projections.
Third Algorithm 2. Eliminate redundant operations.

idempotency. and null relations.
Fourth Algorithm 4. Eliminate common subexpressions.

Note that once a transformation has been performed,
it does not need to be repeated later. Our chosen order
of application ensures this. In Algorithm 2, where a need
to cycle during common subexpression detection and
redundancy removal emerged, we avoided cycling by
doing the transformations during the same pass through
the expression.

Experimental validation of the “optimizing” trans-
formations
The ameliorating transformations presented in the pre-
ceding sections have been implemented within the
PRTV system. The implementation has proceeded in
three phases, giving three levels of optimizer. These
phases were dictated primarily by the degree of integra-
tion necessary with the rest of the system. In phase l no
access to the data base is necessary; in phase 2 the data
base must be accessed to obtain the degree of the rela-
tion, whereas in phase 3 cardinality must be obtained
and intermediate results computed and stored.

Phmse I : Mini-optimizer
This phase makes no access to the data base, transform-
ing the expression purely at the syntactic level. It uses
Algorithm 3 without the manipulation of filters at joins,
and it uses Algorithm I . 25

Algorithm 3

not joins

Algorithm 1 Distrihute Distribute
Algorithm 3

projection through

Algorithm 2

rcmoval

Common Identity
Algorithm 4

evaluation

__* Combine b filter b filters, ’ -
subexpression idempotency

loins

U -
Mini

I
Mini

I v
Midi

I I
V

Maxi

Figure 3 Relationship among the three levels of optimizer and the transformations.

Phase 2: Midi-optimizer
This phase accesses the data base to obtain degrees of
the relations. It uses all of Algorithm 3 and Algorithm 1
and Algorithm 2.

Plzase 3: Faxi-optimizer
This phase accesses the data base for degree and cardi-
nality of the stored relations to evaluate intermediate
results. All algorithms are used.

Figure 3 2hows how the three levels of optimizer re-
late to the algorithms presented earlier. Note that each
level includes all the transformations of the lower levels.

The implementation of the transformations was under-
taken as part of the process of validation of the transfor-
mations. To obtain some feel for the gains that might be
obtained by the transformations, we ran a series of tests
using the three levels of optimizer. These tests are not
intended to measure accurately the savings obtained by
using the transformations but rather to verify that

1. Extreme cases that might arise in practice with the
use of the system for complicated queries, or queries
made by personnel unfamiliar with data processing,
are caught by the transformations and radically im-
proved.

2. Queries from users who would write them efficiently
are not degraded.

The tests were also undertaken to pinpoint any prob-
lem areas where further transformations would be
useful.

To evaluate completely the ameliorating transforma-
tions would require “typical” patterns of data base activ-
ity or alternatively the setting up of a trial application
specifically for test purposes. Information obtained from
traditional data processing systems regarding typical
queries cannot be extrapolated to relational data base
systems because the greater flexibility of the relational
systems promotes more complex queries. No real expe-
rience of relational data base systems over a wide vari-
ety of applications has been obtained, and thus one is
forced into evaluating the levels of the optimizer using

252 small amounts of synthetic data.

For the test, a library problem was simulated. Rela-
tions ACQ, B R W , DDC, and HIST were modeled by
generating random numerical data for them, using distri-
butions judged reasonable. The details are shown in
Table 6.

A set of queries was timed using these data. The que-
ries were partly selected to stretch the facilities of the
levels of optimizer and were partly drawn from the que-
ries that could arise in practice. The times taken to ac-
cess the data base and return the result without storing it
were obtained without the optimizer and with the three
levels of optimizer. CPU time was recorded; this fluc-
tuated from trial to trial, and the smallest of a series of
trials was taken.

Table 7 shows the various expressions that were used
as queries, together with the transformed expressions
actually evaluated in the three levels of optimizer.

The times obtained during the experiments are shown
in Table 8. Let us work through these and account for
the observed times.

Query 1 is H I S T - H I S T . The relation HIST is sub-
tracted from itself. This kind of pathological query could
arise in practice as a means of setting the contents of
a relation to the empty set. Due to deferral of operations,
in general the query would be of the form X - X , where
X is a large expression, with X - X itself being buried
inside a large expression. Here HIST has a cardinality of
1000, and evaluating HIST-HIST means reading
through HIST once (it is only once, because of buffering).
This takes 2 seconds of CPU time and overhead of 0.2
s for the mini-optimizer, 0.7 s for the midi-optimizer, and
0.8 s for the maxi-optimizer. These latter times are a
pure overhead, because no access to the data base is
made.

Query 2 involves three projections. The relation HIST
has the three components (name, address, borrower’s
number) projected out, and from this (name, borrower’s
number) are chosen, followed by a final selection of
(name). This kind of query has been found when using
a position-independent query language with component
names rather than numbers; projections are inserted in
the translation into the ISBL language that we have used,

P. A. V. HALL IBM J . RES. DEVELOP.

Table 6 Relations used in tests of optimizers.

Relations Components
name degree cardinality I 2 3 4
-~ ~ ~

A CQ 4 1000 acquisition number author title Dewey code

~~ ~~~~~~~ ~-~ ~ ~ .~

sequence 1 to 1000 uniform 1, 10000 uniform I, 100000 uniform 1 , 200

BR W 4 10 borrower number name address status
sequence 1 to 10 uniform 1 , 10000 uniform 1, 10000 uniform I , 10000

DDC 2 200 Dewey code subject
sequence 1 to 2000 uniform I , 10000

H I S T 4 I000 acquisition number borrower number date in date out
uniform 1, 1000 uniform 1, 10 uniform 1 , 10000 uniform 1, 10000

Table 7 Expressions used as queries in testing optimizers. The original expressions are shown together with the expressions to which
they are transfornied by the three levels of optimizer.

~

1

2

3

4

5

6

7

Test no . Level
~ ~~ ~~~~~ ~ ~

original H l S T - H I S T
Mini H I S T - H l S T
Midi 0
Maxi 0

original ((H I S T % C,, C,, C ,) % C,, C,) % C,
Mini H I S T % C ,
Midi H I S T % C ,
Maxi H I S T % C,

original
Mini
Midi
Maxi

original
Mini
Midi
Maxi

original (((B R W E:: H I S T ::: ACQ :!: D D C) : C, = C , & C , = C , & C,, = CI3) % C , , C,, C,, C,, C,,) : C,= 3927)

n(((BRW*HlST::-ACQ-~DL)C):C,=C,&C,=C,&C,,=C,,)%C,,C,,C,,C,,C,,):C,=9315)
% c,, C,. C,, C ,

% c,. c,, c,, C ,
Mini { (B R W ::. H I S T * ACQ * D D C) : (C , = C , & C , = C , & C,, = C,,) & C, , = 3927) % C , , C,, C,, C ,

Midi (((B R W :I: H l S T : C , = C,) * ACQ : C , = C,) * (DDC : C, = 3927) : C,, = C,, % C, , C,, C,, c,
n (((B R W :!: H l S T : C, = C,) ::: ACQ : C, = C,) 8: (DDC : C , = 9 3 1 5) : C,, = % C , , C,, C,, C ,

Maxi D D C : C 2 = 9 3 1 5 + T E M P l
DDC : C, = 3921 + T E M P 2
(B R W :% H l S T : C , = C,) ::: ACQ : C , = C., + T E M P 3
(T E M P 3 * T E M P 2 : C,, = C,,) % C,, C,. e,, C , n (T E M P 3 ::: T E M P 1 : C,, = C,,) % C , , C,, C,, C ,

n ((B R W *: H I S 7 :i: ACQ * D D C) : (C , = C , & C , = C!, & C,, = Cl,) & C,, = 93 % C, , C,, C,, c,

253

MAY 1976 OPTIMIZING DATA BASE QUERIES

Table 8 Times taken to answer the queries of Table 7 without
optimizers and with the three levels of optimizer. Times shown
are the smallest of a series of trials (excepting query 7, in which
only one trial was made), The measurements were made on an
ISM System 370, model 14.5 using multi-access system CMS,
with between 10 and 1.5 active users during the trials.

Query CPU time tuken (s)
no. no-opt Mini Midi Maxi

1 2.01
2 10.37
3 3.78
4 5.49
5 4.13
6 3.87
7 estimated

10 days

2.2 1 0.73 0.8 I
1.20 1.69 2.22
2.73 2.74 2.9.5
5.73 5.83 8.41
4.36 3.60 3.76
4.12 4.25 3.23
estimated 140 1 693

10 days

and three projections in succession are not unusual. On
this particular query each projection causes a sort of
1000 degree-4 tuples, but when the projections are com-
bined into a single projection, no sorting is necessary.
This accounts for the considerable savings with all
levels of optimizer. The result for the maxi-optimizer is
much higher than that for the midi-optimizer because the
maxi-optimizer does, in fact, store the result unnecessari-
ly in this pilot implementation.

Thus query 2 is an example in which an end user or
language translator can be allowed to generate code with
no thought of performance. Query 7 is a second example.

Queries 3 and 4 test the movement of selections
through set operations. Relations ACQ, B R W , and H I S T
are combined, and a subset of the result is selected as a
function of the values in component 3. From the dis-
tributions shown in Table 6, i t is seen that in query 3 the
relations are drastically reduced in cardinality, but in
query 4 very little reduction in cardinality occurs - hence
the small improvement in 3 and small degradation in 4.
Note that had the selection been on component 1 and not
component 3, the times after transformation would have
been significantly reduced due to the use of indexes on
component 1 (the relations are stored using an indexed
sequential organization). For example, the mini-optimizer
time for (ACQ U BRW U H I S T)) : C , < 3 is 1.94 s.

Query 5 demonstrates the movement of a selection
through a join. Relation ACQ is joined to H I S T on
equal values in their respective first components,
acquisition number (C, in the result is C , from H I S T !) ,
and various other conditions are imposed to select a
subset of the result. The savings are small, because the

254 join is an order n “equi-join,” with equality on the lead-

ing components of relations ACQ and H I S T . An n2 join,
for example, with C, = C,, would have produced much
more dramatic savings. Query 7 is such an example. For
query 5, the maxi-optimizer uses an intermediate rela-
tion TEMP for the second argument to the join - this is
simply making explicit what happens anyway with the
midi-optimizer. The difference between the maxi- and
midi-levels of optimizer is due, rather, to extra overhead,
plus the redundant storage of the final result.

Query 6 is an example in which evaluating common
subexpressions must always improve things. This is seen
to be the case, although the savings are not significantly
large. The example is highly artificial: a set combination
of ACQ, BRW, and H I S T is projected onto C , and onto
C, to produce two intermediate relations, which are
differenced.

Query 7 is adapted from a query that could arise in
practice. Such a large expression would not be entered
in one step-it would be built up in stages as a result of
the deferred evaluation mechanism, as the user formed
“views” of the data. In this example the requirement is
to find out who are both mathematics readers and com-
puting readers in the library. Initially all the information
in the library data base was joined together and the in-
teresting components (C,, C,, C,, C,) projected out.
Then the readers of mathematics (C , = 39A) and com-
puting (C , = 93 1 5) were defined. The final intersection
determines the people common to the two sets of readers.
This lead to query 7 , which was not practical to answer
without some transformation. Moving the selection
through the joins was sufficient to make the query
feasible, with common subexpression evaluation and
intermediate storage giving only an extra twofold im-
provement over the situation obtained with the midi-
optimizer. This spectacular saving arises due to the re-
moval of the extremely large joins implied by the query.
This particular query arose because of the extremely
flexible query formulation capabilities of PRTV -any
system that permitted such queries would have to make
similar transformations.

From these tests we conclude that the transformations
do catch the extreme cases without degrading well for-
mulated queries. In practice the sizes of relations would
be orders of magnitude larger, and the savings would be
more significant. The overhead for the optimizer would
become completely insignificant. From Table 8 we see
that the midi-optimizer level is the best, with possibly a
conditional continuation to full common subexpression
exploitation for large expressions.

These tests do, however, suggest that more attention
is concentrated on the expensive operations, projection
and join. The injection of sorts at a join to change a
“quadratic join” of order n2 into an equi-join of order n
is worth exploring, as is the delaying of projections until

P. A. V. HALL IBM J. RES. DEVELOP.

the last moment possible. These ideas will be taken up in
later studies of data base optimization.

Conclusions
In this paper we have examined a particular data base
problem, the amelioration or “optimization” of access to
data in a relational data base. Only single accesses (sin-
gle queries) have been considered. In this respect the
problem studied is similar to that studied elsewhere, in
DlAM [9] , in language processing [lo] , and generally
within relational systems [1 1 - 131.

In this paper we saw a series of transformations that
can be applied to a relational expression to produce an
equivalent expression or sequence of expressions that
can be executed faster. These transformations were
ameliorating rather than optimizing, because they could
not be guaranteed to improve the time taken to compute
the result. However, we argued that the chosen transfor-
mations were reasonably likely to improve performance.

We then saw the results of experiments on a prototype
relational data base system and saw how well the trans-
formations performed within the prototype when access-
ing a data base of random test data. These experiments
showed the essential validity of the approach taken. At
the cost of a small overhead that would become negligi-
ble for large data bases, severely bad expressions were
recognized and transformed into acceptable expressions,
whereas other expressions were in general improved.
We saw one example in which the performance was de-
graded by the transformations.

It is clear that further study is required, because there
are transformations involving projections that may well
be worth making. It is also worth considering the longer
term storage of intermediate results, using these in later
expressions if possible. The methods used for common
subexpression detection provide the techniques neces-
sary for determining if suitable intermediate results have
been previously computed.

Acknowledgments
The author thanks T. Rogers and S. Todd for numerous
discussions that have helped to clarify problems and
methods.

Appendix: Cost of evaluating an expression
What does it cost to evaluate a given relational expres-
sion E? Evaluation means successively producing all the
complete tuples of the relation at some location within
main storage. If the expression E is of the form F op G ,
then clearly the cost of evaluating E would be the cost of
evaluating F and G plus some extra cost for evaluating
the final operation. Thus we expect

c (E = F o p F) = c (F) + c(op, F , G) .

This decomposition of the cos ;t of evaluating the expres-
sion E is true for the PRTV implementation but could
conceivably not be true for some unusual implementa-
tion of a relational data base system.

For relations that are explicitly stored on disk, their
cost is simply the cost of moving them into main storage
from disk. Thus for stored relation A we would have

c (A) = 6 . n (A) . d (A) ,

where 6 is some constant associated with I /0, n (A) is
the cardinality of A , and d (A) is the degree of A . The
constant 6 is the cost of reading in one component of
one tuple of the relation. In the PRTV system this cost
calculation is complicated by compression techniques
used for disk storage, but here we overlook this consid-
eration.

Operations themselves are CPU bound. We take this
into account by assuming tuple at a time evaluation
without the explicit storage of intermediate results. Let
us look at PRTV set union. Suppose that we have two
relations A and B , either stored on disk or produced by
the evaluation of two expressions. We suppose that
these relations are produced a tuple at a time for input
to the union procedure. They are produced in the same
sort order, so that the union operation can be performed
by a simple merge of the two sorted sequences. The
union procedure also produces a sequence of tuples, one
at a time, in the same sort order. The code for UNION
might look as follows:

FIRST: X = FIRST TUPLE OF (A) :
Y = FIRST TUPLE OF (B) ;

NEXT: CASE
x= Y OU’

X < Y ou

PUT(X) ; X = NE .XT
T U P L E O F (A)
Y = NEXT
T U P L E O F (B)

TUPLE OF (A) ;
PUT(X) ; X = NEXT

X > Y OUTPUT(Y); Y = NEXT
T U P L E O F (B) ;

ESAC;

We assume that each relation is terminated with some
“infinitely large” value, so that the merge continues to
completion. Let us estimate the cost of the union from
this code. The three alternatives within the CASE state-
ment are executed respectively n (A n B) , n (A) -
n (A fl B) , n (B) - n (A n B) times. Suppose that the first
path costs rn units per component per tuple, and the
second and third cost p units. Then the total cost is

c (U N I O N , A , B) = n (A f l B) u d + [n (A) - n (A n B)] p d

255

OPTIMIZING DATA BASE QUERIES MAY 1976

where d is the degree of the relation. Using the identity

n (A U B) = n (A) + n (B) - n (A n B) ,

and substituting

a = u - p , p = 2 p - u a ,

we find that

(,(UNION, A , B) = a [n (A) + n (B)] d + @ (A U B) d.

We assume that the costs of all operations take the gen-
eral form

+ P,,,,n(A OP B) d(A OP B)

for suitable constants a,,,, and p,,,,. The important point
to note about these cost functions is that they are func-
tions of cardinality, and in general the cardinality is not
known.

Obviously if the operands A and B are explicitly stored,
their cardinality is known, but what is the cardinality of
A U B , A n B , etc.? All we know is

max[n(A), n (B)] 5 n (A U B) 5 n (A) + n (B) ,

0 5 n (A n B) 5 min[n(A), n (B)] .

The variability in the cardinality of the result can be
considerable. And when the operands A and B are them-
selves the result of evaluating expressions, the variabili-
ty is much worse.

The cost of evaluating a complete expression includes
an 1 / 0 component associated with the input of the
stored relations, the storage of the result (if this is
done), and the storage of the intermediate results that
require storage. There is a CPU component, partly asso-
ciated with each operation and partly with the access to
disk. All components of the cost depend upon the cardi-
nalities of the relations being processed by that part of
the expression. Only the cardinalities of the stored rela-
tions are known precisely, and to estimate the cost of
evaluating an expression we must be able to estimate the
cardinalities of the various relations formed during the
evaluation.

How do we estimate cardinality? As we have seen,
the cardinality of the result of as simple an operation as
intersection can vary from zero to the smaller of the two
cardinalities of the operands. What precisely happens
depends upon the detailed content of the operand rela-
tions. To estimate the cardinality we could do something
very crude, such as

n (A nB) = 0 min[n(A), n (B)] ,

where 0 is a “suitable” constant. This may be easy to
256 calculate, but it is not very satisfactory. To do the esti-

P. A. V. HALL

mation adequately, we really need to store information
about the distribution of data within the relations as
samples from some underlying common population.

In the PRTV optimizer, cost estimates have been
avoided where possible. However, sometimes cost esti-
mates are necessary, in which case they are computed
recursively using the above equations, calculating cardi-
nalities by this very crude method. Generally, our op-
timization methods are not based on cost estimates, but
rather on transformations that can be guaranteed to im-
prove performance or that can be expected usually to
improve performance on the basis of some heuristic ar-
gument. Only in special cases are cardinality and cost
estimates used to guide decisions.

Although the estimation of the cost of evaluating an
expression has been abandoned for this paper, it remains
an important problem, not only for optimization. It is
also desirable to be able to estimate costs of queries so
that they can be referred back to a user before actually
undertaking the work (see, for example, [141). Any
cost estimate to within an order of magnitude would be
better than none.

References
I . S. J . P. Todd, “PRTV, A Technical Overview,” Report

U K S C 0 0 7 5 , IBM UKSC, Peterlee, Co. Durham, En-
gland, 1975. (A summary was presented at the ACM con-
ference on Very Large Data Bases, Boston, September
1975.)

2. L. Aspinall, “Data base reorganization-algorithms,” Re-
port U K S C 0 0 2 9 , IBM UKSC, Peterlee, Co. Durham,
England, February 1972.

3. L. Aspinall, C. J . Bell, and T. W. Rogers, “Data base reor-
ganization concepts,” Report U K S C 0 0 1 1 , IBM UKSC
Peterlee, Co. Durham, England, February 1972.

4. C. J. Bell, B. K. Aldred, and T. W. Rogers, “Adaptability
to change in large data base information retrieval systems,”
Report UKSC0027, IBM UKSC, Peterlee, Co. Durham,
England, April 1972.

5. R. G . Casey and 1. Osman, “Generalised Page Replace-
ment Algorithms in a Relational Data Base,” Report
UKSC0056, IBM UKSC, Peterlee, Co. Durham, England,
April 1974.

6. P. A. V. Hall, “Common Subexpression Identification in
General Algebraic Systems,” Report UKSC0060, IBM
UKSC, Peterlee, Co. Durham, England, November 1974.

7. P. A. V. Hall and S. J. P. Todd, “Factorisations of Al-
gebraic Expressions,” Report UKSC0055, IBM UKSC,
Peterlee, Co. Durham, England, April 1974.

8. R. Sethi, “Testing for the Church-Rosser Property,” J .
A C M , 21,67 1 (October 1974).

9. S. P. Ghosh and M. E. Senko, “String Path Search Pro-
cedures for Data Base Systems.” I B M J . Res. Del,e/op. 18,
408 (1974).

10. B. M. Leavenworth and J. E. Sammet, “An Overview of
Nonprocedural Languages.” S I C P L A N Notices (ACM) 9,
1 (April 1974).

11. 1. M. Osman, “Matching Storage Organization to Usage
Pattern in a Relational Data Base,” Ph.D. Thesis, Univer-
sity of Durham, Durham, England, 1974.

12. F. P. Palermo, “A Data Base Search Problem,” Proceed-
ings Fourth Int. Symp. on Computer and Injormution Sci-

IRM J . RES. DEVELOP.

ence, Miami Beach, 1972. (Also Research Report R J Received June 6, 1975; revised September 22, 1975

95193.)
1972, IBM Research Laboratory, San Jose, California

13. J. M. Smith and P. Y. T. Chang, “Optimizing the Perfor- The author, who was assigned to the United Kingdom
mance of a Relational Algebra Data Base Interface,”
Comm. ACM 18, 568 (1975).

Scientijic Center, Peterlee, England, when this work was
14, p, M, stocker and p. A, ~ ~ ~ ~ l ~ ~ , “Self.organizing data done, is now at the British Ship Research Association,

management systems,” Computer Journal 16, 100 (1973). Wallsend, Tyne and Wear, England.

MAY 1976

257

OPTIMIZING DATA BASE QUERIES

