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We formalize the Dolev–Yao model of security protocols, using a notation based on multiset rewriting
with existentials. The goals are to provide a simple formal notation for describing security protocols, to
formalize the assumptions of the Dolev–Yao model using this notation, and to analyze the complexity
of the secrecy problem under various restrictions. We prove that, even for the case where we restrict the
size of messages and the depth of message encryption, the secrecy problem is undecidable for the case
of an unrestricted number of protocol roles and an unbounded number of new nonces. We also identify
several decidable classes, including a DEXP-complete class when the number of nonces is restricted, and
an NP-complete class when both the number of nonces and the number of roles is restricted. We point out
a remaining open complexity problem, and discuss the implications these results have on the general topic
of protocol analysis.

1. Introduction

Protocols based on cryptographic primitives are commonly used to protect ac-
cess to computer systems and to protect transactions over the Internet. Two well-
known examples are the Kerberos authentication scheme [43,44], used to manage
encrypted passwords on clusters of interconnected computers, and the Secure Sock-
ets Layer [31], used by internet browsers and servers to carry out secure internet
transactions.

Security protocol design and analysis is a difficult problem. Some of the diffi-
culties come from subtleties of cryptographic primitives. Further difficulties arise
because security protocols are required to work properly when multiple instances
of the protocol are carried out in parallel, where a malicious intruder may com-
bine data from separate sessions in order to confuse honest participants. Moreover,
although the protocols themselves are often very simple, the security properties
they are supposed to achieve are rather subtle and should be formulated with great
care. Many security protocols have been published with subtle flaws that may be
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traced to insufficient rigor in formulating the premises about capabilities of partici-
pants.

In the literature on security protocol design and analysis, protocols are commonly
described using an informal notation that leaves many properties of a protocol un-
specified. For example, a short challenge-response section of a protocol might be
written as:

A −→ B : {n}K

B −→ A : {f (n)}K

In this notation, a message of the form {x}y consists of a plaintext x encrypted
with key y. In this example protocol, Alice chooses a random number n and sends
its encryption to Bob. There is no specific indication of how Bob determines what
to send in response, but we can see that Bob returns a message that contains the
encryption of f (n). By analogy with familiar protocols, we might assume that he
decrypts the message he receives to determine n, then applies f to n and returns the
result to Alice (encrypted with the same key).

As written, the protocol description only gives an intended trace or family of traces
involving the honest principals. There is no standard way of determining the initial
conditions or assumptions about shared information, nor can we see how the princi-
pals will respond to messages that differ from those explicitly written. For example,
in the case at hand, we must explain in English that K is assumed to be a shared
key and that n is generated by Alice. Otherwise, it is a perfectly reasonable interpre-
tation of the two lines above that Alice and Bob initially share a number n. In this
case, Alice might send {n}K to Bob, with Bob returning {f (n)}K to Alice only if
he receives precisely {n}K . While the two readings of the protocol give the same
sequence of messages when no one interferes with network transmission, the effects
are different if an intruder intercepts the message from Alice to Bob and replaces it
with another message. Hence it seems fair to say that the notation commonly found
in the literature does not provide a rigorous basis for security protocol analysis.

In recent years, a variety of methods have been developed for analyzing and rea-
soning about security protocols. These approaches include specialized logics such
as BAN logic [7], special-purpose tools designed for cryptographic protocol analy-
sis [41], as well as theorem-proving [55,56] and model-checking methods using gen-
eral purpose tools [19,45,50,53,59,61,62].

Although there are many differences among these approaches, most current for-
mal approaches use the same basic model of adversary capabilities, which appears to
have developed from positions taken by Needham and Schroeder [54] and a model
presented by Dolev and Yao [25]. In this idealized setting, a protocol adversary is
allowed to nondeterministically choose among possible actions. Messages are com-
posed of indivisible abstract values, not sequences of bits, and encryption is modeled
in an idealized way. The adversary may only send messages comprised of data it
“knows” as the result of overhearing past transmissions.
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The Dolev–Yao abstraction makes symbolic reasoning about cryptographic pro-
tocols a viable approach. Perhaps the simplest approach in this regard is to con-
sider protocols as a form of rewriting, so that protocol execution could be carried
out symbolically. This observation was sharpened to a rigorous, formal definition of
the Dolev–Yao model by means of multiset rewriting with existential quantification,
MSR, introduced in [14,27,52]. In addition to rewriting to effect state transitions, we
also needed a way to choose new values, such as nonces or keys. While this seems
difficult to achieve directly in standard rewriting formalisms, the proof rules associ-
ated with existential quantification appear to be just what is required. Therefore, we
have adopted a notation that may be regarded as an extension of multiset rewriting
(see, e.g., [5,6]) with existential quantification. This formalism is quite palatable and
quite close to the informal, traditional way of describing protocol message exchange,
described above. Since its inception in [14,27], the MSR formalism has been applied
and extended in several ways. MSR has been incorporated into a high-level specifi-
cation language for authentication protocols, CAPSL [24]. A typed version of MSR
is studied in [12]. MSR has been successfully applied in the analysis of widely used
protocols such as Kerberos 5 [8]. MSR is used as a formal setting for a game-based
analysis of contract-signing protocols in [58].

The importance of existential quantification, for security protocols, is that it pro-
vides a direct mechanism for choosing a new value that is different from other val-
ues used in the execution of a system. Since many protocols involve choosing fresh
nonces, fresh encryption keys, and so on, existential quantification seems like a use-
ful primitive for describing security protocols. While existential quantification does
not semantically imply there exist “new” values with certain properties, standard
proof rules for manipulating existential quantifiers require introduction of fresh sym-
bols (sometimes called Skolem constants). The way that existential quantification is
used in our formalism is based on the standard existential elimination rule from nat-
ural deduction. If we have an existentially quantified axiom, ∃x.φ, then this rule says
that if we wish to prove some formula ψ, we can choose a new symbol y for the
“x that is presumed to exist” and proceed to derive ψ from [y/x]φ. The side con-
dition “y not free in any other hypothesis in the proof of ψ” means that the only
hypothesis in the proof of ψ that can contain y is the hypothesis [y/x]φ.

Our multiset rewriting framework with existential quantification (MSR) may also
be viewed as the existential Horn fragment of first-order linear logic [34]. The close
connection between standard multiset rewriting (without existential quantification)
and simple fragments of linear logic has been studied extensively [4,33,39,47] and
extended in [13] to include parameters and existential quantification. Under this cor-
respondence, every MSR transition sequence corresponds to a linear logic derivation
in normal form, and conversely.

A linear logical framework automated tool LLF [16] may be used to simulate the
execution of protocols, detect attacks, and construct formal proofs about protocol
transformations [14]. A similar fragment of linear logic is used in [40] as a basis
for a specification language for real-time systems. Linear logic is also used to model
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the state-transition aspect of protocols, but not existential quantification for nonces,
in [21,23].

As presented in [14,27], a protocol theory consists of three parts: a bounded phase
describing protocol initialization that distributes keys or establishes other shared in-
formation, a role generation theory that designates possibly multiple roles that each
principal may play in a protocol (such as initiator, responder, client, or server), and
a disjoint union of bounded subtheories that each characterize a possible role. En-
cryption is typed, which prevents arbitrarily nested encryption terms. These syntactic
restrictions, which are discussed in detail in the first part of the present paper, make
it possible to distinguish, in precise terms, protocols from general rewrite systems.
This particular feature of the MSR formalism is a novel contribution to security pro-
tocol analysis; it seems to have no counterpart in the richer formalisms such as [1].
Furthermore, this feature of the MSR formalism allows us to identify two important
parameters of a protocol itself: the number of roles and the number of new data (such
as nonces or keys) introduced by the protocol.

Using our precise form of protocol theory, in the second part of the paper we
discuss in detail several decidability and complexity results regarding the secrecy
property for protocols, most of which were established in [14,27]. Informally, a pro-
tocol satisfies secrecy if some privileged information (fixed in advance) will never
be released to the adversary. In MSR this property may be stated as unreachability:
global configuration in which the intruder is in possession of the specified secret is
not reachable by protocol execution steps. Hence the failure of secrecy is stated as
reachability. We show that secrecy is an undecidable property even if data construc-
tors, message depth, message width, number of distinct roles, role length, and depth
of encryption are bounded by constants. DEXPTIME-completeness of the failure of
secrecy is shown for protocols further restricted to allow only a fixed number of new
data. Furthermore, NP-completeness of the failure of secrecy is shown for protocols
restricted even further to have a fixed number of roles. The latter upper bound has
been recently strengthened considerably, namely that it is in NP without any bound
on message size, in [3,60].

In some ways, undecidability might not be expected for protocols. The reason is
that there is only a finite number of possible messages, except for the unbounded
number of new nonces that repeated runs of a protocol might generate. However, our
undecidability proof shows that nonces may be used as a form of “pointer”, linking
together messages that contain only simple data. However innocuous they may seem,
nonces are at the heart of the problem in analyzing this class of security protocols. In
the undecidability proof, the intruder stores encryptions of all atomic formulas deriv-
able from a given existential Horn theory without function symbols, replaying these
messages as needed in order for the protocol steps to carry out an arbitrary deduction.
The undecidability of the implication problem for existential Horn clauses without
function symbols follows from [17] and may also be obtained directly by axioma-
tizing a Cook’s-theorem-style Turing machine tableau [26]. If protocols are further
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restricted to generate no new data during execution, then DEXPTIME-hardness fol-
lows by the same encoding of Horn formulas (Datalog programs) as in our undecid-
ability proof, applied to Horn clauses without function symbols and without existen-
tial quantification. For these Horn theories, DEXPTIME-hardness of the implication
problem (measured as a function of the size of the theory) is implicit in [38,65], as
explained in [22].

Multiset rewriting formalism (MSR) is presented in Section 2 by means of several
increasingly complex examples. In Section 3 we show how to represent security pro-
tocol theories in MSR, introducing the modeling of nonces, roles, the intruder, and
encryption. A detailed example of the Needham–Schroeder Public Key Protocol in
MSR is in Section 4. In Section 5 we show complexity results for security protocols
under various restrictions. In Section 6 we show some examples of protocols that
demonstrate some of the lower bounds in a more practical setting. In Section 7 we
discuss related work, and finally in Section 8 we present conclusions.

2. Multiset rewriting with existential quantification

2.1. Protocol notation

We introduce a formalism for describing a class of nondeterministic infinite-
state systems. The formalism is similar in many respects to standard rewrite sys-
tems [42,51], with two main differences. The first is that instead of representing
information by a single expression, we use multisets of first-order atomic formulas.
(A multiset is similar to a set, but with counting of duplicates.) The second main
difference is that the formalism has a basic mechanism for choosing “new” sym-
bols. This is important for modeling protocols that choose a new nonce or generate
encryption keys.

Our formalism can also be viewed as a Horn fragment of linear logic [4,9,32,34,
39,46]. A similar fragment of linear logic is used in [40] to represent real-time finite-
state systems. Two other efforts using linear logic to model the state-transition aspect
of protocols (but not existential quantification for nonces) are [21,23].

The multiset rewriting notation is also related to the Chemical Abstract Machine
formalism [6], with the primary difference being the addition of existentials.

The syntax involves terms, facts and rules. If we want to represent a system in
this formalism, we begin by choosing a vocabulary, or first-order signature. This is
a standard notion from multi-sorted first-order logic [28].

Signatures. A first-order signature consist of a set of sorts, together with function
symbols and predicate symbols with specific sorts. The sorts indicate the kinds of
data that will be used in the model. For example, the sorts used in a protocol may be
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key, msg, nonce for encryption keys, message contents and nonces. Function sym-
bols are names for functions on the sorts of the signature. For example, an encryption
function might have sort

encrypt : key × msg → cipher

where cipher is the sort for ciphertexts (encrypted text). In any signature, each func-
tion symbol must have a fixed set of parameter sorts (one for each function argument)
and a result sort. A function with no arguments is called a constant symbol. Finally,
a multi-sorted first-order signature has a set of predicate symbols, each with a fixed
set of parameter sorts. It’s also possible to consider order-sorted signatures [35] and
in fact we will find this convenient for specifying some example protocol theories in
our formalism in Section 3.

Terms. The terms over a signature are the set of expressions formed by applying
functions to arguments. In each case, a function must be applied to arguments of the
correct sort. For example, if f : s → t and x : s, then f(x) is a well-formed term since
the argument sort of f matches the sort of x. As suggested by this example, terms
may contain variables, but each variable must have an associated sort. A variable is
not allowed to be used with different sorts in different expressions associated with
the same system. (All of this can be formalized using an inductive definition of the
well-formed terms and their sorts, but we assume that most readers will be familiar
with these standard concepts from logic.)

Facts. A fact is a ground (i.e., variable-free) first-order atomic formula. This means
that a fact is the result of applying a predicate symbol to ground terms of the correct
sorts.

States. A state is a multiset of facts (all over the same signature). In this paper we
are only concerned with finite multisets.

Rules. State transitions are written using two multisets of atomic formulas, in the
following syntactic form:

F1, . . . , Fk −→ ∃x1 . . . ∃xj .G1, . . . , Gn

The meaning of this rule is that if state S contains facts σF1, . . . σFk for some ground
substitution σ, then one possible next state is the state S′ that is similar to S, but with:

• facts σF1, . . . , σFk removed,
• σG1, . . . σGn added, where substitution σ replaces x1 . . . xj by new constant

symbols.

While existential quantification does not semantically imply there exist “new” val-
ues with certain properties, standard proof rules for manipulating existential quanti-
fiers require introduction of fresh symbols (sometimes called Skolem constants), as
described in Section 2.3.
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If there are free variables in the rule F1, . . . , Fk −→ ∃x1 . . . ∃xj .G1, . . . , Gn,
these are treated as universally quantified. In an application of a rule, these free
variables may be replaced by any terms.

For example, consider the state

S = {P(f(a)), P(b)}

and rule

P(x) −→ P(f(x)).

Then one possible next state is obtained by using the substition σ = [x �→ f(a)],
instantiating the rule to

P(f(a)) −→ P(f(f(a))).

With this substitution, we can remove P(f(a)) from S and obtain the next state S′ =
{P(f(f(a))), P(b)}.

We can then use a different instance of the rule, with substitution σ′ = [x �→ b],

P(b) −→ P(f(b))

to reach state S′′ = {P(f(f(a))), P(f(b))}. It is also possible to reach S′′ from S by
performing these replacements in the opposite order.

If a function is invertible, then this can also be expressed as a rule. For example,
the rule

P(f(x)) −→ Q(x)

involves recovering the data x from f(x). We will use rules of this form to describe
decryption of encrypted messages.

An MSR Theory is defined by a signature and a set of rules. Given an MSR Theory
and a state there is a set of traces, with each state reached from the previous one by
applying one of the rules from the theory.

2.2. Example: finite automata

As a first example, without existential quantification, we describe a method for
presenting finite-state automata in this notation. Assuming we have some specific
automaton A, we choose a vocabulary for describing the input tape and the states
of the automaton, and we have a rule corresponding to each state transition of the
automaton. Each rule consumes an input and moves to the next state. The rules will
depend on the specific automaton A, but the basic method can be applied to any
automaton.
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Sorts. Given an automaton A, the signature for the theory Th(A) has three sorts: st
for automaton states, symb for input symbols and string for lists of input symbols.

Predicates. We use predicates to represent the automaton state, and its current in-
put string.

State : st current state
Input : string current input string

Functions. We use the cons function to represent concatenation of strings,

cons : symb × string → string

For simplicity, we will write a·x for cons(a, x).

Constants. We need names for the states of automaton A, and names for the sym-
bols of the input alphabet, as well as a name for the empty string.

q0, q1, q2, . . . : st finite set of states
a, b : symb input alphabet
nil : string empty string

Rules. There is one rule for each state transition of A. For example, here are some
rules describing possible transitions between states q0 and q1:

State(q0), Input(a·x) −→ State(q1), Input(x)
State(q0), Input(b·x) −→ State(q2), Input(x)
State(q1), Input(a·x) −→ State(q3), Input(x)
State(q1), Input(b·x) −→ State(q0), Input(x)

A sample derivation gives us automata state transitions from q0 to q1 and back on
input a · b · nil. We will write this out as a sequence of states, starting with the multi-
set {State(q0), Input(a · b · nil)} that represents the automaton in state q0 with input
string a · b · nil.

{State(q0), Input(a · b · nil)} −→ {State(q1), Input(b · nil)}

−→ {State(q0), Input(nil)}

It should be easy to see that if we begin with a system state consisting of one fact
about the state of the automaton, and one fact about the input string, then we can only
reach other system states of this form. In particular, we can never reach a system state
where the automaton is in two states.
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2.3. Existential quantification

It is possible to give finite descriptions of infinite-state systems using function
symbols. For example, if we have 0 : nat and suc : nat → nat, then we can write
expressions for arbitrarily many natural numbers. If each system state has a natural
number, then we will have infinitely many possible system states.

Existential quantification provides an alternate way of expressing infinitely many
possible states. As we will see in Section 3, the importance of existential quantifi-
cation, for security protocols, is that it provides a direct mechanism for choosing
a new value that is different from other values used in the execution of a system.
Since many protocols involve choosing fresh nonces, fresh encryption keys, and so
on, existential quantification seems like a useful primitive for describing security
protocols.

The way that existential quantification is used in our formalism is based on the ex-
istential elimination rule from natural deduction. This proof rule is commonly written
as follows.

(∃ elim)

[c/x]φ
...

∃x.φ ψ

ψ

c does not occur in any
other hypothesis

If we have an existentially quantified axiom, ∃x.φ, then this rule says that if we wish
to prove some formula ψ, we can choose a new constant symbol c for the “x that is
presumed to exist” and proceed to derive ψ from [c/x]φ. The side condition “c does
not occur in any other hypothesis in the proof of ψ” means that the only hypothesis
in the proof of ψ that can contain c is the hypothesis [c/x]φ.

2.4. Example: Turing machine

We can see how existential quantification allows us to describe infinite-state sys-
tems by axiomatizing a Turing machine. This construction shows that MSR theories
with existentials are undecidable. Later (in Appendix 8), we will use other encod-
ings of Turing machines to prove the undecidability and complexity lower bounds
for security protocols in the presence of an attacker. Because of the attacker and the
details of the protocols, the encoding used in those examples will be different.

Let us assume we have some specific Turing machine M . We choose a vocabulary
for describing states of the machine and its input, and write rules to describe tran-
sitions according to machine state and input. The rules will depend on the specific
machine M , but the basic method can be applied to any Turing machine.

Sorts. The signature for this theory has three sorts: state for the Turing machines
states, cell for the cell names, and symbol for the cell contents.
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Predicates. The first predicate used in this example is used to describe the current
machine state and tape position. The other two predicates describe the contents of a
tape cell and the order (adjacency) between cells.

Curr : state × cell current state, tape pos.
Cont : cell × symbol contents of cell is symbol
Adj : cell × cell keep cells in order

Constants. We also need names for the states of the machine M , names for the
cells at the beginning and end of the tape, and names for the symbols that may appear
on the tape (0,1, and blank). The reason we have an end-of-tape cell, ceot, is that we
will represent an unbounded tape by including rules that will allow us to allocate as
many tape cells as needed. In other words, we will represent the Turing machine tape
by explicitly constructing the finite list of cells that the machine has looked at, one
at a time.

q0, q1, q2, . . . : state finite set of states
c0, c1, . . . , ceot : cell initial tape cells
0, 1,� : symbol tape symbols

Rules. There are three classes of transition rules: tape maintenance rules, transition
rules that correspond to Turing machine moves that move the head to the right, and
transition rules that correspond to moving the head left. Initially, we will start the
machine with two tape cells, the leftmost cell c0 and the rightmost end-of-tape cell
ceot. This is expressed by the fact

Adj(c0, ceot)

At any step in the computation, we can apply the tape maintenance rule

Adj(c, ceot) −→ ∃c′.Adj(c, c′), Cont(c′,�), Adj(c′, ceot)

Informally, this rule “says” that if cell c is adjacent to the end-of-tape cell, then we
can allocate a new cell c′ and place c′ between c and the end-of-tape cell. The new
cell will be blank. An example computation below shows how this rule can be used.

The rules for the actual moves of the Turing machine will depend on the structure
of the specific machine M we wish to represent. Suppose that Turing machine M
moves to the right, if it is in state qi with symbol 0 on the tape cell currently under
the tape head. If the move of M , in this case, is to state qj , writing 1 into the tape
cell, we will have a rule of the following form:

Curr(qi, c), Cont(c, 0), Adj(c, c′) −→ Curr(qj, c′), Cont(c, 1), Adj(c, c′)
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If, instead of moving right, the machine would move left in this case, we would
instead have the transition rule

Curr(qi, c), Cont(c, 0), Adj(c′, c) −→ Curr(qj, c′), Cont(c, 1), Adj(c′, c)

Note that moving to the right, we assume that there is a tape cell to the right of the
tape head. This assumption can be satisfied by using the tape maintenance rule if
needed before executing this Turing machine move.

Sample computation. Although the exact moves will depend on the specific Tur-
ing machine that is represented by this method, we can illustrate the use of existential
quantification by showing some example moves of a sample machine. Let us con-
sider a Turing machine that reads the input tape until two consecutive 0’s are read,
then inserts a 1 after the both of them and moves to the left over the second 0. Sup-
pose that the machine starts in state q0 and remains in this state until it reaches a cell
containing 0. At that point, the machine changes to state q1 to “remember that it has
seen a 0” and moves right. Then the first few moves of the machine on input 100
might appear as follows:

Curr(q0, c0), Cont(c0, 1), Cont(c1, 0), Cont(c2, 0),
Adj(c0, c1), Adj(c1, c2), Adj(c2, ceot)

−→ Curr(q0, c1), Cont(c0, 1), Cont(c1, 0), Cont(c2, 0),
Adj(c0, c1), Adj(c1, c2), Adj(c2, ceot)

−→ Curr(q1, c2), Cont(c0, 1), Cont(c1, 0), Cont(c2, 0),
Adj(c0, c1), Adj(c1, c2), Adj(c2, ceot)

At this point, the appropriate transition will be a move to the right on to the next cell,
where the machine will write a 1. However, this would place the tape head over the
special “end-of-tape” marker. Since we would like the machine to proceed as if the
tape were infinite, we must use the tape maintenance rule

Adj(c, ceot) −→ ∃c′.Adj(c, c′), Cont(c′,�), Adj(c′, ceot)

to insert a new cell in front of the end-of-tape cell. This gives us the transition

Curr(q1, c2), Cont(c0, 1), Cont(c1, 0), Cont(c2, 0),
Adj(c0, c1), Adj(c1, c2), Adj(c2, ceot)

−→ Curr(q1, c2), Cont(c0, 1), Cont(c1, 0), Cont(c2, 0), Cont(c3,�),
Adj(c0, c1), Adj(c1, c2), Adj(c2, c3), Adj(c3, ceot)

which inserts a new blank cell, c3 in front of the end-of-tape marker. Then the ma-
chine head may be moved right over the new blank square and write a 1. Although it
would be possible to apply a transition rule moving the machine head over the end-
of-tape marker, the end-of-tape marker has no contents. Since each machine move
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requires a tape cell with some contents (possibly including the blank �), a derivation
that places the Turing machine head over the end-of-tape marker will “hang” the
machine and have no effect on the set of accepting computations.

In this example we have used existential quantification to avoid the unbounded
use of function applications. It would be possible to implement a Turing machine
without existentials by using skolem functions.

2.5. Creation, consumption, persistence

Some preliminary definitions involve the ways that a fact may be created, pre-
served, or consumed by a rule. While multiple copies of some facts may be needed
in some derivations, we are able to eliminate the need for multiple copies of certain
facts.

Definition 2.1. Assume T is a theory and P is a predicate. Any rule has the form
l −→ r, where l is the facts F1, . . . , Fk on the left hand side, and r is the facts
G1, . . . , Gn, possibly with one or more existential quantifiers, on the right hand side.
A rule in a theory T creates P facts if some P (�t) occurs more times in r than in l.
A rule in a theory T preserves P facts if every P (�t) occurs the same number of
times in r and l. A rule in a theory T consumes P facts if some fact P (�t) occurs
more times in l than in r. A predicate P in a theory T is persistent if every rule in T
which contains P either creates or preserves P facts.

As an example, a rule of form

Q(�x) −→ Q(�y)

does not preserve Q facts, since it can be used to create a fact Q(�t) and consume a
fact Q(�s ).

Since a persistent fact is never consumed by any rule, there is no need to generate
more than one copy of a particular fact – as long as that fact is never needed more than
once by a single rule. However, by simple transformation, it is possible to eliminate
the need for more than one copy of any persistent fact.

For example, a rule of form:

P (�x), P (�y), . . . −→ Q(�x, �y), P (�x), P (�y), . . .

(with P a persistent predicate) can be replaced by rules of form:

P (�x) −→ P1(�x), P (�x)
P (�x) −→ P2(�x), P (�x)
P1(�x), P2(�y), . . . −→ Q(�x, �y), P1(�x), P2(�y), . . .

(where P1 and P2 are persistent predicates).
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Definition 2.2. A rule l −→ r in a theory T is a single-persistent rule if all predi-
cates that are persistent in theory T appear at most once in l. A theory T is a uniform
theory if all rules in T are single-persistent rules.

Since any theory can be rewritten as a uniform theory, we will assume that all
theories discussed from this point forward are uniform theories.

Definition 2.3. Let P be a set of predicates, each persistent in a uniform theory T .
Two states S and S′ are P-similar (denoted S �P S′) if, after removing all duplicate
persistent P facts from each state, they are equal multisets.

Lemma 2.4. If S �P S′ and S
T→→ T , then ∃T ′.T �P T ′ with S′ T→→ T ′.

Proof. We construct the derivation S′ T→→ T ′ as follows: We use the same rules and
substitutions as the derivation S

T→→ T . This derivation is valid because all rules are
single-persistent, so any rules and substitution used in the original derivation will
also work in the second derivation (all necessary facts are available to enable the
rules). �

2.6. Equality and disequality

The basic MSR framework defined in Section 2.1 can be extended with tests for
disequality of terms using �= conditions in rules. In the extension MSR�=, which we
consider briefly in Section 5, these conditions are allowed only on the left hand sides
of rules, and are not considered to be facts.

We illustrate this by example. Given a rule of form

P1(t1, t2, . . .), P2(u1, u2, . . .), t2 �= u2 −→ Q1(. . .), Q2(. . .)

If a state S has facts P1 and P2 for terms t1, t2, . . . and u1, u2, . . . where t2 is different
from u2, then a possible next state is S′ with facts P1 and P2 replaced by facts Q1

and Q2.
To summarize, MSR�= is the extension of MSR with these extended rules, keeping

the same signature, terms and facts as defined in Section 2.1.
We do not need to add a condition to test for equality, because it is expressible

by matching the names of the variables in the terms. For example, the set of facts
{P(a, b, c), Q(a, d, e)} matches the left hand side of the rule

P(x, y, z), Q(x, v, w), y �= v −→ R(. . .), S(. . .)

While the set {P(a, b, c), Q(a, b, e)} does not. The rule requires that the first two
arguments of the facts for predicates P and Q be the same, and the second two
arguments be different.
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Computationally, the meaning of ∃ in MSR�= is clear – each value generated by
an ∃ is unequal to all others. We have not investigated the correspondence between
logic and MSR �=.

3. Multiset rewriting for protocol theories

In this section we will explain the form of an MSR theory for a class of security
protocols that use Public Key encryption. We will make an incremental presenta-
tion, starting with some simple protocol roles, then introducing the Dolev–Yao in-
truder model and our encryption model, and finally defining the requirements for a
two-phase intruder theory. An example of a full theory for a public key protocol is
presented in Section 4.

Needham–Schroeder Public Key Protocol. We will use the Needham–Schroeder
Public Key protocol [54] as a running example throughout this paper. The complete
core protocol, which omits the steps that use a trusted server to distribute the public
keys, is shown in Table 1, using a common informal notation.

In the first step, the initiator A (commonly referred to as “Alice”) sends a message
to the responder B (commonly referred to as “Bob”). The message contains Alice’s
name, and a freshly chosen nonce, na (typically a large random number). The mes-
sage is encrypted with Bob’s public key, which means only somebody with Bob’s
private key can decrypt it and understand it’s contents.

In the second step, Bob replies with a nonce of his own, nb, along with Alice’s
nonce, both encrypted with Alice’s public key.

In the final step, Alice replies by returning Bob’s nonce, encrypted with his public
key.

3.1. Protocol theories

During a network transaction involving an implemented security protocol, several
activities take place, possibly simultaneously. These include key generation, key dis-
tribution, and initiation of a protocol session by a specific participant. These activities
can be arbitrarily interleaved. For example, some public key protocol sessions can
take place between Alice and Bob, and then later a new participant Carol might join
them by obtaining a public key certificate so that she can also converse with Alice
and Bob in future sessions.

Table 1

Needham–Schroeder Public Key protocol

A −→ B : {A, na}Kb

B −→ A : {na, nb}Ka

A −→ B : {nb}Kb
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Here we introduce the notion of a protocol role – specific steps of the protocol
meant to be carried out by a single principal. These are referred to as local proto-
cols by Woo and Lam [66]. A typical protocol includes at least an initiator and a
responder role, and often includes a trusted third party or a server. Protocol analysis
concerns the interaction of an arbitrary number of instances of arbitrary assignments
of principals to roles, in the presence of an intruder who can replay messages and
parts of messages (i.e., a Dolev–Yao intruder).

In our model we separate the protocol execution into stages. There is an implicit
or explicit initialization phase that distributes keys or establishes other shared infor-
mation. Following this initialization phase, each agent may choose to carry out the
protocol any number of times, in any combination of roles. For example a principal A
may play the role of initiator twice, and responder once, during the course of a single
attack. We incorporate these ideas into our formal definitions by letting a protocol
theory consist of an initialization theory, a role generation theory, and the disjoint
union of bounded subtheories that each characterize a possible role. We identify the
syntactic form of a class of well-founded protocol theories.

It is relatively straightforward to use the multiset rewriting framework summa-
rized in the preceding section to describe finite-state and infinite-state systems. Us-
ing function symbols, it is possible to describe computation over unbounded data
types. In particular, it is easy to encode counter machines or Turing machines (as
we did in Section 2.4), implying that secrecy is undecidable. However, the principal
authentication and secrecy protocols of interest are all of bounded length, and most
use data of bounded complexity (see [18] for a relevant survey). So, it seems reason-
able for our model to represent protocols in a way that reflects their bounded nature.
Thus we assume that the initialization steps are bounded, and that initialization can
be completed prior to the execution of the protocol steps proper. We also formally
define protocol role theories as bounded role theories.

Definition 3.1. A rule R = l −→ r enables a rule l′ −→ r′ if there exist substi-
tutions σ, σ′ such that some fact P (�t) ∈ σr, is also in σ′l′. A theory T precedes a
theory S if no rule in S enables a rule in T .

Intuitively, if a theory T precedes a theory S, then no facts that appear in the left
hand side of rules in T are created by rules that are in S.

Definition 3.2. A theory A is a bounded role theory if there is a finite list of predi-
cates called the role states and written S0, S1, . . . , Sk for some k, such that for each
rule l −→ r there is exactly one occurrence of a state predicate in l, say Si, and there
is exactly one occurrence of a state predicate in r, say Sj . Furthermore, it must be
the case that i < j. We call the first role state, S0, an initial role state.

By defining roles in this way, we ensure that each application of a rule in A ad-
vances the state forward. Each instance of a role can only result in a finite number of
steps in the derivation.
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Definition 3.3. If A1, . . . ,Ak is a set of bounded role theories, a role generation
theory is a set of rules of the form

P (�s ), Q(�t), . . . −→ Si(�r), P (�s ), Q(�t), . . .

where P (�s ), Q(�t), . . . is a finite list of persistent facts not involving any role states,
and Si is the initial role state for one of A1, . . . ,Ak.

Definition 3.4. A theory S ⊂ T is a bounded sub-theory of T if all formulas on the
right hand side of the rules R in S either contain existentials or are persistent in T .

Definition 3.5. A theory P is a well-founded protocol theory if P = I � R � A1 �
. . . � An where I is a bounded sub-theory (called the initialization theory) not in-
volving any role states, R is a role generation theory involving only facts created by
I and the initial roles states of A1, . . . ,An, and A1, . . . ,An are bounded role theo-
ries, with I preceding R and R preceding A1, . . . ,An. For role theories Ai and Aj ,
with i �= j, no role state predicate that occurs in Ai can occur in Aj , and vice-versa.

This form allows derivations in a protocol theory to be broken down into three
stages – the initialization stage, the role generation stage, and the protocol execution
stage. Tables 5 and 6 show examples of these theories for the Needham–Schroeder
Protocol.

Lemma 3.6. Given a well-founded protocol theory P = I � R � A, where I is an
initialization theory, R is a role generation theory, and A is the union of one or more

bounded role theories, if S
P→→ T is a derivation over P , then there exists a deriva-

tion S
I→→ S′, S′ R→→ S′′ and S′′ A→→ T , where all rules from I are applied before

any rules from R, and all rules from I and R are applied before any rules from A.

Proof. Since P is a well-founded protocol theory, we know that I precedes R and
I and R precede all of the theories in A. Since no rules in R can enable rules in I,
all rules in I can be applied before any rules in R. Similarly, since no rules in A
can enable rules in I or R, all rules from I and R can be applied before any rules
from A. �

3.2. Encryption-free Needham–Schroeder

As a means of explaining the Dolev–Yao intruder and encryption models using
our notation, we begin with an overly simplified form of the Needham–Schroeder
protocol. Without encryption, the Needham–Schroeder protocol proceeds as follows:

A −→ B : na

B −→ A : na, nb

A −→ B : nb

where na and nb are fresh nonces, chosen by Alice (A) and Bob (B), respectively.
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Sorts. The full Needham–Schroeder protocol uses several sorts, but here the data
is all nonces, so we need only one sort, nonce. Later when we add more sorts, we
will find it convenient to define nonce as a subsort of msg.

Predicates. We can describe this simplified protocol in our notation using the pred-
icates Ai, Bi, Ni for 0 � i � 3, with the following intuitive meaning:

A0( ) Alice in state 0 (initial role state)
A1(nonce) Alice in state 1, with her nonce
A2(nonce, nonce) Alice in state 2, with two nonces
B0( ) Bob in state 0 (initial role state)
B1(nonce, nonce) Bob in state 1, with two nonces
B2(nonce, nonce) Bob in state 2, with two nonces
N1(nonce) Network has message 1, with indicated data
N2(nonce, nonce) Network has message 2, with indicated data
N3(nonce) Network has message 3, with indicated data

The data associated with the state of some principal, or a network message, will
depend on the particular state or message. Each principal begins in local state 0, with
no data. Therefore, predicates A0 and B0 are predicates with no arguments. When
Alice chooses a nonce, she moves into local state 1. Therefore, predicate A1 is a
unary predicate of type nonce, intended to be the nonce chosen by Alice. Similarly,
predicate B1 is a binary predicate of type nonce × nonce, the data received from
Alice in message one of the protocol and the nonce chosen by Bob for his response.

The subscripts on the message predicates Ni indicate which message of the proto-
col is being sent, which implicitly indicates the signature of the message. This format
allows participants to distinguish the messages of a protocol. Since we will be con-
sidering an environment which includes an intruder (introduced in Section 3.3) that
can transform any message from one type to another, this notation will not limit the
analysis in any way.

Rules. Using these predicates, we can state the protocol using four transition rules:

A0( ) −→ ∃x.A1(x), N1(x)
B0( ), N1(x) −→ ∃y.B1(x, y), N2(x, y)

A1(x), N2(x, y) −→ A2(x, y), N3(y)
B1(x, y), N3(y) −→ B2(x, y)

Each rule corresponds to an action by a principal. In the first rule, Alice chooses a
nonce, sends it on the network, and remembers the nonce by moving into a local
state that retains the nonce value. In the second step, Bob receives a message on the
network, chooses his own nonce, transmits it and saves both nonces in his local state.
In the third step, Alice receives Bob’s message and replies, while in the fourth step
Bob receives Alice’s final message and changes state.
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Table 2

Sample trace of encryption-free Needham–Schroeder

B0( ), A0( ) −→ A1(na), N1(na), B0( )

A1(na), B0( ), N1(na) −→ B1(na, nb), N2(na, nb), A1(na)

B1(na, nb), A1(na), N2(na, nb) −→ A2(na, nb), N3(nb), B1(na, nb)

A2(na, nb), B1(na, nb), N3(nb) −→ B2(na, nb), A2(na, nb)

If we group the transition rules into roles,

A = { A0( ) −→ ∃x.A1(x), N1(x), A1(x), N2(x, y) −→ A2(x, y), N3(y) }

B = { B0( ), N1(x) −→ ∃y.B1(x, y), N2(x, y), B1(x, y), N3(y) −→ B2(x, y) }

we see that A and B are bounded role theories, where A0 and B0 are initial role state,
and A1, A2, B1, and B2 are role states.

Sample Computation. In Table 2 is a sample trace generated from these rules,
beginning from state A0, B0. Spacing is used to separate the facts that participate in
each step from those that do not.

3.3. Formalizing the intruder

One of the original motivations for using multiset rewriting for protocol analysis
was that this framework allows us to use essentially the same theory for all adver-
saries that follow the Dolev–Yao model, for all protocols. The precise formulation of
the intruder will depend on the message format of the protocol being attacked, and
on the type of encryption used, but the basic form of the standard intruder will be
the same under the Dolev–Yao model.

The Dolev–Yao protocol adversary or “intruder” may nondeterministically choose
among the following actions at each step:

• Read any message and block further transmission.
• Decompose a message into parts and remember them, including decrypting any

message for which the adversary has obtained the key.
• Generate fresh data as needed.
• Compose a new message from known data and send.

By combining a read with resend, we can easily obtain the effect of passively
reading a message without preventing another party from also receiving it.

There are two main parts of the Dolev–Yao model as commonly used in protocol
analysis. The first is the set of possible intruder actions, applied nondeterministically
throughout execution of the protocol. The second is a “black-box” model of en-
cryption and decryption. We explain the intruder actions here, along with specifying
some formal properties that are used to bound the number of intruder steps needed
to produce a given message. The encryption model is presented in Section 3.4.
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Sorts. We still have the sort nonce, but as we will see in Section 3.4, it is conve-
nient for the intruder model to use the sort msg, with nonce a subsort of msg.

Functions. We introduce a new function for pairing, which is abbreviated as

< _, _ >: msg × msg → msg

Predicates. We introduce the basic predicates D, M, and C for the intruder, with
the following intuitive meaning:

D(msg) Decomposable messages known to intruder
M(msg) Information stored in intruder “memory”
C(msg) Composable messages known to intruder

Later, when we include encryption in our model and more sortnames are added,
these predicates will become more complex, eventually reaching the form shown in
Table 7.

Rules. In our model, the intruder processes data in two phases. The first stage is to
read and decompose data into parts and remember the parts, and the second stage is
to compose a message from the parts it remembers. We will discuss the two-phase
intruder more formally in Section 3.5. We illustrate the basic form of the intruder
actions for an encryption-free protocol using two of the network-message predicates
from the previous example, N1(nonce) and N2(nonce,nonce). Using predicates D
for decomposable messages and M for the intruder “memory”, the basic rules for
intercepting, decomposing and remembering messages are

N1(x) −→ D(x)
N2(x, y) −→ D(〈x, y〉)
D(〈x, y〉) −→ D(x), D(y)
D(z) −→ M(z)

The rules for composing messages from parts are written using the C, for “compos-
able”, predicate as follows:

M(x) −→ C(x), M(x)
C(x) −→ N1(x)
C(x), C(y) −→ C(〈x, y〉)
C(〈x, y〉) −→ N2(x, y)

The rule for generating new data is

−→ ∃x.M(x)
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The reason we need the last transition rule (which can be applied any time without
any hypothesis) is that the intruder may need to choose new data in order to trick an
honest participant in a protocol. This is illustrated in the sample computation shown
below.

Note that a simpler equivalent intruder model can be formulated by removing the
explicit composition and decomposition predicates. Specifically, if all C( ) and D( )
predicates are replaced by M( ) and redundant rules are removed, the above nine
rules can be reduced to seven rules. We choose to model an explicit two-phase in-
truder for two reasons. First, the two-phase model is useful in directing proof search
techniques in an implementation based on MSR, such as the LLF implementation
mentioned in [14]. Second, for our complexity results we need to be able to prove
poly-time decidability of the intruder actions. The proof in Lemma 3.13 is facilitated
by the two-phase intruder model, though as we mention in Section 3.5 alternate proof
techniques are also available.

Sample Computation. An attack on the encryption-free (and obviously insecure)
portion of the Needham–Schroeder protocol is shown in Table 3. Here we have the
actions of the honest participants in the left column and the actions of the intruder
indented. For simplicity, duplicate copies of M( ) facts are not shown, since these
have no effect on the execution of the protocol or intruder.

In this attack, the intruder intercepts messages between A and B, replacing data
so that the two principals have a different view of the messages that have been ex-
changed. Specifically, the intruder replaces Alice’s nonce na by a value n chosen by
the intruder. When Bob responds to the altered message, the intruder intercepts the
result and replaces n by na so that Alice receives the message she expects. Introduc-
ing encryption eliminates this attack.

3.4. Modeling perfect encryption

The commonly used “black-box” model of encryption may be written in our multi-
set notation using the following vocabulary. For concreteness, we discuss public-key
encryption. Symmetric or private-key encryption can be characterized similarly. For
simplicity we will identify principal identities with their public keys.

Sorts. We introduce several new sorts, including cipher for ciphertext, d_key for
decryption keys and e_key for encryption keys. Since data can be transformed by
encryption into a different type, and the type of an encrypted message can’t be known
until the message is decrypted, we choose to introduce an order-sorted algebra [35].
This approach also serves to keep the signatures of our functions and predicates
reasonably simple.

We introduce msg as the super-sort, with the following relations: nonce < msg,
cipher < msg, d_key < msg, e_key < msg.
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Table 3

Sample attack on encryption-free Needham–Schroeder

B0( ), A0( ) Initial configuration

−→ A1(na), N1(na), B0( ) Alice chooses nonce and sends

−→ A1(na), B0( ), D(na) Intruder intercepts message na

−→ A1(na), B0( ), M(na) Intruder learns value na

−→ A1(na), B0( ), M(na), M(n) Intruder generates fresh value n

−→ A1(na), B0( ), M(na), M(n), C(n) Intruder begins composing message

−→ A1(na), N1(n), B0( ), M(na), M(n) Intruder sends n to Bob

−→ B1(n, nb), N2(n, nb), A1(na), M(na), M(n) Bob receives, generates nonce, replies

−→ A1(na), B1(n, nb), M(na), M(n), Intruder intercepts message with n

D(〈n, nb〉)
−→ A1(na), B1(n, nb), M(na), M(n), Intruder decomposes message

D(n), D(nb)

−→ A1(na), B1(n, nb), M(na), M(n), M(nb) Intruder learns value nb

−→ A1(na), B1(n, nb), M(na), M(n), M(nb), Intruder starts composing message

C(na), C(nb)

−→ A1(na), B1(n, nb), M(na), M(n), M(nb), Intruder composes message

C(〈na, nb〉)
−→ A1(na), N2(na, nb), B1(n, nb), Intruder sends message with na

M(na), M(n), M(nb)

−→ A2(na, nb), N3(nb), B1(n, nb), Alice receives and responds

M(na), M(n), M(nb)

−→ B2(n, nb), A2(na, nb), M(na), M(n), M(nb) Bob changes to final state, indicating

successful completion of protocol

Predicates. The predicates from the previous simpler example remain, though with
their sort types modified appropriately to account for encryption. For example the
role states must now remember information about principals’ public keys, and the
network messages are now encrypted. These predicates are described in detail in
Section 4.

We introduce new predicates related to management of encryption keys.
KP(e_key, d_key) is used for associating public/private key pairs, and AnnK(e_key)
indicates that a public key has been published. We also introduce the predicate
GoodGuy(e_key, d_key), which is used to identify the honest participants of the
protocol, and their keys. The list of predicates for the full theory is shown in Ta-
bles 5, 6, and 7.

Functions. In addition to the pairing function from the previous section,

< _, _ >: msg × msg → msg
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we introduce a function for encryption,

enc : e_key × msg → cipher

It is not necessary to include a decryption function dec : d_key × cipher → msg,
since we write protocols using pattern-matching (encryption on the left-hand-side of
a rule) to express decryption.

Rules. The core Needham–Schroeder protocol with encryption assumes that each
principal has a previously generated keypair with a published public key. We simu-
late this in the initialization theory, with rules of the following form.

−→ ∃ke.kd.GoodGuy(ke, kd), KP(ke, kd)
GoodGuy(ke, kd) −→ AnnK(ke), GoodGuy(ke, kd)

The first rule (without hypothesis) generates a keypair for an honest principal. The
second rule announces the public key so it is accessible to other roles and to the
intruder.

New roles are generated in the role generation theory, which generates the initial
role states for each instance of a protocol role. These rules are of the following form:

GoodGuy(ke, kd) −→ GoodGuy(ke, kd), A0(ke)
GoodGuy(ke, kd) −→ GoodGuy(ke, kd), B0(ke)

Here any honest participant can choose to participate as either the initiator or the
responder, by generating the appropriate initial role state.

Finally, the first step of the protocol is changed to include encryption and the use
of the published public keys. Alice’s first step becomes the following:

AnnK(k′
e), A0(ke) −→ ∃x.A1(ke, k′

e, x), N1(enc(k′
e, 〈x, ke〉)), AnnK(k′

e)

Here Alice chooses to talk to somebody whose public key has been announced. She
generates a nonce as before, and then sends out the first message encrypted by the
public key she has selected.

The following transition rule then allows Bob to decrypt the message from Alice
and send a reply.

B0(ke), N1(enc(ke, 〈x, k′
e〉)), AnnK(k′

e) −→
∃y.B1(ke, k′

e, x, y), N2(enc(k′
e, 〈x, y〉)), AnnK(k′

e)

The complete initialization theory, role generation theory and protocol theories for
Needham–Schroeder are shown in Section 4.
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Intruder. To model the encryption capabilities of the intruder, we add a decompo-
sition and a composition rules of the following basic form to the intruder model. The
decomposition rule allows the intruder to decrypt a message (or part of a message)
when the decryption key is known.

D(enc(k, x)), KP(k, k′), M(k′)
−→ D(x), KP(k, k′), M(k′), M(enc(k, x))

The composition rule allows the intruder to encrypt a message with any encryption
key known to the intruder.

M(k), C(x) −→ C(enc(k, x)), M(k)

A complete example of the rules defining an intruder for Needham–Schroeder
(including more complex sorts and some other changes explained in Section 3.5), is
shown in Table 7.

3.5. Two-phase intruder theory

In this subsection, we formally specify the properties of intruder theories that are
required in order to bound the number of intruder steps needed to produce a given
message. We make use of a standard notion from proof theory based on the nor-
malization of proofs for natural deduction. This strategy was first applied to security
protocols by [19], who explain that the actions of the standard intruder can be syn-
tactically separated into two phases – a decomposition phase in which messages are
decomposed into smaller parts, and a composition phase in which these parts are
(re)assembled into a new message. This two-phase intruder provides us with a proof
search strategy that is the basis for the decidability of the intruder actions.

First we will need to define some new terms.

Definition 3.7. The size of an atomic formula is the number of symbols it contains.
We count one for the predicate name, one for each function name, and one for each
variable or constant symbol. We introduce the notation |f | to indicate “size of atomic
formula f”.

For example, |P (x, y)| = 3, and |P (f (x, y), z)| = 5.

Definition 3.8. A weighting function is a function f → N that maps atomic formulas
to numeric weights. We introduce the notation W(P (x)) to indicate the “weight of
atomic formula P (x)”. The relative weight of formulas must be preserved under
substitution, i.e., if A and B are atomic formulas and σ is a substitution, then

W(A) > W(B) =⇒ W(σA) > W(σB).

We will use weighting functions to guarantee termination.
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Many weighting functions are possible, but we are interested in a class of functions
that calculate the weight based on a pair 〈n, P 〉, where n is a number indicating the
size of the atomic formula, and P is the predicate name. We define a strict (non-
reflexive) partial-ordering on the predicates of a theory. A particular theory has a
particular ordering. For example in the standard intruder model, D > M, and C > M.
An example ordering of the predicates for the intruder theory is shown in Table 7.
The ordering is defined for formulas P (x) and P ′(x′), as follows: 〈|P (x)|, P 〉 <
〈|P ′(x′)|, P ′〉 if |P (x)| < |P ′(x′)| or |P (x)| = |P ′(x′)| and P < P ′.

For example, if N, D, and M are predicates with N > D > M, then

W(D(〈x, y〉)) > W(D(x))

W(M(〈x, y〉)) > W(D(x))

W(N(x)) > W(D(x))

An example of a weighting function that conforms to these constraints is as fol-
lows:

W1(P (x)) := 10 ∗ |P (x)| + val(P )

where val is a function mapping predicate names to numbers, represented as a set of
ordered pairs as follows:

val := {(N, 4), (D, 3), (M, 1), (C, 3)}

Here the value “10” is arbitrarily chosen to be larger than any of the values appearing
in the val function.

Definition 3.9. A rule R = � −→ r is a decomposition rule with respect to weight-
ing function W if the total weight of the terms in r is less than the total weight of
the terms in �. A rule R = � −→ r is a composition rule with respect to weighting
function W if the total weight of the terms in r is greater than the total weight of the
terms in �.

For example,

D(〈x, y〉) −→ D(x), D(y)

is a decomposition rule with respect to weighting function W1, and

C(x), C(y) −→ C(〈x, y〉)

is a composition rule with respect to weighting function W1.
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For the intruder theories we will consider, we allow persistent facts to appear in
both the left and right hand sides. So, in general a decomposition rule is of form:

D(〈A, B〉), �P (. . .) −→ D(A), D(B), �P ′(. . .)

where �P and �P ′ are sets of persistent predicates, with �P ⊆ �P ′ (and similarly for
composition rules).

We also need to introduce more complicated decomposition rules, which we call
“Decomposition rules with Auxiliary facts”. These are pairs of rules of form:

D(t), �P (. . .) −→ �P ′(. . .), A(t)

and

A(t), �Q(. . .) −→ �Q′(. . .), D(t′)

where �P ⊆ �P ′, �Q ⊆ �Q′, A < D, and |t′| < |t|. Here, A represents an Auxiliary fact
(which can appear only in a pair of rules of this form) which is used to amortize the
decomposition of D(t) into D(t′) across the two rules. Section 4.4 shows an example
of this type of decomposition rule, used to allow decrypting an old fact with a newly
learned encryption key.

Definition 3.10. A theory T is a two-phase theory if its rules can be divided into
three theories that share no non-persistent predicates, T = I � C � D, where I
is a bounded sub-theory preceding C and D, C contains only composition rules, D
contains only decomposition rules, and no rules in C precede any rules in D.

Definition 3.11. A normalized derivation is a derivation where all rules from the
initialization theory are applied first, then all rules from the decomposition theory
are applied before any rules from the composition theory.

It is shown in [19] in a slightly different context that, with the restriction that
keys must be atomic, all derivations in a two-phase theory can be transformed into
normalized derivations.

Definition 3.12. A protocol theory is limited to atomic keys if its signature does not
contain any functions that return data of type ekey or dkey.

Lemma 3.13. Given a state S, a two-phase intruder theory M with a signature that
is limited to atomic keys, and a target message X: it is decidable in polynomial time
whether the message X is derivable from the state S using the theory M.
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Proof. We construct a polynomial-time decision procedure for testing whether mes-
sage X is derivable from state S using the theory M. We use the decomposition
rules of M to decompose the state S into a set of base facts B. Then we use the
composition rules of M “backwards” to decompose the goal message X into a set
of base facts B′. The message X is derivable if B′ ⊆ B.

The algorithm is as follows: Let D be the decomposition theory of M, and let
C be the composition theory. We write S − T for multiset difference and S � T for
multiset union. If � −→ r is a rule and σ a substitution, then σ� and σr are multisets.

1. Decompose state S into base facts B using rules from D.

(a) S0 = S.
(b) Repeat until no more rules in D can be applied:

i. Find a rule � −→ r in D with σ� ∈ Si, for some substitution σ.
ii. Si+1 = (Si − σ�) � σr.

(c) B = Si.

2. Let P be the persistent facts in B (i.e., for our Standard Intruder, P contains
all the M( ) facts from B).

3. Decompose goal message X into base facts B′ using rules from C and the
persistent facts from B.

(a) S0 = {X} � P .
(b) Repeat until no more rules in C can be applied:

i. Find a rule � −→ r in C with σr ∈ Si, for some substitution σ.
ii. Si+1 = (Si − σr) � σ�.

(c) B′ = Si.

4. If B′ ⊆ B then ACCEPT else REJECT.

This procedure terminates because of the properties of the composition and de-
composition rules, which guarantee that the total size of the multiset gets smaller
for each application of a decomposition rule, and larger for each application of a
composition rule (or in this case smaller, since we are applying them in reverse). In
this comparison, the size of the multiset is the sum of the sizes of the formulas it
contains.

Note that the order of the choice of rule in Step 1b doesn’t matter. Each rule selects
a particular term and decomposes it, but this doesn’t effect other terms not mentioned
in that rule. So the state B that results in Step 1c is the same no matter what order the
rules were applied. Similarly for Steps 3b and 3c.

To show correctness of the algorithm, we need to prove the two directions. If
message X is derivable by theory M from state S, then the procedure ACCEPTs.
Since the message is derivable, that means it can be obtained from S using a normal-
ized derivation that applies rules from the decomposition theory D first, followed by
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rules from the composition theory C. Let d be the set of decomposition rules used
in the derivation, and let d′ be the decomposition rules used in Step 1. Let D be the
facts derived by applying the rules in d. Since we apply all possible decomposition
rules in Step 1, we know that d ⊆ d′, so D ⊆ B. The derivation uses composition
rules c to construct fact X , possibly along with other facts, from D. Meanwhile,
Step 3 decomposes fact X into its component facts, set B′, so B′ ⊆ D. So we have
D ⊆ B ∧ B′ ⊆ D, which means B′ ⊆ B, and the procedure ACCEPTs.

For the reverse direction, if the procedure ACCEPTs, then the message X is deriv-
able by theory M from state S. If the procedure accepts, we can construct a deriva-
tion that applies all the rules from Step 1, then all the rules from Step 3 in the forward
direction. Since B′ ⊆ B, we know that X can be derived from the facts in B, so a
valid derivation of X can be constructed. �

Note that because M is a two-phase theory, we only need to apply the above
procedure once. No term produced by a rule in C can appear on the left-hand side
of a rule in D, so applying the composition theory does not enable any new rules to
be applied in the decomposition theory. Without the restriction to atomic keys, the
forward direction of our proof would fail, because the application of rules in C might
result in the creation of a new key that would allow new messages to be decrypted
using rules in D. Rusinowitch and Turuani present a proof in a slightly different
setting, representing message terms as Directed Acyclic Graphs, which removes this
restriction to atomic keys [60]. McAllester has also shown a general method for
proving the tractability of sets of inference rules [49].

3.6. Protocol and intruder

The primary goal of security protocol analysis is to try to find flaws in a protocol
– to find attack scenarios that result in the failure of properties such as secrecy or
authentication, or ultimately to prove that a protocol is correct (i.e. that no attacks
are possible). In the MSR framework, we consider the interaction of a well-founded
protocol theory with a two-phase intruder theory, by analyzing standard traces of the
protocol.

Definition 3.14. Given a well-founded protocol theory P = I � R � A and a two-
phase intruder theory M, a standard trace is a derivation that has all steps from the
I and R first, then interleaves steps from the principal theories A with normalized
derivations from the intruder theory M.

The notion of a standard trace is a useful one for reasoning about the complexity
of security protocols, as we will see in Section 5.

The intruder is easily formalized as a set of rewrite rules. While the basic intruder
steps remain the same from one protocol to the next, the exact formalization depends
on the form of messages used in the protocol. A specific instance of the standard
intruder is described in some detail in Section 4.4.
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4. Example: Needham–Schroeder public key protocol

In this section, we present the full theory of the three-step core of the Needham–
Schroeder public-key protocol, which is shown in Table 1. The sorts and functions
for the signature are shown in Table 4, with the predicates introduced as needed in the
table for each sub-theory. An example of a two-phase intruder is shown in Table 7.

4.1. Initialization theory

The Initialization Theory I, for a public key system without a trusted server, is
shown in Table 5. Here, the predicate GoodGuy indicates an uncompromised prin-
cipal, parameterized by its encryption and decryption (public and private) keys. For
simplicity, we identify the principal with its public key (i.e., where “A” appears in the
protocol, we use the public key “Ka”). The GOODGUY rule allows for the creation

Table 4

Needham–Schroeder theory signature

Sorts:

e_key : encryption key (and principal name)

d_key : decryption key

cipher : cipher text (encrypted)

nonce : nonces

msg : data of any type

Subsorts: nonce < msg, cipher < msg, e_key < msg, d_key < msg

Functions:

enc : e_key × msg → cipher : encryption

< _, _ >: msg × msg → msg : pairing

Table 5

Public key initialization theory

Predicates:

GoodGuy(e_key, d_key): identity of an honest participant

BadKey(e_key, d_key) : keys of a dishonest participant

KP(e_key, d_key) : encryption key pair

AnnK(e_key) : published public key

Initialization Theory I:

GOODGUY: −→ ∃ke.kd.GoodGuy(ke, kd), KP(ke, kd)

BADKEY: −→ ∃ke.kd.BadKey(ke, kd), KP(ke, kd)

ANNK: GoodGuy(ke, kd) −→ AnnK(ke), GoodGuy(ke, kd)

ANNKB: BadKey(ke, kd) −→ AnnK(ke), BadKey(ke, kd)
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of an unlimited number of principals, each with a unique key pair, denoted by the
predicate KP.

The BADKEY rule provides a mechanism for specifying an unlimited number of
compromised key pairs, which appear to belong to valid principals, but whose private
keys are known to the intruder. The predicate BadKey denotes these compromised
key pairs. There is no need to distinguish between the case of an honest participant
who does follow the protocol but has had his keys compromised, and the case where
the intruder himself is simply posing as an honest participant, but is not constrained
to follow the protocol. This is because the intruder can simply simulate the first case,
by performing the steps of the protocol, if he wants. I.e., there is no need to have
both GoodGuy(k, k′) and BadKey(k, k′) facts generated for the same keys.

We accomplish key distribution by having the principals announce their public
keys. The ANNK rule accomplishes this for the GoodGuy participants, while the
ANNKB rule does the same for the BadKey pairs. Note that both rules generate a
predicate AnnK indicating a public key that is available for communication, so from
this point the honest participants can not distinguish the good guys from the bad
guys.

Note that in order for the Initialization theory to be a bounded-sub theory, as de-
fined in Definition 3.4, all the predicates that appear on the left-hand side of the rules
(i.e., GoodGuy, KP, BadKey and AnnK) must be persistent in the protocol theory.
This can be verified by examining how these predicates are used in each of the rules
of the Role Generation and Role theories in Table 6.

4.2. Role Generation Theory

The Role Generation Theory R is shown in Table 6. Rules ROLA and ROLB
allow an unlimited number of sessions to be started for any principal to act in the
role of either “Alice” (the initiator) or “Bob” (the responder). A0 and B0 denote the
initial role states for the A and B roles, respectively, parameterized by the public key
(principal) acting in that role.

Note that this theory satisfies Definition 3.3, since the rules involve only the per-
sistant predicate GoodGuy, and the initial role states A0 and B0, which appear only
on the right hand side of the rules.

4.3. Protocol Role Theories

The Role Theories, shown in Table 6, are derived directly from the specification
of the Needham–Schroeder protocol. Theory A corresponds to the role of “Alice”,
and theory B corresponds to “Bob”.

In rule A1, which corresponds to the first line of the protocol, a principal ke,
in its initial state A0, decides to talk to another principal k′

e, whose key has been
announced. A new nonce x is generated, along with a network message NS1 corre-
sponding to the first message sent in the protocol, and the principal moves to the new
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Table 6

Needham–Schroeder theory

Predicates:

A0(e_key) : Role state 0 for initiator

A1(e_key, e_key, nonce) : Role state 1 for initiator

A2(e_key, e_key, nonce, nonce) : Role state 2 for initiator

B0(e_key) : Role state 0 for responder

B1(e_key, e_key, nonce, nonce) : Role state 1 for responder

B2(e_key, e_key, nonce, nonce) : Role state 2 for responder

NSi(cipher) : (i = 1, 2, 3) encrypted message (sent)

NRi(cipher) : (i = 1, 2, 3) encrypted message (received)

Role Generation Theory R:

ROLA: GoodGuy(ke, kd) −→ GoodGuy(ke, kd), A0(ke)

ROLB: GoodGuy(ke, kd) −→ GoodGuy(ke, kd), B0(ke)

Protocol Theories A and B:

A1: AnnK(k′
e), A0(ke) −→

∃x.A1(ke, k′
e, x), NS1(enc(k′

e, 〈x, ke〉)), AnnK(k′
e)

A2: A1(ke, k′
e, x), NR2(enc(ke, 〈x, y〉)) −→ A2(ke, k′

e, x, y), NS3(enc(k′
e, y))

B1: B0(ke), NR1(enc(ke, 〈x, k′
e〉)), AnnK(k′

e) −→
∃y.B1(ke, k′

e, x, y), NS2(enc(k′
e, 〈x, y〉)), AnnK(k′

e)

B2: B1(ke, k′
e, x, y), NR3(enc(ke, y)) −→ B2(ke, k′

e, x, y)

state A1, remembering the values of x and k′
e. Note that since AnnK is persistent, it

must also appear on the right hand side of the rule.
In step B1, corresponding to the second step of the protocol, a principal ke, in

the initial state B0, responds to a message on the network which is of the expected
format (i.e., encrypted with ke’s public key, and with the identity of a participant
whose key has been announced, embedded inside). ke generates another nonce, and
replies to the message, moving to a new state B1 where all the information (the two
nonces and the two principals) is remembered.

Similarly, A2 corresponds to the third line of the protocol, and B2 corresponds to
the implicit step where the responder actually receives the final message.

Note that sent messages are denoted by NSi and received messages are denoted
by a corresponding predicate NRi. The minimal intruder theory can be thought of as
providing a network that transforms NSi’s to NRi’s, so the protocol can execute. There
are several ways to encode protocol theories using our MSR formalism. For example
an alternate encoding could use a single N predicate for all network messages. In
the presence of an intruder, these alternate encodings are all logically equivalent,
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because the intruder can transform from one network predicate to another, so we
have chosen the one that seems most convenient for our purposes.

4.4. Intruder theory

The Intruder Theory, which is an example of a Standard Two-Phase Intruder, is
shown in Table 7. Here the M∗ predicates denotes persistent facts known to the in-
truder, while D, A and C represent non-persistent facts which can be decomposed
and composed into other facts.

LRNKB and LRNK are initialization rules that allows the intruder to learn keys.
Since the BadKey and AnnK predicates are generated only by the initialization the-
ory, we know from Lemma 2.4 that this rule only needs to be applied once per deriva-
tion, per BadKey and AnnK fact.

The REC and SND rules are used to connect the intruder to the network being used
by the participants. The REC rule intercepts a message from the network and saves
it as a decomposable fact. The SND rule sends composed facts onto the network.

The COMP rule allow the user to compose small terms into larger ones, while the
DCMP rule allows for decomposition of large terms into smaller ones.

LRN converts a decomposable fact into intruder knowledge, and USE converts
intruder knowledge into a composable fact.

The ENC and DEC rules allow the intruder to decrypt a message if it knows the
private key, and to generate encrypted message from known public keys.

Note that LRNA and DECA are decomposition rules with auxiliary facts that han-
dle a special case for encrypted messages. If the message can’t be decrypted because
the key isn’t currently known, LRNA remembers the decrypted message with the
special “Auxiliary” predicate, A. The DECA rule allows Auxiliary messages to be
decrypted at a later time, if the decryption key becomes known.

Finally, GEN allows the intruder to generate new facts (i.e., nonces) as needed.
We could also include rules to generate other new data types, such as dynamic keys,
but we omit those here because they are not relevant to our Needham–Schroeder
example.

We expand the weighting function described in Section 3.5 to include the predi-
cates used here, i.e.,

W2(P (x)) := 10 ∗ |P (x)| + val(P )

where

val := {(NSi, 4), (D, 3), (A, 2), (M∗, 1), (NRi, 4), (C, 3)}

This Intruder Theory can be divided into Composition and Decomposition rules,
as shown in Table 7. So, this is a Two-Phase Intruder Theory with respect to weight-
ing function W2, as described in Section 3.1.
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Table 7

Two-phase intruder theory

Variables: x : msg, y : msg, n : nonce, c : cipher, ke : e_key, kd : d_key
Predicates:

Mek(e_key) : fact in intruder memory (encryption key)

Mdk(d_key) : fact in intruder memory (decryption key)

Mn(nonce) : fact in intruder memory (nonce)

Mc(cipher) : fact in intruder memory (ciphertext)

D(msg) : decomposable fact

C(msg) : composable fact

A(cipher) : auxiliary fact (for deferred decryption)

Ordering of Predicates: NSi > D > A > M∗ and NRi > C > M∗
Weighting Function: W2

Initialization Rules:

LRNKB: BadKey(ke, kd) −→ Mek(ke), Mdk(kd), BadKey(ke, kd)

LRNK: AnnK(ke) −→ Mek(ke), AnnK(ke)

I/O Rules:

REC: NSi(x) −→ D(x)

SND: C(x) −→ NRi(x)

Decomposition Rules:

DCMP: D(〈x, y〉) −→ D(x), D(y)

LRNEK: D(ke) −→ Mek(ke)

LRNDK: D(kd) −→ Mdk(kd)

LRNN: D(n) −→ Mn(n)

DEC: Mdk(kd), KP(ke, kd), D(enc(ke, x)) −→ Mdk(kd), KP(ke, kd), D(x), Mc(enc(ke, x))

LRNA: D(enc(ke, x)) −→ Mc(enc(ke, x)), A(enc(ke, x))

DECA: Mdk(kd), KP(ke, kd), A(enc(ke, x)) −→ Mdk(kd), KP(ke, kd), D(x)

Composition Rules:

COMP: C(x), C(y) −→ C(〈x, y〉)
USEEK: Mek(ke) −→ C(ke), Mek(ke)

USEDK: Mdk(kd) −→ C(kd), Mdk(kd)

USEN: Mn(n) −→ C(n), Mn(n)

USEC: Mc(c) −→ C(c), Mc(c)

ENC: Mek(ke), C(x) −→ C(enc(ke, x)), Mek(ke)

GEN: −→ ∃n.Mn(n)
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5. Complexity results

In this section, we investigate the complexity of secrecy for bounded protocols
of a restricted form. More specifically, we give upper bounds that are as general as
possible, and lower bounds that apply to as restricted a subset of the protocol as
possible. In general, a secrecy specification stipulates that certain “secret” data must
not fall into the hands of the intruder. This is a derivability or reachability problem
in our framework: given an initial secret such as A0(S), indicating that a secret S is
known to principal A at the beginning of a protocol run, is there a run of the protocol
and intruder in which the adversary learns S, i.e., M(S) appears in the state of the
system?

5.1. Restricted protocol form

The purpose of the initialization theory, in our framework, is to formalize the
choice of initial conditions, such as shared public or private keys. However, as we
have defined protocol theories, there are few restrictions on the form of initialization
theories. Since derivability in multiset rewriting is undecidable, we can prove trivial
lower bounds by encoding complex problems into the initialization theory. However,
this kind of lower bound would not shed any light on protocol analysis. In order to
avoid this essentially degenerate case, we will analyze decidability and complexity
for protocol theories with initialization theories that consist only of a finite set of
ground facts, and no rewrite rules. Intuitively, this means that we analyze decidabil-
ity and complexity of the role generation and protocol execution phases, under the
assumption that initialization has already been completed.

In addition, there are undecidability results for models that allow either an un-
bounded number of tuplings [36], or unbounded nesting of encryption and decryp-
tion [29]. So we will consider derivations that limit both the length of messages and
the depth of encryption, by bounding the size of the ground facts that can appear in
a derivation.

We also restrict the form of the protocol roles. In our previous examples, a step of
a protocol role A has the form

Ai(. . .), NRj(. . .), P(. . .), Q(. . .), . . .
→ �∃ . . . .Ak(. . .), NS�(. . .), P(. . .), Q(. . .), . . .

where Ai(. . .) and Ak(. . .) are role states, NRj(. . .) and NS�(. . .) are network mes-
sages, and P(. . .), Q(. . .), . . . are persistent facts appearing on the left and right of
the rule. However, for the purpose of proving a stronger negative result, we restrict
our attention to a simpler form of protocol step in this section, by omitting the per-
sistent facts.

With these restrictions in mind, we come to the following definitions:
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Definition 5.1. A role P of agent A is a restricted role if

• Its role states are drawn from a finite list of predicates, A1, . . . , Aa.
• The network predicates NRj and NS� are drawn from a finite list of predicates

NR1, . . . , NRn and NS1, . . . , NSn.
• It contains only rules of form

Ai(. . .), NRj(. . .) → �∃ . . . .Ak(. . .), NS�(. . .)

where Ai and Ak are role states, and NRj and NS� are network predicates, with
i < k � a and j < � � n, in each rule.

Definition 5.2. A protocol theory T = I � R � A is in restricted form if

• The initialization theory I is a set of ground facts.
• R is a role generation theory.
• A is a finite set of roles, each a restricted role.

5.2. Secrecy decision problem

Even with a protocol in restricted form, there are several interesting cases to con-
sider, depending on whether where the number of existentials and roles is bounded,
and on whether the derivation bound on the term size is fixed or varying.

We define a set of protocol scenarios as follows:

PA = {〈T ,M, S, n, r, k〉 | For ground term S (“the Secret”), there
exists a run of protocol theory T with standard intruderM leads
to a state containing M(S), such that at most n protocol nonces,
at most r role instances, and facts of size at most k appear in the
run.}

Intuitively, PA is the set of protocol scenarios that contain an attack. Deciding mem-
bership in PA is equivalent to deciding if an attack on a protocol exists. There are
a variety of secrecy decision problems that can be defined, depending on how the
parameters of the set are specified. The four cases we consider here are:

For each natural number. k, Ssize=k: Given T ,M, S decide if there exists n, r
such that 〈T ,M, S, n, r, k〉 ∈ PA.

Snonceb: Given T ,M, S, n, k decide if there exists r such that 〈T ,M, S, n, r, k〉
∈ PA.

Sroleb: Given T ,M, S, r, k decide if there exists n such that 〈T ,M, S, n, r, k〉 ∈PA.

For each natural number. k, Snonceb,size=k: Given T ,M, S, n decide if there exists
r such that 〈T ,M, S, n, r, k〉 ∈ PA.
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We are now ready to present the main results for this section:

Theorem 1. Ssize=k is undecidable for every k greater than some small value.

Theorem 2. Snonceb with no disequality test is DEXP-complete.

Theorem 3. Sroleb is NP-complete.

Theorem 4. Snonceb,size=k with no disequality test is in P.

Proof. Theorem 1 follows from the upper bound (Proposition 5.1) in Section 5.4.1
and the lower bound (Proposition 5.5) in Section 5.5.2.

Theorem 2 follows from the upper bound (Proposition 5.2) in Section 5.4.2 and
the lower bound (Proposition 5.6) in Section 5.5.3.

Theorem 3 follows from the upper bound (Proposition 5.3) in Section 5.4.3 and
the lower bound (Proposition 5.7) in Section 5.5.4.

The proof of Theorem 4 is in Section 5.4.4. �

Open Problem. The series of ??? in the box at the top of column two of Table 9
indicates an unresolved question for Snonceb, when disequality tests are allowed.

5.3. Protocol complexity matrix

Table 8 shows a summary of the complexity results for the main theorems pre-
sented in this paper. The two main columns consider the case of whether the number
of roles is bounded or unbounded. This refers to the number of instances of each
role (i.e., the number of protocol sessions) that are allowed to participate in a proto-
col run. In the left column the role generation theory R is bounded, meaning we fix
in advance the maximum number r of rules from R that can be used to generate a
protocol role instance, and then consider all runs with r or fewer roles. In the right
two sub-columns, R is not bounded, meaning runs with an arbitrary number of roles
need to be considered.

Table 8

Protocol theory complexity overview

Bounded # Roles Unbounded # Roles

bounded ∃ Unbounded ∃
Term size fixed P P Undec.

in all instances (Theorem 4) (Theorem 1)

Term size varies NPC DEXPC Undec.

per instance (Theorem 3∗) (Theorem 2)
∗A stronger result with no limit on term size is in [3,60].
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Table 9

Protocol theory complexity matrix

Bounded # Roles Unbounded # Roles

bounded ∃ Unbounded ∃
I with ∃ �= (5.3∗) NPC ??? (5.1) Undec.

= NPC (5.2) DEXPC Undec.

I no ∃ �= NPC DEXPC Undec.

= (5.7) NPC (5.6) DEXPC (5.5) Undec.
∗A stronger result with no limit on term size is in [3,60].

The second column is further sub-divided according to whether the number of ex-
istentials instantiated during execution in these roles is bounded or not. If the number
of existentials is bounded, then we fix in advance the maximum number n of pro-
tocol nonces, and consider all runs with n or fewer nonces. Because the number is
fixed, the nonces can be assumed to have been produced during initialization, and
not within the roles themselves.

The two rows of Table 8 consider whether the term size k is fixed in all instances
of the problem, or whether the term size is allowed to vary as a parameter of the
problem.

For each entry of the matrix in Table 8, we show the complexity result for that case,
using “P” to indicate the problem is in polynomial time, “NPC” for NP-complete,
“DEXPC” for DEXP-complete, and “Undec”. for Undecidable. The entries also indi-
cate which theorem is applicable in each case.

Table 9 is a more detailed summary of the complexity results, where we show more
detail about the results for the upper and lower bounds. The columns are the same
as in Table 8, but now the two main rows consider whether the intruder is allowed to
generate fresh values or not. These rows are further subdivided into the cases where
the roles can perform disequality tests which would allow them to determine whether
two fresh values are different from each other. The �= row allows both equality and
disequality tests, while the = row allows only equality tests. In a protocol, a test for
disequality on a nonce would mean the protocol compares a supposedly fresh nonce
it receives against all the other nonces it has received, to make sure it is actually
fresh. If disequality is not allowed, then this test is not performed.

Table 9 shows the complexity results for these cases, using the same notation as
for Table 8. The numeric references indicate the propositions about specific lower
or upper bounds which we discuss in the following sections. With the exception of
the top case of column two (bounded roles with existentials and disequality test, and
intruder with unbounded existentials), we will see that the lower bounds apply to
all cases above them in the table, and the upper bounds apply to all cases below
them.
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5.4. Upper bounds

5.4.1. Reachability for protocols is r.e. (Theorem 1)

Proposition 5.1. Ssize=k is recursively enumerable.

Proof. This is immediate because we can enumerate all the execution sequences,
i.e., all the computations of the protocol. �

5.4.2. Snonceb without disequality is in DEXP (Theorem 2)

Proposition 5.2. Snonceb without disequality tests is in DEXP.

Proof. We prove that Snonceb without disequality tests has a deterministic expo-
nential time decision procedure. Given T ,M, S, n, k, the algorithm runs in time
O((|T | + |M| + n)k), where |T | and |M| are the sizes of the protocol role theories
and the intruder theory, respectively.

We restrict the protocol theory by placing a bound on the number of existentials
that can be generated during protocol execution. First, we consider the case without
disequality tests, where the intruder cannot generate any existentials, the number of
roles is unbounded, but the number of existentials generated by the protocol theory
is bounded. This corresponds to the bottom box in the second column of Table 9.
Then we show that the upper bound also holds for the two boxes above this one in
the table, when we introduce the disequality test, and when the intruder can generate
existentials (but with no disequality test).

First we observe that bounding the number of protocol existentials means that we
can generate all the existentials used by all runs of the protocol during the initializa-
tion phase. No new data can be generated during protocol execution, and k gives a
limit on the size of any ground fact that can appear in a run. Therefore we have a fixed
alphabet Σ of size O(|T | + |M| + n), and there is an exponential |Σ|k bound on the
number of distinct ground facts that may appear in any possible protocol execution.

Next we observe that because role-generation is unlimited and no role creates
new data, each role can be re-run as many times as desired. More specifically, if
I is the initialization theory, and fact P (�t) is in a state S derivable from I by the
role generation and protocol rules, then there is another state S′ ⊇ S containing an
additional occurrence of P (�t) that can also be derived from I by the role generation
and protocol rules. Specifically this means that our algorithm can freely apply any
rule from any role, as many times as needed, because it is always possible to apply
the earlier rules from that role in order to create the required role state for the rule
we want to apply.

In short, our algorithm can treat all facts as if they were persistent facts, since
role-states can always be regenerated, and network messages can always be replayed
by the intruder.

Therefore, we can decide whether a fact M(S) is derivable by the following deci-
sion procedure:
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1. Set F := a set containing the ground facts from I.
2. Set R := a set containing all ground instances of the rules from T + M.
3. Repeat:

(a) Select a rule � −→ r from R.
(b) Apply the rule if � ⊆ F .
(c) N := r, i.e., N := the facts generated by applying the rule to F .
(d) F := F + N .

4. Until F + N = F for all rules in R.
5. If fact M(S) ∈ F , return YES, else return NO.

Since there is an exponential bound on the number of bounded-length facts that
can be written over the signature, this process will terminate in exponential time. This
decision procedure resembles the DEXP upper bound for Datalog, once we observe
that all role steps can be repeated as many times as needed [22,38,65].

In the case where the protocol roles can test for disequality, as long as no new
nonces can be produced during execution (i.e., the intruder can’t create any nonces),
the disequality tests just further restrict which rules are applicable in a state. This
might decrease the number of reachable facts, but the above algorithm still works,
and it does not affect the upper bound.

Similarly, although we have presented this upper bound in terms of a protocol in
restricted form, in fact the upper bound still hold for protocols whose roles contain
persistent facts, i.e., it holds for roles that are not in restricted form. This is because
the presence of additional persistent predicates in the LHS of rules just further re-
stricts which rules are applicable in a state. As with disequality tests, this might
decrease the number of reachable facts, but does not affect the upper bound. The
above decision procedure would still work.

The above argument assumes that the number of intruder existentials is bounded.
However, in the case where the roles cannot test for disequality, any attack with more
than one nonce provided by the intruder can be reduced to an attack with only one
new nonce provided by the intruder. Therefore, in the absence of a disequality test,
the intruder with one new nonce is equivalent to the intruder with unlimited new
nonces. So this case is also in DEXP. �

5.4.3. Bounded roles is in NP (Theorem 3)
In the following section we prove our result for the case of theories with bounded

term size whose signature uses only atomic keys, i.e., theories in which the signature
cannot contain any functions that return messages of type ekey or dkey. Since our orig-
inal result (which is unpublished until now, but was mentioned in the presentation
of [26]) several stronger results have been reported. Both [3,60] show that the prob-
lem with bounded roles and with unbounded message size is in NP. In addition [60]
extends this result to non-atomic keys, and the [3] result includes disequality tests.
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Proposition 5.3. Sroleb, with the signature for T and M restricted to non-atomic
keys, is in NP.

Proof. We prove that Sroleb has a non-deterministic polynomial-time decision pro-
cedure.

Recall from Definition 5.2 that T = I � R � A. We restrict the protocol theory
by placing a bound on the number of role instances that can be generated by the
role generation theory R, i.e., we place a limit r on the number of initial role states
that can appear in any run, by limiting how many times the rules in R can be used.
The number of existentials generated by the intruder is not bounded, and tests for
disequality (as well as equality) are allowed. This corresponds to the top box in the
first column of Table 9.

To prove this upper bound we present a decision procedure that takes as a witness a
polynomial length input representing an instantiation of a sequence of protocol rules
used in an attack run. The decision procedure verifies that the intruder is capable
of generating the messages necessary to make the run valid, and it verifies whether
the run is actually an attack. We show that this decision procedure has a polynomial
running time.

First we show that a candidate attack run is of polynomial length. Let R be the
maximum number of steps in the longest role of the protocol. Since we limit the
number of roles to r, any attack contains at most rR protocol steps.

Next we observe that, although we have allowed the intruder to use an unlimited
number of nonces in his attack, in fact the limited size of the protocol run means that
the number of nonces that are relevant to the attack has a polynomial bound. Since
each message is limited to size k, there can be at most k different values in a given
message, or a maximum of kR values for a given role. Thus, the maximum number
of distinct values that can occur in an attack run of at most r roles is bounded by
B = krR. For a given attack, only at most B of the nonce’s generated by the intruder
can actually appear in the protocol steps of the run.

Note that the number of nonces generated by the protocol is also bounded by the
value B. As in Section 5.4.2, the protocol nonces can be generated during the role
generation phase, instead of during protocol execution. So in our analysis we can
treat protocol nonces as constants that are included in the initial role state, and only
consider the intruder-generated nonces during the protocol execution.

Using these observations, we can construct an a candidate attack run of polynomial
length, as follows:

1. Guess a set of at most B = krR nonces to be used by the intruder in the
attack. These are included in the intruder’s initial knowledge, i.e., for each
nonce ni ∈ {n0, . . . , nB}, M(ni) ∈ I.

2. Guess a selection of up to r roles to be generated from the role generation
theory R. Note that these role state facts include as arguments any nonces that
would be generated by the protocol roles. Call this set of initial role states Ir .
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3. Guess a candidate sequence of up to rR protocol steps for the attack. The rules
used in the candidate attack are fully instantiated, using the values from I, Ir ,
and the B intruder nonces in a specific way. Let N � rR be the number of
steps in the candidate sequence, and label each step in the sequence si, for
1 � i � N .

Since the protocol is in restricted form, and no nonces are generated by the pro-
tocol roles during the run, we know from Definition 5.1 that all roles must be of the
form:

Ai(. . .), NRj(. . .) → Ak(. . .), NS�(. . .)

where Ai and Ak are role states, and NRj and NS� are network predicates. Note that
if the NRj is missing from the rule (as in the case of the first step of an initiator role),
then a null message body can be used, so all rules can be assumed to be of this form.

To verify that the candidate attack sequence is a valid protocol run, we must con-
firm that each step in the sequence is feasible. This involves verifying that the pro-
tocol role sequence is valid (i.e., each role state is used only once, and they are not
used in a step until after they have been generated), and that the network messages
needed at each step can be generated by the intruder from knowledge it has available
at that step.

Let Si be the current multiset of facts after step si. Let S0 = I + Ir, where I is the
multiset of facts from the initialization theory I and Ir is the set of initial role states
generated in step 2 above. For each rule

si : Ai(�m), NR(�n) → Aj( �m′), NS(�n′)

we do the following:

1. Check that Ai(�m) ∈ Si−1. If not, REJECT.
2. Decompose the target message NR(�n) into its smallest components by applying

rules from the intruder composition theory in reverse, until a set of persistent
M predicates remain. Call this set of M terms M .

3. Check that M ⊆ Ai−1. If not, REJECT.
4. Fully decompose the term NS(�n′) by applying all rules from the intruder de-

composition theory until only the persistent M predicates remain. Call this set
of M terms M ′.

5. Update Si := (Si−1 � {Aj( �m′)} � M ′) − {Ai(�m)}
6. Increment i.

After repeating the above procedure for all N rules, check if M(S) ∈ SN . If yes,
then ACCEPT (meaning this is an attack sequence), if not REJECT.

Since the size of each message is bounded by k, the above steps can each be done
in polynomial time. We do not go into detail here about steps 2 and 4, but for our
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standard two-phase intruder theory, we know from Lemma 3.13 that they can be
accomplished in polynomial time. Similar algorithms are presented in [19,60].

Since the number of protocol steps is polynomial, that means a candidate attack
sequence can be verified in polynomial time. Therefore, Sroleb is in NP.

This upper bound also holds for the case where the intruder is not allowed to gen-
erate nonces, or when disequality tests are not allowed, since the decision procedure
still works on these more restricted protocols. So the upper bound holds for all cases
in the first column of Table 9. �

5.4.4. Bounded roles and fixed k is in P (Theorem 4)
We view the result for bounded roles and fixed k (Snonceb,size=k) to be of limited

interest, but include it here for completeness.

Proposition 5.4. Snonceb,size=k without disequality tests is in P.

Proof. The proof technique is the same as for Proposition 5.2. We have a fixed al-
phabet Σ of size O((|T | + |M| + n)), and there is a |Σ|k bound on the number of
distinct ground facts that may appear in any possible protocol execution. If k is a
constant, then the number of ground terms is polynomial instead of exponential, and
the running time of the algorithm is polynomial.

This case is analogous to the data complexity of Datalog in [22].
Note that the same restriction on disequality tests applies as in Proposition 5.2. If

the intruder is allowed to generate nonces and the protocol roles are able to test for
disequality, then the alphabet is no longer fixed, and this proof fails. �

5.5. Lower bounds

In this section we examine the lower bounds. The proofs make use of a reduction
from Horn clauses to protocols in restricted form, so we examine that reduction first.
Horn clauses without function symbols are undecidable if existentials are allowed,
and DEXP-hard without existentials. Our proof is by reduction from existential Horn
clauses without function symbols to protocol theories in restricted form. The reduc-
tion introduces function symbols in the protocol theory, but not in the Horn clauses.

Also note that these proofs do not rely on any use of existentials from the intruder,
nor on the use of disequality tests. This means that one lower bound suffices for each
column in the complexity matrix.

5.5.1. Representing Horn clauses as protocol theories
An existential Horn clause is a closed first-order formula of the form

∀x1 . . .∀xi[(α1 ∧ . . . ∧ αk)
=⇒ ∃y1 . . .∃yj(β1 ∧ . . . ∧ β�)]

where α1, . . . , αk, β1, . . . , β� are first-order atomic formulas.
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We will show that, given a Horn theory that consists of a set of existential Horn for-
mulas, we can construct a protocol so that, when combined with the standard intruder
theory, the intruder may learn a representation of a formula iff it is a consequence of
the Horn theory.

Our encoding uses the intruder to replicate formulas. Since each protocol role can
only execute a finite sequence of steps, we use a separate role for each Horn clause.
The function of the intruder is to convert the final message sent by one role to an
initial message received by another role. As a result of intruder actions, a datum may
pass through an unbounded number of protocol steps.

In order to represent the Horn theory faithfully, we cannot give the intruder com-
plete access to the atomic formulas used in a Horn clause. In particular, we cannot
let the intruder combine data from different messages. For example, if one role sends
a message representing P (a, b), we cannot allow the intruder to intercept this mes-
sage and replace it with P (b, a). We prevent this form of interference by encrypting
atomic formulas with a shared private key.

We define an encoding of a conjunction of atomic formulas into a single term of
type msg. We use the notation �φ� to indicate the encoding of formula φ, where
φ = P1(t1,1, . . . t1,i1 ) ∧ . . . ∧ Pk(tk,1, . . . , tk,ik

).
For this encoding we use a secret key K which is not known by the intruder,

and we assume that for each sequence of predicates P1, . . . , Pk that occurs together
in the left or right hand side of a given Horn clause, we have a constant symbol
P1.P2. . . . .Pk. (Although we have used a sequence of letters, numbers and subscripts
to write out our name for this constant symbol, we assume it is an atomic constant
symbol of the language.)

Given these assumptions, we let

�P1(t1,1, . . . t1,i1 ) ∧ . . . ∧ Pk(tk,1, . . . , tk,ik
)�

= enc(K , 〈P1.P2. . . . .Pk, t1,1, . . . , t1,i1 , tk,1, . . . , tk,ik
〉)

Note that the size of the terms arising from �φ� is linear in the size of the terms
in φ. Specifically, calculating term size as we defined in Definition 3.7, if φ contains p
predicates each of maximum size s, then |�φ�| � 3 + p ∗ s.

We encode a given existential Horn clause C into a set of protocol roles. One role
represents the clause itself, and in addition, for each conjunction of atomic formulas
that appears in the Horn theory, we need a way to create that conjunction from atomic
formulas, and to decompose it into atomic formulas. We define Role(C) = R(C) +
C(C)+D(C), where R(C) is the role corresponding to clause C, and C(C) and D(C)
are the composition and decomposition roles for clause C.

The role R(C) for a clause C

∀x1 . . .∀xi[(α1 ∧ . . . ∧ αk)
=⇒ ∃y1 . . .∃yj(β1 ∧ . . . ∧ β�)]
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is

A0, NRa0(�α1 ∧ . . . ∧ αk�)
−→ ∃y1 . . .∃yj . A1, NSa1

(�β1 ∧ . . . ∧ β��)

where i, j � 0, k, � � 1. For example, the role for a pure Horn clause

∀x1 . . .∀xi[(α1 ∧ . . . ∧ αk) =⇒ β]

is

A0, NRa0(�α1 ∧ . . . ∧ αk�) −→ A1, NSa1
(�β�).

The representation of the composition role C(C) and the decomposition role D(C)
is perhaps best illustrated by an example. Suppose that the existential Horn clause

∀x∀y[(P (x) ∧ Q(x, y) ∧ R(y)) =⇒ ∃z(P (z)∧ Q(y, z)]

is part of the Horn theory we wish to represent by a protocol. In order to use this
implication, the protocol must produce a message containing �(P (a)∧Q(a, b)∧R(b)�
for some a and b. However, the protocol roles that represent Horn clauses produce
encodings of conjunctions of atomic formulas, and the atomic formulas here may
come from different rules. Therefore, we need additional protocol roles that select
atomic formulas out of conjunctions and combine them.

The process is very similar to the encoding of the two-phase intruder in Sec-
tion 3.5, except that protocol roles can manipulate encrypted values. For each con-
junction form (including variables) that appears on the right-hand side of a Horn
clause, such as P (z) ∧ Q(y, z), we include decomposition roles of the form

A0, NR0(�P (z) ∧ Q(y, z)�) −→ A1, NS1(�P (z)�)

and

B0, NR0(�P (z) ∧ Q(y, z)�) −→ B1, NS1(�Q(y, z)�)

for predicates A0, A1, B0, B1 not used for other roles. We also need a composition
role for the left-hand-side of each original Horn clause. For the clause above, the
role will have states A0, A1, A2 and A3. At each step, the role reads one of the atomic
formulas in its target conjunction, sending out either a dummy message or, at the last



290 N. Durgin et al. / Multiset rewriting and the complexity of bounded security protocols

step, a message containing the conjunction of atomic formulas needed. In order to
assemble �(P (x) ∧ Q(x, y) ∧ R(y)�, we can use a role A with the following steps:

A0, NR0(�P (x)�) −→ A1(�P (x)�), NS1( )
A1(�P (x)�), NR2(�Q(x, y)�) −→

A2(�P (x) ∧ Q(x, y)�), NS3( )
A2(�P (x) ∧ Q(x, y)�), NR4(�R(y)�) −→

A3( ), NS5(�P (x) ∧ Q(x, y) ∧ R(y)�)

After this role sends message NS5, the intruder can read the data �P (x) ∧ Q(x, y) ∧
R(y)� contained in this message and forward it to the role representing the Horn
clause with hypothesis P (x) ∧ Q(x, y) ∧ R(y).

Given a set of existential Horn clauses H , we define an encoding into a protocol
theory in restricted form, P(H) =

⋃
φ∈H Role(φ).

Lemma 5.3. The construction of P(H) from H is computable in polynomial time.
Furthermore, if H has no existential quantifiers, then P(H) has no existential quan-
tifiers.

Proof. If a Horn clause theory H consists of n clauses {C1, C2, . . . , Cn} with a
maximum conjunction size of m atomic formulas in any clause, then the correspond-
ing protocol theory P(H) contains n 1-step roles R(Ci), one corresponding to each
clause, plus a set of up to m 1-step decomposition roles in each D(Ci) for each
conjunction on the right hand side of a clause Ci, and a (at most) m-step composi-
tion role C(Ci) for the conjunction on the left hand side of the clause Ci. Thus the
encoding is polynomial and O(mn). �

Lemma 5.4. Let P(H) be the encoding of a set of existential Horn clauses H into
a restricted protocol theory, let φ be a formula, and let M be a standard two-phase
intruder theory. A run of P(H) + M can lead to a state containing M(�φ�) iff φ
is derivable from H . Furthermore, if the formulas in H have maximum term size
bounded by s, then the run P(H) + M ∗−→ M(�φ�) has a maximum term size f (s),
where f is a linear function of s.

Proof. The proof is by induction on the length of derivations. We need to prove both
directions. First we show that if H � φ then a run of P(H) + M can lead to a state
containing M(�φ�).

First consider the base case. If φ is initially true, that is equivalent to a Horn clause
of form

true =⇒ φ
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From our construction, the clause Ci yields a protocol role

A0, NRA0( ) −→ A1, NSA1(�φ�)

The intruder can obtain M(�φ�) by the following sequence:

M( ) −→ C( )

C( ) −→ NRA0( )

A0, NRA0( ) −→ A1, NSA1(�φ�)

NSA1(�φ�) −→ D(�φ�)

D(�φ�) −→ M(�φ�)

This proves the base case.
For the induction step, assume from our derivation up to clause Ci−1, we have

proven H � {φ0, φ1, . . . φn−1} and the intruder knows {M(�φ0�), M(�φ1�), . . . ,
M(�φn−1�)}. Suppose the next clause Ci in the derivation is

φ0 ∧ φ1 ∧ . . . ∧ φn−1 =⇒ ∃�z.φn(�z)

From our construction this yields a protocol theory Role(Ci) = R(Ci) + C(Ci) +
D(Ci), where R(Ci) is

Ai
0, Ni

Ra0(�φ0 ∧ φ1 ∧ . . . ∧ φn−1�) −→ ∃�z.Ai
1, Ni

Sa1(�φn(�z)�)

And C(Ci) is

Ci
0, Ni

Rc0(�φ0�) −→ Ci
1(�φ0�), Ni

Sc1( )

Ci
1(�φ0�), Ni

Rc1(�φ1�) −→ Ci
2(�φ0 ∧ φ1�), Ni

Sc2( )

. . .

Ci
n−2(�φ0 ∧ φ1 ∧ . . .∧ φn−2�), Ni

Rcn−2(�φn−1�) −→ Ci
n−1( ), Ni

Scn−1

(�φ0 ∧ φ1 ∧ . . .∧ φn−1�)

Using these roles (D(Ci) is not needed here), it is possible for the intruder to con-
struct a run that results in M(�φn�) in a manner similar to the base case above.

Next we show that if a run of P(H) + M can lead to a state containing M(�φ�)
then H � φ.

Initially if the intruder memory contains M(�φ�), this corresponds to a clause
true =⇒ φ.
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Suppose the intruder knows {M(�φ0�), M(�φ1�), . . . , M(�φn−1�)} after executing
role Ri−1, and our corresponding derivation has proven H � {φ0, φ1, . . . φn−1}.
From our construction, the next role Ri used by the intruder to obtain M(�φn�) will
be of type R(C), D(C), or C(C), for some clause C ∈ H .

If the role is of form R(C), then this corresponds directly to the clause C.
If the role is of form D(C), then this corresponds to a use of the logical axiom

A ∧ B ∧ C =⇒ A

If the role is of form C(C), then this corresponds to a use of the logical axiom

A ∧ B =⇒ (A ∧ B)

So in each case, after the intruder executes the next role in the derivation to obtain
M(�φn�), it is possible to prove φn from H by using a clause C corresponding to
that role.

Consider the maximum term size appearing in the run of P(H) + M. Each term
occuring in the run (in both the intruder steps and the protocol steps) is just a pred-
icate applied to �φ�, for some φ in H . So if n = |�φ�| for the largest term φ in H ,
then the maximum term size occuring in the derivation from a protocol step is just
k = n + 1. Since |�φ�| is linear in the size of φ, the maximum term size occuring in
the run is linear in the size of the formulas in H . �

5.5.2. Ssize=k is Undecidable (Theorem 1)
For the case of unbounded roles and unbounded existentials (the rightmost col-

umn in Table 9), we turn to results from Database theory, where the complexity
results for Embedded Implicational Dependencies (EIDs) [17] and Datalog [22] can
be applied. Embedded Implication Dependencies are exactly Horn clauses with ex-
istentials and equality, as defined in Section 5.5.1. In [17], this problem is proved to
be undecidable, by a reduction from the halting problem for a two-counter machine.
A reduction can also be made from the halting problem for a Turing machine, as we
show in Appendix A.1.

Without restriction on the form of the atomic formulas, undecidability of the im-
plication problem for existential Horn clauses follows immediately from the unde-
cidability of Horn clauses without existential quantifiers. The problem of interest to
us, however, is implication when the atomic formulas contain no function symbols.

Proposition 5.5. Ssize=k is undecidable for every derivation term size greater than
some small value k.

Proof. Our proof is a reduction from existential Horn clauses. Given any set H of
existential Horn clauses with no function symbols, and a formula φ, we can con-
struct a protocol theory in restricted form P(H). We know from Lemma 5.3 that the
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number of roles in P(H) is polynomial in the number and size of the Horn clauses
in H . If M is a standard two-phase intruder, then a run of P(H) + M can lead to
a state containing M(φ) iff φ is derivable from H . This follows from Lemma 5.4.
Since the derivability problem is undecidable by reduction from the halting problem
(Lemma A.2), the secrecy problem for protocol theories is also undecidable.

Furthermore as shown in Appendix A.1, it is possible to encode a Turing machine
using Horn clauses of relatively small size (we use conjunctions of up to 8 predicates,
each with up to 3 arguments). Since we know from Lemma 5.4 that the maximum
term size occuring in the run of P(H) + M is linear in the size of the predicates
in H , then the minimum term size k required for undecidability is also small. �

Note that the Turing machine encoding in Appendix A.1 leads to the result that
Ssize=k is Undecidable for all values of k >≈ 30, but we haven’t made any special
effort in our construction to achieve a small term size.

5.5.3. Snonceb is DEXP-hard (Theorem 2)
In the case of no existentials, both [22] and [17] show a DEXP lower bound. In

fact, DEXP-hardness follows by the same encoding of Horn formulas (Datalog pro-
grams, or full embedded implicational dependencies) as in our undecidability proof,
applied to Horn clauses without function symbols and without existential quantifica-
tion. For these Horn theories, DEXP-hardness of the implication problem (measured
as a function of the size of the theory) is implicit in [38,65], as explained in [22]. The
lower bound for Horn theories is similar to the Turing machine representation for the
unbounded case, using a form of “symbolic counter” instead of Skolem symbols to
name the cells in a bounded section of the Turing machine tape.

Proposition 5.6. Snonceb is DEXP-hard.

Proof. Our proof is a reduction from Horn clauses without existential quantifiers.
Given any set H of Horn clauses without existential quantifiers or function symbols,
and a formula φ, we can construct a protocol theory in restricted form P(H). We
know from Lemma 5.3 that this construction is polynomial in size. If M is a standard
two-phase intruder, then a run of P(H) + M can lead to a state containing M(φ)
iff φ is derivable from H . This follows from Lemma 5.4, since the construction
doesn’t require any protocol or intruder nonces. Since the derivability problem for
non-existential Horn clauses is DEXP-hard by reduction from Deterministic Turing
Machines (DTM) with exponential running time (Lemma A.4), the secrecy problem
for protocol theories with bounded nonces is also DEXP-hard. �

Note that the Horn clauses constructed in Appendix A.2 use a term size that is
proportional to the running time of the problem (exponential in the input to the prob-
lem, w). This means that runs of a protocol P(H) implementing those Horn clauses
have a maximum term size, kw, which is exponential in the size of the input to the
problem. DEXP-hardness only applies to the secrecy problem Snonceb for values of
k � kw.
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5.5.4. Sroleb is NP-hard (Theorem 3)
Here we consider a restricted protocol theory where the Intruder can not generate

existentials, the number of instances of each role is bounded, and no disequality tests
are allowed. This corresponds to the bottom box in the first column of Table 9.

We can prove this problem is NP-hard by reducing Turing machines to Horn
clauses, similar to the proofs for Theorems 1 and 2. A direct Turing machine proof
was used for the result reported in the workshop for [26]. Subsequently, several
authors have shown a direct reduction from 3-SAT to prove NP-hardness for this
case [2,60]. Since that proof is straightforward, we reproduce here the reduction
from [60], modified to use our restricted protocol theory notation.

3-SAT is a version of the satisfiability problem in conjunctive normal form, with
exactly three literals per clause [63, p. 249]. We define an instance of 3-SAT, and
some notation as follows

• Propositional Variables V = {v1, v2, . . . , vn}.
• Literals L = v or L = ¬v.
• Clause C = L ∨ L′ ∨ L′′.
• Formula F = C ∧ C′ ∧ . . . ∧ C′′.

Given a formula F , let Ci be the i-th conjunct, Li,j be the j-th literal of the i-th
conjunct, and xi,j ∈ V be the variable appearing in the literal Li,j . We can write
Li,j = x

εi,j

i,j , where εi,j ∈ {0, 1} and x0 = x and x1 = ¬x.
Thus an instance of 3-SAT with variables V and clauses I can be written F (V ) =∧
i∈I Ci.
Table 10 shows a protocol theory P3SAT in restricted form that corresponds to an

encoding of an instance of the 3-SAT problem. This is a general construction for all

Table 10

3-SAT theory P3SAT

A: A0, NR0(v1, v2, . . . , vn) −→
A1, NS1(enc(P , 〈f1(V ), f2(V ), . . . , fm(V ), end〉))

B: B0, NR1(enc(P , 〈�, x, y, z〉)) −→
B1 , NS2(enc(P , z))

B’: B′
0, NR1(enc(P , 〈enc(K ,¬�), x, y, z〉)) −→

B′
1 , NS2(enc(P , z))

C: C0, NR1(enc(P , 〈x,�, y, z〉)) −→
C1, NS2(enc(P , z))

C’: C′
0, NR1(enc(P , 〈x, enc(K ,¬�), y, z〉)) −→

C′
1, NS2(enc(P , z))

D: D0, NR1(enc(P , 〈x, y,�, z〉)) −→
D1, NS2(enc(P , z))

D’: D′
0, NR1(enc(P , 〈x, y, enc(K ,¬�), z〉)) −→

D′
1, NS2(enc(P , z))

E: E0, NR2(enc(P , end)) −→ E1, NS3(S)
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instances of 3-SAT, with the particular instance encoded into the details of the ini-
tialization role, role A. The input to role A is a message containing assignments of �
and ¬� to each of the propositional variables vi. It outputs a message representing
the 3-SAT encoding with a special token end appended, encrypted with the secret
key P which is shared by the protocol roles, but not known to the intruder. This mes-
sage encodes each clause Ci using the function fi( ) which is described below. The
roles B, B′, C, C′, D, D′ each examine a 3-tuple of the encoding, and if it contains
either � or {¬�}K (both representations of “true”), then it strips off the 3-tuple and
returns the rest of the encoding. The final role E broadcasts the secret S if it receives
a message containing the special token {end}P .

In the encoding of the literals, we use encryption to represent logical negation, i.e.,
¬x �→ {x}K , and x = {¬x}K . We introduce the function g( ) to formalize this:

• g(0, x) = x.
• g(1, x) = {x}K .

Finally, each clause Ci is encoded by a function fi( ) in role A as follows:

• ∀i ∈ I , fi(V ) = 〈g(εi,1, xi,1), g(εi,2, xi,2), g(εi,3, xi,3)〉.
For example, if the clause C1 = v0

1∨v1
2∨v0

4 , then f1(V ) = 〈g(0, v1), g(1, v2), g(0, v4)〉
= 〈v1, {v2}K , v4〉.

Proposition 5.7. Sroleb is NP-hard.

Proof. By reduction from 3-SAT. By construction, the intruder can guess a solution
and run to completion iff the instance of 3-SAT is satisfiable.

Given a set of propositional variables V , a set of clauses I , and an instance of
3-SAT F (V ) =

∧
i∈I Ci, construct 〈T ,M, S, n, r, k〉, where S is a secret, M is

a standard intruder, and T is the 3-SAT theory constructed as described above and
shown in Table 10. Specifically, r = |I|, i.e., the number of role instances needed
is equal to the number of 3-SAT conjuncts. The number of nonces needed is zero.
The maximum term size that appears in the attack, kI , is proportional to the number
of clauses in I , since the largest term appearing in the attack will be the output term
NS1( ) from role A of the protocol. So, the attack is possible for any k > kI .

Given 〈T ,M, S, n, r, k〉, with n � 0, r � |I| and k � kI , and an initial intruder
knowledge of {M(�), M(¬�)}, the intruder can learn the secret M(S) by broadcast-
ing a message containing a solution of the 3-SAT problem on the network and then
transforming the various network message formats to make the protocol run. Thus,
there is an attack on the protocol P3SAT iff the corresponding 3-SAT problem has a
solution. �

6. Examples: lower bounds as protocols

The previous section examined the complexity of security protocols in terms of
the Multiset rewriting formalism, but it may be useful to examine the phenomena
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that cause protocols to be difficult to analyze, using a more common and less formal
notation.

6.1. An exponential attack without nonces

Here we present a simple protocol construction that gives some intuition for
the exponential lower bound. This is not a formal proof, but it shows an example
where even without generating new data, determining a security property may re-
quire exponentially-many runs of a protocol. This particular example was helpful to
the authors in gaining the intuition that inspired the undecidability and exponential
lower bound results.

Consider the following example, which shows a fragment of an audited key dis-
tribution protocol, for one key server and s clients. The protocol for integer s as-
sumes that a private symmetric key K is shared between the principals A, B1, . . . , Bs

and C. (The same effect can be achieved in a public key protocol, by first running
secure key exchange steps.) Here A is a key server, B1, . . . , Bs are clients, and C is
an audit process.

In Table 11 we show the protocol for s = 4. There are s Server/Client sub-
protocols, one for each client. In these sub-protocols A sends a value which cor-
responds to a certain binary pattern, and Bi responds by incrementing the pattern
by one. We use the notation xi to indicate the “don’t care” values in the messages

Table 11

Rules for exponential protocol, s = 4

Keys: K – symmetric key shared by A, Bi, C
Server/Client Protocols:

A −→ B1 : {x1, x2, x3, 0}K

B1 −→ A : {x1, x2, x3, 1}K

A −→ B2 : {x1, x2, 0, 1}K

B2 −→ A : {x1, x2, 1, 0}K

A −→ B3 : {x1, 0, 1, 1}K

B3 −→ A : {x1, 1, 0, 0}K

A −→ B4 : {0, 1, 1, 1}K

B4 −→ A : {1, 0, 0, 0}K

Audit Protocols:

A −→ C : {0, 0, 0, 0}K

C −→ A : OK

A −→ C : {1, 1, 1, 1}K

C −→ A : SECRET



N. Durgin et al. / Multiset rewriting and the complexity of bounded security protocols 297

in the Server/Client sub-protocols. For example, in the protocol between A and B1,
in the first step A sends a message {x1, x2, x3, 0}K , which consists of four digits,
ending in a zero, encrypted by the key K . The first three digits in this messages are
represented by x1, x2, and x3, indicating that B1 doesn’t check those values (they
can be either 0 or 1). In the second step, if B1 sees the 0 he is expecting in the last
digit if the message he received, he responds by incrementing the value he received
from A, i.e., B1 sends {x1, x2, x3, 1}K , where the x1, x2, and x3 are the same values
received in Step 1.

The protocol suite also includes two audit sub-protocols. In the first protocol the
server A sends a message of all zero’s to C to indicate that the protocol finished
correctly. In the second protocol, A sends a message of all one’s to indicate that
there is an error. The second audit protocol has the side-effect of broadcasting the
SECRET if C receives the error message.

If no attacker is present, a run of this protocol would consist of 2s + 1 messages,
with the final message of all zero’s sent to C, which responds with OK. However,
if a Dolev–Yao intruder is present, he can route an initial message of all 0’s from A
through 2s−1 B principals in repeated runs of the protocol, thus building a message
consisting of all 1’s, which he can send to C to cause the SECRET to be broadcast.
It is easy to see that unless an exponential number of messages are sent, as long as
A always uses 0 for all the xi positions, the SECRET remains secret.

An interesting aspect of the protocol above is that it shows that a protocol can
be secure against polynomial-time attack, but considered insecure under Dolev–Yao
assumptions.

6.2. A class of undecidable protocols

We will generalize the exponential protocol used in the previous example by
adding nonces to construct an undecidable protocol that uses small message size.
First, we briefly review the Post correspondence problem.

A well known example of an undecidable problem is the Post correspondence
problem (PCP) [57], which concerns simple manipulation of strings. This problem
can be formally described (as in [63, p. 184]) as follows:

An instance of the PCP is a collection P of tiles:

P =
{[

t1

b1

]
,

[
t2

b2

]
, . . . ,

[
tk
bk

]
,

}
,

and a match is a sequence i1, i2, . . . , i�, where ti1ti2 . . . ti�
= bi1bi2 . . . bi�

. The prob-
lem is to determine whether P has a match. Let

PCP = {〈P 〉|P is an instance of the Post correspondence

problem with a match}.
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Table 12

Rules for path protocol

Keys: K – A’s session key; T , B - long term secrets shared by C,Ti

Constants: EOFT, EOFB – indicate the end of a path

Tiles:
[

abc
bc

]
,
[

ac
cab

]
,
[

b
bca

]
, . . .

[
abc
bc

]
A −→ T1 : {t1, b1}K

T1 −→ A : {n1, a, n2}T , {n2, b, n3}T , {n3, c, t1}T ,

{n4, b, n5}B , {n5, c, b1}B , {n1, n4}K[
ac

cab

]
A −→ T2 : {t1, b1}K

T2 −→ A : {n1, a, n2}T , {n2, c, t1}T , {n3, c, n4}B ,

{n4, a, n5}B , {n5, b, b1}B , {n1, n3}K[
b

bca

]
A −→ T3 : {t1, b1}K

T3 −→ A : {n1, b, t1}T , {n2, b, n3}B , {n3, c, n4}B ,

{n4, a, b1}B , {n1, n2}K

. . .

Checker:

A −→ C : {t1, b1}K , {t1, X, t2}T , {b1, X, b2}B

C −→ A : {t2, b2}K

A −→ C : {t1, b1}K , {t1, X, EOFT}T , {b1, X, EOFB}B

C −→ A : SECRET

We define the width of a PCP instance as the length of the longest string in a tile.
The size of a PCP instance is the number of tiles in P . PCP is undecidable for rel-
atively small problem sizes. In particular, it has been proven to be undecidable for
size 7 [48].

We propose a protocol that makes it possible to construct a “route” consisting
of two strings, a “path” and a “return path”, by selecting from a set of sub-routes.
Each sub-route (which we call a “tile”) will actually contain two parts, one for the
forward path (which we call the “top”), and one for the return path (which we call
the “bottom”). The intent is that the set of sub-route pieces (the set of tiles) has
been chosen in such a way as to make it impossible, or at least extremely difficult,
to construct a sequence of tiles such that the top path and the bottom path are the
same.

Table 12 shows an example of part of our proposed path protocol, for a particular
set of tiles. The “Tiles” roles are used to build a complete route out of sub-route tiles.
Each role adds its tile, one node at a time, to the front of the current route, building
a linked list for the top and bottom paths. For an arbitrary set of tiles, the number of
“Tiles” roles is equal to the number of tiles in the set, and the number of messages
broadcast by each role corresponds to the width of the tiles.
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The “Checker” roles are included to allow a designer to determine if they have
selected a “good” set of sub-route tiles, by testing with a protocol analyzer to see
if it is possible to create a route with identical forward and backward paths, using
these tiles. The “Checker” protocol steps through the links in a route and broadcasts
the message SECRET if all nodes on the top and bottom paths match (indicating an
error).

In this example, we assume the values ni are nonces, that K is a session key, and
T and B are long term secrets used to encode the top and bottom paths, respectively
(actually we use two different keys to serve the additional purpose of providing typ-
ing information to distinguish messages that are part of the top path from messages
that are part of the bottom path – this typing information could be part of the message
payload, and then one key would suffice). The constants EOFT and EOFB are used
to mark the end of the path chain.

To build a path using the “Tiles” protocol, a client establishes a session key K ,
and then builds a path by contacting various Ti roles to add a tile to the path. An
example of session using the tiles shown in Table 12 is:

A −→ T1 : {EOFT, EOFB}K

T1 −→ A : {n1, a, n2}T , {n2, b, n3}T , {n3, c, EOFT}T ,
{n4, b, n5}B , {n5, c, EOFB}B , {n1, n4}K

A −→ T2 : {n1, n4}K

T2 −→ A : {n6, a, n7}T , {n7, c, n1}T , {n8, c, n9}B ,
{n9, a, n10}B , {n10, b, n4}B , {n6, n9}K

A −→ T1 : {n6, n9}K

T1 −→ A : {n11, a, n12}T , {n12, b, n13}T , {n13, c, n6}T ,
{n14, b, n15}B , {n15, c, n9}B , {n11, n14}K

This session, which uses the tiles in the order T1, T2, T1, builds a top path abcacabc,
and a bottom path bccabbc.

We assume that the values EOFT and EOFB, as well as the nodes in the tile set,
are public information. An intruder is able to attack the protocol and learn SECRET
if he can construct a route where the top and bottom paths are identical, by selecting
the tiles in the appropriate sequence, feeding messages into the protocol to build a
route, and then feeding the route through the Checker protocol to cause it to broad-
cast SECRET. Note that selecting the set of tiles is equivalent to solving PCP, so
the protocol is insecure if the intruder can solve PCP. In other words, since PCP is
undecidable, the secrecy problem for this protocol class is undecidable.

Note that is also possible to construct a simple protocol using MSR that solves
PCP, but uses arbitrary length messages. The point of our example here is that by
using nonces we can construct a PCP solution using small messages, where the size
of the messages depends on the size of the problem (i.e., the size of the tiles), not on
the size of the problem solution.
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7. Comparison to other work

The MSR formalism is based on earlier work first presented in [14,27,52]. The
complexity results for undecidability and DEXP-completeness without a disequal-
ity test were first published in [26], with the NP-completeness results presented at
the FMSP workshop talk in 1999. The complexity results with disequality test are
presented here for the first time.

A complexity case that has been studied fairly extensively is the one with a
bounded number of roles and an unbounded message size. This class is of inter-
est because it seems to be practical to apply model-checking and exhaustive search
techniques. This case was shown to be decidable in [37] and NP-complete (without
restriction to atomic keys) in [60]. This work basically shows that the bounded na-
ture of the protocols imposes its own natural limit on the message space that can be
productively exploited by the attacker.

Additional work has also been done making use of the MSR formalism in ar-
eas other than complexity analysis. This includes relating strands [30] to MSR [15],
and using MSR as a common intermediate language for CAPSL [24]. A typing in-
frastructure has been added to MSR, based on the theory of dependent types with
subsorting [11], and this typed MSR was used to prove that the Dolev–Yao intruder
can emulate the actions of an arbitrary adversary [10]. Recent work used MSR to
formally analyze the Kerberos 5 protocol, discovering several anomalies [8].

8. Conclusion

In this paper we have defined the formalism for Multiset Rewriting with exis-
tentials, and shown how to use this formalism to describe security protocols and
the Dolev–Yao attacker model. We use this formalism to analyze the complexity of
the secrecy problem in protocol analysis, under various restrictions to message size,
number of protocol roles, and number of nonces.

Protocol analysis is theoretically hard, but many automated tools do exist that can
provide useful insight into the problem. These tools usually are limited to some ap-
proximation of the protocol secrecy problem as we have defined it in this paper. For
instance, tools such as model-checkers [45,50,53,59,61] limit the number of roles
and nonces, other tools such as TAPS [20] ignore the linear nature (states) of the
protocol roles. These tools can prove quite useful in identifying protocol bugs and
possible attacks scenarios, though a model-checker can only prove there are no at-
tacks within the limits of its search, and a non-linear model might discover spuri-
ous attacks that need to be examined and eliminated by hand. Symbolic tools like
Athena [64] don’t limit the number of roles, but also can’t be guaranteed to termi-
nate. In general, finding attacks in a limited case is easier than proving that there
aren’t any attacks in the general case.
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We have identified an open problem for the complexity of the secrecy case with
disequality, unbounded roles, and bounded nonces (the ??? box in Table 9). We con-
jecture that the additional power of the disequality test makes this case undecidable.
Other future work in this area could include solving this open problem, as well as re-
lating MSR to other protocol analysis formalisms such as spi calculus, and applying
MSR to the analysis of specific protocols.
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Appendix A. Horn clause Turing machine reductions

A.1. Existential Horn clauses is undecidable

We use a construction based on axiomatizing a Cook’s-theorem-style Turing ma-
chine tableau, to prove the undecidability of existential Horn clauses. The notation
we use here to encode a Turing machine is similar to that used in Section 2.4, though
here we are representing an entire Turing machine tableau, and in Section 2.4 we
were representing the step-by-step computation. Because the tableau is non-linear in
nature, all facts that appear in the Horn clauses must be true at all times, so there
are necessarily differences between the two encodings. For example, we cannot use
the Curr predicate to represent the current state of the machine, because the intruder
could replay an out-of-date fact at any time. Instead, the contents of the Curr pred-
icate is included in the Cont predicate, which includes both the unique name of the
cell in the tableau, and the cell’s contents.

We construct a tableau describing the computation of a DTM M on a given input
w ∈ Σ∗, where |w| = n, using a set of existential Horn Clauses. An example of the
tableau we construct is shown in Table 13. Also, a nice picture of a tableau similar to

Table 13

Example: Turing machine tableau

# 1.q0 1 . . . 0 � � #
# 0 1.q1 . . . 0 � � � #
# 0.q2 0 . . . 0 � � � � #

# 1 0 . . . 0 1.q 1 . . . 1 1 � . . . � #
# 1 0 . . . 0 0 1.q′ . . . 1 1 � . . . � � #
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the one we use appears in [63, p. 255]. The atomic formula A(b1, . . . , bk) mentioned
in the statement of the lemma can be an atomic formula that is derivable by a rule
that requires, in its hypothesis, that the Turing machine is in a halting state.

Take any language A ⊆ Σ∗. Let M = 〈Σ, Q, δ, q0, Q+〉 be a Deterministic Turing
Machine (DTM). Here, Σ is a finite alphabet of tape symbols, containing the special
blank symbol �, Q is a finite set of states, δ : (Q × Σ) → Σ × {L, R} × Q is the
transition relation, q0 ∈ Q is the initial state, and Q+ ⊆ Q is the set of accepting
states. Without loss of generality, we assume a Turing machine with a semi-infinite
tape that guarantees the head will not run off the left end of the tape, and we assume
that every accepting state is a terminal state.

We construct a set of Horn Clauses H(M , w) as follows:

Notation. First we define three predicates that describe the contents of the cells in
the tableau, and their relationship to each other.

Cont(x, a, q) Cell x has contents a. If present, q means the tape
head is in cell x and the machine is in state q.

Adj(x, y) Cell x is adjacent to cell y.
Below(x, y) Cell y is below cell x.

We introduce some special constants. ceot is a special cell name that labels the
cell at the right end of the tape on each row of the tableau. The symbol @ /∈ Q is a
placeholder for the machine state in those cells that don’t contain the tape head. The
symbol # /∈ Σ is used as the contents for the cells at both ends of the tape.

Transition clauses. For each transition relation in δ, we introduce a clause. For a
transition that moves the tape head to the left, δ(qi, s) = {(qj , s′, L)}, we have the
following:

∀x, y, z, a, b.[(Adj(x, y) ∧ Adj(y, z)∧
Cont(x, a, @) ∧ Cont(y, s, qi) ∧ Cont(z, b, @))
=⇒ ∃x′, y′, z′.((Adj(x′, y′) ∧ Adj(y′, z′)∧
Below(x, x′) ∧ Below(y, y′) ∧ Below(z, z′))∧
Cont(x′, a, qj) ∧ Cont(y′, s′, @) ∧ Cont(z′, b, @))]

Similarly, for a transition that moves the tape head to the right, δ(qi, s) =
{(qj , s′, R)}:

∀x, y, z, a, b.[(Adj(x, y) ∧ Adj(y, z)∧
Cont(x, a, @) ∧ Cont(y, s, qi) ∧ Cont(z, b, @))
=⇒ ∃x′, y′, z′.((Adj(x′, y′) ∧ Adj(y′, z′)∧
Below(x, x′) ∧ Below(y, y′) ∧ Below(z, z′))∧
Cont(x′, a, @) ∧ Cont(y′, s′, @) ∧ Cont(z′, b, qj))]



N. Durgin et al. / Multiset rewriting and the complexity of bounded security protocols 303

Maintenance clauses. In addition to the transition clauses, we need several other
clauses that are used to construct the rest of the tableau that is not near the tape head.

This clause copies the contents of the tape to the next row in the tableau, creating
a new cell below the old one, provided the cell and its neighbors do not contain the
tape head.

∀x, y, z, a, b, c.[(Adj(x, y) ∧ Adj(y, z)∧
Cont(x, a, @) ∧ Cont(y, b, @) ∧ Cont(z, c, @))
=⇒ ∃y′.(Below(y, y′) ∧ Cont(y′, b, @))]

There is a tape maintenance clause for adding a new cell at the right end of the
tape at each step:

∀x, y, a.[Adj(x, ceot) ∧ Below(x, y)

=⇒ ∃z.Adj(y, z) ∧ Cont(z,�, @) ∧ Adj(z, ceot)]

This rule ensures that the computation can never run off the right end of the tape,
since the tape head starts at the leftmost cell, each step can only move the tape head
to the right by at most one, and this rule creates a new cell at each step. So at the m’th
step of the computation, there are always at least m + n cells in the tape. The right
end of the actual tape is infinite, but our tableau only needs to represent a finite num-
ber of cells on each row, with the rest of the cells to the right assumed to contain �.

Another special maintenance clause is needed to allow the left marker cell to be
copied down to each successive row of the tableau:

∀x, y, a.[Adj(x, y) ∧ Cont(x, #, @) =⇒ ∃z.Below(x, z) ∧ Cont(z, #, @)]

Finally, we need a way to connect together the cells created by the above rules.
This clause generates the adjacency facts for cells that are below adjacent cells.

∀x, y, x′, y′.[Adj(x, y) ∧ Below(x, x′) ∧ Below(y, y′) =⇒ Adj(x′, y′)]

Initialization. The initial state of the DTM has the input w = w1w2 . . . wn in the
first n cells of the tape, with the rest of the infinite tape containing �, the tape head in
the first cell, and the machine state q0. In our construction we assign the cells in the
first row the names c0, c1, . . . , cn, cn+1, cn+2, and we include some special marker
cells at the ends of the active region of the tape.

We represent the top row of the tableau by describing the adjacency of the cells,
and their contents, as follows:

{Adj(c0, c1), Adj(c1, c2), . . . ,
Adj(cn, cn+1), Adj(cn+1, cn+2), Adj(cn+2, ceot),

Cont(c0, #, @), Cont(c1, w1, q0), Cont(c2, w2, @), . . . ,
Cont(cn, wn, @), Cont(cn+1,�, @), Cont(cn+2,�, @), Cont(ceot, #, @)}
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Note: The 2 extra blank cells after the input are provided to ensure correct operation
of the construction on an input of w = ε.

Termination. The acceptance condition is represented by a set of clauses that de-
rive the ACCEPT fact:

∀x, a.[Cont(x, a, qa1) =⇒ ACCEPT
Cont(x, a, qa2) =⇒ ACCEPT
. . .]

for each qai ∈ Q+.

Lemma A.1. H(M , w) � ACCEPT if and only if machine M halts in an accepting
state on input string w.

Proof. We first show that if machine M halts in an accepting state on input string w,
then H(M , w) � ACCEPT. The accepting computation of M can be represented
by an accepting tableau, as described earlier and illustrated in Table 13, where each
line of the tableau corresponds to a configuration of the accepting computation. If
M halts in an accepting state on input string w after f steps, that means there is a
sequence of configurations c0, c1, . . . cf , such that c0 is the initial configuration (i.e.,
the top line of the tableau), cf is a configuration with the state qf ∈ Q+, and for
each consecutive configuration ci, ci+i, ci+1 can be obtained from ci by applying
some rule δi from δ.

By construction, the Initialization clauses ensure that initial Horn clauses in
H(M , w) correspond to configuration c0. If a state corresponding to configuration
ci can be reached by applying clauses in H(M , w), then the state corresponding to
ci+1 can be reached by applying the Transition clause that corresponds to the rule
δi, plus the Maintenance clauses. The Transition clause builds the cells near the tape
head, and the Maintenance clauses build the other cells in the configuration, and en-
sure that they are connected together properly. These clauses together can be used to
construction a state that corresponds to configuration ci+1. Finally, when configura-
tion cf is reached in the Turing machine tableau, Cont(x, a, qf ) will be true for some
cell x, so the Termination clause can be applied to derive ACCEPT from H(M , w).

Now we show that if H(M , w) � ACCEPT, then machine M halts in an accept-
ing state on input string w. If H(M , w) � ACCEPT, then Cont(x, a, qf ) must be
derivable for some cell x and some state qf ∈ Q+. By construction, the initial Horn
clauses in H(M , w) correspond to the Turing machine’s initial configuration, c0.
Only the Termination clauses can be used to derive ACCEPT, and only the Tran-
sition clauses can be used to create new cells whose contents contain the tape head
(and thus the machine state). So the sequence of transition clauses used to derive
ACCEPT corresponds exactly to the sequence of transition rules in δ that are used
in the accepting computation of M . �
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Lemma A.2. The implication problem for existential Horn clauses without function
symbols is undecidable. In particular, there is no algorithm for deciding whether
a set of existential Horn clauses without function symbols implies a single atomic
formula A(b1, . . . , bk) without function symbols or variables.

Proof. This follows from Lemma A.1. Since we can reduce the halting problem to
the implication problem for existential Horn clauses without function symbols, the
implication problem is undecidable. �

A.2. Non-existential Horn clauses is DEXP-hard

We show that if a DTM M halts in N = 2n�

steps on a given input w, where
|w| = n, then M can be simulated by a set of existential-free Horn clauses. As for
the unbounded Turing machine in the previous section, we will construct a tableau
representing the computation. An example of such a tableau is in Table 14.

Take any language A in DEXP. Let M = 〈Σ, Q, δ, q0, Q+〉 be a Deterministic
Turing machine (DTM) that decides A in N = 2n�

time for some constant �, and
input size n.

Here, Σ is a finite alphabet of tape symbols, containing the special blank symbol
�, Q is a finite set of states, δ : (Q×Σ) → Σ× {L, R}×Q is the transition relation,
q0 ∈ Q is the initial state, and Q+ ⊆ Q is the set of accepting states. Without loss
of generality, we assume a one-tape Turing machine that guarantees that a program
running in N = 2n�

time will not run off the end of the tape, and we assume that
every accepting state is a terminal state.

We construct a set of Horn clauses H(M , w, 2n�

), where w ∈ A is the input, with
|w| = n, as follows:

Notation. We use the same notation as for the unbounded Turing machine in Ap-
pendix A.1, though we represent the cell number symbolically, breaking it up into
two parts, which can be viewed as representing the row and column of the cell. The
cell number is actually composed of n� + 1 binary digits for the row and column
respectively, each bit a separate argument to the predicate.

Table 14

Example: DEXP Turing machine tableau

〈0, 0〉 〈1, 0〉 〈2, 0〉 . . . 〈n, 0〉 〈n + 1, 0〉 〈n + 2, 0〉 . . . 〈N − 1, 0〉 〈N , 0〉
# 1.q0 1 0 � � � #

〈0, 1〉 〈1, 1〉 〈2, 1〉 . . . 〈n, 1〉 〈n + 1, 1〉 〈n + 2, 1〉 . . . 〈N − 1, 1〉 〈N , 1〉
# 0 1.q1 0 � � � #

〈0, 2〉 〈1, 2〉 〈2, 2〉 . . . 〈n, 2〉 〈n + 1, 2〉 〈n + 2, 2〉 . . . 〈N − 1, 2〉 〈N , 2〉
# 0.q2 0 0 � � � #

〈0, N〉 〈1, N〉 〈2, N〉 . . . 〈n, N〉 〈n + 1, N〉 〈n + 2, N〉 . . . 〈N − 1, N〉 〈N , N〉
# #
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A cell position is a pair of numbers, with each number represented by a sequence
of bits. For conciseness, we use the following abbreviations:

Cont(p, a, q) ≡ Cont(〈n, m〉, a, q)

Cont(〈n, m〉, a, q) ≡ Cont(〈�x, �y〉, a, q)

Cont(〈�x, �y〉, a, q) ≡ Cont(x0, . . . , xn� , y0, . . . , yn� , a, q)

where p is any position 〈n, m〉 and n and m are the numbers represented by the bit
vectors �x and �y. We use similar abbreviations for the cell numbers in the Adj and
Below predicates.

Transition Clauses. For each transition relation in δ, we introduce a clause. For a
transition that moves the tape head to the left, δ(qi, s) = {(qj , s′, L)}, we have the
following:

∀x, x′, y, y′, z, z′, a, b.[(Adj(x, y) ∧ Adj(y, z)∧
Cont(x, a, @) ∧ Cont(y, s, qi) ∧ Cont(z, b, @))∧
Below(x, x′) ∧ Below(y, y′) ∧ Below(z, z′)
=⇒ Cont(x′, a, qj) ∧ Cont(y′, s′, @) ∧ Cont(z′, b, @))

And similarly for a transition that moves the tape head to the right.

Maintenance clauses. This clause copies the contents of the tape to the next row
in the tableau, provided the cell and its neighbors do not contain the tape head.

∀x, x′, y, y′, z, z′, a, b, c.[(Adj(x, y) ∧ Adj(y, z)∧
Cont(x, a, @) ∧ Cont(y, b, @) ∧ Cont(z, c, @)) ∧ Below(y, y′)
=⇒ Cont(y′, b, @))

This clause copies the contents of the marker cells (which will be initialized to be
the left and right margins of the first row) to the cells below.

∀x, y.[(Below(x, y) ∧ Cont(x, #, @) =⇒ Cont(y, #, @))

Initialization. As for the unbounded Turing machine, the initial state of the DTM
has the input w = w1w2 . . . wn in the first n cells of the tape, with the rest of the
infinite tape containing �, the tape head in the first cell, and the machine state q0.
As described above, we use symbolic tape cell names of the form 〈x, y〉, to label the
cells. We also include some special marker cells at the ends of the tape.

We represent the top row of the tableau by describing the initial contents of the
tape, with the input word first, and the rest of the tape row containing blanks.

{Cont(〈1, 0〉, w1, q0), Cont(〈2, 0〉, w2, @), . . . , Cont(〈n, 0〉, wn, @)}
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and

{Cont(〈n + 1, 0〉,�, @), Cont(〈n + 2, 0〉,�, @), . . . , Cont(〈2nk

− 1, 0〉,�, @)}

We use a set of n� + 1 adjacency facts to describe the horizontal connections
between the cells in the tableau. Here we use the notation 1n to indicate a string of
n 1’s, and 0n to indicate a string of n 0’s.

{
∀�x, �y.[Adj(〈�x0, �y〉, 〈�x1, �y〉]
∀�x, �y.[Adj(〈�x01, �y〉, 〈�x10, �y〉)]
∀�x, �y.[Adj(〈�x011, �y〉, 〈�x100, �y〉)]
. . .

∀�y.[Adj(〈01n�

, �y〉, 〈10n�

, �y〉)]
}

And we need a set of n� + 1 belowness facts to describe the vertical connections
between the cells.

{
∀�x, �y.[Below(〈�x, �y0〉, 〈�x, �y1〉]
∀�x, �y.[Below(〈�x, �y01〉, 〈�x, �y10〉)]
∀�x, �y.[Below(〈�x, �y011〉, 〈�x, �y100〉)]
. . .

∀�x.[Below(〈�x, 01n�〉, 〈�x, 10n�〉)]
}

Finally, we need to initialize the contents of the special marker cells on the two
ends of the tape, the left margin and right margin of the first row:

{Cont(〈0, 0〉, #, @), Cont(〈2n�

, 0〉, #, @)}

Termination. The acceptance condition is represented by a set of clauses that de-
rive the ACCEPT fact:

∀x, a.[Cont(x, a, qa1) =⇒ ACCEPT
Cont(x, a, qa2) =⇒ ACCEPT
. . .]

Lemma A.3. H(M , w, N ) � ACCEPT if and only if machine M accepts the input
string w of length n within N = 2n�

steps.
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Proof. This follows from an argument similar to Lemma A.1, though the cells are
named symbolically using constants, and the Turing machine tableau is slightly dif-
ferent, as described above, and illustrated in Table 14. �

Lemma A.4. The implication problem for Horn clauses without function symbols
or existentials is in DEXP-hard. In particular, an algorithm for deciding whether
a set of existential Horn clauses without function symbols implies a single atomic
formula A(b1, . . . , bk) without function symbols, variables or existentials runs in time
exponential in the size of the input formula.

Proof. This follows from Lemma A.3. Since we can reduce the decision problem for
a DEXP-time Turing machine to the implication problem for Horn clauses without
existentials or function symbols, the implication problem is DEXP-hard. �
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