
MIT Media Laboratory, Perceptual Computing Technical Report #401Submitted to CVPR November 1996Parametrized Structure from Motion for 3D Adaptive FeedbackTracking of FacesTony S. Jebara and Alex PentlandMedia Laboratory, Massachusetts Institute of TechnologyCambridge, MA 02139November 28th, 1996AbstractA real-time system is described for automaticallydetecting, modeling and tracking faces in 3D. A closedloop approach is proposed which utilizes structure frommotion to generate a 3D model of a face and then feedback the estimated structure to constrain feature track-ing in the next frame. The system initializes by us-ing skin classi�cation, symmetry operations, 3D warp-ing and eigenfaces to �nd a face. Feature trajectoriesare then computed by SSD or correlation-based track-ing. The trajectories are simultaneously processed byan extended Kalman �lter to stably recover 3D struc-ture, camera geometry and facial pose. Adaptivelyweighted estimation is used in this �lter by modelingthe noise characteristics of the 2D image patch trackingtechnique. In addition, the structural estimate is con-strained by using parametrized models of facial struc-ture (eigen-heads). The Kalman �lter's estimate of the3D state and motion of the face predicts the trajectoryof the features which constrains the search space for thenext frame in the video sequence. The feature track-ing and Kalman �ltering closed loop system operatesat 30Hz.1 IntroductionFacial pose, 3D structure and position provide avital source of information for applications such asface recognition, gaze tracking and interactive envi-ronments. We describe a real-time system that auto-matically provides such measurements from real-worldvideo streams. These two key attributes (real-worldvideo and real-time) limit us to the types of image pro-cessing we can do. Computations must be fast withoutsacri�cing generality and robustness to a wide varietyof face tracking scenarios. We propose a system thatinvolves the marriage of robust face detection and fastface tracking. The system gracefully reverts to facedetection when tracking fails and re-initializes fast facetracking anew. Tracking is accomplished by minimizingnormalized correlation over translation, rotation andscale. However, tracking is intimately coupled withfeedback from a parametrized structure from motionframework. This allows us to overcome some limita-tions of linearized 2D image patches by the simultane-ous recovery of underlying global 3D structure.Motion provides a strong cue for estimating 3Dstructure, pose and camera geometry. However, sta-ble and accurate structure from motion has typicallybeen a purely bottom-up approach requiring high qual-ity feature tracking. Moreover, structure from motion
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Eigenface DistanceFigure 1: The Integrated System(SfM) is usually constrained exclusively by rigidity as-sumptions. However, it is possible to further constrainthe estimation of 3D shape if the range of the 3D struc-tures is de�ned a priori. In other words, if only facesare to be tracked, SfM can be limited by 3D head mod-els of human faces so that unlikely con�gurations willbe eliminated. We describe a global tracking frame-work which takes advantage of automatic initializationand 3D parametrized structural estimation to performreliable feature tracking.The details of such a tracking system are discussedstarting with initialization which is performed via au-tomatic detection of facial features. The components ofour face detection algorithm include skin classi�cation,symmetry transforms, 3D normalization and eigenfaceanalysis. Once initial locations of these facial interestpoints are determined, the system tracks these featuresusing 2D SSD correlation patches (spanning rotation,scale and translation). However, such tracking aloneis incapable of dealing with 3D out-of plane and othernon-linear changes. Thus, the 2D tracking and its noisecharacteristics are coupled to a structure from motionalgorithm that simultaneously recovers an estimate ofthe pose and of the underlying 3D structure of the face.This structure is further constrained by a training set of3D laser-scanned heads represented as a parametrizedeigenspace. This prevents invalid 3D shape estimates inthe structure from motion computation. This �nal �l-tered 3D facial structure and pose estimate is fed backto control the 2D feature tracking at the next iteration1



and overcome some of its inherent 2D limitations.The fully integrated system is displayed in Figure 1.Note the fast face tracking loop and the slower face de-tection loop. The system switches between these twomodes using eigenface measurements. If the object be-ing tracked is a face, tracking continues. However, ifthe object being tracked is not face-like, reliable facedetection is used to search the whole image for a newface. In addition, note the coupling of feature track-ing, structure from motion and 3D eigen head model-ing. This closed loop feedback prevents tracking fromstraying o� course.2 Facial Feature DetectionAutomatic face detection and facial feature localiza-tion has been a di�cult problem in the �eld of com-puter vision for several years. This can be explainedby the large variation a face can have in a scene due tofactors such as facial position, expression, pose, illumi-nation and background clutter. We propose a systemthat uses simple image processing techniques to �ndcandidates for faces and facial features and then selectsthe candidate formation that maximizes the likelihoodof being a face, thereby pruning the false alarm candi-dates.Starting with skin classi�cation, the system �ndsblob-like regions in the image which might be faces.The symmetry transform is applied to the skin regionsto �nd dark blobs that could be eyes and horizontallimbs that could be a mouth. Simple vertical edge de-tection yields an approximation for the locus of thenose. A 3D model of the average human head is thenaligned to anchor points at the position of the eyes,nose and mouth and warped into a canonical frontalview. By warping the image at various anchor pointsand minimizing \Distance From Face Space", the sys-tem �nds the most likely locations of eyes, nose andmouth from all possible candidates. The algorithm [6]is explained in further detail below.2.1 Skin Classi�cation using EMHuman skin forms a dense manifold in color spacewhich makes it an easy feature to detect in images [10].We obtain multiple training samples of skin from im-ages of several individuals of varying skin tone and un-der varying illumination conditions. Each pixel in thisdistribution forms a 3 element vector, [R G B]. Weperform clustering on this distribution of pixels usingExpectation Maximization to �nd a probability distri-bution model for skin colors. This model is a mixtureof Gaussians and cross-validation is used to determinethe appropriate number of Gaussians to use in the EMalgorithm. The probability distribution model we usedis shown in Figure 2 and is described by Equation 1where x is an (R,G,B) vector.p(x) = nXi=1 mixiexpf�12(x � �i)T��1i (x � �i)g(2�)(d=2) j �i j1=2 (1)When a new image is acquired, the likelihood of eachpixel is evaluated using this model and if it is above athreshold of probability, it is labeled as skin. Then,a connected component analysis is used to determinethe regions of skin pixels in the image. This processis demonstrated in Figure 3. The largest skin blob isthen processed further to search for facial features. It
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BFigure 2: The Skin Color Distribution and the Gaus-sian Mixture ModelFigure 3: Skin Classi�cationis possible to consider the smaller skin blobs as well incase the face is not the largest skin-colored object inthe scene.2.2 Symmetry TransformationUsing the detected skin contour and some simpleheuristics, a window can be de�ned which is expectedto contain the eyes. We then propose the use of thedark symmetry transform [3] [7] [9] [6]. This is anannular sampling region which detects edge con�gura-tions that enclose an object. However, unlike templatematching, a perceptual measure of symmetric enclosureis computed and blob centers are detected. When ap-plied at the appropriate scale within a window de�nedby the skin contour, this transform consistently detectsthe eyes in the face. The dark symmetry transform iscomputed from a phase and edge map by wave propa-gation (for computational e�ciency). For each point inthe image p, at each scale or radius r and for each sym-metry orientation  we �nd the set of cocircular pairsof edges �r; (p). The magnitude of axial symmetry inthe (p, r,  ) space is as follows:Sr; (p) = X�i;�j��r; (p) k�i k k�j k (sin�=2)w1 (2)where k�i k and k�j k are the edge intensities of thetwo co-circular edges and � is the angle separating theirnormals.Then, radial symmetry is determined from the axialsymmetry map as in Equation 3 and Equation 4. Fi-nally, the symmetry map undergoes Gaussian smooth-ing and local maxima are determined.S (p) = rmaxmaxr=0 Sr; (p) (3)I(p) = X i; j S i (p)S j (p)(sin( i �  j))w2 (4)The strongest peaks of dark symmetry are candi-dates for eye positions. Simple heuristics are used toreject pairs of eyes that have insu�cient intra-occulardistance (w.r.t the skin blob) and that form an anglelarger than 20 degrees from the horizontal. The inter-est map resulting from the dark symmetry transformis shown in Figure 4.



Figure 4: Symmetry Transform's Possible Candidatesfor EyesHorizontal limb extraction is performed to �nd themouth from the dark axial symmetrymap. The longestlinked limb is selected as the mouth.Additionally, a coarse estimate for the nose's verticallocation is found by searching for the strongest verticalgradient in the intensity image that lies in a regionbracketed by the eyes and the mouth.At this stage, a variety of candidates have been de-tected as possible facial features. These candidatesmust be tested by more discriminating techniques todiscard false alarms and to re�ne localization.2.3 3D Facial Pose and Directional Illumi-nation NormalizationWe begin by considering a set of candidate anchorpoints for the facial features (eyes, nose and mouth).These may be detected in a variety of con�gurations.The loci of these feature points gives an estimate ofthe pose of a face. Unfortunately, not all faces will befacing the camera in a canonical frontal view and thisprevents us from using techniques such as eigenspaceanalysis where correspondance is important. We thuspropose to warp a detected face into frontal view usinga 3D model of a head.A 3D range data model of an average human face isformed o�-line from a database of range data and is de-picted in Figure 5(a). Several Cyberware range modelswere averaged in 3D to obtain this average head. Theeyes, nose and mouth were located on the models andused to align them via a 3D mapping and a verticalstretch into a standard pose. This alignment was doneby manually selecting the 4 points and then using aleast-squares iterative �t of the 3D anchor points.Using the computed average 3D model, a Weak-Perspective-3-Points [1] computation can then be usedto align its eyes and nose to the ones found in a 2D im-age. The model is also iteratively deformed by a verti-cal stretch so that its mouth is also properly alignedwith the mouth in the 2D image as shown in Fig-ure 5(c).Once the optimal 4-point alignment is found, the 2Dimage's intensity data is mapped onto the 3D structurethat now overlaps it. Thus, the 3D mesh is 'coated'with the appropriate intensity values of the underly-ing 2D image. This coated 3d model is shown in Fig-ure 5(d). If parts of the 3D structure are occluded dueto excessive rotation, we use symmetry to mirror theface intensities across the midline of the 3D structure.The 3D structure is then rotated into a normalizedfrontal view and projected to form a segmented, mug-shot image of the face. Thus, we generate a frontal,

(a) Average Head (b) Input Image(c) Model Aligned (d) Coated (e) Mug-ShotFigure 5: Normalizingwith 3DWarping and HistogramFittingFigure 6: The Mean Face and the First 4 Eigenfacescolour mug-shot of the individual from the original im-age and 4 anchor points corresponding to facial fea-tures.Each side of this new 2D face undergoes histogram�tting to normalize its illumination [11]. Two transferfunctions are computed: one for mapping the left halfof the face to a desired histogram (i.e. a histogramof a well-illuminated face) and the other for mappingthe right half of the face. A weighted mixture of thesetransfer functions is used as we traverse from the leftside of the face to the right side, smoothly removingdirectional shading of the face. Furthermore, the gen-eration of the transfer functions is windowed to avoidfacial hair and head hair so that illumination normal-ization does not over-brighten mug-shots of beardedmen and so on. The fully normalized face is shown inFigure 5(e).2.4 Eigenspace Distance Measures on 3DWarped FacesA database of colour face images was collected andfor each image the locations of the facial features weremanually identi�ed. These loci were then used to gen-erate normalized mug-shots as explained above. In ad-dition, the loci were perturbed with random spatialnoise to generate multiple mug-shots of each face withslightly misaligned feature locations. This makes theeigenspace sligthly less sensitive to precise feature lo-calization. A colour eigenspace of these normalizedmug-shots is constructed and the mean face and the�rst 4 eigenfaces are shown in Figure 6.By projecting a new mug-shot into the span of theseeigenvectors, we can compute its coe�cients in this newbasis as well as the residual error. We also approxi-mate its distance to the training set of faces (distanceto face-space) or how 'face-like' it is using this represen-



(a) Initial Localization (b) Final LocalizationFigure 7: Localization1 2 3 4 5 6 7 8 9 10 11 12.49 .34 .35 .34 .32 .43 .36 .32 .19 .16 .17 .24Figure 8: The 3D Normalized Faces for Various TrialNose Positions and their Corresponding DFFStation [8]. The training set of faces is mapped into thiseigenspace and the distribution of the coe�cients andresiduals is modeled as a Gaussian density. The max-imum likelihood estimate for the probability of a datapoint �tting this model is computed using this Gaus-sian. This gives us a measure of the 'faceness' or howface-like a given mug-shot is (or, conversely, an imagewith 4 anchor points as it is warped into a mug-shot).Now, refer to Figure 7(a). Up until now, detectionshould have recovered a combination of eyes, mouthand nose vertical height. However, it is still uncertainwhere the exact horizontal position of the nose was onthe face. Thus, we attempt 12 di�erent normalizationsand K-L projections along the horizontal line across thenose's bottom. The 12 candidate nose anchor pointsalong this line generate 12 normalized mug-shots andtheir 'distances to face-space'. These are shown as wetest for a nose along each point on the horizontal line(Figure 8). Face 0 is generated by setting the noseanchor point all the way to the left of the nose-bottom-line and Face 12 is generated by the anchor point on theright tip of the line. The normalized face vector withthe highest 'faceness' probability corresponds to thebest possible nose localization (i.e. minimal DFFS).The �nal position of the eyes, nose and mouth areshown in Figure 7(b). If time is not critical, we sug-gest using search or optimization techniques to re�nethe position of these locations by searching locally forthe 3D normalization that minimizes distance to face-space.The time required for detecting facial feature pointsis of the order of 1 second. Having found a face andfacial feature points that meet a threshold on our 'face-ness' measure, we can initialize the tracking system ap-propriately. Note that, if the face detector was slowerthan 0.5 to 1 Hz, the tracking could not be initial-ized properly because the face will probably move awayfrom the localization during the time the detection wasbeing computed.

Figure 9: Initialized Correlation Based Trackers3 2D Feature TrackingHaving determined the locations of facial featuresin the image, it is now possible to de�ne a numberof windows on the face which will be used for tem-plate matching via SSD correlation [5]. Using a simplemapping, a set of windows are overlayed upon the faceautomatically from the data gathered in the face de-tection stage. A typical initialization result is shownin Figure 9. Eight tracking windows are initialized onthe nose, the mouth tips and the eyes automatically asshown. These windowed correlation trackers acquiretemplates from the image and minimize the SSD of theunderlying image patch from one frame to the next.The image patches �rst undergo contrast and bright-ness compensation. Registration of the image patchfrom one frame to the next is accomplished by minimiz-ing the normalized correlation over translation, scalingand rotation parameters. A linear approximation ofthe behaviour of the image patch under small transla-tion, scaling and rotation perturbations can be used torecover the motion of the image patch. Only simple lin-ear computations are required for this (i.e. no explicitsearching) rendering the computation quite e�cient.Given an image I(x; 0) at time 0, we wish to �nd �that minimizes O(�) de�ned in Equation 5.O(�) = Xx�<2(I(f (x; �); � )� I(x; 0))2 (5)Where f (x; �) is a motion parametrized by vector �which allows translation, rotation and scaling. In otherwords, � = (Tx;Ty; �; scale). Solving for � in an op-timal `2 sense is performed by computing the pseudo-inverse of a matrix composed of the motion templates.Such a solution for � is only valid for small displace-ments and smoothing is used to extend the applicablerange of the solution.The minimum value of O(�) is also recovered by theprocess which gives us a cue for the reliability of theresulting optimal �.Unfortunately, minimizingO(�) over rotations, scal-ing and translations cannot account for other 3D orcomplex changes in the image region. Such changesmight be induced by 3D out of plane rotations, occlu-sions or noise and could easily mislead the estimate of�. Thus, the correlation window typically loses trackof the feature being tracked if it undergoes excessivechange beyond the span of the 2D motion model. Inaddition, due to the local nature of the tracking algo-rithm, it would be extremely unlikely for feature track-ing to recover from this failure without external as-sistance. Even if multiple features are being tracked,without a strong coupling feature tracking will even-



tually fail. As unpredictable e�ects such as 3D struc-ture, occlusion and noise, interfere with the 2D track-ing, each of the feature trackers will stray o� in turnand yield invalid spatial trajectories.What is desired is a global framework that over-comes some of the di�culties inherent in simple 2Dtracking by coupling the individual trackers to a global3D structure. The outputs of the trackers are inte-grated appropriately to achieve a global explanationof the scene which can be fed back to constrain theirindividual behaviour and avoid feature loss.4 Structure from MotionRecently, structure from motion has been reformu-lated into a stable recursive estimation problem andbeen shown to converge reliably [2]. By remappingthe data into a new parametrized representation, whatwas essentially an under-constrained problem becomesuniquely solvable with no numerical \ill-conditioning".4.1 Stable Representation for RecursiveEstimationThe objective of SfM is to recover 3D structure,motion and camera geometry. These form the \inter-nal state vector", x of the system under observation.These internal states are to be recovered by observationmeasurements of the system. For a thorough justi�ca-tion of the internal state vector representation, consultAzarbayejani and Pentland [2]. One internal state pa-rameter is the camera geometry. Instead of trying toestimate focal length to describe the camera, we esti-mate � = 1f . The structure of points on the 3D objectis represented with one parameter per point insteadof an XYZ spatial location. The mapping from this 3Cartesian form to one parameter is described in Equa-tion 6 where � is the new representation of structureand u and v are the coordinates of the point in theimage plane when tracking is initialized." XYZ # = " (1 + ��)u(1 + ��)v� # (6)In addition, we de�ne translation as (tX ; tY ; tZ�).Rotation is de�ned in terms of (!X ; !Y ; !Z) which arethe incremental Euler angles for the interframe rota-tion. This representation of rotation overcomes thenormality constraints of the quaternion representationby linearizing with a tangent hyper-plane on the unithyper-sphere formed by the quaternion representation.The �nal representation of the internal state vectorhas a total of 7+N parameters where N is the numberof feature points being tracked (each of which requiresone scalar depth value to determine 3D structure):x = (tX; tY; tZ�; !X; !Y; !Z; �; �1; �2; :::; �N) (7)At each time step, we also have a measurement orobservation vector, y of size 2N with the followingform: y = (X1;Y1;X2;Y2; :::;XN;YN) (8)Where (Xi; Yi) are the positions of a feature pointcurrently being tracked in the image. Unlike other for-mulations which are underdetermined at every timestep, the above parametrization of the SfM problemis well-posed when 2N � 7 +N or when N � 7. Thus,if 7 or more feature points are being tracked in 2D si-multaneously, a unique, well-constrained solution can

be found for the internal state and a recursive �lter canbe employed.Due to the non-linearities in the mapping of statevector to measurements, an extended Kalman �lter isused as the estimator. The dynamics of the internalstate are trivially chosen to be identity with Gaussiannoise for each time step.4.2 Mapping 2D Feature Tracking into theKalman FilterAs was discussed previously, each feature tracker re-covers an optimal � motion parameter by minimizingO(�). However, since the 2D feature tracking in ques-tion was being used to recover translation, rotation andscale, the � vector has 4 degrees of freedom (not merely2). We can represent these 4 degrees of freedom as 2point features that are free to translate independently.In other words, two arbitrary points on the correlationwindow are selected (i.e. 2 opposing corners) and it istrivial to compute their locations from a correspond-ing � transformation (translation, scale and rotation).This mapping goes both ways and we can model the 2Dtracking for each image patch with the SSD model us-ing � or using the positions of 2 distinct feature pointssomewhere within the window (X1; Y1; X2; Y2). ForMcorrelation-based windows, we compute the (X,Y) loca-tion of N = 2M points. These feature points are thenarranged into the y vector for input into the EKF.4.3 Mapping Residuals to Spatial Uncer-taintyAt each iteration, one more output can be recoveredfrom the 2D correlation based tracker in addition to�. The output in question is the actual value of theresidual O(�). This residual can be used to weightthe input measurements feeding into the Kalman �lter.Thus, if a feature has a very high residual, the �ltershould trust its spatial information less and focus onother feature tracks. In addition, if a feature is lost oroccluded, its correlation window will have a very highresidual error and the Kalman �lter should essentiallyignore its contribution to the estimation.Recall that Kalman �ltering uses a noise covariancematrix to describe the expected noise on input mea-surements. Traditionally, the noise covariance matrixis denoted R and is n � n where n is the number ofmeasurements in the observation vector y. The roleof R in the computation of the Kalman gain matrixdescribed by Equation 9. Adaptive Kalman �ltering[4] proposes the use of a dynamically varying R ma-trix that changes with the arrival of new observationvectors to model the con�dence of the new data. Bychanging R using the values of the residuals of the 2Dcorrelation based trackers, we can assign a weight onthe observations they provide and end up with a morerobust overall estimate of internal state.K = P�HT [HP�HT + R]�1 (9)At this stage, we address the issue of relating resid-uals from the correlation-based trackers to the noisecovariance matrix on the feature points being trackedfor Kalman �ltering. We propose �tting a function thatmodels the residual as a function of spatial uncertainty.Consider, �rst, the simple case of SSD tracking withonly translational motion. We observe the residuals be-tween an image patch I(x; 0) and the same image patch
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and these are placed into the matrix R in the Kalman�lter. For feature i, we compute a noise covariance Ciand place it into R which becomes block-diagonal asshown in Equation 12.R = diag(C1; C2; :::CN) (12)At each iteration, the rotation, scaling and residue ofa correlation window determine the rotation and scal-ing of the covariance sub-matrix Ci associated with it.Thus, R is adaptively adjusted to re
ect the noise onthe spatial position of the feature points being tracked.In addition, these covariances are determined by a sen-sitivity analysis and are specialized to the noise char-acteristics of the particular texture being tracked.Thus, at each iteration, we have an appropriateweighting of feature tracks determined by the currentorientation and scale of the correlation trackers as wellas their residual values and the spatial sensitivity ofthe textures they have been initialized to track. TheKalman �lter abstracts the rest of the estimation andreturns the structure, motion and camera geometry op-timally from the weighted set of inputs.5 Initialization and Parametrization ofthe Kalman Filter State VectorSince the particular objects being tracked by the sys-tem are faces, we can initialize the system with a 3Dmodel of the structure of a head to speed up conver-gence of true structural motion. In addition, duringtracking and estimation, a more constrained set of 3Dcon�gurations for the structural estimate in the SfMsolution is expected. Only faces are being tracked sowe do not wish to allow the structural estimate of theSfM computation to diverge to another shape. Thus,we propose �ltering the estimated 3D structure com-puted by the EKF to avoid any unreasonable estimates.This is done by constructing an eigenspace �lter froma set of previously scanned 3D structures.Recall the set of cyberware heads used to gener-ate the average 3D human head for face detection.These 3D models have all been aligned into frontalview. When automatic face detection determines theloci of eyes, nose and mouth, it aligns a 3D aver-age head model to these locations. Thus, it auto-matically has an estimate of the depth map of theface and the depth values at the positions of the fea-ture points to be tracked are sampled. In addition,the system has an estimate for the 3D pose of theface (TX ; TY ; TZ ; �X ; �Y ; �Y ). The SfM state vectorcan thus be initialized (camera geometry is arbitrar-ily set to � = 0:5) using much of the informationfrom the previous face detection stage which gives usxt=0 = (TX;TY;TZ�; �X; �Y; �Y; �1; �2; :::; �N).During tracking, the structural estimate can alsobe �ltered to prevent any non-face-like structural es-timates. Recall that the average 3D head modelwas aligned to the locations of the eyes, nose andmouth. Susbequently, the 3D model of the averagehead generates a depth map to �nd the initial val-ues for (�1; �2; :::; �N). This is also done for each ofthe other cyberware heads so that multiple vectorsof � = (�1; �2; :::; �N) are generated. We perform aKarhunen-Loeve decomposition on 12 such � vectorsfrom our 12 cyberware 3D head models and obtain aparametrized representation of the structure.The eigenspace is computed each time the systemis initialized since the parametrization of structure



(�1; �2; :::; �N) depends on initial feature positions inthe image plane. However, due to the small size of thetraining set, this computation is trivial.A linear subspace is formed from the �rst 4 eigen-vectors of this eigenspace (the eigen-�-structures). Ateach time time step, we project the Kalman �lter's cur-rent estimate of structure into this eigenspace. Thus,the N degrees of freedom in the structural estimate areconstrained by the 4 degrees of freedom in our linearsubspace of facial structure. Equation 13 maps the cur-rent structure vector into an eigenspace parametriza-tion by projection onto the eigenvectors ei. Equa-tion 14 reconstructs the �ltered structure vector, �̂.Thus, constraints are introduced into the loop by �lter-ing the recovered SfM information with an eigenspace.ci = � � ei (13)�̂ = i=4Xi=1 ciei (14)6 System Integration and FeedbackWe now go over the implementation details of thesystem integration and the feedback process. The sys-tem begins with the face detection loop and repeatsuntil a face is detected and satis�es a threshold on dis-tance from face-space. The facial features detected areeyes, nose and mouth. From these features, a set oftemplates can be placed on the face (one on each tipof the mouth, one on each side of the nose, and two foreach eye). These acquire the underlying texture andthen a sensitivity analysis is performed to obtain themapping between spatial uncertainty and correlationresidual. A depth map of the face is obtained by �t-ting a 3D model to the position of the features and thisis used to initialize the depth parameters of a Kalman�lter that recovers structure from motion.The correlation-based feature trackers begin bytracking in a nearest-neighbour sense and search lo-cally for the facial features. However, at each iteration,the Kalman �lter computes an estimate of the rigid 3Dstructure that could correspond to the motion of the setof 2D SSD trackers. This global estimate is weightedusing the noise characteristics and residuals of the 2Dtracking. Once this structure is computed and an esti-mate of orientation and camera focal length are found,the 3D structure is �ltered using an eigenspace of 3Dhead shape. The �nal 3D structure, motion and focallength are used to projected feature points back ontothe image to determine an estimated position of the2D feature trackers. Then, at the next frame in thesequence, correlation-based search is performed start-ing at this 3D estimated position as well as startingat the original destination of the feature track. Thebest match of these two searches is then fed back intothe Kalman �lter as the 2D spatial observation vectorand the loop continues. Two searches are performedfor each SSD tracker since the EKF may possibly per-form worse than straight neareset-neighbour searchingbefore structural convergence. The feedback from theadaptive Kalman �lter maintains a sense of 3D struc-ture and enforces a global collaboration between theseparate 2D trackers.In addition, at each iteration, the orientation of theface is computed and is used to warp the face imageback into frontal view to compute 'distance to face

space'. If DFFS is below a threshold, tracking contin-ues. Otherwise, the system reverts back to the initialdetection stage.7 Testing and PerformanceThe full detection and tracking loop was tested onlive video streams. Typically, detection found a facewithin 1 or 2 loops and was able to handle � 20 de-grees rotation in-plane as well as roughly � 20 de-grees rotation out-of-plane. This 
exibility is due tothe rather lax constraints on feature detection and theheauristics in the search. However, the consequent falsealarms are eliminated by using 3D normalization anda strict eigenspace DFFS technique. Thus, subjectsdo not need to look explicitly at the camera for track-ing to commence since detection can handle non-frontalviews. Detection has been tested successfully in a widevariety of backgrounds, under many views and with nu-merous subjects. The system was used to detect facialfeatures in the Achermann face database (courtesy ofthe University of Bern in Switzerland) and obtainedover 90% success even though the skin classi�cationstage was not used (the images were gray-scale). Thedatabase contains 30 individuals in 10 di�erent views(of which 8 involve signi�cant out-of-plane rotation).Real-time tracking was tested on the live video se-quence shown in Figure 11. Roughly 2000 frames weretracked without feature-loss (over 1 minute of trackingin real-time). The �ltered tracking windows are shownprojected on the face. The normalized mug-shot (after3D warping and illumination correction) is shown atthe bottom of Figure 11.As can be seen, the subject is undergoing large in-plane and out-of plane rotations in all axes as well aspartial occlusion (in frame 827). Out-of-plane rota-tions of over � 45 degrees are tolerated without featureloss. Even though almost half of the correlation-basedtrackers may be occluded under large, out-of-plane ro-tations, the global EKF �ltering maintains tracking us-ing the visible features. Unless very jerky motion isused or extreme out-of-plane rotations are observed,the system maintains tracking and does not exhibit in-stability. The system has been tested on multiple sub-jects from live video streams and tracking performanceis consistent.Figure 12(a) displays the typical residual correla-tion error of a tracking window. However, this noisybehaviour is �ltered and a stable estimate of depthstructure is obtained in Figure 12(b). The EKF con-verges quickly to the true underlying 3D geometry de-spite noisy feature tracking. We also measured the SSDresidual between the initial mug-shot (at frame 0) andthe current normalized face. Figure 12(d) displays theDFFS value over the sequence which is used as a cueto stop tracking (when DFFS is too large). In this se-quence, the threshold was set to a generous value of0.5 and face detection was not re-used since trackingdid not fail. However, if the DFFS value were to exceed0.5, tracking would stop and detection would search fora new face.8 ConclusionsWe have presented an integrated system for detect-ing, modeling and tracking faces in real-time. The sys-tem uses detection to automatically initialize a track-ing system and to re-initialize upon failure. The track-



Frame=204 Frame=354 Frame=827 Frame=1175 Frame=1527Figure 11: Real-Time Closed-loop tracking of a sample video sequence.
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