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Abstract

The Gauss-Kronrod quadrature scheme, which is based on the zeros of
Legendre polynomials and Stieltjes polynomials, is the standard method
for automatic numerical integration in mathematical software libraries.
For a long time, very little was known about the underlying Lagrange
interpolation processes. Recently, the authors proved new bounds and
asymptotic properties for the Stieltjes polynomials, and subsequently ap-
plied these results to investigate the associated interpolation processes.
The purpose of this paper is to give a survey on the quality of these inter-
polation processes, with additional results that extend and complete the
existing ones. The principal new results in this paper are necessary and
sufficient conditions for weighted convergence. In particular, we show that
the Lagrange interpolation polynomials are equivalent to the polynomials
of best approximation in certain weighted Besov spaces.
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1 INTRODUCTION

Interpolation processes which are based on the zeros of orthogonal polynomials
typically converge very rapidly for smooth functions. Their main advantage over
spline approximation operators, in particular, is that their error is not saturated
for functions of a certain low order of smoothness. Polynomial interpolation
often leads to exponential convergence rates. However, orthogonal polynomials
of different degrees most often do not have many zeros in common. Hence, in
practical implementations of such interpolation processses most of the function
values computed in one step cannot be used in the following ones. The idea
of extended interpolation is to construct a practically efficient approximation
method by adding further nodes to the existing ones. This leads to a sequence
of “refined” interpolation nodes. This new type of interpolation matrix leads to
several problems concerning convergence and error bounds.

There exists an extensive literature on interpolation processes based on the
zeros of orthogonal polynomials. Furthermore, there exist results on interpola-
tion processes based on the zeros of products of classical orthogonal polynomi-
als with respect to different weight functions (cf., e.g., [4, 5, 6, 17, 25, 26, 42]).
Presently, the most important practical example of refined interpolation nodes
is the Gauss-Kronrod quadrature routine, which uses nested quadrature formu-
las based on the Lagrange interpolation polynomials with respect to the zeros
of Legendre and associated Stieltjes polynomials. Gauss-Kronrod routines are
used in the automatic integration routines in the NAG library [36], the IMSL
library [21] and the Mathematica software package [48]. The purpose of this
paper is to give a survey on recent results on the error of the interpolation pro-
cesses based on Gauss-Kronrod nodes. We include several new results in order
to generalise and complete the existing ones.

Gauss-Kronrod formulas were introduced in 1964 by A. S. Kronrod [23, 24]
in order to estimate the error of Gaussian quadrature formulas. Based on the n

nodes 1 p, ..., Tn.n of the Gaussian formula Q, the Gauss-Kronrod formula
n n+1
Sesilf] = D Avnf(@un) + > Bt f(€untr)
v=1 p=1

is constructed by choosing n + 1 additional nodes §, ,+1 and weights A, ,,
By, nt1 which are chosen in such a way that polynomials of a degree as high
as possible are integrated exactly. The additional nodes & nt1,...,&+1,n+1
are the zeros of the Stieltjes polynomials E, 1, defined up to a multiplicative
constant by the orthogonality relations (see §2)

1
/ Po(z)Epyi(z)z* dz = 0, k=0,...,n.
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Here, P, is the nth Legendre polynomial whose zeros are the nodes of QS The
polynomials E,; were first studied by T. J. Stieltjes in 1894 [1], who con-
jectured that its zeros, for all n € N, are real, inside (—1,1), and that they
interlace with the zeros of P,. G. Szegd proved these properties in 1935 [46].
After Szegd’s paper, for a long time no new results on the Stieltjes polynomi-
als appeared in the literature. Also Kronrod’s work contains no references to
Stieltjes’ and Szegd’s work. The connection was independently pointed out in



the Eastern literature by I. P. Mysovskih (1964, [35]) and in the Western liter-
ature by P. Barrucand (1970, [2]). G. Monegato proved in 1976 [31], that the
positivity of the quadrature weights B, ,41 associated with the additional nodes
&u.n+1 18 equivalent to the interlacing property of the nodes. The positivity of all
quadrature weights was proved by Monegato in 1978 [32]. Many authors have
considered the location of the zeros and the positivity of the quadrature weights
for more general weight functions. In particular, cf. Gautschi and Notaris [18§],
Gautschi and Rivlin [19], Monegato [33], Peherstorfer [44], as well as the survey
papers of Monegato [33, 34], Gautschi [16] and Notaris [41].

The Gauss-Kronrod formula is based on the Lagrange interpolation process
Lon+1 with respect to the zeros of P, E,,41 which can efficiently be used for prac-
tical computations in connection with the interpolation process which is based
on the zeros of P, and with the interpolation process L,; which is based on
the zeros of E,41. Monegato conjectured in [33] on the basis of numerical re-
sults that the interpolation process £2y,+1 has Lebesgue constants of the optimal
order logn. This conjecture remained open for a long time.

The reason for this was a lack of precise knowledge on the Stieltjes polyno-
mials E, 1 and its zeros. While Szeg6 proved the interlacing property of the
nodes in [46], for a long time no sharper results on the asymptotic behaviour of
the zeros or lower bounds for the differences were known. Peherstorfer in [44]

considered Stieltjes polynomials for weight functions of the kind w(z) = \/%,

where W € C?[—1,1] and W > C > 0 for some real constant C. For weight
functions of this kind, Peherstorfer proved results on the asymptotic behaviour
of the associated Stieltjes polynomials. The paper [44] generalised earlier works
on Bernstein-Szeg6 weight functions in [40, 43]. However, the case of the Legen-
dre weight function and the abovementioned problems remained open (see also
[44, p. 186]).

Essential progress was made in the paper [10], which contains results on the
asymptotic behaviour of Stieltjes polynomials for ultraspherical weight func-
tions wy, A € [0,1]. This includes the Legendre case for A = % The asymptotic
formulas have been used to obtain error estimates for Gauss-Kronrod quadra-
ture formulas in many important function spaces, and comparisons with other
quadrature formulas, see [12]. The proof of pointwise bounds for the Stieltjes
polynomials, which are precise in the whole interval [—1, 1], and respective lower
bounds for the distances of the zeros led to a proof of Monegato’s conjecture on
the optimal order of the Lebesgue constants of Lo,,41 in [13]. It is well known
that the Lebesgue constants associated with the zeros of P, are of the order
O(y/n). Hence, adding the nodes & pt1, .- -,&n+1,n+1 does not only lead to an
efficient error estimation, but improves at the same time the interpolation pro-
cess. A surprising result in [13] is that also the Lebesgue constants associated
with Lp41 are of optimal order O(logn). The aim of the papers [13, 14, 15]
was to obtain more results on the convergence of these interesting interpolation
processes. In particular, the boundedness of the operators in suitable subspaces
of LP[—1,1] was investigated in these papers. Recently in [15], Marcinkiewicz-
Zygmund inequalities have been proved for the Gauss-Kronrod nodes and for
the Stieltjes zeros alone. These inequalities can be used to revisit the existing
results and to deduce new error bounds for many function spaces in LP weighted
norms, which is the subject of this paper. The principal new results in this paper
are necessary and sufficient conditions for the LP weighted convergence of the




interpolation processes. In particular, we show that the Lagrange interpolation
polynomials with respect to both the Gauss-Kronrod nodes and the Stieltjes
zeros alone are equivalent to the polynomials of best approximation in certain
weighted Besov spaces. In §2, we state the fundamental properties of Stieltjes
polynomials as well as asymptotic relations and inequalities. Section 3 contains
results on the Lagrange interpolation processes and some numerical examples.

2 STIELTJES POLYNOMIALS

Let P, be the Legendre polynomial defined by

1
/ P, (z)z" dx = 0, k=0,1,...,n -1, (1)
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and P,(1) = 1. For n > 0, the Stieltjes polynomial E,1; is defined by

1
/ Po(2)Eypy (2)2" dz = 0, k=0,1,...,n, (2)

-1
and the normalisation

22nn2

on
Bppi(z) = —a"™ ' +p(x),

o = m: p € . (3)

Here and in the following, II,, is the space of all algebraic polynomials of degree
< n. Up to a multiplicative constant, the polynomial E, i is defined uniquely
by (2). G. Szegd proved in 1935 [46] that the zeros of E,;; are real and in
(=1,1) for all n € N, and that they interlace with the zeros of P,. However,
no sharper results on Stieltjes polynomials and its zeros have been known for a
long time.

A classical approximation to the Legendre polynomials is given by Laplace’s
formula,

Po(cosf) = ,/ﬁ cos{<n+%>0—£} + OmT3?), ()

which holds uniformly for e < § < 7 —¢, € € (0,F) arbitrary but fixed. The
asymptotic behaviour of the Stieltjes polynomials was studied numerically in
[33, p. 235]. This reference contains the observation that P,E,;1 numerically
behaves like the Chebyshev polynomial of the first kind To,41. In [44] Pe-
herstorfer proved asymptotic formulas for the case weight functions of the kind
w(x) = \/W%, W e C*[-1,1], and W > C > 0 (cf. [44, §4]), but the question
remained open for the Legendre weight [44, p. 186]. This problem was solved

n [10],
By (cos ) :2,/2"5”“9 {( ) E} + 0(1), (5)

uniformly for € < § < 7 —¢€, € € (0, % ) fixed. While this formula gives the

precise behaviour inside the 1nterval (—1,1), one cannot deduce the boundary




behaviour near the endpoints £1. For Legendre polynomials, a well-known and
more precise result is (cf. [47, Theorem 8.21.13])

Pn(cosa)z,/ﬁ {cos[<n+%)a—ﬂ + (nsine)—lo(n}, (6)

uniformly for cn™' < 6 < 7 —cn™!, ¢ > 0 arbitrary but fixed. The analogous
result for Stieltjes polynomials is (cf. [11, Lemma 1]).

E,11(cosb)

— Co(8)Vn s {cos[(m%)mﬂ + (nsing)~'A,(8) } + Ba(6),

where for every ¢ which is independent of n we have
max(|4n(8)], [Ba(®)],|Ca(®)) <C, B [enm—cn ),

C = C(c) independent of n. For ¢ > m, we have 1 < 5,/5C,(6) < 1.0180.... In
[10, Theorem (ii)], an asymptotic approximation was also given for the derivative
of Stieltjes polynomials,

2n 1 m
! —_ 1 — —
E,  1(cosb) = 2n —ng §in {<n+ 2)0 + 4} + O(V/n),
uniformly for e < § < m —¢, ¢ € (0,%). Formulas (4) and (5) show that
the product P,F,;1 behaves asymptotically like a constant multiple of the
Chebyshev polynomial Ty, 41,

Po(@)Ens (z) = %Tml(x) +o(l), wze[-1461-d, (7

d > 0 independent of n. The following asymptotic result from [15, Lemma 4] is
an application of the above results and is an important tool for the investigation
of the interpolation processes which are based on the zeros of E, ;.

Lemma 1 Let r > 1. Then we have

r—n"1!

lim ‘ (En+1 (cosf) sin~!/? 0) ’ (8)

n— oo n—1
2\ ? 1 ’
- 27 <_n> cos’{<n+—>9+z} df = 0,
T 2 4

and
m—n""'

2 T
lim |(Pp(cos @)E,41(cosh))" — (—) cos"(2n + 1) 2df = 0.
e

n—oo [ 1

In the following, for the zeros &1 ny1, ..., &n+1,n+1 Of Eptq, ordered increasingly,
the cos-arguments will be denoted by 0, n+1,

Eunt1 = €050 nit, p=1...,n+1



The zeros of P,E, 11, ordered increasingly, will be denoted by

Yv,2n+1 = COS d)l/,2n+1a v=1,....2n+1.

As an application of the formula (5), the paper [10] also contains results on the
asymptotic distribution of the zeros of F, 1,

p—34 + o)

, 9
L ©

0n+2—,u7n+1 =

Y

the zeros of Legendre polynomials is well known (cf. [47, Theorem 8.9.1]),

uniformly for all 6,49y nt1 € [,m — €], € > 0 fixed. An analogous result for

v—1% + o(1)
1
¢n+17u,n = nt % ™ (10)

uniformly for z,, € [-1+¢€,1—¢€], € > 0 fixed.

Y

The following uniform upper bound on Stieltjes polynomials is given in [34],

4
‘En+1(w)| < - S [_151]'

However, the asymptotic formula (5) indicates that this bound is not sharp near
the endpoints £1. A bound which gives the precise order was proved in [13],

2 1
Bppi(@)] < 2072052 T2 455, n>1, (11)
s
where C* = 1.0180..., and
2
Eni()> ===, n>1

3,\/7_1', -_
The last inequality shows that (11) is of precise order also in the endpoints +1.
Similarly as in (7), we obtain from (11) an upper bound for the product P, E, 11
which has the precise order in the whole interval [—1,1].

|Po(z)Enti(z)] < C, -1<z<1,

where C is a positive constant which is independent of n.

Formula (9) implies that the zeros of Stieltjes polynomials have a very regular
distribution which is typical for orthogonal polynomials. Furthermore, (9) states
that the zeros of E, 11 are also distributed very regularly with respect to the
zeros of P,, asymptotically they lie midway between two successive zeros of
P,,. However, these statements only follow for the zeros which are inside closed
subintervals of (—1,1). The following result from [13, Theorem 2.4] improves
the interlacing result of Szegé by stating lower bounds for the distances of all
ZET0S.

Theorem 1 We have

l%nn_l)gf 0§u1£2fm-1 (2n+ 1) (¢u72n+1 - ¢l/+172n+1) > C > 07

and

liggior;f og;}gﬂq (n+1)Ount1 —Ousins1) > C > 0,

where Yo ant1 = Oont1 = T, Yant2,2n4+1 = Onganp1 = 0, and C is a positive
constant which is independent of n, v and p.



The following result on the derivatives of Stieltjes polynomials was proved in
[13] and is an important tool in our investigation of the interpolation operators.

Lemma 2 There exists a positive constant C such that for all n € N
c! 1 C
< 7 <
ny/n |En+1(fu,n+1)| ny/n

In the following, we use the usual notation

(1= (Eunt1)?)d (1= (Euns)?)3. (12)

1
ge (D) = llgl = ( / g<w>|pda:) < oo,
if 1 <p < oo, and

g€ L¥() < |gllpee(r):= esssgr;\g(w)l < 00,
x

for I ¢ R. Furthermore, let L? := L? ((—=1,1)) and |[gll, := ||lgllzr((=1,1))- In
the following we state a lower bound for the weighted LP norm of the Stieltjes
polynomials. We consider weights which belong to the class DT of Ditzian-Totik
weights. These are weight functions u of the type

u(z) = (1+2)%(1 —2)° Go(V1+2) &1 (V1—z). (13)

The functions @y, are either identical to 1 or concave moduli of continuity of first

order, i.e., semiadditive, nonnegative, continuous, nondecreasing on [0, 1] with

@k (0) = 0 and 2@y (%) > @k(a) + @k (b) for all a,b € [0,1]. Furthermore,
@k(:t)

we assume that for every e > 0, the functions =~ are nonincreasing, with
lim, 04 Q’;(f) = oo. A special case are the classical Jacobi weights, for which
we have @y = 1 for k € {0,1}. For u € DT and m € N we define

up(z) = (V1+z+m™ )2*0(V1+z+m™") (14)

x(VI—z+m HPo(V1—z+mt).

p(z) =V1-—22

Theorem 2 Let1 < p< oo, u € DT, u € LP and r € N. Then there is a
positive constant C > 0 such that

Furthermore, we define

liminf [| (Eni1)"ull, > Cn? [lup?|, > 0 (15)
and
lim inf || (PyEpin)"ull, > C Jull, > 0. (16)

3 WEIGHTED CONVERGENCE OF EXTENDED
INTERPOLATION

3.1 Results on weighted uniform convergence

Let L, 11 be the interpolation process based on the zeros of E,, 11, and let Loy 41
be the interpolation process based on the zeros of P, E,;1. For 1 < p < oo and
u € DT, let

Ek(Hup = [f —plullp

inf ||
pEIl



and
E(fp = E(frp
In the paper [13], the authors proved the error bound

||f_£2n+1f||oo < C logn g2n(.f)007 (17)

and thus that the Lebesgue constants of the interpolation process La,1 are
of optimal order. Furthermore, they proved that also the interpolation process
L, 1 has Lebesgue constants of optimal order,

1f = Lns1fllee < C logn &n(f)oo- (18)

However, in numerical applications, e.g., for the numerical solution of integral
equations, these bounds are often not applicable because the function may have
endpoint singularities. An example is the function

1
f(z) = log 12

For functions of this type, it is useful to consider the convergence in weighted
norms. For u € DT, define the function class

CY = {f € Chye | lim u(@)f(x) =0}

|z|—1

and the norm
1| f1

In order to obtain higher convergence rates for more regular functions, we con-
sider the function classes

cg = [[ftll-

Ck = {feCy||If®eh

co < OO}7 k>1,
and define the norm

I£llcx = Nflleg + 1F* e lleg < oo

The following result extends the uniform convergence results from [13] to weighted
uniform convergence with weights u € DT

Theorem 3 Let f € C°, u € DT and bounded.
(a) If (uy/@)~"' € L', then
Ilf = Ln+1flulls < C logn En(f)uoc;
where C is a constant which is independent of n and f.
(b) Ifu=! € L, then
I[f = Lont1flulloo < C logn Exn(f)u,co

where C is a constant which is independent of n and f.



Proof. We first consider the operator L, ;1. It is sufficient to prove
u(@) Lnta (f,2)] < C logn || fulls,

where C is independent of n,  and f. Let d be chosen such that £;,,4+1 < 2 <
Eat1n+1- Let also 2 — Lant1 < &iy1.n+1 — o (the other case can be treated
analogously). Now

Eni1(2) f(€ans1)u(z)
Eni1'(Eant1) (@ — Eans)

S Bt (@) f (G )u(z)

\u(x)Lpyr (f,z)] <

+
=1 En+1l(§u,n+1)($ - §u,n+1)
p#d
= L + L.

Since 1 £ &4 pnt1 ~ 1 £z, we have u(€g,n+1) ~ u(zx). Since u is bounded, for the
first part we have

L, = u(z) ‘En+1(x)f(fd,n+1)u(fd,n+1)
u(&d,n-ﬁ-l) EnJrll(fd,n+1)(=r - fd,n+1)
< Cllfulls

by the same argument as in [13, Proof of Theorem 3.1]. For the second part,
we use (11) and (12) to obtain

e E,i1(x wnt1)u(T
ZE +1(2) f (Eunt1)u(z)

1 (Epn1) (€ = Eungr)

i
n+1 1

< C - ¢(€unt1) u(z) (1 —2z°)7 .

< Clple S Vot —tonm

p#d

The last expression is a Darboux sum. Since u is bounded, we have

Ea—2,n41 1 dt .
I C || fu]| u(z) (1 —z2)a
< Cllful (/ +/§> T e ()

< Cllfulls logn,

A

since (uy/p)~"' € L', and using the same technique as in [25, Lemma 4.1].
The proof for Lo, is analogous. O

Remark 1 If f € Ck, then we obtain from Theorem 3 with the estimates
from [8, (8.2.1) and p. 92]

logn

max_ |f*)(2)¢" (z)u(2)).

nk jaj<i-4

Ilf = Loy flulloe < C

Example 1 We consider the interpolation of the function

f() = log(1 + )

10



by the operator L,4+1. The bound (18) does not even yield convergence for this
function. For a > 0, let
v¥(z) =27%(1 4 z)*.

Estimating the weighted best approximation to f by [8, (8.2.1) and p. 92], we
obtain

C
log(1+2) = Lua(f1,2)| () < —- logn. (19)

Here 0 < a < % in view of Theorem 3. The numerical results in Table 1

indicate that, in contrast to the error of best approximation, we cannot expect

that (19) holds also for @ > 2 in the case of the interpolation operator Ly1.

The numerical results were obtained on a HP-9000 using Mathematica 3.0 [48].

3.2 Weighted L”-convergence

For many applications, it is more important to consider the convergence in the
LP mean, 1 < p < oo, instead of uniform convergence. The convergence of
interpolation processes in the LP mean, in particular at the zeros of orthogonal
polynomials, has been considered by many authors, cf., e.g., [38] and the papers
cited therein. Let w be a nonnegative weight function in [—1, 1] with 0 < ||w]|; <
o0, and let &1, ..., Tm,m be the zeros of the orthogonal polynomial P, (w, -)
with respect to w. Let

1
An(w,2) = min / Ip(®) 2 w(t) dt
PE€EMm 1 | 4
p(z)=1

be the mth Christoffel function with respect w. For Ditzian-Totik weights u we

have (cf. [27])
Am(1t,2) ~ (—H + mi> i (2),

= (20)

where u,, is defined as in (14). An important tool for the study of mean conver-
gence of interpolation processes with respect to the nodes x1 1, ..., Zym,m are
the Marcinkiewicz-Zygmund inequalities (cf. [51, §X.7] for the definitions in the
trigonometric apces)

1 m
[ @@l ds < €S A, um) lan) P, a € T, (21)
-1 v=1

and

m

1
> . 0m) laun)? < € [ la@u@) dr, g€ oo
—1

v=1

The study of necessary and sufficient conditions for the existence of these in-
equalities, in particular for the zeros of orthogonal polynomials, has attracted
much interest in the literature (see for instance [7, 27, 28, 30, 49, 50]). The
following results from [15] give the Marcinkiewicz-Zygmund inequalities for the
zeros of E,,,1 and for the zeros of P, FE, ;1.

Theorem 4 Let 1 < p < oo, u € DT, u € LP. The following assertions
are equivalent.

11



1. For all P € 11,, we have

n+1

CH | Pull, < (Z/\n+1(up=fu,n+l)|P(fu,n+1)|p> < Cl[Pullp, (22)

p=1

where C is independent of n and P.

(uy/p)~' € L, where +—==1 (23)

1 1
p

Theorem 5 Letl < p < oo, u € DT, u € LP. Let Y1 on+1s- -+, Y2n+1,2n+1
be the zeros of PyEyny1. The following assertions are equivalent.

1. For all P € Ily, we have

2n+1 P
C |Pull, < (Z An(up:ym?n-&-l)P(yu,2n+1)p> < CllPullp, (24)
p=1

where C is independent of n and P.

ule Lpl, where

1 1

+
p p
For the mean convergence of the interpolation processes related to the zeros
of Stieltjes polynomials, the following result has been proved in [13].

Theorem 6 Let 1 < p < o0, let u € DT, w € L?, and let f € LP be
continuous.

(a) We have
Ilf = Lot1 (Hully < C En(f)ec,

where C is a constant which is independent of n and f.

(b) We have
I[f = Lonsr(Dlully < C Ean(f)oos

where C is a constant which is independent of n and f.

For p = 2 and u = 1, Theorem 6 yields an Erdos-Turan type convergence
result. However, for functions with endpoint singularities like f in Example 1,
also these results are not applicable, since the error of best uniform approxima-
tion does not tend to zero when the degree of the polynomials is increased. But
for functions where the interpolation polynomials will converge in a norm which
is weighted by a weight u, the polynomials of best weighted approximation, with
the same weight u, will converge as well. Thus it is natural to consider error
estimates using the error of best weighted approximation in these situations.

Theorem 7 For 1 <p< oo, let f € LPNCY% u € DT and bounded.

u’

12



(a) If (u\/) * € L*, then
I[f = Lnia(Dully < C En(fuco
where C is a constant which is independent of n and f.
(b) Ifu=' € L', then
ILf = Lons1(Dlully < C E2n(fuoos

where C is a constant which is independent of n and f.

Proof. We prove (a), the proof of (b) is analogous. It is sufficient to prove

|Losr (Dully < € [ fulls.
Let g = (sgnLos1(f)) [uLns1 ()" and

t) _ /1 En+1(m) - En+1(t)

poa— u(z) g(z) dx.

The function 7 is a polynomial of degree < n. Now

n+1

|Lps1(full, = Zf 1) T(Eun1)

n+1 (fu n+1)

IN

C ||fu|| % (p I, n+1) Tr(f[i,nJrl) )
= u(gu,m-l) n‘P(gu,vH-l)l

by (12). From [27, Theorem 2.6] we obtain that for any set of points —1 =
Yi,m < -+ < Ym,m = 1 which are distributed in such a way that

liminf inf m (arccos Yy, m — arccos Ypy+1,m) > C >0,
n—oo 1<v<m-—1

for every W € DT and every polynomial @ € II;,,, [ being a fixed integer, we
have for some C which is independent of n and @)

Zw(yni,m) QWkm) W (ykm) < C /1+ lemIw () dt

k=1

Applying this inequality, and defining 4,, = [-14+n"2,1 —n"?], we have

|Lnir (DulE < C [ fullse /A ﬁdt
1
< Clfull (/A Al (20

En+1(t) u
+ /A i ¢ g,t>|dt> ,

where H denotes the Hilbert transform

H(f,x) = lim (/j_:/x;) tf_(t)x dt. (27)




We recall that H is bounded in LP, 1 < p < oo,
HH( N, < C ISl

where C is independent of f. Using (11), we have

L = / _Enii® g 1)t

t) V/nep(t)

A, u(
1
< c/An@H(ug,tndt.

We recall from [39] that if F and G have compact support K, F' € LP and
GelLV, L4+ L =1, then

/K FH(G) = - /K GH(F). (28)

Applying this inversion, we have
L <C / w(t)g(t) H (Gou~, 1) dt,
An

where
G2 (t) = sgn H(ug, t).

Now

For any v € DT with o, < 0 and |t| < 1, it is easy to prove that

/.

% dx < Co(t).

Using this, we have

I, <¢C </Ang(t)H(Gg,t)dt—}—/Ang(t)dt>.

If p =1, then |g(t)| < 1, and

/ () H (G, t)dt < VIH(Ga)|2 < C||Gall2 < C.
A

n

using the boundedness of H. If 1 < p < oc, then
| a0 H(Gat) i
An

< / w(t)Lpy1 (f,t) [P~ H(Go, t) dt

n

< ML (Nl H Gl < C L (Fullp ™,

A

14



using the boundedness of the Hilbert transform in LP. Furthermore,

[ o < ¢ lman(nulg

n

On the other hand, in (26) we have

 HBaug,)
no= ut) Jnp®

B Gi (1) )
_ /A i e H Bnirug )

where
G1(t) =sgn H(E, +1ug,t).

Using (28) again, we have

nl s [ PE@uogr (Ci.)

n

Using the same argument as above, we have
L] < ClLpsa(Hullp™,

which leads to the result. O

3.3 Comparison with best polynomial approximation in
Besov spaces

In order to study the behaviour of the interpolation processes in suitable sub-
spaces of L? we need some preliminary definitions and results. For v € DT,
1 < p < ooandk €N, the modulus of smoothness of Ditzian and Totik is
defined by

O (f,t)up = Oitigtll(A’zwf)ulleahk), (29)
where
h h
Appfla) = fla+50(@) - fz - 50(@)
Ab, = An ALY E>1,
Ink = [—1+2h%E*,1—2h%K?].

The modulus of smoothness Q% (f, 1), p is used in [8, p. 94, (8.2.1) and (8.2.2)] to
characterise the best approximation by algebraic polynomials, in the following
sense,

w QO (f 1)
0
C independent of f and n, and
L]
Sty < CHF Y 1+ D) E(Nus, (31)

i=0

15



C independent of f and ¢. Furthermore, the modulus of smoothness Q’;(f, tup
defined in (29) is equivalent to the K-functional from [g],

Qk t wp ~ u inf - Ul e + hk (T)QOTU P .
Lp(f) ) sP Oihlit g(k_l)le O(Ihk) {H(f g) ||L (Ihk) ||g ||L (Ihk)}

The following new result is fundamental for convergence results and error esti-
mates for many function spaces.

Theorem 8 Assumeu € DT, u € LP, 1 < p < oo, and let p' = 1%. Let
L be one of the operators Lyy1 or Lopy1. Then there exists a constant C such
that for all n € N, and all locally continuous functions f such that

[ty <
0

t1+1/p )

there holds

C [ Qi Dup
=Ll <~ [ =SEt e 1<k<n,
if and only if
(uy/P)~" € L¥ if L=Lni1,
u~! S Lpl Zf L= £2n+1-

Proof. Let L = Ly41; the proof for £4,,11 is analogous, using the Marcinkiewiz-
Zygmund inequalities for the zeros of P, F, 1. We have to prove

||Ln+1(f)u||p <C

1
L7 Qs up
Ifully+ = [ o). @3
Once we have proved (33), we use

I[f = Lonsr(Dlully <1 = Plully + [[[Lnt1 (f = P)lullp,

which holds for every P € II,,. By the estimate for the polynomials of best
approximation from (30), we have

1

C [ Qp(fit)up
= | —arm

En(flup <

nr Jo
and the result follows for k¥ = 1. For 1 < k < n the result follows with the
assertion from [27, Proposition 4.2],

1 1
" Qtp(f - Pat)u,p 1 » Q{Z(fat)u,p
/(; —t1+1/p dt S C np||[f—P]u||p-|-/0 Wdt s

which holds for 1 < p < oo, n €N, 1 <k < mn, and every P € II,.
Using (20) we have

n+1

ILnsa(Hully <€ Mt (W umir) 1 (Eunsn) P
n=1
n+1

> w [F(Eums) n(Eunin) 7
p=1

IN
x

16



Introducing the notation &, n+1 = 088y, ny1, Iy = [0ut1,n+1,0u,n+1], we have

[ €unin)l = 1f(c0sOuni1)] < sup |f(cos )]

€l

1 g 7 w(f(cos), t) o1,
C [np (/Iu f(c050)|pd0> +/0 ESYR dt] ,

where we have used an embedding inequality, cf. for instance [22] or [27, Lemma

IN

4.1]. Since sinf, 11 ~ sinf for 6 € I,,, we have for p=1,...,n
Sma%“ f(cosb, )P < C / | f(cos6)|” sin 6 d6
Ill
1 p
C | [mw(f(cos),)pr(r,) . 1
+ -~ /0 AT 1/p sin® 0, 41 dt
=: A+ B.

Now

Opnit Sutintt

A = 2¢ / |f(cosf)|Psinfdd = C |f(z)|? dz
Outint Epmtt

Eud1,n41
e [ @t ds,

(un(gmn-l—l)) Euntl

by the mean value theorem. Let g € AC),.[—1,1], i.e. g(cos) € ACj,.[0,7].
Using the usual modulus of continuity we have

w(f(cos), t)pr(r,) < w(f(cos) — g(cos),t)pr(1,) +w(g(cos),t)rr(1,)

IN

d
2 609) = a(con)rc, +C1 | Goleost)
Lr(I.)

Hence

w(f(cos),t)rr(1,) sin® 0,,n+1

g

- »
/ |f(cos) — g(cosb)|P sinﬁdﬁ]

Outint

- »
/ lg' (cos 6) sin |7 sin 6 dG]
Out1,n+1

+ 1

C Eutlmt1 1
S unumrn) {M.+ |f($)—g($)|pup(x)dx]
£M+1,n+1 %
+ / Ig’(x)cp(w)u(:c)v’dx]
£u,n+1
< [(f = g)ull +tlg"pull ]
= un(Euntr) g)ullLr(g,) g pullpe(s,]

17



where J, = [£4,n+1.§ut1,n+1]. Therefore, we have for y=1,...,n

B<

p
C /*1‘ I(f — 9)ullpr(s,) + tllg'eullLe(s,) J
— t
Un(gu’nﬂ) 0 ti+1/p

and

Eut1,n+1

‘P(fuﬁnﬂ) 1 (€pmi)u(Euni1)? < C |f(x)u(z)|? dz

Euyn+1

p
L C " = guller,) + tlg'vullzeg, o
n |Jo tt/p .
For uw=n -+ ]_, we have

|f(€nt1ns1)] = [f(cosOni1ni)| < sup \f(cosB)|.

Adding these inequalities, we obtain

o=

n+1 Ent1,n+1
( % | f(gu,nﬂ)u(gu’nﬂ)f’) <cC ( / f(w)u(m)l”dx>
= §1,n+1

¢ [ 1+ I1F = 9ullie, +tlg'eullir,y 17\7
+ <E Z[/O PRy dt .

p=1

Using the Minkowski inequality (see [20, p.148, Th.201]), we have

n 1 P %
c Z w |(f = @ullpe(s,) +tlg'eullLe (s, "
n 0 ti+1/p

1

C n (2221 IN(f — Q)UHZEP(JM) +tZZ:1 ||9/‘;0U||1£p(Ju));

L — dt
>~ n% o t1+1/p
1
< i /n H(f_g)uHLP((&,nH,£n+1,n+1)) +tHgl‘pUHL”((&,nHa£n+1,n+1)) dt
>~ n% o t1+1/p
Concluding, we have
| Lnt1(FHully < C | fullp
1
C = |I(f - g)u||L”((§1,n+1a£n+1,n+1)) + tHg,‘PUHL”((&,nH=£n+1,n+1))
+ - dt,

nr Jo t+1/p

and taking the infimum for g € AC),,,

¢ ([7 Eiplfit)u,
Mﬁwmusmmm+i<o_%%%l@_

We obtain the first part of the theorem by (32).

18
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To show that (33) implies (/pu) ' € L” | we consider the function

e 2 € [Eamt i1, i),
— fat1nt1—
fa(z) = gttt 2 € [€ant1,Ear1ni1l,
0, otherwise,

where &g pn4+1 is a fixed interpolation node of L,y1. We have fq € AC and
[ fdlloo = 1. Replacing f by f4 in (33), we have

En+1 (x)
Epg1'(Cant1) (@ — Eangr)

1
lan+rully <C [ faully + N fapullpl, lansa(z) =

and we deduce

‘p(gd,nJrl) ) % )

Ml < C tn(Eansn) ( -

Then, by using an estimate in [15, p. 12], there results

Y=

‘P(fd,nﬂ)
n

En+1u

fd,n
< Wty < una i) EE22ED

)

‘|

t fd,n+1

which implies (,/pu) ! € L', as it has already been proved in [15, p. 12, (21),
and the following pages]. O

Theorem 8 can be used to obtain error estimates for many function spaces.
E.g., for f € W/(u), k > 1, using (31), we obtain the estimate

QE(ft)up < CtF B ), < oo

By Theorem 8 we obtain the optimal speed of convergence for the interpolation
of f € W((u).

Corollary 1 Under the assumptions of Theorem 8 we have for f € W[ (u),

If = Lot (Dlully < € a7 1f P kull,

IN

I = Lonpr(Dlully < €07 [FPbull,.

Theorem 8 shall now be used to obtain the boundedness of the interpolation
operators in certain subspaces of L. Natural spaces for the study of polynomial
interpolation methods are the weighted Besov spaces from [9]. For k£ > r, a

seminorm is defined by
k q 0
Q£ 1) q
p\Js Vu,p

Q5 (f t)up
sup —, q = oQ.
>0 tr

|f

U,p,q,r

The weighted Besov space with respect to Q’;(f, t)u,p is defined by

By, (u) = {fely : [fllpr,w = [fuly+If

upigr < 00 ).
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In the papers [9, 27], many properties of these function spaces are described. In
particular, f € B? (u) holds if and only if f is in the space normed by

1

o0 Nr—1/ag. AKX <
£ g2y = (ZZZO [ + i) Ei(Fup) ) ; 1<g< oo,
sup;>o(1+4)"Ei(f)up q = 00.
The two norms are equivalent,
1A llBz sy ~ NNz 00 - (34)

In the following we obtain error estimates for

feB? (u) =B, n C,

4

1<p<oo,1§q§ooandr>%.

Corollary 2 Under the assumptions of Theorem 8, we have for f € Bﬁq(u),
1<p<oo, 1§q§oo,r>% the error bounds

C
I1f = Lot (Dlully < = £l

and c
ILf = Lonpr(Dlully < = 11 £118z,()-

Furthermore, Theorem 8 can be used to prove the boundedness of the inter-
polation operators in some weighted Besov spaces. Thus, in these spaces, the
interpolation operators have the same speed of convergence as the polynomials
of best approximation.

Theorem 9 Assumeu € DT, u € LP, 1 < p < oo, and let p' = 1%. Let
L be one of the operators L, 1 or Lopy1, let s > L and 1 < g < co. Then there
exists a constant C such that for all n € N, all real numbers 0 < r < s and all
fe Bf,q(u), we have

C
1f = LAz, < = 1]

BY 4(u)»
if and only if

(35)

(uy/@)~' € L¥ if L=Ln,
ule L» Zf L= £2n+1-

Consequently,

SUp (Ll By () B2 4y < 0

if and only if the conditions (35) hold.
Proof. Tf (u\/p)~" € L”, by using [27, Proposition 4.3], we have

1f = Lnta(DllBz, < Cn'[|(f = Loga fully

F [QE (£ )un ]’ E
([ [ ) coen
C 0

ts+1/p
T QL (4,1
sup 22 L q= o0
o<i<l ts

20



Since f € BY ,, the first part of the theorem follows by using Corollary 2 with
r = s. To prove the second part, we have to repeat word by word the proof
of Theorem 8. The only change is that if » > 1, then the function f; has
to be replaced with its j-th antiderivative Gg4,;, j > r, with the conditions:

G&{; () = fa(z),Ga,j(§an+1) =1 and Gaj(z) = 0,2 ¢ [€a—1,n+1, Eav1,n41]. O
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Table 1. Mazimum error ||[f — Lnt1(f)] v%||loc

25



