
September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

EFSM-based Test Case Generation: Sequence, Data, and Oracle

Rui Yang

State Key Laboratory for Novel Software Technology, Nanjing University,

Department of Computer Science and Technology, Nanjing University
Nanjing, 210046, China

ruizi2000@gmail.com

Zhenyu Chen

State Key Laboratory for Novel Software Technology, Nanjing University,

Nanjing, 210046, China

pyzychen@gmail.com

Zhiyi Zhang

State Key Laboratory for Novel Software Technology, Nanjing University,

Nanjing, 210046, China
Xianlingzibiying@gmail.com

Baowen Xu∗

State Key Laboratory for Novel Software Technology, Nanjing University,

Department of Computer Science and Technology, Nanjing University
Nanjing, 210046, China

bwxu@nju.edu.cn

Model-based testing has been intensively and extensively studied in the past decades.

Extended Finite State Machine (EFSM) is a widely used model of software testing in

both academy and industry. This paper provides a survey on EFSM-based test case
generation techniques in the last two decades. All techniques in EFSM-based test case

generation are mainly classified into three parts: test sequence generation, test data

generation, and test oracle construction. The key challenges, such as coverage criterion
and feasibility analysis in EFSM-based test case generation are discussed. Finally, we

summarize the research work and present several possible research areas in the future.

Keywords: Extended Finite State Machine; coverage criterion; test case generation; test
sequence; test data; test oracle.

∗Corresponding author.

1



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

2 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

Acronyms

FSM Finite State Machine

EFSM Extended Finite State Machine

SP State Path

TP Transition Path

SDL Specification and Description Language

ESTELLE Extended State Transition Language

LOTOS Language of Temporal ordering specification

SUT System Under Test

UIO Unique Input/Output (Sequences)

EUIO Extended UIO (Sequence)

CIUS Context Independent Unique Sequence

TEA Transition Executability Analysis

A-use Assignment-Use

I-use Input-use

P-use Predicate use

C-use Computation use

D-use Definition-use

IO-df Chains Input/Output Definition Chains

DFG Data Flow Graph

CFG Control Flow Graph

UTS Unified Test Sequence

CCS Cyclic Characterizing Sequence

CS Characterizing Sequence

TDG Transition Dependence Graph

CSP Constraint Satisfaction Problem

EDSS Executable Switching Sequence

EDC-path Executable DO-path

EC-path Executable Control Path

EBP-path Executable Back Path

BFS Bread First Search

NFEFSM Normal Form EFSM

EEFSM Expanded EFSM

PEEFSM Partially Expanded EFSM

GA Genetic Algorithm

SS Scatter Search

NNEOC Number of Numerical Equal Operators in Conditions

NNEV Number of Numerical Event Variables

LPEV Length of Path with Event Variables



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 3

1. Introduction

Software testing is an important activity of the software life-cycle. It is estimat-

ed that the test cost may occupy about 30% to 50% of software development [1].

Test automation has become a tendency due to its capability of reducing cost and

improving effectiveness. Automated test case generation, which has a strong im-

pact on the testing process [2], becomes an important means. One of the common

approaches of automated test case generation is to create a model and utilize the

model to generate test cases [3]. In general, model-based testing is to derive, execute

and evaluate test cases by means of creating models in different abstraction levels.

Test cases are generated based on the model to reveal faults and verify whether the

implementation conform to its specification.

Finite State Machine (FSM) is a behavior model which consists of a finite num-

ber of states, transitions between those states which can be described by a finite

input/output set, state transition functions and output functions [4]. In practice,

many systems usually contain both control parts and data parts, which cannot be

represented in FSM. This inspires researchers to design an extended model, called

Extended Finite State Machine (EFSM) [4]. EFSM consists of states, predicates

and assignments with respect to variables among transitions, such that it can rep-

resent both control flow and data flow of complex systems. In the past years, EFSM

has been widely used in communication protocols, software development, software

testing, sequential circuits, and other areas.

EFSM-based test case generation has been intensively and extensively studied

in the past decades. A survey which reviewed the usage of formal specifications

to support testing has been proposed [5]. It explored some ways that a formal

specification can support testing. However, the focus was not directed on test case

generation on EFSM. Dorofeeva et al. [6] reviewed FSM-based conformance testing

methods and assessed their complexity, applicability, completeness, fault detection

capability, the length and derivation time of their test suites in recent years. To our

best knowledge, the newest survey on EFSM-based test generation was in 1996 [7].

In the past years, EFSM-based test case generation has been developed greatly.

This motivates us to do a systematic survey of test case generation techniques on

EFSM in recent years. This paper focuses on the principal aspects of EFSM-based

test case generation: test sequence generation, test data generation, and test oracle

creation. The challenges of EFSM-based test case generation, coverage criterion and

feasibility analysis, will be discussed. Finally, we discuss the possible tendency and

challenges for EFSM-based test case generation in the future.

Although there are many existing works on EFSM-based test case generation.

There are some challenges to achieve more effective testing. The conflict correlations

among some transitions that make some paths infeasible, and the problem that

detect infeasible path is undecidable in general [8]. For this reason, FSM-based test

generation methods cannot be used directly for EFSM-based testing. In addition,

the generation of test data to cover a given feasible sequence (path) and automated



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

4 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

test oracle construction are more challenging tasks. In order to clearly summarize

the existing work on EFSM-based test generation, we decompose a test case into

three parts: test sequence, test data and test oracle. In general, EFSM-based test

case generation mainly includes three steps:

(1) Test sequence generation for the specified coverage criterion, based on state

identification sequence.

(2) Test data generation for covering the state identification sequence and test

sequence.

(3) Test oracle construction for the generated test data.

The rest of this paper is organized as follows. Section 2 introduces some basic

concepts for EFSM and the related background on testing. Section 3 summarizes

test sequence generation and feasibility analysis. Section 4 summarizes test data

generation. Section 5 summarizes the test oracle construction. Section 6 discusses

some possible opportunities for future research.

Fig. 1. (a)A simplified EFSM of Automated Teller Machine (b)The detail information of
Automated Teller Machine

2. Overview of EFSM

2.1. Model Definition

An EFSM model can be represented as a 6-tuple M=( s0, S, V, I, O, T ), where

s0∈ S represents the initial state of the EFSM, S represents a finite set of state, V

represents a finite set of the context variables, T represents a finite set of transitions,



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 5

I and O represent a set of transition inputs and a set of the outputs respectively.

Each transition tx∈ T also can be formalized as 6-tuple tx= (si, sj, Ptx, Atx, itx,

otx), where si, sj, itx∈ I and otx∈ O represent the start state of transition tx, the end

state of transition tx, an input parameter and otx∈ O output results, respectively. In

addition, Ptx represents the predicate conditions with respect to context variables

and Atx represents the operations with respect to current variables (variables in

the current scope). In some papers Ptx and Atx are also called Guards and Actions.

For the sake of clarity, EFSM models can be represented as a directed graph G(V

, E). The elements of V and E are called vertices (represent states of EFSM)

and edges (represent transitions of EFSM) (See Figure 1). Initially, the EFSM is

at an initial state s0 associated with the initial variable values. The transition t0

will occur if the current values of the variables or input parameter it0 are valid

for the predicate condition Pt0 associated with this transition. In this process, the

action At0 associated with this transition is then executed, which can modify the

variables or produce some output results ot0, meanwhile, the state of EFSM will be

transformed from start state s0 to the next state. After a series of state transferring,

the EFSM will be left in a certain state si. Similarly, if the predicate, which may

associated with current variables or input parameter iti of current transition, could

be satisfied, the EFSM outputs oti, changes the current variable values, and moves

to the next state sj . This state sequence constitutes a State Path (SP) whereas this

transition sequence constitutes a Transition Path (TP).

Definition 1: A state path (SP) of an EFSM is a sequence of states s1 s2 ...

sn, if there exist transitions from state si to si+1, where i∈ {1, n− 1}.
Definition 2: A transition path (TP) of an EFSM is a sequence of transition

t1 t2 ... tn, where every transition ti starts from the state that the end state of the

previous transition ti−1, where i∈ {2, n}.
In fact, EFSM is an enhanced model that extends from FSM. If all the predicates

always true and the variable set is empty, the EFSM degenerate into the FSM.

Therefore, FSM can be viewed as a subset of the EFSM. In terms of EFSM, some

transitions may associate with complex conditions that difficult to be satisfied,

whereas some transitions may associate with no predicate conditions. If associated

predicate conditions in a transition path can never be satisfied, the transition path

is regarded as infeasible. However, the detection of an infeasible path is generally

undecidable [8]. The existence of infeasible paths is a challenge of the automated

test case generation for EFSM.

For the complexity of EFSM, in some case more than one transition associate

with the same start state and the end state, and these transitions may be event-

driven. Therefore, the relationship between states and transitions may be one-to-

many. In addition, some EFSMs contain self-loop transition which is a transition

that has the same start state and the end state. An EFSM is deterministic if any

group of transition has the same input that changes a state, and the guards of more

than one transition cannot be satisfied at the same time in this transition group [9].

Conversely, an EFSM is non-deterministic. In addition, some EFSMs do not exist



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

6 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

exit state, in contrast, others contain both exit state and initial state.

2.2. Model Representation

Before further handle of abstract EFSM, we need to transfer the model into the

description or the data structure that can be understood by computers. SDL (Spec-

ification and Description Language) [10], ESTELLE (Extended State Transition

Language) [11], LOTOS (Language of Temporal ordering specification) [12] and

State Transmission Table are the common form to describe EFSM.

SDL is a specification and description language defined by ITU-T in 1976. By

means of SDL, a system can be described as a set of interconnected abstract models

which are EFSM. Generally, the application of SDL mainly includes process control

and real-time systems. A system described by SDL usually consists of the following

aspects: system structure, system behavior, inheritance, communication and data

operation. The formality of SDL helps to improve the accuracy of system repre-

sentation, and the semantics of each symbol are precisely defined. Therefore, it is

appropriate for generating test cases and determining whether a system complies

with the specifications.

ESTELLE is another formal descriptive language for EFSM. It has a strong abil-

ity of expression and definition, and can be used to describe both distributing and

paralleling system precisely. The grammar and data type of ESTELLE are based on

Pascal language, thus it is easy to use. ESTELLE can describe the system behavior

as a set of hierarchically-structured modules. A module also can be structured into

sub-modules. The state of the module is defined as a configuration set of variable

and its corresponding value. The interaction between states is named transition

which might include predicate conditions and context variables that are dependent

on input parameters.

LOTOS takes advantage of formal descriptive language to ensure disambiguat-

ing and convenient to consistency analysis and testing. LOTOS consists of two

parts: process algebra and data algebra, where the process algebra is utilized to de-

scribe dynamic behaviors of systems, and data algebra is utilized to describe data

structures and expressions based on the abstract data type language (ACT ONE).

LOTOS can be utilized to describe concurrency, non-deterministic, and synchronous

or asynchronous communication systems. It supports various levels of abstraction

and provides several specification styles. Since EFSM model is applied more and

more in various fields other than in the communication, apart from the aforemen-

tioned specification languages, some researchers have been using other methods to

describe EFSM models, such as static transfer table, and even program code. With

the development of techniques, it is believed that there will be more expressing

approaches for EFSM.



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 7

2.3. Coverage Criteria

In software testing, exhaustive testing for most of the systems is impossible, so it is

necessary to select one or several test coverage criteria to obtain corresponding test

cases so as to measure test adequacy and decide when to stop testing. There exist

many coverage criteria, mainly including code-based coverage (white-box coverage

criteria), requirement-based coverage (black-box coverage criteria) and model-based

coverage criteria etc. This large set of test coverage criteria can be applied in various

types of testing, and different test coverage criteria can be combined to boost the

quality of testing.

EFSM contains control flow and data flow, some of their behavior is similar

in some ways to a structured program, hence most of structure-based coverage

criteria may also be introduced to EFSM-based test case generation. In addition,

some of model-based coverage criteria can be used on EFSM-based test case gen-

eration naturally. Some available coverage criteria can be utilized for EFSM main-

ly includes Control-flow-oriented coverage criteria (such as decision coverage, con-

dition coverage, full predicate coverage, etc.), Data-flow-oriented coverage crite-

ria (such as all-defs coverage, all-uses coverage, all-def-use-paths coverage, etc.),

and State/Transition-oriented coverage criteria (such as all-states coverage, all-

transitions coverage, all-one-loop path coverage, etc.) [13].

In addition, some extensions of the above coverage criteria, as well as some

black-box coverage criteria, can also be applied in the EFSM model. These cover-

age criteria do not appear in this paper due to the limitation of space. The selection

of the coverage criteria needs a balance between test effect and test cost. A strong

coverage criterion, which can achieve more comprehensive testing, often requires

much cost to generate test cases to satisfy it. In contrast, a weak coverage criterion,

which requires less cost to generate test cases to satisfy it, often worsens the confi-

dence over the correctness of the software. Therefore, when choosing the coverage

criteria, it needs to trade off the costs and effects of testing. Presently, the correla-

tion between coverage criteria and test effects is also a research topic. However, it

is not in the scope of this paper.

2.4. EFSM-based Test Case Generation

A high-level overview of automated model-based test case generation usually con-

tains two aspects: create a model of the software under test and drive the model

to generate test cases. EFSM-based test case generation also follows this process.

We further summarize EFSM-based test case generation process into the following

major steps of subdivision, as shown in Figure 2. The first step is to model the

EFSM from the specification or requirement of the system. The model usually does

not reflect the whole of the real system, otherwise, the scale of the model may be-

come uncontrollable. Generally speaking, only the key aspects that to be tested are

concerned during the modeling process. The second step is to generate the sequence

from the EFSM to achieve testing. For EFSM, the complete sequence may include



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

8 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

Fig. 2. The Process of EFSM-based Test Case Generation

state identification sequence and test sequence (the detail described in section 3).

In order to avoid the infinite number of sequences, at least one coverage criterion

should be specified. Due to the features of EFSM, some sequences may be infeasi-

ble, hence feasible analysis should be introduced. The third step is to assemble state

identification sequence and test sequence into the complete sequence and generate

test data to trigger them. Ideally, oracle information should also be generated in

this step. The next step is to execute the test cases on the real system with online

or offline way (refer to section 5), this step also involves oracle procedure (refer to

section 5). The final step is to analyze and estimate the results of the test execution

so as to decide to continue or stop the testing by stop criteria. The dashed box

indicates that the relevant steps are discussed in the corresponding section of this

paper.

Although some research has been proposed some EFSM-based testing tech-

niques, automated test case generation on an EFSM suffers from a number of

problems. The first problem that prevents EFSM-based test case generation from

becoming a practical technique to aid testing is model acquisition. Despite the fact

that there exist a number of automated test case generation techniques for EFSM,

most EFSM constructing processes are still manually or semi-manually. The sec-

ond problem is the existence of infeasible test paths (sequences), that is to say no

input data can traverse them. The presence of infeasible paths (sequences) creates

difficulties for test case generation. There are some studies on infeasible paths of



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 9

Table 1. Comparison and Analysis of EFSM-based test case generation techniques (symbol
”-” means not mentioned or not considered)

Literatures Coverage
Criteria

State
Identifi-
cation

Test Sequence Generation and
Feasible Analysis

Test Data Genera-
tion

Test O-
racle

Li [23] - EUIO - - -
Huang [36] def-output-

path
- TEA - -

Huang [26,37] def-output-
path

UIOE TEA Random -

Petrenko [29] - CCS - - -
Ural [30] IO-df-Chain - Test Sequence Selection - -
Miller [31] def-

observation
path

UIO Converting EFSM to FSM - -

Chanson [32] du-path CCS CSP,Transition Loop Analysis - -
Chanson [66] du-path CCS CSP,Transition Loop Analysis Symbolic Execution -
Ramaligom
[24,25]

trans-CIUS-
set, def-use-
ob

CIUS Combinatorial Optimiza-
tion,Partial Enumeration

- -

Koh [34] du-path UIO Loop Insertion - -
Pang [40] - - Expanding EFSM to FSM - -
Hierons [38,39] all-uses - Expanding EFSM to FSM - -
Bourhfir [45] du-path UIO Symbolic evaluation Random -
Ural [42],Duale
[43]

- - Simplex Algorithm, Graph S-
plitting

- -

Wong [47,48] all-edge - CSP Symbolic Execution -
Derderian [50] - - Feasible Estimate - -
Kalaji [51,52] - - Genetic Algorithm - -
Kalaji [72] all-transition - Genetic Algorithm Genetic Algorithm -
Yano [53,54] - - M-GEOvsl M-GEOvsl Oracle

Infor-
mation

Zhang [70] - - - Interval Gradient
Descent

-

Zhan [68] - - Symbolic Execution Symbolic Execution -
Yang [58, 59,
74],Zhang [75]

all-transition - Candidate Paths Generation
Algorithm,Feasible Evaluation
Metric

Scatter search,Run-
time information
Feedback

Oracle
Infor-
mation

Wu [60] all-transition - Heuristics Search Symbolic Execution -

structural program testing [14–18], However, the case of EFSM is more complexity

than structural program since a transition in an EFSM may be triggered by three

types of enabling conditions: the input event, the current state and a boolean ex-

pression involving the context variables [19], and multi-transitions or self-loops may

be exist between two states or single state, respectively. This feature also results in

a somehow different between EFSM-based and traditional structure-based test case

generation. The other problem relates to test oracle which refers to the process of

obtaining the expected outputs of the EFSM and comparing them with the actual

outputs of the SUT. In fact, these are not problems unique to EFSM-based testing.

However, the methods, which attempt to solve these problems according to some

associated feature of EFSM, are needed. Though it is impossible to solve all prob-

lems completely up to now, lots of previous work has focused on the aforementioned

problems, a topic to which we now turn. The aforementioned steps for EFSM-based

test case generation are the guidelines for our review, some challenges are also dis-

cussed in this process. It should mention that the relationship of the steps is not

the respective independence, there have some overlaps between them. We analyzed

the number of publications by the used coverage criteria and techniques. To give an

overview, the results are listed in advance (see Table 1), the details are presented

in the subsequent sections.



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

10 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

3. Sequence Generation

In terms of EFSM-based testing, after the determination of the coverage criteria,

the next step to do is finding the sequence (path) set which can identify the current

state and the sequence (path) set which can be followed to satisfy the specified

coverage criteria. The interrelation between data flow and control flow may cause

the infeasible test sequence, hence investigating the potential relationship between

actions and predicate conditions is the key issue of detecting infeasible sequence. If a

mass of infeasible sequences (paths) can be detected previously, the performance of

the test case generation process can be improved greatly by avoiding these infeasible

paths. Unfortunately, detection of these infeasible sequences is generally undecidable

[8]. According to the test coverage criteria, EFSM-based testing generally includes

data flow-based testing, control flow-based testing, and the mixed utilization of

above two strategies. In addition, state identification is also a challenge in EFSM

testing. State identification methods are used to check whether the system under

test (SUT) stays at a certain state after a transition occurred. Generally, the test

sequence generation on EFSM model can be split into following two steps:

(1) Generate a state identification sequence for each state of EFSM;

(2) Generate a sequence set and its corresponding data, which satisfy the speci-

fied coverage criteria, to check whether the transition is correctly triggered,

then concatenate the state verification sequence to the path, so as to obtain

a complete test sequence.

Therefore, it can be perceived that the test case generation process and test coverage

criteria are closely linked, and test sequence feasibility is also the test sequence had

to face. The following section will be organized in accordance with these clues.

3.1. State Identification Sequence Generation

In terms of FSM-based testing, UIO(Unique Input/Output) sequence is often uti-

lized to confirm the end state of transition on FSM model. Compared with other

state verification sequences, the UIO sequence in practice often obtains shorter test

sequences, and nearly all FSMs have UIOs for each state [20,21].

Definition 3: The UIO sequence of a state si which denoted

UIO(si)=(i1/o1)(i2/o2) ... (in/on) is an input/output sequence start from si, for

all other state t, there is no input/output sequence same as si, where n is the

length of the sequence.

According to the definition, on the assumption that the FSM model is in a

certain state, if the model receives an input sequence of corresponding UIO, the

output sequence is different from any other output of other states. Therefore, UIO

sequence can be used to identify a certain state of the FSM. The basic method of

computing UIO sequence usually can be split into following steps [7]:

(1) For each transition label of the model, compute the list of transitions that



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 11

connect with that transition label;

(2) Compute the input/output sequence of each state, the length of in-

put/output sequence is 1 ;

(3) If the above state sequences are unique, a UIO sequence for the state is

found. Otherwise, compute the sequences of length 2 for the state without

UIO sequence;

(4) Continue to compute the input/output sequence of length i+1 for state

without UIO sequence, until the corresponding UIO sequence is found,

where i>1.

However, state identification methods of FSM cannot be directly used in EFSM

testing due to the existence of conflict between action statements and predicate

conditions may lead to UIO sequence infeasible (unexecutable). Chun et al. [22] are

the earliest to apply the UIO sequences for confirming the end state of a transition in

an EFSM model, but they didn’t provide the definition and the computation method

of an executable UIO sequence for an EFSM state. Li et al. [23] first explicitly

addressed the executability of a state identification sequence of an EFSM. They

proposed a control-flow based test case generation method for an EFSM which has

only integer variables and parameters. A new type of UIO sequence which named

Extended UIO sequence (EUIO) was introduced. In fact, EUIO is an extension of a

UIO sequence. However, the problem of finding whether a given UIO sequence has an

EUIO sequence is generally undecidable [23]. Ramaligom et al. [24,25] proposed the

concept of Context Independent Unique Sequence (CIUS) to resolve the infeasible

problem. The CIUS is independent of the context of the specific state to be verified.

Therefore, CIUS can be utilized to generate an executable test sequence for state

identification by concatenating any executable switching sequence, which makes

an EFSM from the initial state to a specific state, and the corresponding CIUSs.

The limitations of these methods are: (1)not every EFSM has the CIUS or UIO

sequence; (2)the obtained CIUS or EUIO may be a longer executable UIO sequence

for a specific state; (3)the generation process is complicated, hence the scope of

application is limited to some degree.

In order to overcome the aforementioned problem, Huang et al. [26] proposed a

method named UIOE for control flow protocol test sequence generation on EFSM.

In this method, a shortest UIOE sequence is generated for identifying the reachable

state in TEA (Transition Executability Analysis) tree, and switching sequences

are generated for concatenating those test events into an executable test sequence

during one-pass generation procedure. In general, UIOE method contains three steps

as follows:

(1) Transform each EFSM specification to a normalized EFSM specification by

means of the method described in the literature [27]. Normalized EFSM

means each transition of EFSM is associated with a predicate condition,

and there is no predicate condition in the action statement, that is to say,

the Guard for deciding the executability and the associated Action become



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

12 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

explicit;

(2) From the initial state of EFSM, generating a transition executability analy-

sis (TEA) tree that contains the executable transitions and reachable states.

By means of the TEA tree, each transition in the EFSM is selected once to

be tested by control flow based test criterion. Based on the criterion, the

UIO of the tail state is generated from its executable outgoing transitions

by TEA;

(3) Concatenate all of the test events to form the final test sequence by using the

TEA tree. If an EFSM model is strongly connected, and if each reachable

state configuration has at least one feasible transition, then UIOE method

can always generate a feasible test sequence. However, UIOE method may

suffer from the state explosion problem.

Based on Huang’s [26] work, Zhou et al. [28] introduced the concept of invert-

ibility which is used to optimize transition executability analysis (TEA) method, so

as to shorten the length of test sequence and decrease the required TEA extension

space.

Petrenko et al. [29] tried to address the problem of state identification by means

of configuration confirming sequence. They try to find a more powerful confirming

sequence for a given configuration and an arbitrary set of configurations, that is,

a sequence such that the EFSM in the expected configuration produces an out-

put sequence different from that of any other configuration in the given set or at

least in a maximal proper subset. This method does not attempt to distinguish a

configuration from all other configurations, but only from suspicious configurations

(a realistic ”black list” of states or configurations). Suspicious configurations set

does not need to contain all possible configurations. It may consist of several con-

figuration subsets that defined by fixing certain context variables. Different from

all other aforementioned methods, this method not only identifies the end state of

transition, but also identifies the configuration of the end state and the context

of EFSM. However, The authors do not provide a method that how to produce

suspicious sets.

3.2. Test Sequence Generation

In terms of EFSM-based testing, traditional FSM-based methods such as UIO se-

quence, the DS sequence and the W-set cannot be applied due to data flow part

implied in the EFSM will affect the system behavior and needs to be tested. Further-

more, the interaction of the control flow and data flow leads to some test sequences

infeasible. Dissimilarity to FSM-based testing, data flow based coverage becomes

an important coverage criteria for EFSM-based testing. Therefore, we first review

some test sequence generation techniques from the viewpoint of data flow cover-

age criteria in this subsection. Afterwards, we will focus on feasible test sequence

generation techniques.



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 13

3.2.1. Data Flow Coverage Based Test Sequence Generation

For the sake of clarity, some definitions of data flow testing are listed as follows.

Definition 4: A-use (Assignment use) with respect to variable v is when v

appears in an assignment expression of transition t ; I -use (Input use) with respect

to variable v is when v is an input parameter of transition t ; P -use (Predicate use)

with respect to variable v is when v appears in a predicate expression of transition

t ; C -use (Computation use) with respect to variable v is when the value of v is

referenced in a computation statements of transition t ; A-use and I -use are also

called D-use (Definition use).

Definition 5: Def-clear-path: A transition path (t1 t2...tn)is a Def-clear path

with respect to a variable v if there is no D-use of v in transitions t2...tn.

Definition 6: Du-Path: A transition path (t1 t2...tn)is a Du-path with respect

to a variable v if there is D-use of v in transition t1 as well as there is P -use or

C -use of v in transition tn, and transition path (t2...tn) is a Def-clear path.

In order to utilize EFSM to achieve comprehensive testing, researchers have

proposed a variety of data flow coverage criteria to generate test sequences. Ural

et al. [30] proposed a method for automated selection of test sequences to test

both control and data flow aspects of a protocol. The method is based on the

identification and subsequent coverage of every association between each output

and all those inputs which influence that output (known as the IO-df-Chains) in

the specification. The coverage criteria used in the testing need to cover each IO-df-

Chains at least once. However, data flow and control flow are considered separately,

and the author did not mention how to generate test sequences which cover the

IO-df-Chains and check their executability. In addition, Bourhfir et al. [7] found

that this method cannot cover all transitions in some practice.

Miller et al. [31] first converted an EFSM to equivalent FSM with modified

inputs and outputs. Consequently, after the conversion, the transition number of

FSM increases but the number of states remains unchanged. Then a data flow graph

(DFG) is created from FSM, test paths and test sequences are generated from DFG

to cover all def-observation paths for testing both control and data flow. Finally, the

method combines the control flow graph (CFG) to produce an executable sequence.

This method requires that the variables used in the SUT should be accessed by the

tester and that in many cases may not be satisfied. Chanson et al. [32] proposed an

approach to generate a single test sequence of EFSM called unified test sequence

(UTS) which combines both control flow and data flow testing. This method uses

data flow analysis techniques proposed in literature [33] to find the data and control

dependencies existing among transitions of EFSM to apply all Du-paths coverage. In

this method, the CCS (Cyclic Characterizing Sequence) was first generated to test

the control part of the EFSM model. CCS for a state is actually the concatenation of

the characterizing sequence (CS) of this state, which can be generated from a FSM-

based algorithm. Chanson does not define the type of characterizing sequence (CS),

and it can be either a UIO, a DS , a W set or their variants. Afterwards, the method



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

14 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

analyzes the data portion of the EFSM by means of data flow analysis technique to

obtain the TDG (Transition Dependence Graph). The basic idea of TDG is similar

to the program dependence graph in code-based testing. Based on TDG, the Def-use

pair between transitions of EFSM with respect to a variable and its corresponding

Def-clear path can be obtained. Then subsequences which cover all Du-paths and all

transitions (and states) are generated based on the previous two methods. Finally,

Chanson attempted to find all Du-paths that connect a variable and checked its

feasibility by using CSP (Constraint Satisfaction Problem) method, if some paths

were unexecutable, then added some loops to make these paths executable, since the

loops might change some variables by executing a certain number of loops so as to

the constraint might become satisfiable. However, not all unexecutable path can find

some loops to make it executable. Moreover, this method verifies the executability

after all the paths are generated, many generated paths will be discarded, which

affects the test efficiency. Koh et al. [34] introduced the concept of Effective Domain

to the EFSM testing. Effective Domain is used to evaluate how effective that a

transition with certain variables can be tested in a given path in terms of the range

of values. Firstly, this method defines a path set that meets Du-path coverage,

then it appends state identification sequences to some transitions in the path set

for testing control flow. The method appends state identification sequences to its

occurrences that have distinct effective domains due to some transitions can appear

in several paths. Ramalingom et al. [35] proposed a unified method for generating

executable test cases for both control flow and data flow aspects of an EFSM. The

trans-CIUS-set coverage principle is applied in the control flow aspects. In order

to provide observability, the ”def-use-ob” criterion, which extends from the all-uses

data flow coverage criterion, is achieved for testing data flow aspects. Finally, a

two-phase breadth-first algorithm is employed for generating a set of executable test

sequences to cover the selected criteria. Huang et al. [36] presented an executable

test sequence generation method for both data flow and control flow of EFSM.

In the data flow testing, the transition paths that contain Def-uses and output

uses (all Def-output paths) with respect to a variable are generated and tested. An

executable test sequence (ETS) is composed of the following sub-sequences:

(1) The executable switching sequence (EDSS or ECSS): EDSS is generated

based on the configuration of the initial state by means of connecting the

initial state configuration to the start state configuration of the transition

containing an A-use or I -use of a variable;

(2) The executable DO-path (EDC-path) or the executable control path (EC-

path): EDC-path is generated based on the associated end state configura-

tion of EDSS by means of concatenating the associated EDSS and DO-path;

(3) The executable back path (EBP-path): EBP-path is generated by means of

expanding a TEA tree rooted from the end state of the executable DO-path.

In this method, the definition of the DO-path is similar to the IO-df-Chain [30],

the EDSS (or ECSS) is the prefix of the final test sequence and the EBP-path is



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 15

the suffix of the final test sequence. In fact, this method is a kind of reachability

analysis technique for EFSM, the generated test sequences are executable. However,

the derived executable test sequences depend on the values of input configuration

parameters which need to assign manually. In addition, this kind of technique has

a disadvantage of state explosion.

3.2.2. Feasibility Analysis

Early EFSM-based testing methods generally do not address the issue of the se-

quence feasibility. However, directly applying FSM-based methods to EFSM may

result in some infeasible sequences, which are due to the variable correlation be-

tween the actions and predicate conditions. If there exists the contradiction between

action and predicate statement in the test sequence, which means that there is no

input parameter can satisfy this test sequence, then this test sequence is considered

infeasible.

In order to generate executable test sequences, some expansion methods were

proposed. Huang et al. [36,37] proposed a method based on Transition Executabil-

ity Analysis (TEA). The TEA can be used to generate an expanding tree which

rooted in a given state configuration of EFSM. Each circle and each arc of TEA

tree represent a reachable state configuration and an executable transition originat-

ed from the corresponding start state configuration, respectively. TEA tree can be

expanded via Bread-First-Search (BFS) to generate an executable sequence of tran-

sitions by using the TEA technique and giving some variable bound. In addition,

this method shortens the test sequence by utilizing the overlap of test subsequence,

thus the test sequence of data flow is only considered to overlap a single control

flow test sequence of an untested transition. The TEA algorithm can search for the

shortest executable switch sequence and test subsequence, however, the final test

sequence may be longer since the test sequence concatenated by a number of test

subsequence may cover other test subsequences.

Hierons et al. [38, 39] also attempted to bypass the infeasible path problem by

expanding the EFSM model. The method first builds a normal form EFSM (NF-

EFSM) from an SDL specification of EFSM, then the expansion procedure may be

applied on NF-EFSM. Afterwards, this method expands NF-EFSM to form EEFSM

(Expanded EFSM) to simplify the test sequence generation, and all the paths in the

EEFSM are feasible. Finally, the method selects an appropriate executable path set

and the corresponding test data from some PEEFSM (Partially Expanded EFSM,

PEEFSM) to achieve the All-uses coverage. Some researchers, such as Ramalingom

et al. [35], Q. Pang et al. [40], B. Zhao et al. [41], etc. also utilized the similar

method to solve the infeasible problem of EFSM.

Duale et al. [42,43] considered the conflicting condition between two transitions

of an EFSM is determined by formulating a simplified linear programming problem

which ignores the cost function. Then the simplex algorithm [44] is utilized to

solve linear programming problems to detect the conflict between two transitions.



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

16 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

The elimination of conflicts is based on a graph splitting technique which places

two transitions with conflict conditions on two independent sub-graphs so as to

avoid the two conflicting transitions are contained in the same path. That is to say,

the conflicts of transitions are eliminated from EFSM model, and all paths of the

final resulting EFSM graph are feasible. Therefore, the FSM-based test generation

methods can be utilized to generate test cases. However, this method only can be

utilized for EFSMs in which all operations and guards are linear.

Unfortunately, the size of the FSM obtained by the aforementioned expansion

methods may be rather huge, which will add the difficulty of the test case gener-

ation. The problem of state explosion will be incurred. Chanson et al. [32] took

advantage of the CSP (Constraint Satisfaction Problem) method and transition

self-loop analysis to solve test sequence executability problems. This method finds

all du-paths with respect to the variable, then checks the executability of each test

path. If the path is unexecutable and contains loops, then some loops will be added

to attempt to make the path executable. However, not all unexecutable path can

find loops to make it executable. Koh et al. [34] utilized the similar method to

handle some unexecutable path.

Unlike Chanson’s method which confirms the executability after all the paths

are generated, Bourhfir et al. [45] verified the executability during path generation

which avoids generating paths will be discarded later. Cycle analysis is performed in

order to find the shortest cycle to be inserted into a path so as to make it executable.

The main steps are listed as follows:

(1) Generate data flow graph G of EFSM.

(2) Select an input value for each input parameter that affect control flow.

(3) Generate executable Du-paths according to data flow graph G, and remove

those paths contained in other paths. Add the state identification sequence

and postamble (an input sequence to return to the initial state) to each

Du-path to form a complete test path.

(4) Check the executability of each test path; if unexecutable, then use the

cycle analysis to make it feasible; if still not feasible, then discard it.

(5) For the uncovered transitions, add relevant paths to cover it, the paths are

obtained by the aforementioned steps.

The cycle analysis method can only make part of the path feasible. Therefore

the application of this method is subject to certain restrictions. Jianguo Wang et

al. [46] use a similar approach to address this problem.

Wong et al. [47, 48] proposed a test generation method for SDL-derived EFSM

models. The method reformats a set of EFSMs equivalent to the processes in an

SDL specification and identifies its ”hot spots” (states or transitions in the EFSM

which should be prioritized during testing to effectively increase coverage). Then,

test sequences are generated which intend to cover selected hot spots. In order

to solve the infeasibility problem, a two-step approach is utilized. First, a greedy

approach is used to backtrack a test sequence that covers a selected hot spot. Then,



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 17

the set of constraints on the test sequence is examined by means of a constraint

solver [49] to ask the solver whether a given test sequence is feasible.

Since the detection of infeasible paths is generally undecidable [8], in recent

years, using the search-based algorithms to detect infeasible paths has become a

hot topic. Derderian et al. [50] proposed a fitness function to estimate how easy it is

to trigger a path, it also can be used as the basis of a fitness function of search-based

algorithms that estimate the feasibility of a transition path by means of the type and

number of the predicate operator in the given path. Derderian contends that ”=” is

the most difficult type of comparison operator to be satisfied while ” 6=” is the easiest.

Therefore, different predicate operators will have different influence on the feasibility

of the transition path. However, the interdependence that may exist between the

transitions of the path is not taken into account in this method. Kalaji et al. [51,52]

used a genetic algorithm to generate the executable path by analyzing data flow

dependencies between the actions and conditions of the transitions of a path. The

dependencies among transitions are represented as the penalty values. These values

are used in the fitness function of genetic algorithm to generate the executable path.

The suggested penalty values for all possible combinations of Guards and Actions

between a pair of interdependence transitions are listed in Table 2.

Table 2. The suggested penalty values in article [51]

Guard Action

oppv opvv opvc

gpv(=) 8 6 24
gpv(<,>) 6 12 18
gpv(≤,≥) 4 8 12
gpv( 6=) 2 4 6
gvv(=) 20 40 60
gvv(<,>) 16 32 48
gvv(≤,≥) 12 24 36
gvv(6=) 8 16 24
gvc(=) 30 60 if c is different 500; else 0
gvc(<,>) 24 48 if c is different 0; else 500
gvc(≤,≥) 18 36 if c is different 500; else 0
gvc(6=) 12 24 if c is different 0; else 500

In the Table 2, Guard is the predicate operation. In general, the Guard (pred-

icate) of a transition has the form e gop e’, where e and e’ are expressions, gop is

the predicate operator {<, >, 6=, =, ≤, ≥ }, and the type of op is {pv, vv, vc}
which represents the predicate operation between parameter and variable, variable

and variable, and variable and constant, respectively. The assignment represents

the assignment operation, where oppv represents the assignment operation between

input parameter and variable, opvv represents that between variables, and opvc rep-

resents that between constant value and variable. If there exist interdependencies

among transitions of a given path of EFSM, then the fitness function can be taken

according to the types of Guard and Action to estimate the traversal complexity

of this transition path and its feasibility. The fitness function value is computed by



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

18 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

using penalty values that are listed in Table 2. In addition, some Guards with cer-

tain features, which are likely to make it difficult to satisfy, are also penalized. The

computing process performs backward data flow dependence analysis for a variable.

The smaller fitness function value of a path means fewer interdependencies among

transitions in the path, and it is relatively easier to trigger. Finally, this fitness

metric is used to produce feasible paths by GA(Genetic Algorithm). However, all

generated paths have the same length that be determined in advance manually.

Yano et al. [53,54] presented a multi-objective evolutionary method for test case

generation from an EFSM. First, this method uses an EFSM dependence analysis

technique which proposed in literature [55] to obtain the transitions that influence

the target transition given by the transition path, and then makes use of the simpli-

fied model to generate the test sequence. This test case generation process involves

two target functions: (1)the fitness function F1 takes the evolutionary structural

testing approach in literature [56] to direct the search towards the test purpose;

(2)the fitness function F2 intends to minimize the test sequence size to reduce the

cost of testing. The population consists of input sequence size, sequence of input

events, and parameters of all input events.

The population structure is shown in Figure 3.

Fig. 3. The structure of population in article [53]

However, the test sequence generated by this method is disorderly, and it does

not factor in corresponding relations between path and test sequence, therefore,

redundant test sequences may be generated in this process. In addition, this method

does not factor in coverage criterion either. In order to cope with the infeasible

problem, the method transforms EFSM model into Java code by tool SMC [57],

only paths triggered during code execution are considered as candidate solutions.

Yang et al. [58] proposed a method that combines static analysis and dynamic

analysis techniques to address the path feasibility problem of EFSM. The authors

presented a metric in order to find an appropriate path set to meet the specified

coverage criterion, where ”appropriate” means that the path set has fewer, longer

paths and better feasibility. The presented metric is used to evaluate the path feasi-

bility and the coverage ratio of the EFSM. In addition, semantic analysis technique

is used to parse the expressions on transition to make a static abstract model ex-

ecutable, thus the run-time feedback information can be used to guide test data

generation. This method first generates a candidate path set with loops (including

self-loops) aiming to satisfy the test criterion. Then, some paths with highest proba-



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 19

bility of feasibility are selected to generate test data. Since static analysis technique

may be coarse that cannot predict the infeasible path thoroughly. Therefore, the

dynamic analysis technique, as a complementary of static analysis, is used to find

the infeasible paths in the process of test data generation. Generally, this method

includes the following steps:

(1) Candidate Path Set Generation: Generate a candidate path set with loops

or self-loops from the initial state to other states in order to satisfy the

test coverage criterion. A constraint condition that just contains loops or

self-loops only once is imported to limit the path number.

(2) Feasibility Evaluation: Evaluate the path feasibility and transition coverage

of the EFSM by a proposed metric. Then, candidate path set sorted by the

metric value in order to facilitate test data generation. The presented metric

is listed as follows:

f =



k∑
i=0

v(dfi)

|TP |d If
k∑
i=0

v(df i) 6= 0

0− |TP | If
k∑
i=0

v(df i) = 0

(1)

Where dfi, v(dfi) , k , |TP| and d represents the definition-p-use transition

pair on a path, the penalty values of definition-p-use transition pair are

extended from literature [51], the number of definition-p-use transition pairs

in a path, the length of a path and a value that is used to adjust the weight

of path length in the metric, respectively.

(3) Test Data Generation Process: By building an executable model, a fitness

function is designed by collecting the run-time feedback information and

scatter search algorithm is introduced to guide the test data generation. In

this step, a dynamic analysis method based on meta-heuristic search is also

utilized to find infeasible paths.

In order to improve the precision of the metric, Yang et al. [59] proposed an

approach based on Multi-objective Pareto optimization technique to solve the path

ordering problem. They designed two fitness functions to obtain the Pareto-optimal

solutions of the path sequence, which aims to generate test data more effectively.

Two fitness functions f1 and f2 are listed as follows:

f1 =

n−1∑
j=0

C1

C2

γ + (n− j + 1)
(2)

f2 =

n−1∑
j=0

C1

(
k∑
i=0

v(dfi) + 1) + (n− j + 1)

(3)



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

20 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

Where
k∑
i=0

v(dfi) is same as formula 1, j and γ represent the position of a path

in the path set and the count of the distinct transitions in a path, respectively.

C1 and C2 are constant values to make fitness value smaller, which mean a better

solution in the selection process.

In fact, static analysis technique is more effective in detecting infeasible paths

that contain simple data types. For complicated data types, dynamic analysis tech-

nique is still required. Compared with static analysis, dynamic analysis technology

has a higher cost in detecting infeasible paths.

Table 3. Summary of feasible test sequence generation technique

Method Type Literature Publish
Year

Key Techniques

Expansion method

Miller [31] 1992 Equivalent conversion, control flow and data flow diagram generation

Ramalingom [35] 1995 BFS algorithm, extending the sequence by single transition step by step

Huang [36,37] 1995,1999 Transition Executability Analysis, BFS algorithm

Pang [40] 1997 Equivalent transformation method, State decomposition transformation

Duale [42,43] 2000,2004 Simplified linear programming, simplex algorithm, graph splitting

Hierons [38,39] 2002,2004 Normal form EFSM producing, NF-EFSM expansion, state splitting

Zhao [41] 2007 Modified Transition Executability Analysis

Loop analysis

Chanson [32] 1993 Constraint satisfaction, control flow and data flow analysis, loop analysis

Koh [34] 1994 Constraint satisfaction, transition test effective evaluate, path reduction

Bourhfir [45] 1997 DU-path generation, control flow and data flow analysis, cycle analysis

Search-based

Derderian [50] 2009 Feasible estimation, fitness function

Kalaji [51,52] 2009,2010 Genetic algorithm, dependence analysis, fitness function

Yano [53,54] 2010,2011 Multi-Objective optimization, dependence analysis, fitness function

Yang [58,74] 2011,2014 Candidate path generation algorithm, feasible metric, dynamic analysis

Yang [59] 2012 Multi-Objective optimization, feasible metric

Wu [60] 2012 Modified DFS algorithm, Evaluation metrics, path set reducing

Others
Wong [47,48] 2008,2009 Constraint solver,dominator analysis, greedy search

Lu [61] 2013 Backward slicing, theorem proving

Similarly, Wu et al. [60] adopted a search-based method to address the infeasible

problem, they defined the penalty values based on the influential factors that ob-

serving in the experiment. The factors included: (1)Transition t or state d appeared

times in the selected paths. (2)The number of transitions that started from state

d and did not appear in selected paths. (3)The number of states that neighbored

with state d and did not appear in selected paths. Based on the penalty values and

influence factors, a fitness function was proposed for guiding the search algorithm.

Lu et al. [61] utilized the slicing technique to obtain the related predicate on each

transition in the path. Afterwards, whether the post-condition of the transitions

associated with the predicate implying the predicate or not is utilized to determine

the feasibility of the path.

For the sake of the reader, we summarize some principal feasible test sequence

generation methods in Table 3. Method Type represents the type of feasible test

sequence generation techniques that we classified. Literature and Publish Year rep-

resent the research paper and its publish year, respectively. In the same technique



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 21

type, the paper is listed by the first year (the papers written by the same author

listed in one row, therefore, some columns may have two years). Key Techniques

show some key techniques that utilized for the feasible test sequence generation

in the corresponding research paper. As Table 3 shows, the expansion method is

a kind of mainstream technology to generate feasible sequence in the early. How-

ever, this kind of method has to face the state explosion problem. Search-based

techniques and Constraint satisfaction techniques have presently became popular

means in feasible test sequence generation of EFSM.

4. Test Data Generation

After generating the feasible path set which can satisfy the specified coverage cri-

terion, it is still necessary to generate the actual test data to trigger these feasible

paths. In EFSM-based testing, the automatic test data generation is still a challenge

which is the lack of relevant research and far from mature. Up to now, the meth-

ods for automated test data generation for EFSM are mainly including symbolic

execution, gradient descent and search-based methods.

4.1. Symbolic Execution

Symbolic execution [62–64] is a program analysis technique, which analyzes pro-

grams by tracing symbolic rather than concrete values. The actual program ex-

ecution requires concrete values as the inputs, whereas symbolic execution uses

symbols representing values of variables. The execution usually involves operations

on complex expressions. The result of a program execution is usually represented

as a symbolic expression.

In fact, the basic idea of symbolic execution is not complicated, symbolic exe-

cution of a program is represented as a symbolic execution tree that is defined by

the execution paths which associate with all possible value assignments to input

parameters, and a path condition constraint is constructed to describe the program

execution along this path. Each variable appears in the path is an input of the

program, when a complete path condition expression is generated, constraint solver

will be utilized to solve the path condition expression, and get the result values of

the input parameters. Hence, the key problem of symbolic execution is to decide

whether a set of constraints can be satisfied. In recent research, for reducing the

complexity of the constraints, a popular technique referred to dynamic symbolic

execution [65] is proposed which replace some symbolic values with concrete values

in symbolic execution process.

Symbolic execution has been widely used in code-based testing, program debug-

ging and program optimization, etc. For EFSM-based testing, Chanson et al. [66]

used the backward expansion technique of path-dependent symbolic evaluation to

obtain path condition constraint. Backward expansion technique works from the

final transition toward the start transition to develop the symbolic expressions. In

addition, a heuristic constraint solving procedure is presented to select test data for



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

22 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

predicate automatically by solving the constraints for the constrained parameters,

and unconstrained ones are assigned values randomly. If the number of iterations

exceeds the predetermined bound, the solver considers no solutions.

Xu et al. [67] implemented a tool for obtaining a deterministic EFSM from a

program written in a subset of C programs. Then, Zhan et al. [60, 68] utilized the

forward expansion technique which works from start state to the end state and

constraint satisfaction problem (CSP) to attempt to find appropriate initial values

of the variables such that the EFSM may reach a terminal state. Wong et al. [47,48]

also used Zhang’s constraint solver [49] to obtain test data.

In practice, symbolic execution still has some problems [69]:

(1) The difficulty of handing loops in a path, since the potential number of

paths that may need to be examined.

(2) The difficulty of resolving computed storage locations, such as an array or

a pointer.

(3) The difficulty of handling of procedure calls.

4.2. Gradient Descent Algorithm

Zhang et al. [70] proposed an automated testing data generation method ADS for

EFSM. The assumption of the method is the case that all the paths of EFSM used

to generate test data are feasible. The method is split into two main phases - in-

terval narrowing and subsection gradient optimal descent algorithm. In the interval

narrowing phase, a group of interval narrowing operators is designed to reduce the

variables’ value scope. If the precondition in the state transition is simple, the test

data can be obtained in this phase. Afterwards, subsection gradient optimal descent

algorithm is utilized to generate test data from the reduced domain of the variables.

In the general, this method includes the following steps:

(1) Initialization: Transform the expressions included in all state transitions

into regular expressions;

(2) Interval narrowing: Preconditions in the state transitions are used to re-

duce the value interval of the input parameter, which may increase the

convergence speed of the gradient optimal descent algorithm;

(3) Test data generation: Automatically select the test data by means of the

subsection gradient optimal descent algorithm.

Subsection gradient optimal descent algorithm involves the following

steps:

(a) Select the value interval of an unhandled input variable vector, and ran-

domly select an initial point X(0) in this interval; if all the value intervals

are handled, then this algorithm fails;

(b) Calculate unit vector g(k) of the negative gradient at the vector X(k)( k =

0 ,1 , ..., n) and its optimal step λk;

(c) Let X(k+1)= X(k) + λ g(k), and ensure that the value of new input variable



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 23

after interaction is limited in the value interval, that is:

xi
(k+1) =


xi.bottom xi

(k+1) < xi.bottom

xi.top xi
(k+1) > xi.top

(4)

(d) If X(k+1) satisfies all constraint conditions, then output this vector and

quit; if |X(k+1)- X(k)|<η(η is an arbitrary smaller positive number), then

the gradient is considered to reach the bottom, and there is not much space

for tuning, then the process goes to step (a); otherwise, goes to step (b) for

further iteration.

In most cases, this method may find a group of solutions, however, in the case

of having no solution of input variables, test data need to be selected from interval

manually. In addition, this method does not address the infeasible problem.

4.3. Search-based Test Data Generation

In recent years, the utilization of meta-heuristic search techniques for the automated

test data generation has been attracting more and more attention from researchers.

Unfortunately, test data generation is also an undecidable problem [69]. The search-

based method has provided an effective way for the automated test data generation.

Meta-heuristic search techniques are high-level frameworks based on heuristics, and

they aim to seek solutions to some NP-complete or NP-hard problems at a reason-

able computational cost, even some problems for which a polynomial time algorithm

can solve but is not practical [69]. When generating test data, it needs to transform

the test criteria to the fitness functions (or objective functions). Fitness functions

are used to compare and evaluate the solutions of the search with the final goal in

order to generate test data automatically. Therefore, the design of fitness function

is a key problem of the meta-heuristic search algorithm. In addition, the selection

of crossover operator and mutation operator will influence the efficiency of the al-

gorithm too. Presently, the popular search-based algorithms include Hill Climbing,

Simulated Annealing, Tabu search and Evolutionary Algorithms (such as Genetic

Algorithm, Scatter Search Algorithm, Particle Swarm Algorithm), etc.

For search-based technique of FSM-based testing, Lefticaru et al. [71] firstly

apply the genetic algorithm to the test data generation on FSM.

The fitness functions of this method are designed as follows:

fitness = approach level + normalized branch level (5)

normalized branch level = 1− 1.05−(branch level) (6)

The approach level followed the McMinn’s metric [69] in evolutionary structural

test data generation, which are calculated by subtracting one from the number of



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

24 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

critical branches lying between the node from which the individual diverged away

from the target node, and the target itself. normalized branch level is derived from

the guard predicates which was proposed by Tracey [56] by using the objective func-

tions for relational predicates and logical connectives. This part of fitness function

is used to alleviate plateau for offering enough guidance to the search. Normalized

means the branch level is mapped into range [0, 1).

For EFSM-based testing, Kalaji et al. [72] proposed fitness function for evalu-

ating transition path of EFSM as follows.

Path fitness = norm(function distance) + transition approach level (7)

where

transition approach level = NumOfCrticalTransAwayFromTarget− 1 (8)

function distance = norm(branch distance) + transition approach level (9)

The fitness function for a path is derived in a similar way to the method proposed

by Wegener et al. [73]. Given a feasible transition path, the function distance is

calculated for each transition with guard by applying the Wegener’s method. Then,

any transition that has guards is considered as a critical transition and so the value

of function approach level is calculated by subtracting 1 from the number of critical

transitions away from the target transition. Similar to formula 6, the branch distance

and function distance are also normalized to a value in the range [0,1). The final

fitness function Path fitness is the sum of two components: branch distance and

approach level.

Yang et al. [58,74] and J. Zhang et al. [75] built an executable EFSM model by

means of semantic analysis of expressions and graph traversal algorithm to generate

test data. Through the utilization of execution semantics, the model can be execut-

ed like a program, and it still remains the ability of abstract expression. Therefore,

the run-time feedback information, which is collected from the test execution of

EFSM, can be treated as fitness function and Scatter Search (SS) algorithm [76] is

utilized to guide the test data generation. Miller et al. [77] originally applied this

technique in code-based testing. Furthermore, the corresponding outputs associated

with generated test data are also collected to generate oracle information automat-

ically. Finally, the complete test cases consist of test path, test data and oracles

information.

Scatter Search (SS) is a meta-heuristic algorithm framework which contains

five main sub-methods. Initially, SS algorithm generates a diverse solution set by

using a diversity generation method, and each new solution will be processed by the

improvement method and added to the population set. Some of the best solutions in

the initial set will be selected to create the reference set. In the next step, solutions

in the reference set are grouped into two or more subsets, then, solutions in each

subset are combined to produce new individuals [78]. A reference set update method



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 25

evaluates the new solution to verify whether they can update the reference set by

checking the fitness value of solutions. The best solutions will be included in the

reference set and the worst solutions will be dropped. This iteration continues until

a stop condition is reached or the final solutions are stored in the reference set.

The main methods defined in scatter search algorithm are listed as follows:

(1) Diversification Generation Method: This sub-method is used to generate

diverse solutions to fill the Population Set or Reference Set.

(2) Improvement Method: This sub-method is used to improve each new solu-

tion that generated from the Diversification Generation method and Solu-

tion Combination method by means of a local search algorithm.

(3) Reference Set Update Method: This sub-method manages to build and

update the reference set by defining the necessary strategies. The reference

set contains high quality solutions with the best fitness value.

(4) Subset Generation Method: This sub-method is used to generate solution

subsets from the reference set through a systematic strategy. The subsets

are used to create new solutions via solution combination method.

(5) Solution Combination Method: This sub-method combines the solutions

in each subset to generate new solutions, which will be processed by the

Improvement Method. Afterwards, these improved solutions are used to

update the reference set by Reference Set Update Method.

The feedback information that collected to guide the test data generation process

in SS algorithm is listed as follows:

Fe =
|SPt|
|TP |

× 100 (10)

where |TP| and |SPt| are the length of a path which is specified to generate

test data and the length of a sub-path which is covered from the first transition

sequentially by the current test data, respectively. If Fe equals 100, that means all

transitions of the path are covered, thus the test data are generated successfully.

R. Zhao et al. [79] carried out an empirical study on the efficiency of search

based test generation for EFSM models. A close positive correlation between the

cost of the test case generation and the number of numerical equal operators in

conditions (NNEOC) on a feasible transition path is found. When the NNEOC of

a feasible transition path increases, there is a raising relationship between the test

generation cost and the number of numerical event variables on a path (NNEV) or

length of path with event variables (LPEV), and NNEV increases linearly with the

LPEV. In addition, only when NNEOC is considerable, the exponential relationship

between test generation cost and NNEV or LPEV appears strong relevance.

Similar to section 3, we summarize some principal test data generation method

in Table 4. As Table 4 shows, search-based techniques are increasing introduced

into EFSM-based test data generation in recent years. Compared with symbolic



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

26 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

Table 4. Summary of main test data generation methods

Method Type Literature Publish
Year

Key Techniques

Symbolic Execution

Chanson [66] 1994 Backward substitution, heuristic strategy to solve constraint

Zhang [68] 2004 Symbolic Execution, Depth-first search, forward tracking

Wong [47] [48] 2008, 2009 Symbolic Execution, backward tracking

Wu [60] 2012 Symbolic Execution, depth-first search, forward tracking

Search-based

Zhao [79] 2010 Genetic Algorithm, branch distance, approach level

Yano [53] [54] 2010, 2011 Multi-Objective, executable model, Dependence Analysis

Kalaji [72] 2011 Genetic Algorithm, branch distance function and approach level

Yang [58] [74] 2011, 2014 Scatter Search, run-time information feedback, executable model

Zhang [75] 2012 Scatter Search, run-time information feedback, executable model

Others

Bourhfir [45] 1997 Random

Huang [37] 1999 Specify variable bound, random

Zhang [70] 2003 Gradient descent, interval algebra

execution, search-based test data generation techniques can handle more data type.

However, symbolic execution is proved very effective on test data generation [2].

Search-based and symbolic execution are two promising techniques for test case

generation, however, both of the two techniques have their advantages and disad-

vantages. Therefore, there are some new trends in the research of combining the

search-based and dynamic symbolic execution technique to make use of the advan-

tages of two techniques in recent years [80–82]. The new hybrid technique may also

be introduced into EFSM-based test case generation in the future.

5. Test Oracle

One of the major challenges of software testing is to create test oracle, such as

some automated check on the output values to see whether they are correct, or

the expected output values of the SUT, this task is more challenging than just

generating test input data or test sequences without checking the results. Manually

creating test oracle is a time-consuming and difficult task. Moreover, it could easily

be wrong that check the behavior of a complex system manually as well as explain

the detailed system specification. In addition, with the increasing amount of test

results to be determined, accuracy of artificial judgment will be greatly decreased.

Therefore, automatic test oracle generation is also one of the important research

topics of software testing.

In order to generate complete test cases with oracles, the test case generation

system should know about the expected behavior of the SUT precisely (such as

the relationship between its inputs and outputs) to predict or check the output

results. That is to say, the expected behavior of the SUT must be described clearly.

In the broad sense, test oracle is composed of oracle information and oracle proce-

dure [83]. Oracle information represents expected output of the model, however, the

oracle information is also called the test oracle in some literatures. Oracle procedure

is a process that compares the oracle information with the actual output [84], this

process can be applied online (oracle procedure and test execution are done simul-

taneously) or offline (oracle procedure is done after test execution). In FSM-based



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 27

testing, the generation of oracle information is still not straightforward even FSM

only contains control flow and without complex predicate condition and behavior.

For example, when the actual state of the system is not accessible, it is not easy to

check that a test sequence of FSM causes the SUT to end up on the correct state.

The ideal test system can get the test oracle from an abstract model or system

specification automatically, and test prediction and test cases are unrelated. But in

the real world, test oracle needs to check any possible outputs at a reasonable cost

to determine whether the SUT executed as expected. Therefore, it is impractical to

establish test oracle in accordance with all possible cases, and a trade-off between

test oracle and test cost is needed. That is to say, there is a choice of test oracle

strength, and the weakness or strength selection of the oracle usually relates to

the adequacy test criteria. Fujiwara et al. [85] pointed out that the fact that many

specifications do not satisfy the assumptions of the FSM model made by most test

methods, such as minimality, complete specification, a limited number of states etc.

The above test steps employ the abstract model to generate test cases that ap-

plied in SUT, and then determine whether SUT can result in an expected behavior

in accordance with corresponding oracle information, this process of which is known

as active testing. Contrasted with active testing, passive testing monitors the results

of SUT without introducing any special test data. Passive testing is used to deter-

mine whether a SUT is faulty by observing the input/output behaviors without

interfering with its normal operations [86].

In terms of EFSM-based testing, there is still less study on test oracle. In the

active testing, it needs to generate test cases containing oracle information, however,

unlike FSM, EFSM model contains not only the predicate conditions, but also the

operation statements. Consequently, oracle information for the test data cannot be

obtained directly from the EFSM due to expected outputs may be calculated by

the original input parameters or context variables. Abstract behavior of EFSM is

more similar to a static program, but the abstract EFSM does not have the ability

of dynamic execution. In order to generate oracle information automatically, Yang

et al. [58] and J. Zhang et al. [75] built an executable EFSM model and collected

run-time feedback information to generate test data. By using executable model,

the corresponding outputs associated with generated test data are also collected to

generate oracle information automatically. Finally, test paths, test data and oracle

information are combined into complete test cases. However, the oracle procedure

is not considered in this method. Yano et al. [53,54] transformed EFSM model into

Java code by tool SMC [57], it can also obtain oracle information automatically by

executing the Java code. However, generating test data from a program are more

difficult.

In EFSM-based passive testing, the researchers mainly observe and track the

trace of SUT to obtain the test oracle, and the trace usually remains in the back-

ground since no operation is applied. Hierons et al. [87] proposed new verdicts that

provide more information than the previous verdicts. New verdict functions can

return verdicts based on a set of observation that cannot be returned by any single



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

28 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

element of observation behavior. They provided a new test verdict and the concept

of verdict function, the verdict of an observation set is one of the following: (1)the

value correct; (2)the value incorrect; (3)the value uncertain; and (4)the value incon-

sistent. Cavalli et al. [88] proposed two passive testing methods for Extended Finite

State Machine (EFSM) specification. The first method looks for input/output in-

variants in an EFSM specification and checks whether the trace resulting from the

implementation is coherent with these invariants. In order to test the data flow in a

strict way, the second method transforms the specification into a set of constraints

and controls that the trace respects them. Lee et al. [86] used symbolic logic method

to deal with the predicates and used assertions to record the relations among vari-

ables. The basic idea behind this method is to refine the valid variable value sets

using as much information as possible. Ural et al. [89] proposed an EFSM-based

passive fault detection method which provides information about possible starting

state and possible trace at the end of passive fault detection, and Interval Re-

finement and Simplex methods are utilized for performance improvement during

passive fault detection. Due to the fact that the test case generation is not required

for passive testing, the content for such aspect is not the focus of this paper.

In addition, EFSMs have been also used for other testing areas besides test

case generation, such as test case prioritization [90], test case selection [91–93], test

reduction [94,95] and dependence analysis [96–98], etc.

6. Discussion

In this paper, a literature survey of test case generation on EFSM is presented,

we review and analyze the research papers in the past two decades, furthermore,

the survey focuses on the main aspects of EFSM-based test case generation: model

representation, test coverage criterion, test sequence (path) generation method-

s, executable analysis, test data generation methods, and test oracle construction

methods.

EFSM model was early applied in the testing of communication protocols. With

the development of model-based testing, EFSM model has been widely applied in

many domains of testing. For EFSM-based testing, there have been lots of prominent

studies on the state identification sequence generation. However, automated test

data and test oracle generation of EFSM model are still far from mature. In addition,

current research is relative isolation in the generation of feasible test path and

test data, which are connected closely in practice. If the predicate conditions and

operation statements contained in a test path are rather complex, the test case

generation will be more difficult and costly. For this reason, EFSM-based testing

demands exploring more in the relationship among test paths, test data and test

oracles, also combining various analytical techniques for better test results.

We propose some possible tendency of techniques and the challenges for future

EFSM-based testing as follows.

(1) With the development of software techniques, EFSM model and its vari-



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 29

ants will become more popular, and the test model will be increasingly

complicated, so the detection of infeasible path in EFSM model will be

more difficult. How to combine static and dynamic analysis and optimiza-

tion techniques to improve the performance of the test case generation by

means of avoidance of infeasible paths may be one of the most important

areas of future research.

(2) As to the test data generation, the current methods are effective for gener-

ating simple type data, but relatively hard to deal with the complex data

types. Future studies may focus on the generation of complex test data

by making use of meta-heuristic search techniques and dynamic symbolic

execution, even hybrid of two techniques.

(3) Automated generation of test oracle may also be one of the followed interest

in the research, such studies in EFSM are insufficient. Generally, abstract

model can only describe part of the function and behavior of the real system,

and only part of the system behaviors can be tested. However, the test cases

need to be utilized in real systems to compare oracle information with the

actual outputs of the SUT. A precise test oracle that checks every aspect

is very expensive, so the techniques of test oracle generation will face the

challenges as how to generate the appropriate test oracle to trade off precise

and cost.

(4) In practice, the model is often re-modified caused by the evolution of the

real system, which calls for generating new test cases by using the infor-

mation of historical test cases and model evolution. This process is called

test augmentation. Model modification may also result in the expiration of

previous test cases. Discard of such test cases will not only waste resources,

but also reduce the ability of fault detection. Hence, the researchers start to

pay attention to test repairing and test augmentation technique in recent

years.

(5) Besides, empirical software engineering is the focus of current software

engineering. It has become an important approach to explore the actual

property and promote research on relevant problems following the scientif-

ic method. However, the empirical study in EFSM testing is so limited that

it may be an another hotspot of software testing in the future.

Acknowledgements

The work is partially supported by the National Basic Research Program of China

(973 Program 2014CB340702), the National Natural Science Foundation of China

(No. 61170067 and 61373013).

References

[1] Z. Beizer, Software Testing Techniques, 2nd Ed, Van Nostrand Reinhold Company
Limited, London, 1990, ISBN-13 978-0672327988.



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

30 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

[2] S. Anand, E. K.Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskam, M. Harman,
M. J. Harrold, and P. McMinn, An Orchestrated Survey of Methodologies for Au-
tomated Software Test Case Generation, Journal of Systems and Software 86(2013)
1978–2001.

[3] X. Yuan and A. Memon, Using GUI Run-Time State as Feedback to Generate Test
Cases, in Proc. 29th International Conference on Software Engineering, IEEE/ACM,
Minneapolis, US, 2007, pp.396–405.

[4] D. Lee, M. Yannakakis, Principles and Methods of Testing Finite State MachinesC
A survey, in Proc. of the IEEE 84(8) (1996) 1090–1123.

[5] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J.Derrick, J. Dick, M.
Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lttgen, A. Simons, S. Vilkomir, M.
R. Woodward, and H. Zedan, Using Formal Specifications to Support Testing, ACM
Computing Surveys 41(2) (2009) 9:1–76.

[6] R. Dorofeeva, K. El-Fakih, S. Maag, R. Cavalli, and N. Yevtushenko. FSM-based
Conformance Testing Methods: A Survey Annotated with Experimental Evaluation.
Information and Software Technology 52 (2010) 1286–1297.

[7] C. Bourhfir, R. Dssouli, and E. M. Aboulhamid, Automatic Test Generation for
EFSM-based Systems, Technical Report IRO 1043, University of Montreal, 1996.

[8] D. Hedley and M. A. Hennell, The Causes and Effects of Infeasible Paths in Computer
Programs, in:Proceedings of the 8th International Conference on Software engineer-
ing, London, UK, 1985, pp.259–266.

[9] C. Shih, J. Huang and J. Jou, Stimulus Generation for Interface Protocol Verification
Using the Non-deterministic Extended Finite State Machine Model, in Proc. 10th
IEEE International High-Level Design Validation and Test Workshop, Napa, US,
2005, pp.87–93.

[10] Y. Gurevich, P. W. Kutter, M. Odersky, and L.Thiele, Abstract State Machines -
Theory and Applications, in Proc. International Workshop of ASM, LNCS, 1912
(2000) 1–8.

[11] Estelle. A Formal Description Technique Based on an Extended State Transition
Model, ISO Standard OSI 9074, 1989.

[12] LOTOS. A Formal Description Technique Based on the Temporal Ordering of Ob-
servational Behavior, ISO Standard OSI 8807, 1989.

[13] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach, 1st
Edition, Morgan Kaufmann, San Fransisco, 2006, ISBN-13 978-0123725011.

[14] S. Saingern, C. Lursinsap, and P. Sophatsathit, An Address Mapping Approach for
Test Data Generation of Dynamic Linked Structures, Information and Software Tech-
nology 47(3) (2005) 199–214.

[15] P. Coward, Symbolic execution and testing, Information and Software Technology
33(1) (1991) 53–64.

[16] R. Jasper, M. Brennan and K. Williamson, Test Data Generation and Feasible Path
Analysis, in Proc. ACM SIGSOFT International Symposium on Software Testing and
Analysis, Seattle, US, 1994, pp.95–107.

[17] I. Forgcs and A. Bertolino, Feasible Test Path Selection by Principal Slicing, in Proc.
6th European Software Engineering 22(6) (1997) 378–394.

[18] D. Gong and X. Yao, Automatic Detection of Infeasible Paths in Software Testing,
IET Software 4(5) (2010) 361–370.

[19] R. Lai, A Survey of Communication Protocol Testing, Journal of Systems and Soft-
ware 62(1) (2002) 21–46.

[20] Q. Guo, R. M. Hierons, M. Harman, and K. Derderian, Computing Unique Input /
Output Sequences Using Genetic Algorithms, in Proc. 3rd International Workshop on



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 31

Formal Approaches to Testing of Software, LNCS, Montreal, Canada, 2004, pp.169–
184.

[21] K. Derderian, R. Hierons, M. Harman, and Q. Guo, Automated Unique Input - Out-
put Sequence Generation for Conformance Testing of FSMs, The Computer Journal
49(3) (2006) 331–344.

[22] W. Chun and D. Amer, Test Case Generation for Protocols Specified in Estelle, in
Proc. 3rd International Conference on Formal Description Techniques for Distribut-
ed Systems and Communication Protocols: Formal Description Techniques, North-
Holland Publishing, 1990, pp.191–206.

[23] X. Li, T.Higashino, M,Higuchi, and K. Taniguchi, Automatic Generation of Extend-
ed UIO Sequences for Communication Protocols in an EFSM Model, in Proc. 7th
International workshop on Protocol test systems, London, UK, 1994, pp.225–240.

[24] T. Ramalingom, K. Thulasiraman, and A. Das, Context Independent Unique Se-
quences Generation for Protocol Testing, in Proc. 15th Annual Joint Conference of
the IEEE Computer and Communications Societies, San Francisco, US, 1996, 1141–
1148.

[25] T. Ramalingom, K. Thulasiraman, and A. Das, Context Independent Unique State
Identification Sequences for Testing Communication Protocols Modelled as Extended
Finite State Machines, Computer Communications 26(14) (2003) 1622–1633.

[26] C. M. Huang, M. S. Chiang, and M. Y. Jang, UIOE : A Protocol Test Sequence
Generation Method Using the Transition Executability Analysis (TEA), Computer
Communications 21(16) (1998) 1462–1475.

[27] B. Sarikaya, G. V. Bochmann, and E. Cerny, A Test Design Methodology for Protocol
Testing, IEEE Transactions on Software Engineering SE-13(5) (1987) 518–531.

[28] X. Zhou, Y. Qu, and B. Zhao, Using Invertibility to Reduce the Length of Test
Sequences in EFSM model(in chinese), Journal of China Institute of Communications
21(11) (2000) 48–55.

[29] A. Petrenko, S. Boroday, and R. Groz, Confirming configurations in EFSM testing,
IEEE Transactions on Software Engineering 30(1) (2004) 29–42.

[30] H. Ural and B. Yang, A Test Sequence Selection Method for Protocol Testing, IEEE
Transactions on Communication 39(4) (1991) 514–523.

[31] R. E. Miller and S. Paul, Generating Conformance Test Sequences for Combined
Control and Data Flow of Communication Protocols, in Proc. Protocol Specifications,
Testing and Verification (PSTV’ 92), IFIP, 1992, pp.13–27.

[32] S. T. Chanson and J. Zhu, A Unified Approach to Protocol Test Sequence Genera-
tion, in Proc. IEEE Conference on Computer Communications(INFOCOM ’93), San
Francisco, US, 1993, pp.106–114.

[33] E. Weyuker and S. Rapps, Selecting Software Test Data Using Data Flow Information,
IEEE Transactions on Software Engineering (1985) 367–375.

[34] L. Koh and M. Liu, Test Path Selection based on Effective Domains, in Proc. Inter-
national Conference on Network Protocols(ICNP’94), Boston, US, 1994, pp.64–71.

[35] T. Ramalingom, A. Das and K. Thulasiraman, A Unified Test Case Generation
Method for the EFSM Model Using Context Independent Unique Sequences, in Proc.
International Workshop on Protocol Test Systems (IWPTS’95), US, 1995, pp.289–
305.

[36] C. M. Huang, Y. C. Lin, and M. Y. Jang, An Executable Protocol Test Sequence Gen-
eration Method for EFSM-Specified Protocols, IFIP Transactions C: Communication
Systems - Protocol Test Systems (1995) 20–35.

[37] C. M. Huang, M. Y. Jang, and Y. C. Lin, Executable EFSM-based Data Flow
and Control Flow Protocol Test Sequence Generation Using Reachability Analysis,



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

32 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

Journal of the Chinese Institute of Engineers 22(5) (1999) 593–615.
[38] R. M. Hierons, T. H. Kim, and H. Ural, Expanding an Extended Finite State Ma-

chine to Aid Testability, in Proc. 26th Annual International Computer Software and
Applications, Oxford, UK, 2002, pp.334–339.

[39] R. M. Hierons, T. H. Kim, and H. Ural, On the Testability of SDL Specifications,
Computer Networks 44(5) (2004) 681–700.

[40] Q. Pang, S. Cheng, and Y. Jin, Equivalent Transformation of EFSM and Proto-
col Conformance Testing(in chinese), Journal of China Insititue of Communications
18(4) (1997) 37–42.

[41] B. H. Zhao, B. Chen and Y. Qu, A Test Sequence Generation Algorithm Based
on Improved Transition Executability Analysis(in chinese), Journal of University of
Science and technology of China 37(9) (2007) 1096–1100.

[42] M. U. Uyar and A. Y. Duale, Test Generation for EFSM Models of Complex Army
Protocols with Inconsistencies, in Proc. 21st Century Military Communications, Los
Angeles, US, 2000, pp.340–346.

[43] A. Y. Duale and M. U. Uyar, A Method Enabling Feasible Conformance Test Se-
quence Generation for EFSM Models, IEEE Transactions on Computers 53(5) (2004)
614-627.

[44] D.Solow, Linear Programming: An Introduction to Finite Improvement Algorithms,
North-Holland: Elsevier Science Ltd, New York, 1984, ISBN-13 978-0444009128.

[45] C. Bourhfir, R. Dssouli, E. Aboulhamid, N. Rico, and P. A. Aisenstadt, Automatic
Executable Test Case Generation for Extended Finite State Machine Protocols, in
Proc. the 10th International IFIP Workshop on Testing of Communicating Systems,
Jeju Island, Korea, 1997, pp.75–90.

[46] J. Wang and J. Wu, An Extended Finite State Machine Based Generation Method
of Test Suite(in chinese), Journal of Software 12(8) (2001) 1197–1204.

[47] W. E. Wong, A. Restrepo, and Y. Qi, An EFSM-based Test Generation for Validation
of SDL Specifications, in Proc. 3rd International workshop on Automation of Software
Test, Leipzig, Germany, 2008, pp.25–32.

[48] W. E. Wong, A. Restrepo and B.Choi, Validation of SDL Specifications Using EFSM-
based Test Generation, Information and Software Technology 51(11) (2009) 1505–
1519.

[49] J. Zhang and X. Wang, A Constraint Solver and Its Application to Path Feasibility
Analysis, International Journal of Software Engineering and Knowledge Engineering
11(2) (2001) 139–156.

[50] K. Derderian, R. M. Hierons, M. Harman, and Q. Guo, Estimating the Feasibility of
Transition Paths in Extended Finite State Machines, Automated Software Engineering
17(1) (2009) 33–56.

[51] A. S. Kalaji, R. M. Hierons, and S. Swift, Generating Feasible Transition Paths
for Testing from an Extended Finite State Machine (EFSM), in Proc. Internation-
al Conference on Software Testing Verification and Validation, Denver, US, 2009,
pp.230–239.

[52] A. S. Kalaji, R. M. Hierons, and S. Swift, Generating Feasible Transition Paths for
Testing from an Extended Finite State Machine (EFSM) with the Counter Prob-
lem. in Proc. 3rd International Conference on Software Testing, Verification, and
Validation Workshops, Paris, France, 2010, pp.232–235.

[53] T. Yano, E. Martins, and F. L. de Sousa. Generating Feasible Test Paths from an
Executable Model Using a Multi-objective Approach. in Proc. 3rd International Con-
ference on Software Testing, Verification, and Validation Workshops, Paris, France,
2010, pp.236–239.



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 33

[54] T. Yano, E. Martins, and F. L. de Sousa, MOST: A Multi-objective Search-Based
Testing from EFSM, in Proc. 4th International Conference on Software Testing, Ver-
ification and Validation Workshops, IEEE Computer Society, Berlin, Germany, 2011,
pp.164–173.

[55] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and L. Tratt, Control Dependence
for Extended Finite State Machines, in Proc. 12th International Conference on Fun-
damental Approaches to Software Engineering, 2009, pp.216–230.

[56] N. Tracey, J. Clark, K. Mander, and J. McDermid, An Automated Framework for
Structural Test-data Generation, in Proc. 13th IEEE International Conference on
Automated Software Engineering, Hawaii, US, 1998, pp.285–288.

[57] ”SMC” [Online]. Available: http://smc.sourceforge.net
[58] R. Yang, Z. Y. Chen B. W. Xu, W. E. Wong, and J.Zhang, Improve the Effectiveness

of Test Case Generation on EFSM via Automatic Path Feasibility Analysis, in Proc.
The 13th IEEE International High Assurance Systems Engineering Symposium, Boca
Raton, US, 2011, pp.17–24.

[59] R. Yang, Z. Y. Chen B. W. Xu, and Z. Y. Zhang, A New Approach to Evaluate Path
Feasibility and Coverage Ratio of EFSM Based on Multi-objective Optimization,
in Proc. the 24th International Conference on Software Engineering and Knowledge
Engineering, San Francisco, US, 2012, pp.470–475.

[60] T. Wu, J. Yan, and J. Zhang, A Path-oriented Approach to Generating Executable
Test Sequences for Extended Finite State Machines, in Proc. 6th International Sym-
posium on Theoretical Aspects of Software Engineering, Beijing, China, 2012, pp.267–
270.

[61] G. Z. Lu and H. K. Miao, Feasibility Analysis of the EFSM Transition Path Com-
bining Slicing with Theorem Proving, in Proc.7th International Symposium on The-
oretical Aspects of Software Engineering, Birmingham, UK, 2013, pp.153–156.

[62] R. S. Boyer, B. Elspas, and K. N. Levitt, SELECT-a Formal System for Testing and
Debugging Programs by Symbolic Execution, in Proc. the international conference
on Reliable software, Los Angeles, US, 1975, pp.234-245.

[63] L. A. Clarke, A System to Generate Test Data and Symbolically Execute Programs,
IEEE Transactions on Software Engineering 2(3) (1976) 215–222.

[64] J. C. King, Symbolic Execution and Program Testing, Communications of the ACM
19(7) (1976) 385–394.

[65] P. Godefroid, N. Klarlund, K. Sen, DART: Directed Automated Random Testing, in
Proc. ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, Chicago, US, 2005, pp.213–223.

[66] S. T. Chanson and J. Zhu, Automatic Protocol Test Suite Derivation, in Proc. 13th
IEEE Networking for Global Communications(INFOCOM ’94), Toronto, Canada,
1994, pp.792–799.

[67] X. Chen and J. Zhang, EFSM generation for C programswith Functions, in Proc.
6th International Conference for Young Computer Scientist, Hangzhou, China, 2001,
pp.90–94.

[68] J. Zhang, C. Xu, and X. Wang, Path-Oriented Test Data Generation Using Symbolic
Execution and Constraint Solving Techniques, in Proc. 2nd International Conference
on Software Engineering and Formal Methods, Beijing China, 2004, pp.242-250.

[69] P. McMinn, Search-based Software Test Data Generation: A Survey, Software Testing,
Verification and Reliability 14(2) (2004) 105–156.

[70] Y. Zhang, L. Qian, and Y. Wang, Automatic Testing Data Generation in the Testing
Based on EFSM(in chinese), Chinese Journal of Computers 26(10) (2003) 1295–1303.

[71] R. Lefticaru and F. Ipate, Automatic State-Based Test Generation Using Genetic Al-



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

34 Rui Yang, Zhenyu Chen, Zhiyi Zhang, and Baowen Xu

gorithms, in Proc. 9th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, Timisoara, Romania, 2007, pp.188–195.

[72] A. S. Kalaji, R. M. Hierons, and S. Swift, An Integrated Search-based Approach for
Automatic Testing From Extended Finite State Machine (EFSM) Models, Informa-
tion and Software Technology 53(12)(2011) 1297–1318

[73] J. Wegener, A. Baresel, and H. Sthamer, Evolutionary Test Environment for Auto-
matic Structural Testing, Information and Software Technology 43(14) (2001) 841–
854.

[74] R. Yang, Z. Y. Chen, Z. Y. Zhang, Z. C. Liu, and B. W. XU, A New Approach of
Automated Test Case Generation on Extended Finite State Machine, Science China-
F 44(5) (2014) 588–609.

[75] J. Zhang, R. Yang, Z. Y. Chen, Z. H. Zhao, and B. W. Xu, Automated EFSM-
based Test Case Generation with Scatter Search, in Proc. International Conference
on Software Engineering Workshop on Automated Software Test, Zurich, Switzerland,
2012, pp.76–82.

[76] F. Glover, A Template For Scatter Search And Path Relinking, in Proc. Selected
Papers from the Third European Conference on Artificial Evolution, London, UK,
1998, pp.3–54.

[77] W. Miller and D. L. Spooner, Automatic Generation of Floating-Point Test Data,
IEEE Transactions on Software Engineering SE-2(3) (1976) 223-226.

[78] A. J. Nebro. F. Luna, E.Alba, B. Dorronsoro, J. J. Durillo, and A. Beham, AbYSS:
Adapting Scatter Search to Multi-objective Optimization, IEEE Transactions on
Evolutionary Computation 12(4) (2008) 439–457.

[79] R. Zhao, M. Harman, and Z. Li, Empirical Study on the Efficiency of Search Based
Test Generation for EFSM Models, in Proc. 3rd International Conference on Software
Testing, Verification, and Validation Workshops, Paris, France, 2010, pp.222–231.

[80] K. Lakhotia, P. McMinn, and M. Harman, An Empirical Investigation into Branch
Coverage for C Programs Using CUTE and AUSTIN, Journal of Systems and Soft-
ware 83(12) (2010) 2379–2391.

[81] M. Souza, M. Borges, M. Amorim, and C. S. Pasareanu, CORAL: Solving Complex
Constraints for Symbolic Pathfinder, in Proc. 3rd International Symposium of NASA
Formal Methods, LNCS 6617 (2011,) 359–374.

[82] M. Harman, Y. Jia, and B. Langdon, Strong Higher Order Mutation-based Test Data
Generation, in Proc. 8th European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Szeged, Hungary,
2011, pp.212–222.

[83] A. Memon, I. Banerjee, and A. Nagarajan, What Test Oracle Should I Use For
Effective GUI Testing, in Proc. 18th IEEE International Conference on Automated
Software Engineering, Montreal, Canada, 2003, pp.164–173.

[84] D. J. Richardson, S. L. Aha, O.O’Malley, Specification-based Test for Reactive Sys-
tems, in Proc. 14th international conference on Software Engineering, Melbourne,
Australia, 1992, pp.105–118.

[85] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi, Testing
Selection Based on Finite State Models, IEEE Transactions on Software Engineering
17(6) (1991) 591–603.

[86] D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin, A Formal Approach
for Passive Testing of Protocol Data Portions, in Proc. 10th IEEE International
Conference on Network Protocols, Paris, France 2002, pp.122–131.

[87] R. M. Hierons, Verdict Functions in Testing With a Fault Domain or Test Hypotheses,
ACM Transactions on Software Engineering and Methodology 18(4) (2009) 1–19.



September 18, 2014 20:55 WSPC/INSTRUCTION FILE EFSM-Survey-
ijseke-2014-9-18

EFSM-based Test Case Generation: Sequence, Data, and Oracle 35

[88] A. Cavalli, C. Gervy, and S. Prokopenko, New approaches for Passive Testing Using
An Extended Finite State Machine Specification, Information and Software Technol-
ogy 45(12) (2003) 837–852.

[89] H. Ural and Z. Xu, An EFSM-Based Passive Fault Detection, Testing of Software
and Communicating Systems 4581 (2007) 335–350.

[90] B. Korel, G. Koutsogiannakis, and L. Tahat, Model-based Test Prioritization Heuris-
tic Methods and Their Evaluation, in Proc. 3rd international workshop on Advances
in model-based testing, London, UK, 2007, pp.34–43.

[91] L. Mariani, S. Papagiannakis, and M. Pezze, Compatibility and Regression Testing of
COTS-Component-Based Software, in Proc. 29th International Conference on Soft-
ware Engineering, Minneapolis, US, 2007, pp.85–95.

[92] B. Guo, M. Subramaniam, and H. F. Guo, An Approach to Regression Test Selec-
tion of Adaptive EFSM Tests, in Proc. 15th International Symposium on Theoretical
Aspects of Software Engineering, Xi’an, China, 2011, pp.217–220.

[93] M. Subramaniam, B. Guo, and Z. Pap, Using Change Impact Analysis to Select
Tests for Extended Finite State Machines Software Engineering and Formal Methods,
in Proc. 7th IEEE International Conference on Software Engineering and Formal
Methods, Hanoi, Vietnam, 2009, pp.93–102.

[94] S. Selvakumar, M. R. C. Dinesh, and C. Dhineshkumar, Extended Finite State Ma-
chine Model-Based Regression Test Suite Reduction Using Dynamic Interaction Pat-
terns, in Proc. International Conference on Recent Trends in Business Administration
and Information Processing, Thiruvananthapuram, India, 2010, pp.475–481.

[95] N. Ngamsaowaros and P. Sophatsathit, A Novel Framework for Test Domain Re-
duction using Extended Finite State Machine, in Proc. International Conference on
Software Engineering Advances, Cap Esterel, France, 2007, 25–31.

[96] H. Ural and H. Yenigun, On Capturing Effects of Modifications as Data Dependencies,
in Proc. 36th IEEE International Conference on Computer Software and Applications
Conference, Swissotel Grand EfesIzmir, Turkey, 2012, pp.350–351.

[97] K. Androutsopoulos, N. Gold, M. Harman, Z. Li, and L. Tratt, A Theoretical and
Empirical Study of EFSM Dependence, in Proc. IEEE International Conference on
Software Maintenance, Edmonton, Canada, 2009, pp.287–296.

[98] K. Androutsopoulos, D. Clark, M. Harman, R. M. Hierons, Z. Li, and L. Tratt,
Amorphous Slicing of Extended Finite State Machines. IEEE Transaction on Software
Engineering 39(7) (2013) 892–909.


