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Abstract. Artificial visual attention is one of the key methodologies in-
spired from nature that can lead to robust and efficient visual search by
machine vision systems. A novel approach is proposed for modeling of
top-down visual attention in which separate saliency maps for the two
attention pathways are suggested. The maps for the bottom-up path-
way are built using unbiased rarity criteria while the top-down maps
are created using fine-grain feature similarity with the search target as
suggested by the literature on natural vision. The model has shown ro-
bustness and efficiency during experiments on visual search using natural
and artificial visual input under static as well as dynamic scenarios.

1 Introduction

Finding a robust, flexible, and efficient solution for visual search in real-life
scenes has been a topic of significant interest for researchers in the field of ma-
chine vision. In the recent years emphasis has been increased on vision systems
engineered according to the role model of human or natural vision in order to
achieve generic solutions able to perform competently independent of the input
complexity. Visual attention is one of the prominent attributes of natural vision
that contributes into its efficiency and robustness. Computational models of this
phenomenon has been built and applied to many vision-based problems.

A majority of the existing attention models have demonstrated visual search
as a primary area of application for their models. Most of these models have
utilized manipulation on bottom-up (BU) saliency maps in order to let the search
target pop-out early. We argue that the top-down (TD) tasks of attention have
a different nature and require a separate mechanism for computing saliency. The
models of human vision such as [1] suggest target related feature processing in
the V4 area of brain. Similarly the models on feature and conjunction search,
for example [2], also presume excitation and inhibitions on particular feature
magnitudes rather than whole channels. Results of psychophysical experiments
reported by [3], [4], and [5] also support our argument. The work of [3] has shown
that a population of neurons encoding the target color and/or orientation gets
a gain while others get suppressed. According to [4], each feature channel can
adopt many values that are evaluated by a specialized layer of neurons in the
human brain. The experiments reported by [5] explicitly declare fine-grain nature
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of TD attention showing that particular feature values are highlighted by human
vision rather than the whole feature channel. These findings suggest that the TD
saliency mechanism constructs task dependant maps to allow quick pop-out of
the target rather than using the BU saliency maps, hence we propose to model
the top-down pathway independent of the bottom-up process.

This paper introduces an approach that applies influence of the active atten-
tion behavior at the early stage of saliency map construction in contrast to the
existing models that apply TD influences at a later stage. Processes for construc-
tion of BU and TD saliency maps are separated from each other in the proposed
model. The major significance of this work is the proposal of a model of TD
attention based upon fine-grain saliency maps, which has been done for the first
time as per knowledge of the authors. Another highlight is the experiments on
visual search using dynamic scenes carried out by active vision systems as the
existing models of TD attention have mostly experimented with static images,
rarely addressing true active vision in attentional search applications.

2 Related Work

Early computational models of visual attention such as [6] and [7] have proposed
a comprehensive mechanism for determining BU saliency using some feature
channels but they use the same BU saliency maps for search task as well. They
apply high weight to the feature channel that facilitates highlighting the search
target. Even the recent developments by the same group in this context [8][9]
apply a similar strategy. The model of [10] determines weights for the feature
maps that would highlight the target in a learning stage and applies them in
the searching stage. Although [11] has separate components for BU and TD
pathways in the model but the same saliency maps are used to deal with the
TD pathway. The model presented in [12] also applies attentional bias towards
the target by learning weights for the conspicuity maps that would make the
required object prominent. Such approaches are likely to show inefficiency when
distractors are also salient in the same feature channel.

The work presented in [13] has provided a search mechanism to detect the
target by looking for its constituent parts. This approach can be considered close
to fine-grain search but the methodology is inclined towards pure machine vision
rather than following a biologically inspired approach. Using gist of the whole
view to apply a TD influence to restrict search locations as proposed by [14] is
also a useful concept that can accelerate biologically plausible visual search. This
concept deals with signature of the whole image rather than individual items.

The object-based attention models such as [15] seem to have similarity with
the fine-grain nature of attention because objects are defined by particular fea-
ture values. Existing object-based models have concentrated on finding only BU
saliency using objects as a fundamental unit. Hence TD saliency maps based
upon fine-grain concept still remains untried.

The proposed region-based methodology for attention modeling has developed
as an evolutionary process. The earlier model from our group [16] introduced
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attentional tracking in dynamic scenes but it had high computation time and
lacked robustness in visual search. The first prototype [17] for the region-based
approach used convex hulls of the segmented regions. After enabling the seg-
mentation algorithm to produce an optimized input for use of attention [18],
new methods were developed to compute BU saliency using channels of color
[19] and other features [20]. Methods for applying inhibition of return (IOR)
and determining pop-out in the region-based paradigm were proposed in [21],
groundwork for using fine-grain saliency using color channel was established in
[22], and solution for handling bottom-up attention and IOR in dynamic scenar-
ios was proposed in [23]. Here we extend the model by introducing other feature
channels in the TD pathway and propose methods for TD map fusion and IOR
on both TD and BU saliency maps.

3 Proposed Region-Based Approach

The proposed model groups pixels of the visual input possessing similar color
attributes into clusters using a robust segmentation method [18] before starting
attention related processes. Assigning fine grain attributes to these regions allows
using them as units to be processed by attention procedures. Some models such
as [16] perform a clustering step in the final saliency map but such late clustering
becomes less effective and inefficient because most of the feature magnitudes
related to the actual objects get faded away at this stage because of processing
on fine and coarse scales of input.

The proposed model separates the steps of feature magnitude computation
and saliency evaluation as shown in figure 1. The primary feature extraction
function F produces a set of regions � consisting of n regions each represented
as Ri and feeds each Ri with data regarding location, bounding rectangle, and
magnitudes of each feature φf

i (f ∈ Φ). As five channels of color, orientation,
eccentricity, symmetry and size are considered in the current status of our model
hence we have Φ = {c, o, e, s, z}.

Computation of the BU saliency using the rarity criteria is performed by the
process S whose output is combined by W that applies weighted fusion of these
maps to formulate a resultant BU map. The function G consideres the given TD
conditions to produce fine grain saliency maps that are combined by the function
C into a resultant TD map. The function P applies appropriate weights to the
resultant saliency maps according to the active attention behavior, combines
them into a master conspicuity map, and applies a peak selection mechanism to
choose one pop-out at a time. The focus of attention at a particular time t is
stored in the inhibition memory using which the process of IOR suppresses the
already attended location(s) at time t+1 in order to avoid revisiting of the same
location. The memory management function M decides whether to place the
recent focus of attention in inhibition memory or excitation memory according
to the active behavior and sets the weights of inhibition.
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Fig. 1. Architecture of the proposed region-based attention model

3.1 Fine-Grain Top-Down Saliency Maps

The process G from the architecture diagram shown in figure 1 is responsible for
construction of fine-grain saliency maps for each feature channel f considered in
the model. The search target is defined as a set of top-down feature values Ftd in
which the individual features are referred as F f

td. For constructing the saliency
map with respect to color (f = {c}), we define Dh as the difference of hue that
can be tolerated in order to consider two colors as similar, Ds as the tolerable
saturation difference, DI as the allowed intensity difference for equivalent colors,
and φc

i as the magnitude of the color feature for Ri. Now, the TD color saliency
γc

i of each region Ri is determined as follows:

γc
i =

⎧
⎪⎨

⎪⎩

a(Dh−Δh
i )

Dh + b(Ds−Δs
i )

Ds + c(DI−ΔI
i )

DI for Δh
i < Dh & chromatic φc

i , F
c
td

(a+b+c)(DI−ΔI
i )

DI for ΔI
i < DI & achromatic φc

i , F
c
td

0 otherwise

where a, b, and c are weighting constants to adjust the contribution of each color
component into this process. Δh

i , Δs
i , and ΔI

i are magnitudes of the difference
between φc

i and F c
td in terms of hue, saturation, and intensity respectively. We

take a = 100, b = 55, and c = 100 because the saliency values of a region lie
between the range of 0 and 255 in our model. The value of b is kept smaller
in order to keep more emphasis on the hue and intensity components. Hence a
perfect match would result in a saliency value equal to 255.

The color map had specific requirements being a composite quantity whereas
the other feature channels consist of single-valued quantities; hence they can be
processed using a simpler procedure. Having Θf as the normalized ratio of the
feature magnitudes φf

i and F f
td (for f �= {c}) defined as

Θf =
{

φf
i /F f

td for φf
i < F f

td

F f
td/φf

i otherwise

which always keeps 1 ≥ Θf ≥ 0. Now the TD saliency γf
i of a region Ri with

respect to a feature f (f ∈ Φ, f �= {c}) will be computed as

γf
i =

{
kΘf for Θf > DΘ

0 otherwise
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where k is a scaling constant and DΘ is the ratio above which the two involved
quantities may be considered equivalent. We take k = 255 because the maximum
amount of saliency can be 255 in our implementation and DΘ = 0.91.

3.2 Map Fusion and Pop-Out

In this paper we are concerned with the TD portion of the model hence we
explain the map fusion function C that produces a resultant TD saliency map.
We take W f

td as the TD weight for the map of feature channel f that gets a
value depending upon the active behavior of the vision system. Under search
behavior, high weights are set for color channel while keeping low weights for
other shape-based features because the target could be in an arbitrary size or
orientation in the given input. Under track behavior other feature channels also
gain high weight because the target has to match strict criteria. The resultant
TD saliency γi(t) of a region Ri at time t is computed as follows

γi(t) =
∀f∈Φ∑ (

W f
tdγ

f
i

)
/

∀f∈Φ∑
W f

td

Resultant of BU saliency is obtained as βi(t) for which details can be seen
in [21]. The function P combines the BU and TD saliency maps to produce the
final conspicuity map. The active behavior again plays an important role at this
step by adjusting weights of these two maps. Under explore behavior the major
emphasis remains on the BU map while during other behaviors, like search or
track, high weight goes to the TD channel. Denoting the behavior dependant
weight for TD map as W b

td and for BU map as W b
bu, the final saliency Si(t) of

each Ri at time t is given as

Si(t) =
(
W b

buβi(t) + W b
tdγi(t)

)
/

(
W b

bu + W b
td

)

3.3 Inhibition Using Saccadic Memory

After having attended a region at time t − 1, the saliency value of that region
with respect to each feature f is inhibited for use at time t. Instead of using an
inhibition map as done by existing methods we use a memory oriented mecha-
nism. As our application area is mobile active vision systems, previously attended
locations may get relocated in subsequent frames of input. We propose to put
the attended regions into a spatial inhibition memory M s

inh able to remember
p regions. An item is inserted into M s

inh as M s
k where the age k is set to 1 for

freshly arrived item and the older entries get an increment in their values of k on
arrival of a new item. In order to deal with the problem of relocation of regions in
context of the view-frame, we use the world coordinates of the regions calculated
using the head angles and the position of regions within the view-frame.

We apply the inhibition right after formulation of region saliency in order to
make the model efficient. We take the time at which the freshly arriving regions
get their saliency as t−1 and the time after going through the inhibition process
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as t. Hence, at time t, for each Ri with BU and TD saliency values with respect
to a feature f , represented as βf

i (t) and γf
i (t) respectively, are updated from

βf
i (t − 1) and γf

i (t − 1) as follows:

βf
i (t) = δk

1βf
i (t − 1) when Ds(Ri, M

s
k) < rinh∀k ∈ {1..p}

γf
i (t) = δk

2γf
i (t − 1) when Ds(Ri, M

s
k) < rinh∀k ∈ {1..p}

where rinh is the radius in which inhibition takes effect and Ds(Ri, M
s
k) is the

spatial distance between the considered region Ri and the region in the memory
location M s

k . δk
1 and δk

2 are inhibition factors both having a value between 0
and 1. The value of δk

1 becomes closer to 1 as the age of M s
k increases, hence

suppression on recently attended items is stronger than the older ones. δk
2 remains

the same for all items in the memory because under TD attention, such as search,
once the target is found at a location then that location has to be strongly
inhibited during the next few saccades of further search.

4 Results

Experiments were performed to test the search capabilities of the proposed
method by using three scenarios. In each scenario the search target was given
to the system in form of an image containing the isolated target over a blank
background. In the current status the system is able to work with single regions
at a time rather than composite objects hence the system picks the largest re-
gion from the picture of the target as the region to search. The first scenario of
experiments was the search in static scenes in which the attention mechanism
was allowed to mark as many occurrences of the target as possible. These experi-
ments tested the ability of the system to select all relevant locations. Figure 2(a)
reflects this scenario with the search field as a still scene viewed through the cam-
era of the mobile vision system available in our laboratory and four occurrences
the target (a dull blue box) in the scene. In the second scenario a simulated
vision system was set into motion and it was required to mark the locations
matching the search target one location per frame. This scenario was useful to
test the ability of inhibition of return in dynamic scenes. Figure 2(b) represents
this scenario in the simulation framework developed in our group [24]. In the
third scenario the attention mechanism was required to perform overt attention

Fig. 2. Samples from visual input used in experiments. (a) Search field and target used
as static scenario (b) Search environment and target used for dynamic scene scenario
(c) Search environment and target used to test overt attention.
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Fig. 3. Top row: Fixated (black) and inhibited (blue) locations for static scenario given
in figure 2(a). Bottom row: Top-down saliency maps at time of each fixation.

Fig. 4. Fixated (yellow) and inhibited (blue) locations for dynamic scenario given in
figure 2(b)

Fig. 5. Target locations brought into center of camera view (yellow), salient locations
(green), and inhibited locations (blue) for overt attention scenario given in figure 2(c)

to the best matching location by bringing the target into center of camera view.
Hence one selection per saccade was allowed. These experiments tested the abil-
ity of the system to locate the (estimated) position of the search target in three
dimensional space. Figure 2(c) shows a sample input for this scenario.

Figure 3 demonstrates output of attentional search for the test case given in
figure 2(a). Results of first five fixations by the attention system ( t = 1 to t = 5)
are reported here. The current focus of attention is marked with a black rectangle
while blue rectangles are drawn at the inhibited locations. It may be noted that
the four target locations are marked in the first five fixations in which the extra
fixation is due to a repeated saccade on an object that had such a high top-down
saliency that it still remained higher than the fourth object, which had relatively
less similarity with the target, even after inhibition. This aspect can be noticed
in the saliency maps provided in the second row of figure 3. Results of search in a
dynamic scene performed by the vision system in motion are shown in figure 4.
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The occurrences of the target in the environment, both shown in figure 2(b),
are marked by the vision system working in the simulation framework. After
fixating on the best matches, the system tries to pick target locations even when
they have less similarity with the target, for example, the later fixations are
done based only upon color similarity. Figure 5 demonstrates the results of overt
attention in which the vision system maneuvers its camera head to bring the
search target into to fovea area (center of view). Salient locations are marked
with green rectangles, the attended locations brought into the center of view
with yellow, and inhibited ones with blue.

5 Evaluation and Conclusion

In order to quantitatively evaluate the performance of our model, we carried
out experiments using some specially designed visual data apart from the vi-
sual input consisting of natural and virtual reality images. Five occurrences of a
predefined search target were embedded in each test image that contained dis-
tractors offering quantified amount of complexity. In the simplest case, as shown
in images labeled as 1 and 1-D in figure 6, the distractors possessed high differ-
ence of features (Color, orientation, and size) from the target. The rest of the
samples were created using different combinations of feature differences as shown
in table 1 where H represents a high difference from target and L stands for low
difference, hence the inputs labeled 8 and 8-D offer the maximum amount of
complexity. The samples labeled as 1-D to 8-D contain extra distractors possess-
ing high bottom-up saliency and the occurrences of the targets were distorted by
introducing gradually rising blur (increasing from right to left in each image).

Table 1. Feature differences between target and distractors used for figure 6

Image label 1 / 1-D 2 / 2-D 3 / 3-D 4 / 4-D 5 / 5-D 6 / 6-D 7 / 7-D 8 / 8-D
Color H H H H L L L L
Orientation H H L L H H L L
Size H L H L H L H L

A comparison of attentional search models is given in [12] using the criteria
of time taken and number of fixations to reach the target. Similarly [10] uses
the average hit number to reach the target as a measure of search efficiency.
Evaluation of our model in terms of these two metrics using the test cases given
in figure 6 is shown in figure 7. The proposed model was able to locate the
search target in the first fixation in all experiments (hence, 1 fixation per search).
Average time to fixate on the first target location was 23.6 milliseconds in these
evaluation experiments while average search time in the natural images was 69.3
ms on Linux based 3 Ghz Pentium 4 machine. This time includes segmentation
and feature computation processes. None of the distractors possessing high BU
saliency were fixated in all experiments. The time reported by [12] for an average
search is 1.1 seconds on Linux based dual Opteron machine with minimum 2.2
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Fig. 6. Search target and sample input, having distractors offering different levels of
complexity, used for quantitative evaluation

Fig. 7. Results of experiments using evaluation data given in figure 6

GHz clock speed while they have reported the average search time of the model
of [7] to be 1.43 seconds on the same machine. In terms of fixations per search,
the model of [7] has an average of 4.03, [12] has 2.73, and [10] has reported an
average of 1.45 in best cases and 3.39 in worst cases.

It may be concluded that the region-based methodology with the innovation
of constructing the fine-grain saliency maps separate from the bottom-up maps,
using the concepts taken from the recent literature on research in natural visual
attention, is an efficient and robust alternative to the existing approaches. The
proposed method is also immune to bottom-up saliency of distractors in every
feature channel and does not require any tuning of parameters or adjusting of
weights. The memory based inhibition mechanism has also shown success in
static as well as dynamic scenarios.
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