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integrating distributed autonomous index serversinto a large virtual index server. This scheme isknown as the collection fusion problem [13]. Ourscheme is designed to work in an environment whereindex servers are heterogeneous in terms of imple-mentation and search algorithms employed. Thiswork is part of our continuing research project calledthe Distributed WWW Index Servers and SearchEngine (D-WISE) which is aimed at designing ascalable Internet resource discovery system. D-WISE is a logical extension toWISE [14], our stand-alone WWW index server.1Section 2 discusses the issues involved in inte-grating the existing index services on the Internetinto a cooperative system and our approaches tothem. Section 3 provides an overview on the basicsof text retrieval methods. Section 4 discusses ourindex server ranking and result merging methods.In Section 5 we provide a brief survey of relevantwork and compare our method with their methodsthrough experiments. Section 6 closes this paperwith conclusions.2 Distributed Index ServersThe major issues involved in building a cooperativedistributed index servers are: (1) interoperabilityamong servers, (2) scalability, and (3) e�ective-ness. In this paper, we focus mainly on the is-sue of e�ectiveness which is concerned with howwell such a system identi�es and locates resourcescarrying information relevant to user queries. Asfor the rest of the issues, our approach to the in-teroperability problem is to use data sets whichcan be provided by typical index servers. Also,we consider our general approach that relies onautonomous collection servers for maintaining theindex data to be a positive step toward solvingdata scalability problem. Other important issueswhich are of concern in a commercial setting suchas access control and charging are beyond the scopeof this paper. In this paper, we assume that all1WISE is accessible at:hhttp://www.cs.ust.hk/IndexServer/i.



networked resources are publicly accessible for free,or index servers carrying resources for restrictedaccesses and/or accessible for fee do not participatein the the system.The basic architecture of our cooperative textretrieval system is a two-level architecture with bro-ker servers on top of index servers. In order to alle-viate performance bottleneck at the broker servers,broker servers can be replicated, created and re-moved as needed. In the rest of the paper, we referto the index servers as collection servers, as each ofthem can be viewed as a database carrying a col-lection of documents, where the documents are de-scriptive texts representing networked informationresources. The discussion on the communicationprotocol for meta-data exchange between collectionservers and broker server is beyond the scope of thispaper.3 Text Retrieval ModelsThe most widely used text-based information re-trieval models are the Boolean and the vector spaceretrieval models. The Boolean model employs Boo-lean logic constructs to specify the criterion for ahit. A document either satis�es the criterion (hit)or doesn't (miss).In the vector space retrieval model, documentsand queries are represented by term vectors in amulti-dimensional space. The relevance score of adocument to a query is measured by the similaritybetween the respective vectors, which is computedas the inner product between the vectors. Moreformally, the similarity between query q and docu-ment doci: Si;q = jV jXj=1Wq;j �Wi;j (1)where V is the set of all keywords (vocabulary),Wq;j and Wi;j is the term weights of term qj as-signed to q and doci respectively. In TFxIDF, themost well known algorithmof the vector space model[10], a term weight is a function of the occurrencefrequency of a term in the text, or term frequency(TF ), and the inverse of the number of documentscontaining the term in the collection, or inversedocument frequency (IDF ). Such a weighting for-mula gives higher weights to terms which occurfrequently in a small set of the documents. Amongthe most commonly used term weighting formula isthe so-called atc which uses vector-length normal-ization to give all texts an equal chance of beingretrieved regardless of their lengths. More formally,the weight of term qj assigned to text (documentor query) i is,

Wi;j(atc) = (0:5 + 0:5 TFi;jTFi;max )log( NDFj )qPjV jk=1(0:5 + 0:5 TFi;jTFi;max )2log2( NDFj )(2)where TFi;j is the term frequency of qj in text i,TFi;max is the maximum term frequency in text i,N is the number of texts in the database, and DFjis the number of texts containing qj, or the docu-ment frequency of qj , in the database. The term-frequency component (0:5 + 0:5TFi;j=TFi;max) ofthe above term weighting formula is known as theaugmented normalized term frequency [9] which isnormalized by the maximum TF in the text andfurther normalized to lie between 0.5 and 1.0.According to [8], in comparing the similaritybetween short text excerpts (e.g., a few sentenceslong), better results can be obtained using the socalled atn term weight:Wi;j(atn) = (0:5 + 0:5 TFi;jTFi;max ) � log( NDFj )which equals to atc without the vector-length nor-malization component. For retrieval of Internetresource descriptors, the result of our experimentcomparing the performance of the formula withvector-length normalization and the formula with-out the normalization supports this conclusion. Thispoint is elaborated later in this chapter.In our previous study [14], we observed thatmost queries submitted by users to index serviceson the Internet are short so that a query termappears in the query at most once. Therefore, wesimplify the similarity formula by using a binaryterm vector to represent a query, i.e., if a term ispresent in the query then the corresponding vectorcomponent has a value of one, otherwise its valueis zero. Modifying Eq. 1, the relevance score ofdocument doci with respect to query q:Si;q =Xqj2q(0:5 + 0:5 TFi;jTFi;max ) � log( NDFj ) (3)The �nal step of TFxIDF algorithm is to retrievethe top H documents or to retrieve documents hav-ing relevance scores greater than or equal to a speci-�ed threshold value �, from the ranking result. Thevalues of H and � are user-speci�ed. Top-H or themaximum number of hits is more commonly usedthan thresholding because the user does not knowthe range of the document scores before hand. Onthe other hand, top H has a problem with decidingthe cut-o� point when there are more documentshaving the same relevance score as the H-th docu-ment such that including all of them would exceedthe limit H. A reasonable compromise between thetwo is what we call the top H+ criterion whichaccepts all documents having scores greater thanor equal to the H-th document in the ranking re-sult. In this paper, we use the top H+ criterionexclusively.



4 Multiple Collection SearchConceptually, a set of centrally administered doc-ument collections can be treated as a single largedocument collection, where a query can be broad-cast to all collection servers and the results arethen merged together. However, such a schemeis a waste of network bandwidth and processingtime at the collection servers since not all of theservers contain information relevant to the query.The problem is how to optimize the resource uti-lization by selecting servers which potentially carrythe relevant documents and forwarding the queryonly to those servers.4.1 Collection FusionLet us now consider the situation where the costof sending queries and results across the networkis negligible. Employing the vector space modelin Eq. 3, the only component of the term weightformula which needs to be computed at the globallevel is the DF component, i.e., the document fre-quency across all collections combined. Therefore,the DF data must be kept track of at a centralizedserver. This can be achieved by requiring everycollection server to report any update on its DFdata to the central server. In our architecture, thiscentralized server is the broker server.Given a query, the broker server computes theIDF values of the query terms, and then broadcaststhe query along with the IDF's to the collectionservers2 . Upon receiving the query, every collectionserver then performs the TFxIDF ranking algo-rithm and sends the top H+ documents, back tothe broker server, where the value of H can be user-speci�ed. If no documents in a collection servercontains any of the query terms, an empty resultmessage is returned. The results from the collectionservers are then merged and sorted at the brokerserver, and the top H+ documents of the mergedresult is presented to the user.4.2 Collection RankingIn reality, the cost, including the user's time, ofbroadcasting queries to all collection servers overa wide area network such as the Internet is notnegligible. Moreover, if the number of collectionservers and the frequency of queries are high, net-work congestion could ensue, which would furtherdegrade the system's response time. The selectionof collection server or servers to which the queryshould be sent becomes important. Intuitively, theDF data available at the broker server as in thearchitecture mentioned earlier can provide a goodindication as to whether a collection carries anydocuments containing a given query term or not.2It is also possible to use the term weights speci�ed bythe user in place of the IDF's.

We propose a method for ranking the collec-tion servers based on their estimated suitability foranswering a given query, called the Cue-ValidityVariance or CVV ranking method. CVV methodsolely relies on DF data. Given a set of collectionsC, the CVV method assigns a goodness score Gi;qto collection ci 2 C with respect to query q asfollows: Gi;q = MXj=1CV Vj �DFi;jwhere DFi;j is the DFj of collection ci, and CV Vjis the variance of CVj , the cue validity of term j,across all collections.The concept of cue validity is used in the samesense as in [4]. The cue validity of term j for ci,CVi;j, measures the degree to which term j distin-guishes documents in collection ci from those in theother collections, and is de�ned as follows.CVi;j = DFi;jNiDFi;jNi + PjCjk6=i DFk;jPjCjk6=i Nkwhere Ni is the number of documents in ci, andjCj is the number of collections in the system. Thepopulation variance CV Vj of CVi;j measures theskewness of the distribution of term j across thecollections, which can be used to estimate the use-fulness of term j for distinguishing one collectionfrom another. The larger the variance is the moreuseful the term. CV Vj is computed as follows.CV Vj = PjCji=1(CVi;j �CVj)2jCjwhere CVj is the population mean of CVi;j over allcollections, and is de�ned as follows.CVj = PjCji=1 CVi;jjCjThe goodness score Gi;q gives neither a de�niteindication of how many relevant documents thatcollection ci contains, nor, if such documents exist,how relevant they are to query q. Gi;q is only anindicator as to where, among the jCj collections,the query terms are concentrated at.4.3 Query ForwardingGiven the goodness scores of the collections withrespect to a given query, the broker server thendecides the collection servers to which the queryshould be sent. One of the following two schemescan be used, (1) single-cast the query to at mostone collection server, i.e., the best server, and (2)multicast the query to at most � collection serverswhere � > 1 for some pre-determined value of �.



The �rst scheme signi�cantly simpli�es the im-plementation of the system because it does notrequire the broker to perform result merging andsorting; in fact, the collection server can directlysend the results to the user, bypassing the broker.The disadvantage of the single-cast scheme is thatthe user may miss some relevant documents at col-lections other than the selected one.The second scheme, the multicast scheme, alle-viates the above problem by selecting a number ofcollection servers whose goodness scores are abovesome threshold value or, simpler yet, by select-ing the best � servers, and forwarding the queryto them. As a tradeo�, this scheme is obviouslymore resource intensive than the �rst scheme as itproduces multiple folds more network tra�c andconsumes more computing power.Finally, there are two main requirements for acollection server to join the cooperative system.The �rst requirement is that the server must beable to compute its own DF data. This require-ment should be easy to meet by any keyword-basedsearch engines. The worst case is only to count thenumber of documents containing each word in agiven keyword set. The second requirement is thatthe server must be able to store the DF data andserve the data to the broker server. A server whichruns on a WWW server (HTTPD), as many serversdo, can take advantage of the GET, PUT and CGIscripting capabilities of HTTP for handling server-to-server data storing and fetching.4.4 Result MergingThe multicast scheme requires a mechanism to com-bine the results returned by the selected servers.We propose a method for merging search resultsobtained from a set of semi-heterogeneous indexservers. By semi-heterogeneous we mean that thereis no requirement as to what search and rankingalgorithm each of the servers must use except that(i) it has to be based on word occurrence, so thatthe CVV-based methods can be applied, and (ii)it has to assign a relevance rank to each documentreturned. In the case of Boolean search engines, theordering of the returned documents can be used toimply the relevant ranks of the documents. Sinceany higher degree of homogeneity requirement isimpossible to impose on, we have no choice but toassume that the document ranking algorithms arecomparable with one another.Our result merging method, which is an ex-tension to the CVV collection ranking method, isbasically a function that maps local document ranksobtained from a collection server into global doc-ument scores which can then be merged togetherwith document scores from other collection servers.The local document ranks are the ranks of the doc-uments at a collection server resulted from rele-

vance scoring computed locally by the server. Theglobal document scores are the new scores of thedocuments after being merged.To better explain the method, suppose a set ofcollections C = fc1; : : : ; cjCjg with goodness scoresG1;q; :::; GjCj;q has been selected for query q. Eachof the collections returns a set of documents, calledresult set, ranked by their relevance scores with thedocument or documents having the highest scoreranks �rst. ri;j denotes the rank of document j incollection ci. In the �nal stage, H top documentsare to be retrieved. Next, we make the followingassumptions:Assumption 1: The best document incollection ci is equally relevant to queryq (has the same global score) as the bestdocument in collection ck for any k 6= iand Gi;q; Gk;q > 0.Assumption 1 is necessary because, in an environ-ment involving di�erent search algorithms, we cannot always compare relevance scores computed atone server from another. This assumption allowsa collection containing a few but highly relevantdocuments to contribute to the �nal result. Tomake sure that every collection contains at leastone relevant document, only collections with highgoodness scores, say, not less that half of the high-est score are selected.Assumption 2: The distance, in termsof absolute relevance score di�erence, be-tween two consecutive document ranks inthe result set of a collection is inverselyproportional to the goodness score of thecollection.Assumption 2 is an approximation of the distribu-tion of document scores in each collection's resultset. This assumption is based on the result of ourprevious experiment [15] which shows that the rel-ative goodness score of a collection is roughly pro-portional to the number of documents contributedby the collection to the �nal result.Based on the above assumptions, we de�ne thefollowing local document rank to global documentscore mapping.si;j = 1� (ri;j � 1)Diwhere si;j is the global relevance score of the j-th document in collection ci. Note that the �rstrank document or documents in a collection has aglobal relevance score si;j = 1. Di is the estimatedrelevance score distance between two consecutivedocument ranks in collection ci's result set, and isde�ned as follows.Di = Gmin;qH �Gi;q



where Gmin;q is the smallest goodness score amongthe jCj collections. Notice that collection ck 2 Cwhose goodness score is Gk;q = Gmin;q has thelargest rank to rank distance, i.e., Dk = 1=H. No-tice also that if there is no tied rank among docu-ments within each of the collections then the num-ber of documents contributed by collection ci tothe �nal result is H �Gi;q=PjCjj=1Gj;q, i.e., propor-tional to its goodness score. The resulting globaldocument scores are then sorted in a non-increasingscore order, and the best H or top H+ documentsare returned.This document score mapping is somewhat sim-ilar to the document interleaving algorithm pro-posed in [13] where a rank position is �lled by adocument selected by rolling a jCj-faced dice bi-ased by the number of documents still to be pickedfrom each of the jCj collections. The di�erence isthat our algorithm is a deterministic process whichguarantees that each of the selected collections con-tributes to the �rst few top ranked documents. Also,our algorithm takes into account the distribution ofdocument ranks within each of the collections.5 Comparison5.1 Related WorkResearch on keyword-based collection ranking isgaining some attention from the information re-trieval community in the last few years. Some re-searchers have proposed the use of standard subjectclassi�cation systems such as the U.S. Library ofCongress subject numbering [2], Dewey DecimalCoding, and the ACM Computing Review Classi�-cation system, to categorize document collections.The main problem with this method is that it is notalways easy to �nd which category or categories auser query falls into, unless a large and ever ex-panding online concept-categorization table is pro-vided. Even if that is available, keyword distribu-tion data would still be needed to rank the candi-date collections. Another scheme, which shares thesame problem with the above scheme, is one whichuses manually-written short descriptions to repre-sent collections such as in ALIWEB [7]. Still an-other scheme is one which requires every collectionserver to report on the �rst occurrence of a word tothe broker server as in WHOIS++3 [3]. While thisscheme does not have the problem faced by the twoearlier schemes, it does not provide enough infor-mation to select the best server or servers amongthose carrying a given set of search words.Voorhees [13] proposed a collection fusion methodwhich can also be used for collection ranking andselection (i.e., by excluding servers which are notlikely to carry any relevant documents). Unlike3The term server centroid in WHOIS++ is not the sameas the vector-based collection centroid used in this paper.

other collection fusion methods presented in thispaper, her method employs the so called isolatedmerging strategies where the broker has no accessto meta-information on the individual collectionservers. In this method, collections are scored basedon their past responses to training queries whichare the most similar to the current query. Thismethod is very cost e�cient in terms of resourceutilization and implementation e�ort. On the otherhand, it is not clear how to generate a set of trainingqueries which can anticipate all possible queriesfor a large number of collections carrying a widevariety of topics. In addition, as more trainingqueries are used, the cost of conducting the trainingprocess would increase dramatically because theprocess involves accesses to all of the collectionservers in the system and requires relevance assess-ment for each query-collection pair.Collection CentroidOne method which is based on vector-space re-trieval model that is often alluded to in many infor-mation retrieval literature is the use of centroid vec-tors to represent clusters of documents. A centroidvector is de�ned as a vector whose componentsare the average term weights across all documentsbelonging to a cluster. In other words, a clus-ter of documents or a collection is viewed as alarge virtual document represented by its centroidvector. Employing the TFxIDF term weightingformula, the j-th component of centroid vector Viof collection ci corresponds to the average weightof query term qj in the collection, which is de�nedas follows.Vi;j = PNik=1(0:5 + 0:5 TFk;jTFk;max ) � log( N̂̂DF j )Niwhere N̂ and D̂F j are the system-wide total num-ber of documents and the system-wide DFj . Ni isthe number of documents in ci. TFk;j and TFk;maxare as de�ned in Eq. 2. Using the vector spacedocument scoring as an analogy, the goodness scoreof ci with respect to query q, Gi;q, is computed asfollows. Gi;q = MXj=1 Vi;jwhereM is the number of query terms. This methodworks best when the documents within each col-lection are relatively homogeneous, i.e., discussingsimilar or closely related topics. It remains to beseen whether this method can also be used for col-lection ranking with arbitrary topic distributions.CORIOne of the most recent work is the Collection Re-trieval Inference Network [1] (CORI) which uses



the TFxIDF document ranking method as an anal-ogy for collection ranking. CORI modi�es a variantof TFxIDF document scoring formula by replacingTF with DF, and IDF with ICF (inverse collectionfrequency), the inverse of CF. CFj is de�ned as thenumber of collections carrying at least one docu-ment which contains query term qj. The goodnessscore of collection ci is computed as the combinedbelief or probability P (qjjci), that ci contains therelevant documents due to observing terms qj, forj = 1; : : : ;M . P (qjjci) is de�ned as follows.P (qjjci) = MYj=1(db + (1� db)Ti;j Ii;j)Ti;j = dt + (1� dt) log(DFj + 0:5)log(DFi;max + 1:0)Ii;j = log(Ni+0:5CFj )log(Ni + 1:0)where Ni, DFj and CFj are as de�ned previously.DFi;max is the maximumDF of a term in collectionci. dt and db are the default values of the termfrequency component and the belief component,respectively, when a term occurs in a collection [11].Both values are set to 0.4 [1]. Finally, the goodnessscore of collection ci, Gi;q, with respect to query qof M terms is obtained by combining P (wjjci) for1 � j � M . It is assumed that all of the queryterms are of equal importance.DFxICFFor the sake of completeness, we introduce a method,called the DFxICF method, which is based on thesame TFxIDF analogy as CORI and is similar inform as CVV, i.e., taking the sum of DF multipliedby ICF (the inverse of CF) in place of CV vari-ance. As with CV Vj in CVV method, ICFj canbe viewed as the collection-discriminating power ofterm qj as IDFj to documents in TFxIDF. In thismethod, the goodness score Gi;q of collection i withrespect to query q is computed as follows.Gi;q = MXj=1DFi;j � log( jCjCFj )where jCj,DFi;j and CFj are as de�ned previously.gGlOSSAnother collection ranking method comparable toCVV is the one used in the generalized Glossaryof Servers Server (gGlOSS) [5], a keyword-baseddistributed database broker system. One of themain di�erences between gGlOSS and CVV rank-ing method is that in addition to DF data, gGlOSSalso relies on the weight-sum of every term in acollection. The main assumption of gGlOSS is that

a term in a collection is distributed evenly amongall documents containing the term in a collection.The general form of the gGlOSS collection scoringformula, i.e., the goodness score of collection ciwith respect to query q, is as follows.Gi;q = MXj=1Wi;jwhere Wi;j is the sum of document weights con-tributed by term qj in collection ci. The abovegeneralized formula is obtained by setting the valueof the threshold l, which disquali�es term qj ifWi;j=DFi;j (the average document weight contributedby qj) falls below l [5], to zero. We opted to usethe generalized formula because it is not clear howto obtain the optimal value of l which applies to allqueries.The main problem with gGlOSS method is thatthe document weightWi;j may be computed di�er-ently from one collection to another, unless all ofthe participating collection servers employ exactlythe same document scoring formula with globalparameters such as a system-wide DF data set. Incomparing gGlOSS with other methods, we assumethat there is a centralized mechanismwhich enablesthe servers to share a global DF data set and thetotal number of documents. Wi;j is computed asthe sum of the weights obtained using the modi�edatn formula as follows.Wi;j = Xdock2ci(0:5 + 0:5 TFk;jTFk;max ) � log( N̂̂DF j )where N̂ and D̂F j are the global N and the globalDFj , respectively. TFk;j and TFk;max are the TFof qj in document dock in ci and the maximumTFin document dock in ci, respectively.GlOSSConsidering the current state of the technology ofthe existing index servers on the Internet today,it is not uncommon to �nd many search engineswhich use simple Boolean search methods. Laterin section 5.3, we empirically show that our collec-tion ranking method also works well for Booleanretrievals, or at least is comparable to the methodused in GlOSS [6]. In GlOSS [6], the goodnessscore of collection ci with respect to Boolean queryq, Gi;q, is measured as the probability of �ndinga document containing all of the query terms inthe document. More formally, given query q of Mterms, Gi;q is de�ned as:Gi;q = NiQMj=1DFi;jNMi



5.2 EvaluationAs in [13], the e�ectiveness of a collection fusionmethod is typically measured by comparing its re-sult with the result of a single collection run (i.e.,retrieval using all collections combined into a singlecollection). In this paper, we measure the accu-racy of a collection ranking method by comparingthe collection goodness scores estimated using themethod with the actual goodness scores with re-spect to the same query. We use a vector q of jCjcomponents to represent the actual goodness scoreof jCj collections with respect to query q, whereeach component i;q represents the goodness scoreof collection ci and is computed as follows.First, we identify the top H+ documents usingthe TFxIDF algorithm with the document scor-ing formula as de�ned by Eq. 3 on single collec-tion runs. It is worth noting that the retrievalrecall/precision of the algorithm is irrelevant to thisevaluation. We simply treat the relevance scoresassigned by the algorithm with respect to a queryas the actual relevance scores. Among the H+documents, we then take the sum of the scores ofdocuments belonging to collection ci as the value ofi;q. The accuracy of a collection ranking methodis measured as the cosine of the angle between qand Gq, where Gq is the estimated goodness vectorof the collections. Each of Gq's components, Gi;q,represents the goodness score of collection ci for1 � i � jCj. More formally, the ranking accuracyis de�ned as:accuracy = PjCji=1Gi;q i;qqPjCji=1G2i;qPjCji=1 2i;qwhere the value of accuracy ranges from 0 to 1.For Boolean retrieval models, since there areno document scores, the number of documents incollection ci which satisfy the Boolean query q istaken to be the value of i;q .To evaluate the e�ectiveness of our result merg-ing method, we use an e�ectiveness metric which isthe ratio between the sum of scores of the top H+documents resulted from using the mergingmethodand the sum of scores of the top H+ documentsresulted from a single collection run. All documentscores used in this metric are absolute scores com-puted using TFxIDF algorithm on the combinedcollection. Basically, this metric measures the per-centage of total relevance score obtained/lost dueto the similarity/di�erence between the documentranks resulted from using the merging algorithmand the ideal document ranks.5.3 ExperimentsWe conducted experiments comparing the averageaccuracies of CVV collection ranking method and

�ve other methods, namely the centroid vector meth-ods, gGlOSS, CORI, DFxICF, and GlOSS. We in-cluded the original GlOSS method to see how wellit performs in vector-space retrieval. In the ex-periments, we use the text collections that comewith the Smart System,4 a text retrieval systemdeveloped at Cornell University. Four collections,known by the acronyms of their sources, namely,CACM, CISI, CRAN and MED, were used. Thequeries that come with each collection were used asthe test queries. In total, there are 7097 documentsand 431 test queries. The standard word-stemmingand stop-word removal algorithms, similar to thoseprovided in the Smart system, were applied to thedocuments and the queries.We tested each of the ranking methods in 5di�erent collection setups each of which uses a dif-ferent document a�nity probability [12]. Documenta�nity probability,Pa, is de�ned as the probabilitythat a document is stored in a collection, calledthe home collection, assigned for documents similarto or related with the document. If Pa is zerothen documents are randomly distributed. If Pais one then the documents in each collection arehomogeneous. If 0 < Pa < 1 then the probabilitythat a document is stored in its home collectionis Pa + 1jCj (1 � Pa), where jCj is the number ofcollections. To simplify the experiments, we as-sume that all documents belonging to the sameSmart collection to be topically related with oneanother, where the documents which are relevant toa query taken from the collection's query set are allin that collection. Of course, this assumption is notentirely true as there are many cases where somedocuments not in the collection are also relevant toqueries designed for that collection. Nonetheless,the assumption is reasonable enough for system-atically creating widely varying test environmentsor collection setups in which the ranking methodsare to evaluate. Based on the assumption, we des-ignated one collection as the home collection forCACM documents, another for CISI documents,and so forth. The document a�nity probabilitiesused in the setups were 1, 0.75, 0.5, 0.25 and 0.Five values of H for the top H+ selection criterion,namely, 20, 40, 60, 80 and 100, were used. Wetook the average ranking accuracies among these�ve values of H.Fig. 1 shows the average accuracies of each rank-ing method among the 431 test queries plotted againstdocument a�nity probability. The �gure showsthat the CVV method out performed the othercollection ranking methods. As was expected, theoriginal GlOSS did not perform well for vector-space retrieval. The CORI and DFxICF methods,which are based on the same TFxIDF analogy ap-4Smart system is available at: hftp://ftp.cs.cornell.edu/pub/smart/i.
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Figure 2: The average accuracies of the collectionranking methods against document a�nity proba-bility for the Boolean retrieval experiments.proach, showed approximately similar average ac-curacies. All of the ranking methods showed goodaccuracies at lower document a�nity probabilities,i.e., where the relevant documents are distributedevenly across the collections such that, for most ofthe queries, any collection is as good as another.Next, we conducted experiments to compare theaccuracy of the CVV method with those of theGlOSS and the CORI methods for Boolean retrievals.We included the CORI method because, as withCVV and GlOSS methods, it uses only DF data,which is the only data obtainable from a typicalBoolean retrieval system. We used the same col-lections, test queries, and document a�nity prob-abilities as in the previous experiments. Querieswith zero hits are excluded from the computationof the accuracies. Fig. 2 shows the average accu-racies of CVV, GlOSS and CORI methods plottedagainst document a�nity probability. As shown inthe �gure, the performance of CVV method closelyfollowed that of GlOSS.
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