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Abstract

We explore the use of proper priors for variance parameters of
certain sparse Bayesian regression models. This leads to a connec-
tion between sparse Bayesian learning (SBL) models (Tipping, 2001)
and the recently proposed Bayesian Lasso (Park and Casella, 2008).
We outline simple modifications of existing algorithms to solve this
new variant which essentially uses type-II maximum likelihood to fit
the Bayesian Lasso model. We also propose an Elastic-net (Zou and
Hastie, 2005) heuristic to help with modeling correlated inputs. Ex-
perimental results show the proposals to compare favorably to both
the Lasso and traditional and more recent sparse Bayesian algorithms.

1 Introduction and Motivation

Sparse Bayesian Learning (SBL) using automatic relevance determination as
typified by the Relevance Vector machine (Tipping, 2001), has proven to be
a very effective and accurate method for a wide variety of regression and
classification problems. The SBL paradigm performs parameter learning via



type-II maximum likelihood where a marginal data likelihood maximization
provides the parameter estimates. Two related tracks, the Lasso (Tibshi-
rani, 1996) and the Bayesian Lasso (Park and Casella, 2008), approach the
estimation task in rather different ways. The Lasso considers regression and
classification in the loss plus ¢;-regularization framework. The resulting opti-
mization problem can also be viewed in the Bayesian setting as a maximum-
a-posteriori (MAP) solution to a regression problem with parameters hav-
ing individual Laplace (or double exponential) priors. The Bayesian Lasso
instead makes use of the equivalence of a hierarchical Gaussian-Exponential
prior to the Laplace prior, and conducts fully Bayesian inference (via Markov
chain Monte Carlo or MCMC sampling algorithms) for parameter inference.

A number of recent papers have explored connections between these three
approaches and our work is in that vein. For example Wipf and Nagara-
jan (2008) clearly delineates the connection between SBLs type-II maximum
likelihood and MAP estimation, by showing that SBL’s type-II maximum
likelihood is equivalent to MAP estimation where the prior on the parame-
ters is “non-factorial” (in other words, the prior depends on the input basis
functions, and cannot be decomposed into independent terms involving each
parameter). A natural question that arises is whether type-II maximum
likelihood is an effective way to train the Bayesian Lasso model as well.
This would have two advantages over the Bayesian Lasso. First, parame-
ter estimates would be sparse, and second, the parameter estimates would
be obtained by optimization and not by computationally more demanding
MCMC.

2 Background and Notation

We consider SBL, the Lasso and the Bayesian Lasso in the context of the
classical Gaussian linear regression modeling. Specifically, given a regres-
sor matrix/feature dictionary ®, an observation/response vector y and i.i.d.
Gaussian noise/errors €, we consider linear models of the form

y=®08+e€. (1)
These assumptions lead to a likelihood of the form:

_ly = <I>ﬂ||}

—N/2
p(y|B, 0% ®) = 270> " exp{ 952
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where the dataset, D comprises N responses y = (y1,...,yn)T and the N x
p design matrix ® = [@(x;),...,d(xy)]". The Gaussian noise distribution is
mean zero and variance o2, p(€) = N (€|0,0%I) and the parameter vector 3 is
p dimensional. We assume that the intercept parameter, if any, is estimated
outside the estimation schemes discussed here (for example, by centering
the response). Loosely speaking, the Lasso is the least “Bayesian” of three
approaches while the Bayesian Lasso is the most Bayesian. SBL along with
the “demi-Bayesian” approach we describe below are somewhere in between.

2.1 The Lasso

The Lasso formulation estimates 3 by solving the following convex optimiza-
tion problem:

mﬁin(y —®8) (y — ®8) + 0Bl

(p is a non-negative scalar regularization parameter). The Lasso optimization
problem has a MAP-Bayesian interpretation as follows (Tibshirani, 1996).
Assign each component 3; of 3 an independent Laplacian or double-exponential
prior distribution with mean 0:

Pi —,.18. .
p(ﬂ]|p]) = Eje pﬂlﬁjlapj > 07] = 17"'7p

with p(8) = [[;p(3;) and all p; = p. A prior of this form places high
probability mass near zero and along individual component axes thereby
promoting sparsity (see Figure 1). It also has heavier tails than a Gaussian
distribution leading to some theoretical difficulties with regard to variable
selection!.

Now, in this setting, the Lasso optimization problem results in 3 esti-
mates that correspond to the posterior mode estimates (argmax ,Bp</3’D’ p)).
Predictions are then made using this point posterior mode. By contrast,
fully Bayesian inference would typically integrate over the entire posterior
distribution rather than conditioning on a specific value. In fact, while the
posterior mode is an optimal point estimate under zero-one loss, there is no
particular reason to expect such a loss function to be reasonable in any par-
ticular application. Nonetheless, the Lasso has provided excellent predictive
performance in many applications (Genkin et al., 2007).

Tt is now well-known that the Lasso does not possess an “Oracle Property,” typically
failing to set enough components of 3 to zero. See, for example, Zou (2006).
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Figure 1: A superposition of a standard (zero mean, unit variance) two
dimensional Gaussian distribution, and a Laplace distribution (p =1 ). The
figure highlights the higher probability mass the Laplace assigns along the
axes and at zero as well as its heavier tails.

2.2 Sparse Bayesian Learning

An alternative sparse linear modeling approach was proposed by Tipping
(2001) in his work on the relevance vector machine (referred to as SBL here).
In this line of work, a zero-mean Gaussian prior is assumed for each of the
regression parameters:

p

p(6‘7>:HN(ﬂ]|O?fY])77]>07]:17ap7 (2)

Jj=1

where crucially, each unknown weight has a separate non-negative hyper-
parameter ; controlling it’s variance (with « being the p vector of these
hyperparameters). In the learning procedure, sparsity is achieved if certain
7; are set to zero. A further hierarchical specification of the hyperparame-
ters (for both the variance of the weights and the noise) completes the prior
specification, with p(y) = [[, Gamma(v;la,b) and p(c?) = Gamma(o?|c, d).
In the RVM and further works however, these priors are specified as flat and
hence improper priors (a,b,c,d=0), an important point of difference with
what we propose.

Learning in the SBL paradigm involves exact posterior inference for the
predictions, where the hyperparameters are chosen to maximize the marginal
data likelihood. The literature refers to this procedure as type-II maximum
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likelihood or evidence maximization (Mackay, 1992; Berger, 1980). Equiva-
lently, SBL. minimizes:

~log / p(y18)p(B17)dB = log|Z,| + ¥y (3)

where ¥, = 02I + ®I'®" and ' = diag[y] (see Tipping 2001 or Wipf and
Nagarajan 2008). This optimization leads to some -,, which then leads to
the posterior distribution of the weights p(8|D,~,,0?%) = N (8|u,X). Here,
p=T.8"S lyand & =T —TI'®"S '®T 2. The expression for the posterior
mean p, further emphasizes how if 7, ; = 0, the corresponding (; is also zero
and removed from the model. Finally, the predictive density for a new/test
point ¢(x;) integrates over the posterior density of 3 leading to a closed-form
Gaussian expression:

Pl D,y 0% 0(x0)) = N(ylmy,, 00). (4)
My, = “T¢(Xt)7
‘7t2 = ‘72+¢(Xt>T2¢(Xt)-

We note that SBL can be shown to be equivalent to Gaussian process regres-
sion under particular restrictions - see for example Tipping (2001).

The objective function in the SBL optimization problem (in Equation 3)
is multi-modal, non-convex, and has fixed points at sparse solutions. Various
algorithms have been proposed in the literature for obtaining local minima
(Tipping, 2001; Wipf and Nagarajan, 2008; Tipping and Faul, 2003; Mackay,
1992).

2.3 The Bayesian Lasso

The Bayesian Lasso (Park and Casella, 2008) starts with the data model of
Equation 1 and the same Gaussian prior for the weights as in SBL (Equation
2). The hierarchical prior model differs slightly from that of SBL insofar
as the variance parameters are assumed to be drawn from an exponential
distribution with rate hyperparameter p-vector A, instead of a gamma dis-
tribution,i.e.:

p

s o .
p('y|}\):H5jexp— ]2%,)\j>0,j:1,...,p.

j=1

2The expressions are modeled on the Wipf and Nagarajan (2008) paper, and are equiv-
alent to the ones in the RVM paper where the notation is slightly different.



The reason why this relates to the Lasso and sparse learning, is because
this particular form of hierarchical prior results in a Laplace prior on 3 after
marginalizing out v (p(8) = [ p(B|y)p(¥|A)dv). This result derives from the
representation of the Laplace distribution as a scaled mixture of Gaussians
with an exponential mixing density(Park and Casella, 2008):

\/_ Jall _

/(2s) —as/QdS a> 0.

-y

Inference in the Bayesian Lasso is carried out in a fully Bayesian manner
via posterior simulation. Exploiting closed form marginal distribution calcu-
lations, Park and Casella (2008) outline a Gibbs sampler that can be used
to draw samples from the posterior distribution p(8|D) (they also propose
various techniques to estimate/set /sample from the hyperparameter distribu-
tion). While this represents a satisfying Bayesian solution, MCMC sampling
poses a significant obstacle in terms of the size of the applications this tech-
nique can reasonably be expected to handle. In addition, the Bayesian Lasso
does not yield a sparse solution unless ad-hoc rules are used to threshold
components of 3 that are small a posteriori. Other minor sampling related
drawbacks include difficulty in assessing convergence of the MCMC sampler,
and tuning of the sampling algorithm itself.

3 The demi-Bayesian Lasso

With the above background in place we turn to our proposals. To circum-
vent the computational complexities associated with the MCMC sampling re-
quired for the Bayesian Lasso, we propose fitting the Bayesian Lasso model
through a type-II maximum likelihood procedure (i.e., by maximizing the
marginal data likelihood). Conceptually, this inherits the benefits of the
SBL framework and alleviates the corresponding sampling associated prob-
lems. We now find hyperparameters via optimization and not sampling (thus
greatly expanding the dimensionality of models that can be learnt efficiently),
the resultant posterior distribution is analytically tractable (Gaussian), and
sparse models for prediction are obtained without thresholding the posterior
distribution. Of course, the flip side is that first, this proposal, like SBL, is
less than fully Bayesian, and second, also like SBL, it results in a non-convex
optimization problem.



Specifically, we propose to learn the Bayesian Lasso linear model y =
®3 + €, with p(e) = N(€|0,0%I) (we assume o? given in this work, and
pick it’s value from among a set of candidates based on predictive accu-
racy estimates such as cross validation/validation error). Further, p(3|y) =
N(B|0,T) (recall that T" = diag[v]) and we place an exponential prior on the
variance components,

TA Aj
p(YIA) = Jl;[l b} exp 5
However, as in SBL, we choose to estimate the non-negative hyperparameters
~ by type-II maximum likelihood. In other words, we maximize the marginal
data likelihood in order to learn the hyperparameters:

p(Y[D,A) o< ply|v)p(v|A)
_ ( / p(ﬂﬁ)p(ﬁh)dﬂ) P(AIN).

Taking the negative logarithm, using the result from Equation 3, and remov-
ing quantities irrelevant to the optimization problem results in the following
objective function to be minimized:

p
L(y) =1og S| +yTS,y + 2D v (5)

J=1

Note that for parsimony and convenience in further estimation, we set all
the A\; = 2), which we assume to be given (again picked from candidates
using cross validation). Also note that the key difference compared to SBL
is the presence of the proper variance prior, which results in the extra term
in Equation 5 as compared to Equation 3, and provides extra shrinkage.
After obtaining (local) maximum values for the hyperparameters -, (the
next section outlines algorithms for this purpose), we then make posterior
predictions also according to the SBL machinery, via the expressions for
p(y:|D,~., 0%, ¢(x¢)) and the related expressions for the mean and variance,
Equations 4. We call this approach the demi-Bayesian Lasso (dBL).

It is worth mentioning that the above formulation can be obtained by con-
sidering the original SBL formulation with a particular form of the Gamma
prior on the variance components ;. This links the Bayesian Lasso model
to the SBL model and provides the motivation for our proper prior on the
variances.



3.1 Algorithms

The key learning task with the model is finding optimal prior variance, -~y
values. This then allows us to compute the posterior distribution over the
weights and compute the posterior predictive distribution (Equations 4). Due
to the similarity with the SBL objective function, many of the SBL algorithms
apply with minor modifications. Here we discuss two variants. The first is
a modification of the EM algorithm that was proposed in Tipping (2001).
Starting with some ~, we iteratively apply the E step:

S=T-TI®"'s '&T,
with p = I, ®"% !y and the M step:
_ 2(45 + %)
1+ \/1 +4AN(pZ + Xj5)

Vi

for all j =1,...,p, until convergence. We will refer to this algorithm as EM
dBL.

The second variant modifies a recent algorithm by Wipf and Nagarajan
(2008) that possesses several nice properties, such as a global convergence
analysis (to a local minimum) and sparsity along the solution path. We state
the algorithm next, which we will call ¢; dBL, followed by a brief deviation.
We refer the reader to Wipf and Nagarajan (2008) for further details.

Data: D, \,~.

Result: Sparse 3, «, at each iteration.

Initialize 3 =0,z = [1,...,1]T.

while Convergence criteria not met do

8, = argminglly — @B|3 +20° X", (= + )|

%= (2 + N8l
z, = Vylog|3,| = diag[®@"S, ' ]

B =p.
Z =17,
end

B=EBly,v.)=T.2"5y
Algorithm 1: The ¢; dBL algorithm.

The algorithm outlined above is guaranteed to converge monotonically
to a local minimum or saddle point of Equation 5. This follows trivially
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from Theorem 1 and analysis in Wipf and Nagarajan (2008). The algorithm
notably uses iterated re-weighted ¢; regression (step 1 in the while loop)
to estimate the weights 3, also known as an adaptive Lasso problem (Zou,
2006). The ¢ penalty results in sparse 3, which correspondingly results in
sparse estimates of variance components v—we will refer to this algorithm
as ¢; dBL. The auxiliary variables z (a p-vector) arise from the upper bound
of the log-determinant term (see 3.1.1). The choice of an Exponential prior
results in very small computational difference between the SBL algorithm
in Wipf and Nagarajan (2008) and the one presented here. In particular,
replacing z; + A with z; is the only difference. Similarly, the prior results
in a small difference in the M step in the corresponding update in Tipping
(2001) algorithm, where it is: v; = ,u? + X,;. As expected, the proper prior
results in additional regularization of the variance parameters towards zero.
We expect that this additional regularization will come with a bias-variance
trade-off, the additional flexibility created by the single extra parameter A
potentially allowing us to generalize better.

3.1.1 Deriving the ¢, dBL algorithm

Here we briefly outline the algorithm derivation. The log-determinant term
in L() (Eq. 5) is concave in 7, and so can be expressed via

log |X,| = mzinzT'7 — g*(2).

In that expression, g*(z) is the concave conjugate of log |2, |, g*(z) = min~ zty—
log |3, |. This then leads to the upper bounding cost function:

p
Liv,z)=2"y—g"(2) +y'S, 'y +A) v > L.

j=1
Following Wipf and Nagarajan (2008), the optimal z occurs when
z, = Vylog |5, | = diag[®"S, ' ®].

Re-expressing the term

1 2
Ty—1., : 2
y X, yrrgn;!\y—QWHﬁZ

a3
v’
j J



we get an upper bounding term

a 2
Ly(v,8) = %Hy —®B[3+ > ((Zj + M)y + i—") > L

j=1 !

which is jointly convex in B and ~, which can be globally minimized solving
for v and then 8 (Wipf and Nagarajan, 2008). Now, for any 3, v; = (2; +
A\)~Y/2|3;| minimizes £,(v,3). This then results in algorithm 1 which is an
iterative application of the steps of finding the optimal - (minimizing the
upper bounding cost), and then finding the optimal z (which then leads to
recomputing the optimal upper bounding cost).

3.2 An EN heuristic

While the use of of iterated re-weighted ¢; regularized regression results in
sparsity which is desirable, it also inherits some of the drawbacks of ¢; re-
gression. In particular, an issue of concern is the instability of ¢; regression
solutions with respect to highly correlated regressors (Zou and Hastie, 2005).
Essentially, with highly correlated regressors/basis functions, the weights 3
computed based on the ¢; solution are unstable—small differences in the
dataset can result in the selection of very different subsets of a set of corre-
lated regressors®. Zou and Hastie (2005)’s “elastic net” seeks to address this
issue. The elastic net imposes an af; + (1 — a)ls penalty, 0 < a < 1, on the
weights. This has the attractive property of imposing a simple additional
convex loss and encourages a “grouping effect” which helps keep weights on
correlated regressors similar (ref Thm. 1 in Zou and Hastie 2005). Zou and
Hastie (2005) show good results when applying this mixed penalty.

We attempt to capture the same effect in the dBL. This is done by solving
an elastic net problem in Algorithm 1 instead of the re-weighted ¢; regression
problem. Unfortunately, the heuristic doesn’t correspond to an intuitive prior
on the variance components and further is strongly tied to the iterated re-
weighted ¢ regression algorithm (an equivalent is hard to define for the EM
style algorithms). Nonetheless, we explore this heuristic in the experiments
that follow—we will refer to this as dBL+EN below.

3For two perfectly correlated relevant regressors, one amongst them is chosen to have
a non-zero weight either at random or due to the particulars of the the algorithm imple-
mentation.
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4 Experiments and Results

We now turn to evaluation of the dBL via experimental studies. We consider
both simulation studies and three real data examples from the literature and
evaluate the strengths and weaknesses of the proposal.

4.1 Simulation studies

Our simulation study models are based on the studies in Zou and Hastie
(2005) (examples 2 and 4 correspond exactly, examples 1 and 3 are minor
modifications of examples in their work). The aim is to highlight the differ-
ences between the techniques in terms of predictive performance, but also in
terms of variable selection accuracy. We present five simulation study exam-
ples, each of which consist of a training set, a validation set and a test set
(all independent). Models are fit using the training data only, and param-
eters/hyperparameters selected from appropriate grids on reasonable values
using the validation set. For the EN heuristic, in all experiments we set the
(1 /45 blending parameter ov = 0.7. Borrowing notation from Zou and Hastie
(2005), we use x/y/z to denote x training observations (size of the train-
ing data), y validation and z independent test samples. The four examples
attempt to gauge the performance of the methods in various scenarios:

e Example 1: we simulate 200 data sets consisting of 20/20/200 ob-
servations with 8 predictors. The data generating mechanism is a linear
model with y = ®8 + ke where p(e) = N(€]0,I) and k = 3. We set
B = [3,1.5,0,0,2,0,0,0]T. The pairwise correlation between ®; and ®; is
set as cov(i,j) = pl"7l. In example 1, the covariance matrix is an identity
matrix, cov(i,j) = 0 for all i # j and cov(i,i) = 1. Finally, ® is drawn from
a multivariate Gaussian with zero mean and the above covariance matrix.

e Example 2: Is entirely analogous to example 1 except with non-identity
covariance (introducing mild correlation between the regressors). Here, p =
0.5.

e Example 3: Is the same as examples 1 and 2, except with higher
correlation between the regressors. Here, p = 0.85.

e Example 4: Also an example where the data generating mechanism is
a linear model. We simulate 200 data sets with 100/100/400 observations
and 40 predictors. This time 8 = [0,...,0,2,...,2,0,...,0,2,...,2]T, with
alternating blocks of 10 indices of zeros and 2s. Here, K = 15 and cov(i, j) =
0.5 for all ¢ # j, and cov(i,7) = 1.
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e FExample 5: An example where the data generating mechanism is not
a linear model. Here we will not be able to gauge variable selection accuracy,
but only predictive performance. In this case we include some interaction
terms and powers of the regressors in computing the response. We simulate
40/40/400 observations following polynomial model (for a single observation):
y = 1.5¢% + 2¢109 — P51 + P2 + 207 + 3¢ where € is a zero mean, unit
variance Gaussian error. The learning algorithms only get access to ® and
the responses.

For examples 1 through 4, we compute the following quantities: i) the
mean squared error (MSE), computed on test data, ii) mean “parametric”
error (MPE), that is, the mean of the quantity (8 — Bu.) 2(8 — Birwe),
where Y is the covariance of ®. This attempts to quantify closeness to
the parameters that actually generated the data. iii) Quantities related to
structural errors: mean C (C') and mean IC (IC). Cis defined as the number
of true weights that were zero which are correctly estimated as zero by the
model (thus higher values are better). Similarly, IC is defined as the number
of non-zero true weights incorrectly estimated as zero by the model (and thus
lower IC values are preferred). Models that are excessively sparse would tend
to have high C values (good) and high IC values (not good). A model that
is completely non-sparse would have the lowest possible C value (bad) but
the lowest IC values (good) as well. For example 5, since the data generating
mechanism is outside the model hypothesis class we only report the test mean
squared error.

We evaluate the optimization based approaches, namely the Lasso (Lasso
in the results), the original SBL algorithm (Tipping 2001, SBL), the Wipf and
Nagarajan (2008) SBL algorithm (¢; SBL), the dBL model with parameters
found using the EM algorithm (EM dBL) and the ¢; variation (Algorithm
1, ¢; dBL) and finally, the ¢; based proposal with the EN heuristic (dBL +
EN).

Table 1 and Figure 2 show the results. In all cases (modest to large)
improvements are made over the flat-prior variants and over the Lasso both
in terms of prediction accuracy as well as structural accuracy. In the tables
we show standard errors of the estimates, and in the Figure, we show boxplots
of the squared error showing the median, lower and upper quartiles, whiskers
and outliers. We next turn to some real data examples.

12



Table 1: Simulation study results

Lasso SBL /1 SBL EM dBL /1 dBL dBL + EN
Example 1
MSE  14.40 (0.28)  14.39 (0.31)  14.66 (0.34)  14.23 (0.29)  14.04 (0.30)  14.11 (0.28)
MPE  3.99 (0.21) 402 (0.24)  4.25 (0.27) 3.83 (0.22) 3.64 (0.23)  3.70 (0.21)
c 2.23 (0.12) 2.59 (0.12) 3.51 (0.10) 2.21 (0.11) 3.61 (0.10)  3.29 (0.09)
c 0.24 (0.04) 0.26 (0.04) 0.38 (0.05) 0.22 (0.04) 0.30 (0.04) 0.26 (0.04)
Example 2
MSE  14.63 (0.36)  14.84 (0.37)  15.12 (0.42)  14.44 (0.36)  14.42 (0.36)  14.22 (0.37)
MPE  3.91 (0.22) 4.12 (0.23) 4.44 (0.30) 3.72 (0.21) 3.72 (0.21) 3.53 (0.22)
c 2.24 (0.11) 2.77 (0.11) 3.56 (0.11) 2.23 (0.10) 3.58 (0.10) 3.25 (0.10)
c 0.22 (0.03) 0.39 (0.04) 0.48 (0.05) 0.22 (0.03) 0.36 (0.04) 0.23 (0.03)
Example 3
MSE  14.20 (0.32)  14.42 (0.31)  15.20 (0.42)  13.83 (0.30)  13.99 (0.30)  13.44 (0.28)
MPE  3.33 (0.17) 3.56 (0.17) 4.21 (0.29) 2.96 (0.15) 3.09 (0.15) 2.53 (0.13)
C 2.42 (0.09) 2.85 (0.10) 3.23 (0.09) 2.52 (0.09) 3.48 (0.09) 2.77 (0.08)
ic 0.65 (0.05) 0.78 (0.05) 0.91 (0.05) 0.58 (0.05) 0.92 (0.05) 0.38 (0.04)
Example 4
MSE  316.92 (2.41) 311.37 (2.32) 327.13 (2.78) 283.72 (1.95) 286.50 (2.03) 261.14 (1.67)
MPE  83.74 (1.64)  77.37 (1.39)  93.55 (2.02)  49.28 (0.90)  52.19 (1.03)  26.22 (0.49)
C 9.72 (0.34) 14.61 (0.24) 8.39 (0.16) 11.99 (0.19) 14.66 (0.18)  8.03 (0.21)
Ic 5.92 (0.19) 9.87 (0.19) 5.79 (0.13) 6.58 (0.14) 8.77 (0.15) 2.52 (0.12)
Example 5
MSE  30.78 (0.40) 30.56 (0.42) 31.64 (0.47) 30.32 (0.40) 30.07 (0.40)  30.37 (0.40)

4.2 Prostate cancer data

The data in this example comes from a prostate cancer study done by
Stamey et al. (1989). Eight clinical measurements serve as the regressors,
which are, in order: log(cancer volume) lcavol, log(prostate weight) lweight,
age, log(amount of benign prostatic hyperplasia) lbph, seminal vesicle inva-
sion svi, log(capsular penetration) lcp, Gleason score gleason and percent-
age Gleason score 4 or 5 pgg45. The predictive quantity of interest is the
log(prostate specific antigen) Ipsa.

Following Zou and Hastie (2005), we divide the data into two parts, a
training set with roughly two thirds the number of observations, 64 obser-
vations and a test set with 33 observations. Hyperparameters were selected
from a grid of values via 10-fold cross validation using only the training data?.
The methods are compared via the prediction mean-squared error on the test

4For all the real data examples, we select the hyperparameters following the slight
modification to k-fold CV suggested in Chapter 7 of Hastie et al. (2001), namely we pick
the largest amount of regularization that is within 1 standard error of the minimum CV
erTor.
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Figure 2: Boxplots for simulation studies 3 and 4. The horizontal dashed
line is a visual guide and marks the location of the minimum median from
amongst the prior art, namely the Lasso, SBL and ¢; SBL.

data.

Our results (Table 2) show improved performance of the proposals over
the Lasso® and SBL, with the ¢; dBL providing the best performance. There
is broad consensus on the selected variables, with lcp being rejected by all
models in our experiments.

4.3 Diabetes data

The data in this study come from Efron et al. (2004). The response is a
quantitative measure of diabetes progression in 398 patients one year after
baseline. The predictors include age, sex, body mass index, average blood
pressure, and six blood serum measurements, for a total of 10 regressors.

5Note that in the table, the o2 is a proxy label for the regularization parameter for the
Lasso.
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Table 2: Prostate data results

Lasso SBL /1 SBLL. EM dBL /; dBL dBL + EN
MSE 0.4505 0.5539 0.5765 0.5367 0.3781 0.5216
Vars all allbut 6 all but 6 all but 6 (1,3,4,5) (1,5,7)
o2 (\) 05 02 0.01 0.25 (1) 0.005 (500) 0.25 (1)

As Efron et al. (2004) point out, linear models are especially useful in this
diagnostic application, because in addition to predictive accuracy for future
patients, the models would ideally provide disease progression guidance by
being interpretable. We standardized the regressors to have zero mean 0 and
unit variance.

We partition the data into a 266 patient training sample and a 132 patient
test sample. Hyperparameters were selected from a grid of values via 10-fold
cross validation using only the training data. We show test mean squared
error, variables selected and parameters (and hyperparameters used).

Table 3: Diabetes data results

Lasso SBL ¢; SBL EM dBL /; dBL dBL + EN
MSE 3031.2 3045.1 3032.4 3034.2 3031.2 3029.3
Vars all but 1,6,8 all but 1,7 all all but 1,8  all but 1,6,8 all
a2 (\) 1 500 500 500 (0.001) 100 (0.1) 500 (0.001)

Our results agree with many reported findings on this dataset, and in
our experiments, the dBL + EN variant proved predictively best by a slight
margin (Table 3). In terms of variable selection, the least important regres-
sors appear to be 1, 6 and 8, which is also evident from the findings in Park
and Casella (2008) (Note that in our experiments, the SBL model seems to
deselect regressor 7, which is an anomaly).
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4.4 Biscuit NIR data

In this application, we examine the biscuit dough data from (Brown et al.,
1999). The response we look at is fat content of the dough (centered), and
the regressors are spectral characteristics of the dough, measured using near
infrared (NIR) spectroscopy (standardized). The spectral characteristics are
described using a grid of wavelengths, in particular reflectance measured at
every 4nm from the range of wavelengths: 1202—2400 nm. The data is
split into 39 training samples and 31 test samples, and we standardize the
regressors.

Hyperparameters were selected from a grid of values via 5-fold cross val-
idation using only the training data. The methods are compared via the
prediction mean-squared error on the test data.

Table 4: Biscuit NIR data results

Lasso SBL ¢y SBL EM dBL {; dBL dBL + EN

MSE 0.0565 0.0551 0.0696 0.0543 0.0450 0.1001
|[Non-zero Vars| 18 6 269 11 54 43
o2 (\) 125 025  0.05 02 (0.1)  0.15(0.2) 1 (1)

Our results (Table 4, Figure 3) are consistent with previous studies that
use this data (West, 2003) and we find ¢; dBL gives the best performance. In
particular, the non-zero @ found by ¢; dBL around 1710 nm are significant
because fat is known to have a characteristic absorbance in this range. Also
note that for this example, the dBL + EN heuristic appears to perform worse
than the others.

5 Discussion

In this paper we examined the use of proper priors in sparse Bayesian learn-
ing and showed some promising experimental results. We show that with a
single additional hyperparameter (set through cross-validation), the model
is augmented substantially enough to make better predictions. Further, the
choice of an exponential distribution as a prior connects SBL to the recently
proposed Bayesian Lasso, with our proposal amounting to an attractive al-
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ternative way of estimating Bayesian Lasso model hyperparameters by max-
imizing marginal likelihood rather than Monte Carlo simulation. We also
explored the use of an EN-heuristic that, in our experiments, leads to better
performance in the presence of correlated regressors. In future work we would
like to extend the proposals to classification problems. We would also like to
examine the efficient SBL algorithm of Tipping and Faul (2003) to see if an
analogous procedure can be applied in this case as well. Finally, other forms
of prior distribution on the variance are the topic of our further exploration
- including additionally sparsifying priors like the Laplace distribution etc.
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Figure 3: Biscuit data B values. Shown from top to bottom are the final
parameter weights for the Lasso, SBL, ¢; SBL, ¢; dBL and dBL + EN. Due
to the coarse resolution of the plot, only high magnitude weights can be
discerned. Note the similarity between the high magnitude weights of the
Lasso and SBL solutions (the EM SBL high magnitude weights are very
similar and hence omitted).
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