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Performance Analysis of Maximum Likelihood Detection
in a MIMO Antenna System
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Abstract—In this letter, we provide an analysis of the perfor-
mance of maximum likelihood detection (MLD) over flat fading
channels in a wireless multiple input–multiple output (MIMO) an-
tenna system. A tight union bound with an asymptotic form on
the probability of symbol error rate (SER) for MIMO MLD sys-
tems with two-dimensional signal constellations (such as QAM and
PSK) is introduced. Using this analytic bound, performance of the
MIMO antenna system is demonstrated quantitatively with respect
to channel estimation, constellation size, and antenna configura-
tion.

Index Terms—Constellation, MIMO, MLD, symbol error rate.

I. INTRODUCTION

W IRELESS multiple input–multiple output (MIMO) sys-
tems promise improved performance compared to con-

ventional systems. Techniques for achieving these advantages
[1]–[3] include zero-forcing (ZF), minimum mean square error
(MMSE), maximum likelihood detection (MLD) and Vertical
Bell Laboratories Layered Space–Time (V-BLAST). Among
these techniques, MLD is the optimum in terms of minimizing
the overall error probability and, with small numbers of transmit
antennas and low-order constellations, the complexity of MLD
is not overwhelming [4]. In [4], an upper bound of MLD for
a MIMO system was derived for two-dimensional (2-D) con-
stellations like QAM, however, it is loose and assumes perfect
channel estimation. Results for joint detection in a multi-user
detector were provided in [5] and a tight union bound on the
symbol error rate (SER) with imperfect channel estimation was
derived. A more explicit form of the bound was demonstrated in
[6]. However, these bounds are only valid for PSK modulation.

In this letter, we provide a performance analysis of MLD over
flat fading channels. A tight union bound and an asymptotic
bound on the SER are developed, by applying and extending the
work in [5] and [6] to the MIMO configuration, with 2-D con-
stellations. These bounds are then utilized to demonstrate the
performance of MLD quantitatively. Our approach of deriving
the pairwise symbol error probability might be extended to eval-
uate the pairwise block error probability of the Viterbi-based
MLD for a coded system.
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II. SYSTEM MODEL

We consider a MIMO system with transmit and receive
antennas, where the transmitted signals are assumed to be inde-
pendent in time as well as space. The transmitted signal vector at
a particular time instant is written asand consists of QAM
or PSK symbols each with a constellation size ofand av-
erage symbol energy . The received signal vectoris given
by where is an channel gain ma-
trix for the flat fading channel, whose elements are independent
zero-mean complex Gaussian random variables with unit vari-
ance, and the elements of vector are samples of independent
complex additive white Gaussian noise (AWGN) processes with
single-sided power spectral density .

Channel estimation is determined by channel state informa-
tion (CSI) and, following [5], we assume that the estimate of
true channel gain matrix is denoted by which also consists
of independent zero-mean complex Gaussian random variables,
with variance . Let denote the correlation coefficient be-
tween corresponding elements ofand and, since they are
jointly Gaussian distributed with independent components, we
can write

(1)

where is the coefficient for MMSE estimation of
and , and is a zero mean Gaussian distributed error matrix

with the variance . It is assumed that
and note that, with perfect CSI, and . The
conditional probability density function (pdf) of the received,
given the channel estimateand the candidate data vector, is
given by

(2)

where , and the Euclidean distance
metric can be expressed [5] as

(3)

where is the th received signal and denotes theth row of
. Neglecting hypothesis-independent terms, the ML metric to

be minimized is given by

(4)

Note that the ML metric reduces to the Euclidean metric
with perfect CSI and any signal constellation, or imperfect CSI
and constant symbol energy (e.g., PSK). With imperfect CSI and
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nonconstant symbol energy (e.g., 16QAM),can be approxi-
mated by . Our analysis to follow is based on the Euclidean
metric, hence, it can be regarded as “approximate MLD” when
16QAM with imperfect CSI is investigated in Section V-A.

III. U NION BOUND ON SERFOR MIMO MLD

A tight union bound on the SER of theth
transmitted signal stream can be found by applying the results
in [5] and [6] to the MIMO configuration for 2-D constellations
under the channel estimate (1). It is assumed that all the pos-
sible symbols are equally probable. We define as the set
of all possible symbols transmitted at a particular antenna,
and as the set of all possible symbol vectors from the

transmit antennas. We also let denote a subset of in
which vectors have as their th element so that in total there
are vectors in . We also define as the set of
transmission vectors that differ in theirth position from
so that there are a total of such vectors. The
distance metrics of and are denoted by and , respec-
tively, and a pairwise error occurs when the detector chooses the
erroneous over if . Hence, the union
bound on the SER of the signal stream transmitted by theth
antenna is

(5)

where denotes the pairwise error
probability between and , given that is transmitted by
the th antenna. There can be up to pair-
wise error probabilities but symmetry in the constellation al-
lows simplifications. For the case of PSK, (5) reduces to

for all and provides the same result as in [5].
For higher order QAM with standard square con-
stellation, elements of have dif-
ferent symbol energies. For each particular, there are only

different energies. Hence, at most
instead of pairwise error proba-

bilities need to be found.
The pairwise error probability is determined by

(6)

where is the pdf of , and its two-sided Laplace trans-
form is expressed as [5]

(7)

where and denote the poles in the left and right half-
plane, respectively. Letting and following
the derivation in [7] yield a closed-form expression of

(8)

Further derivation in Appendix A yields a fully analytic form as

(9)

where

and

(10)

with denoting the average symbol SNR per diver-
sity branch since variance of the channel gain has been normal-
ized to be unity. Note that, with perfect CSI, .

Note that our approach of deriving the pairwise symbol error
probability might be extended to evaluate the pairwise block
error probability of the Viterbi-based MLD for a coded system.

IV. A SYMPTOTIC UNION BOUND

When SNR becomes high, the asymptotic form of
can be expressed as

(11)

where and is an extension of the results
in [6]. Substituting (11) into (5) and approximating further, the
asymptotic bound for SER of theth transmitted signal stream
is

(12)

where and
. In a model of channel estimation based

on the pilot symbol assisted modulation (PSAM), channel esti-
mation correlation coefficient varies with SNR and can be
expressed [5] as . Therefore, (12) be-
comes

(13)

V. PERFORMANCEANALYSIS

In this section, we present a set of performance analyses based
on analytic and numerical results. The results that are given are
in terms of averaged as defined in [1] and [4]

(14)

which can be regarded as the total received per transmit
branch, where is the bits per symbol. Equation (14)
is also useful in that, for two systems with the same performance
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Fig. 1. Illustration of tightness of the analytic union bound.

in terms of , the system with more receive antennas requires
less total transmit power [4].

By assuming Gray coding, an approximate bit error rate
(BER) can be obtained from the union bound on SER to give
[7] . Using this asymptotic value, the BER becomes

(15)

Comparing our union bound given by (5) and (8) to simu-
lation results (see Fig. 1) for BPSK, QPSK, and 16QAM with
two transmit, two receive antennas, and perfect CSI , we
observe that, when the true BER is below about 0.01, the max-
imum relative error of our bound is only about 5%.

A. Effect of Imperfect CSI on Performance

It has been shown in (15) approximately that imperfect CSI
degrades the SNR by an asymptotic factor of , inde-
pendent of the number of receive antennas. Using our union
bound given by (5) and (8), the effect of imperfect CSI on the
performance has been investigated with (implying

when dB). We found that with two
transmit antennas this leads to an SNR penalty of about 1.4 dB
for both BPSK and 16QAM and matches our conclusion from
the asymptotic form of the union bound.

B. Diversity Order

From (13), it can be deduced that with a relatively high SNR
(i.e., BER is below a specific level such as 0.01), the error prob-
ability is proportional to the inverse of the SNR to the power of

[4], [6]. This implies that the diversity order of MLD is equal
to the number of receive antennas, independent of the number
of transmit antennas. Furthermore, in this case the SNR penalty
due to the increased number of transmit antennas plays a major
role in the performance change.

For BPSK, without loss of generality, we assume
that the elements of are all ones, so

Fig. 2. Performance of BPSK with SNR defined in (14) and set to 20 dB.

where denotes the
real part of the th element of . Assuming differs from

in symbols, there are possible ’s,

and . Therefore,

(16)

With a large , the value of approaches , and with
perfect CSI (15) becomes

(17)

which is equivalent to the single transmitter situation [7, eq.
(14-4-18)]. From (17), we can deduce that, with a large number
of receive antennas, the SNR penalty due to increased number
of transmit antennas approaches 0 dB. This is demonstrated by
Fig. 2 using our explicit union bound, where is fixed to be
20 dB, and the horizontal axis denotes the number of receive
antennas. It is deduced that, with large numbers of receive an-
tennas (e.g., ), the number of transmit antennas has little
effect on the system performance. This implies that (and without
regard to complexity) we can achieve an arbitrary high data rate
with a low SNR penalty when the number of receive antennas
is sufficiently large.

C. Performance Comparison Among 2-D Constellation
Systems

In [4], numerical results were used to show the tradeoffs on
performance and constellation size with a given data rate. We
now give the theoretic analysis using our asymptotic bound.
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Fig. 3. SNR penalty of 16QAM and QPSK compared to BPSK for various
numbers of receive antennasL and fixed data rateR .

Given perfect CSI and a fixed number of receive antennas,
the SNR penalty of -ary PSK relative to BPSK, to maintain
the same data rate and BER obtained from (15), is given by

(18)

Similar expressions can be found for-ary QAM. With BPSK
as a reference, Fig. 3 illustrates the SNR penalty of QPSK and
16QAM versus the number of receive antennas, wherede-
notes the total data rate (e.g., for QPSK

bit/s/Hz). We observe that with multiple receive an-
tennas, QPSK outperforms the other two-dimensional signal
constellations, with a small SNR gain of less than 1 dB over
BPSK, and a greater gain over 16QAM. With increasing num-
bers of receive antennas, the SNR penalty approaches a con-
stant which is about 0 dB and 3.8 dB for QPSK and 16QAM,
respectively. This constant is also independent of data rate.
Given a fixed number of receive antennas, when the data rate in-
creases QPSK has more SNR gain over BPSK and 16QAM has
less SNR penalty over BPSK. For instance, with , when

increases from 4 bit/s/Hz to 8 bit/s/Hz, the SNR penalty of
16QAM over BPSK decreases by about 1.5 dB, and QPSK ob-
tains an SNR gain over BPSK increases by about 0.6 dB. Sim-
ilar results hold for other higher order constellations. In sum-
mary, with a given data rate and receive antennas, QPSK
outperforms other 2-D signal constellations. Whenincreases,
the SNR gain of QPSK over another constellation approaches a
certain constant independent of . With a given , when
increases, QPSK has more SNR gain over BPSK, but less SNR
gain over 16QAM.

D. Performance Comparison Between MLD and V-BLAST

The diversity order of a conventional detection technique like
MMSE and ZF [1]–[4] is limited to [8]. The newly
developed V-BLAST technique [2], [3] improves that diver-
sity order by layered space–time detection. Unlike MLD, how-
ever, that diversity order is still constrained by the number of

Fig. 4. Performance comparison between MLD and BLAST with two transmit
antennas(K = 2).

transmit antennas, and BLAST does not work when the number
of transmit antennas is greater than that of receive antennas

, due to properties of MMSE and ZF.
Fig. 4 illustrates the performance comparison between MLD

and BLAST with two transmit antennas, QPSK modulation,
and perfect CSI, where ZF criterion is employed in BLAST. It
shows that the performance of BLAST approaches that of MLD
at the cost of an increased number of receive antennas. When
the number of receive antennas is similar to or less than that of
transmit antennas, MLD has a significant advantage of perfor-
mance over BLAST.

Performance comparison between space–time trellis coding
and BLAST with layered codes was demonstrated in [9], with
Viterbi-based MLD used for decoding. It was shown that the
latter is inferior in performance to the former due to the loss of
diversity. The performance improvement of BLAST by using
space–time block coding and Turbo decoding was shown in
[10].

VI. CONCLUSION

In this letter, we have introduced a tight union bound and an
asymptotic form on the SER for a MIMO MLD antenna system
with 2-D signal constellations. It is shown that a very high data
rate can be achieved with little SNR penalty when the number of
receive antennas becomes large and that the diversity order of
MLD is equal to . We also present a performance comparison
among two-dimensional constellations and also between MLD
and V-BLAST.

APPENDIX A

In this appendix, we derive the value of and use super-
script to denote conjugate transpose. Starting from (3), the
Euclidean distance metric of vector can be expressed as

(A1)
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(A5)

where are vectors of
elements, and is defined similarly. The difference between
distance metrics of signal vectorsand is given by

(A2)

where

(A3)

Let denote the covariance matrix of, and it is given by

(A4)

where is a identity matrix. Letting
and , we define (A5) as shown at the

top of the page. It has been proven in [5] that the rank ofis
only two. Letting (positive) and (negative) denote the
two nonzero eigenvalues of, it can be shown that

(A6)

Defining and yields (7).
Following the method of [6], is given by

(A7)

where and . It can be shown that

(A8)

and where

(A9)

Further derivation of (A7) yields

(A10)

It is easy to show that (A10) is equivalent to (9) with
.
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