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The Power of Statistical Tests in Meta-Analysis
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Calculations of the power of statistical tests are important in planning research
studies (including meta-analyses) and in interpreting situations in which a result has
not proven to be statistically significant. The authors describe procedures to com-
pute statistical power of fixed- and random-effects tests of the mean effect size,
tests for heterogeneity (or variation) of effect size parameters across studies, and
tests for contrasts among effect sizes of different studies. Examples are given using
2 published meta-analyses. The examples illustrate that statistical power is not
always high in meta-analysis.

The use of quantitative methods to summarize the
results of several empirical research studies, or meta-
analysis, is now widespread in psychology, medicine,
and the social sciences. Meta-analysis involves de-
scribing the results of each study using a numerical
index (an estimate of effect size such as a correlation
coefficient, a standardized mean difference, or an
odds ratio) and then combining these estimates across
studies to obtain a summary.

Although inference procedures for meta-analysis
have been available for well over a decade, there is
little work on the calculation of the power of statisti-
cal tests in meta-analysis. However, power calcula-
tions are always part of sound statistical planning (Co-
hen, 1977). Moreover, power calculations are often a
required component of research grant proposals in
primary research, and the requirement of providing
some estimate of statistical power is increasingly an
issue in evaluating research synthesis projects as well.
Although meta-analyses with large numbers of studies
investigating even medium-sized effects may have
quite powerful tests, meta-analyses of smaller num-
bers of studies and meta-analyses in areas in which
effects are expected to be small do not necessarily
have very powerful statistical tests.

The purpose of this article is to provide procedures
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to calculate the statistical power of the statistical tests
most frequently used in meta-analysis. These include
fixed- and random-effects tests on the mean effect
size across studies (Hedges & Vevea, 1998), tests for
heterogeneity of effect size parameters across studies
(Hedges, 1982a), tests for contrasts among effect sizes
(Hedges, 1982b; Rosenthal & Rubin, 1982), and tests
for differences among groups of studies (Hedges,
1982b). Before discussing the details of power com-
putations in meta-analysis, we first argue for the im-
portance of conducting informative power analyses
before investing resources in a quantitative research
synthesis.

As others have argued (Cohen, 1977; Kraemer &
Thiemann, 1987; Lipsey, 1990), power analysis pro-
vides important information prior to beginning any
research study. Several investigators have developed
software to assist in these computations (Bornstein,
2000; Elashoff, 2000; O'Brien, 1998). Power analyses
are used to plan studies by ensuring that the power of
the statistical tests used will be adequate for the small-
est effect size deemed to be of practical significance
in a given context. The same reasoning holds true for
meta-analysis. As those who have conducted any
comprehensive research review know, searching and
obtaining a representative sample of studies on a
given topic requires a large investment of time,
money, and energy. Electronic search capabilities
have eased some of the burden in recent years, but
reviewers still must search the unpublished literature
carefully, often performing hand searches of journals
and personally calling active researchers in the field.
No researcher wants to begin a meta-analysis project
if there is little chance that the findings will prove
useful. Power analyses conducted prior to a meta-
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analysis can provide the reviewer with the likelihood
of finding a statistically significant result given the
anticipated size of the overall effect, the number of
studies included in a review, and the typical sample
size within studies.

In power analysis in primary studies, the power of
statistical tests depends on parameters that the re-
searcher does not know before conducting the study.
Similarly, in meta-analysis, the power of statistical
tests depends on information about studies that a re-
viewer typically does not know before conducting the
literature search. Waiting to do the power analysis
after the studies have been collected goes against the
purpose of power computations; if one has sufficient
power, then the review will probably yield statisti-
cally significant findings. How then does a reviewer
perform power calculations if the information needed
about the sample of studies is unknown?

The question of how to conduct a power analysis
without definitive prior information is common to the
planning of all experiments. However, few statisti-
cians would argue that not doing a power analysis is
better than computing power with approximate infor-
mation. The statistical power of tests in (fixed-effects)
primary analyses of research typically depends on ef-
fect size, the level of statistical significance, and the
sample size. Power analysis in primary research there-
fore requires setting a threshold for the smallest effect
size considered of substantive importance and the
sample size for a given level of significance. In prin-
ciple, sample size and level of statistical significance
are under the control of the investigator, but there are
often practical limitations on the former and limita-
tions of convention on the latter.

Statistical power of tests in (fixed-effects) meta-
analysis also typically depends on effect size, the
level of statistical significance, and the sample size.
However, in the case of meta-analysis, the sample size
has two components: the number of studies and the
within-study sample size (which is usually function-
ally related to the variance of a study's effect size
estimate). Power analysis in meta-analysis therefore
requires guesses about the effect size and both com-
ponents of the sample size (the number of studies and
the within-study sample size) for a given level of
significance.

In random- or mixed-model statistical analyses in
primary research, the statistical power also depends
on other parameters that may be characterized in vari-
ous ways (usually as variance components or intra-
class correlations); see, for example, Snijders and

Bosker (1993), Maxwell and Delaney (1990, pp. 568-
575), or Diggle, Liang, and Zeger (1994, pp. 28-29).
Similarly, in random- or mixed-model meta-analysis,
the statistical power also depends on another param-
eter (the between-studies variance component). Al-
though the need for the value of an additional param-
eter complicates these power analyses (compared with
fixed-effects analyses), it is no greater complication in
meta-analysis than in the corresponding primary
analysis.

How can the needed information about effect size
and sample sizes be obtained? In power analysis in
primary research, previous studies are often suggested
as a source of estimates of parameters needed for
power analyses. In meta-analysis, previous reviews in
the area, using either qualitative or quantitative meth-
ods, are the analogous source of information. For ex-
ample, Rind, Tromovitch, and Bauserman (1998) re-
cently published a meta-analysis on the effects of
child sexual abuse in college students. As they noted
in their literature review, several reviews have ap-
peared in the published literature on the effects of
child sexual abuse. We use this case as an example
later in this article to illustrate that Rind et al. might
have used information from these reviews to construct
estimates of the power of statistical tests in their meta-
analysis. In using this example, we acknowledge the
controversies surrounding the findings of the Rind et
al. meta-analysis. In particular, the findings from Rind
et al. cannot be generalized to all victims of child
sexual abuse given that the meta-analysis was limited
to nonclinical samples attending college. As we dem-
onstrate below, the study might not have been carried
out if power analyses had been conducted prior to the
meta-analysis. Lipsey and Wilson (1993) provided a
comprehensive list of meta-analyses in psychology
and education; from their list, one can imagine that
many important issues have been reviewed at least
qualitatively.

In using previous reviews, it is important to recog-
nize that new meta-analyses may have a different (of-
ten narrower) focus than previous reviews. For ex-
ample, Rind et al. (1998) used their meta-analysis not
only to add new research findings to prior reviews but
also to focus more closely on a subset of the studies
included in this previous work, specifically those in-
volving college students. A reviewer might also con-
duct a new review using different assumptions from
prior reviews, such as using random-effects models
instead of fixed-effects models. Finally, a reviewer
might intend to use different inclusion rules for a new
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review than those used in prior reviews (e.g., includ-
ing only the most recent studies). Any of these
changes might lead to a situation in which the number
of studies in the new review is not necessarily larger
than in previous reviews, and thus a statistically sig-
nificant finding in a previous review is not necessarily
an indication of adequate power in a later meta-
analysis conducted for a different purpose.

If there are no previous studies in an area, primary
researchers often use data from pilot studies to esti-
mate power. The analogous process in meta-analysis
is a pilot review. A search of an existing database
such as PsycINFO or ERIC could provide a count of
the possible numbers of studies on a given topic. A
reviewer must be cautious, however, about the esti-
mate of the number of studies. For example, a review
of the effects of child sexual abuse by Neumann,
Houskamp, Pollock, and Briere (1996) identified 488
studies but used only 38 of those studies in a quanti-
tative review. Guesses about the size of the effect and
typical within-study sample size can often be derived
from study abstracts. Note that one need not actually
examine all of the studies or abstracts. Examination of
a sample could be used to obtain estimates of the
number of studies with sufficient information to enter
the meta-analysis and the within-study sample sizes.

When neither a previous study nor a pilot study is
available, primary researchers are often advised to
rely on similar studies or expert opinion (the judgment
of the investigator or experts in the field). Such an
approach is also possible in meta-analysis, but in ei-
ther case it is difficult to know a priori whether this
information and any power computations based on it
are very accurate.

All statisticians who perform power analyses on
primary studies understand that we rarely have all the
information we need before we conduct the study. In
the case of meta-analysis, researchers rarely attempt a
comprehensive review of the literature without know-
ing that some number of studies exists. Meta-analysts,
like primary researchers, must base their power analy-
ses on prior work and rely on expert knowledge of the
area of interest.

Statistical Inference in Meta-Analysis

In this article, we assume that there are effect size
estimates from k independent studies. We denote the
population effect size (effect size parameter) in the rth
study by 6, and its estimate (the sample effect size
estimate) by Tt:

1

2

We assume that the Tt are normally distributed about
the corresponding 6, with known variance v,-. That is,
we assume that

T, ~ N(Qf, v;) i = !,...,*. (1)

This assumption is nearly exactly true for effect sizes
such as Fisher's z-transformed correlation coefficient
and standardized mean differences transformed by the
Hedges-Olkin variance-stabilizing transformation
(Hedges & Olkin, 1985). However, for effect sizes
such as the untransformed standardized mean differ-
ence or correlation coefficient, or the log-odds ratio,
the results are not exact but remain true as large-
sample approximations.

Two somewhat different statistical models have
been developed for inference about effect size data
from a collection of studies, called the fixed-effects
model and the random-effects model, respectively
(Hedges & Vevea, 1998). Fixed-effects models treat
the effect size parameters as fixed but unknown con-
stants to be estimated and usually (but not necessarily)
are used in conjunction with assumptions about the
homogeneity of effect parameters (Hedges, 1982a;
Rosenthal & Rubin, 1982). Random-effects models
treat the effect size parameters as if they were a ran-
dom sample from a population of effect parameters
and estimate hyperparameters (usually just the mean
and variance) describing this population of effect pa-
rameters (DerSimonian & Laird, 1986; Hedges, 1983;
Schmidt & Hunter, 1977).

In the sections that follow, we consider computa-
tion of the statistical power of tests on the mean effect
size and homogeneity of effect sizes using first fixed-
effects and then random-effects statistical methods.
Then we provide a method to compute the power of
tests of contrasts among effect sizes. These calcula-
tions are exact when the conditional variances of the
effect size parameters are known exactly but only ap-
proximate (based on large-sample theory) when the v,
are not known exactly. Finally we consider the accu-
racy of the power calculations when the conditional
variances are not known exactly.
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Statistical Inference in
Fixed-Effects Meta-Analysis

If a series of k studies can reasonably be expected
to share a common effect size 0, it is natural to esti-
mate 0 by pooling estimates from each of the studies.
If the sample sizes of the studies differ, then the es-
timates from the larger studies will usually be more
precise than the estimates from the smaller studies. In
meta-analysis, we use a weighted estimator with
weights inversely proportional to the precision or
variance in each study. The optimal weights w are
given by

= 1/v,, (2)

Thus the weighted mean that minimizes the variance
can be written as

7.= (3)

Note that T. is also the maximum-likelihood estimator
of 6 under this model. Note also that this estimate, or
any estimate, of a common 0 may be misleading if the
0,- vary substantially.

The sampling variance v. of T. is simply the recip-
rocal of the sum of the weights, namely,

1
(4)

and the standard error SE(T.) of T. is just the square
root of v., that is, SE(f.) = Vvi. Because T},...,Tk

are normally distributed, it follows that T. is also nor-
mally distributed.

Tests for the Mean Effect Size

If TI, ..., Tk estimate the same underlying effect
size 0, = . . . = Qk = 0, then T. estimates 0 and a
lOOa percent significance test of the null hypothesis
that 0 = 00 could be obtained using the statistic

Z = (T. - (5)

which has the standard normal distribution when 0 =
00. The one-tailed test rejects the null hypothesis
whenever Z > ca, where ca is the 100 (1 - a) percen-

tile of the standard normal distribution (e.g., for a =
.05, ca = 1.645). The two-tailed test rejects the null
hypothesis whenever IZI > ca/2.

The statistic Z in the test given above has the stan-
dard normal distribution when 0 = 00. If 0 4= 00, Z
has a normal distribution with mean

X = (0 - e0)A/K (6)

and variance of 1.
Because the one-tailed test at significance level al-

pha rejects the null hypothesis if Z > ca, the power of
the one-tailed test that 0 = 00 is given by

p = 1 - d>(ca - X), (7)

where $>(x) is the standard normal cumulative distri-
bution function.

The computation of the power of the two-tailed test
is only slightly more complicated. The two-tailed test
at significance level alpha rejects the null hypothesis
if IZ1 > ca/2, that is, if Z > c^ or if Z < -ca/2- Therefore
the power of the one-tailed test that 0 = 60 is given by

p = 1 - 0>(ca/2 - X) + ̂ (-c^ - X). (8)

If the Vj values are thought to be approximately
equal, then it follows that v. is approximately v/k,
where v is the common value of the v,. However, it
should be noted that if the v, values are not identical,
and v is the average of the v;, v/k will be strictly larger
than v., and using v/k in place of v. in power calcu-
lations will result in an underestimate of the statistical
power.

Example: Standardized mean differences. Neu-
mann, Houskamp, Pollock, and Briere (1996) con-
ducted a review of the effects of childhood sexual
abuse in women prior to Rind et al.'s (1998) synthe-
sis. The Neumann et al. study included both clinical
and nonclinical samples and focused only on the ef-
fects of abuse on women. Though Rind et al. focused
on nonclinical samples, and specifically included the
effects on male victims, the Neumann et al. study can
provide guesses about the magnitude of the effect
size, the variance of the effect sizes, and the number
of studies for the computation of power.

For each study in the review, Neumann et al. (1996)
computed the standardized mean difference between
women who reported sexual victimization during
childhood (CSA positive) and women who did not
report abuse during childhood (CSA negative) on
some measure of psychological functioning. Hedges
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and Olkin (1985) defined the standardized mean dif-
ference, dp as

where YP and FN are the sample means of the CSA-
positive and CSA-negative women for study i and st is
the pooled sample standard deviation for study i. The
estimated variance of di is given by

rtp.

" np. nN. 2(np. + nN.)'

where np and nN are the sample sizes of CSA-positive
and CSA-negative women in the ith study, respec-
tively.

To calculate the power for the Rind et al. (1998)
study, we need to posit reasonable values for v. and k.
Table 1 presents a summary taken from Neumann et
al.'s (1996) article. As can be seen in Table 1, Neu-
mann et al. found an average effect size for nonclini-
cal samples of T. = 0.32, meaning that CSA-positive
women on average scored a little more than one fourth
of a standard deviation higher on measures of psy-
chological symptoms than CSA-negative women. The
95% confidence interval for the average effect size
was given by Neumann et al. as (0.27, 0.37). As a
conservative estimate, we could use the value T. =
0.20 as a minimally significant finding, meaning that
we would want the ability to detect a difference be-
tween CSA-positive and CSA-negative adults that is
less than one-fourth of a standard deviation.

Table 1 also provides an estimate of v., the variance
of the overall effect size, which depends on the vari-
ance of the effect sizes in each study. The 95%

Table 1
Summary of Results From Neumann, Houskamp, Pollock,
and Briere (1996)

Study moderator

Source of recruitment
Clinical
Nonclinical
Mixed

Locus of abuse
Intrafamilial
Mixed

k

17
18
2

8
29

d.

0.50
0.32
0.43

0.47
0.35

95% CI

0.40-0.61
0.27-0.37
0.20-0.67

0.29-0.69
0.30-0.39

QB

9.40*

1.73

Note. From "The Long-Term Sequelae of Childhood Sexual
Abuse in Women," by D. A. Neumann, B. M. Houskamp, V. E.
Pollock, and J. Briere, 1996, Child Maltreatment, 1, p. 10. Copy-
right 1996 by Sage Publications. Reprinted with permission, k =
the number of independent studies; d. = the weighted mean effect
size; CI = confidence interval; QB = the homogeneity test.
*p< .05.

confidence interval for the weighted mean effect
size could provide one estimate of v. given that the
lower limit is given by Hedges and Olkin (1985) as
8L = d. - ca/2 Vvi. Alternatively, we could posit a
reasonable value for the within-study sample size.
Neumann et al. (1996) reported that in their restricted
sample of 37 studies (including studies using clinical
samples), 5 studies had within-study sample sizes less
than 50, and the remaining studies had sample sizes
ranging from 51 to 500. Neumann et al. also reported
that their original sample of 38 studies represents
2,774 CSA-positive women and 8,388 CSA-negative
women, a ratio of 1:3. If we took N = 48 for the
within-study sample size, with np = 12 and «N = 36,
we have an estimate of the common value of v,- of

(0.2)2

V: =

12 + 36

(12)(36) (2X12X36)
= 0.111.

The value of the variance of the weighted mean effect
size is given by v. = v/k = 0.111/18 = 0.0062,
where k, the number of studies with nonclinical
samples included in Neumann et al.'s review, is 18.
For a fixed-effects analysis, \ = (0.20 - 0)M).0062
= 0.20/0.079 = 2.53. The power for a one-tailed test
when a = .05 is given by Equation 7, where p = 1
- $(1.64 - 2.53) = 1 - $(-0.89) = 1 - 0.19 = .81
and cos = 1.64 is the 95th percentile of the standard
normal distribution. The power of the two-tailed test
at significance level a/2 = .025 is given by inserting
the value of \ into Equation 8 to obtain p = 1 -
$(1.96 - 2.53) + $(-1.96 - 2.53) = 1 - $(-0.57) +
$(-4.49) = l _ 0.28 + 0.0 = .72. In this case, we
have a reasonable amount of power to detect a differ-
ence of 0.20 with 18 studies, each having a minimum
of 48 subjects with a ratio of 1:3 for CSA-positive
versus CSA-negative adults.

Example: Correlation coefficients. Rind et al.
(1998) also discussed a number of qualitative reviews
in their synthesis, including one by Kendall-Tackett,
Williams, and Finkelhor (1993). Though this review
did not use meta-analysis, the authors provided
enough information to enable us to make good
guesses about possible values of v. and k. for the
power analyses. For the measure of effect size, Ken-
dall-Tackett et al. provided preliminary calculations
from a subset of studies using T|2, a measure of the
proportion of variance accounted for on a measure of
psychological functioning. The value of f\2 captures
both linear and nonlinear components of the relation-
ship between two variables. Kendall-Tackett et al.
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found a range of T|2 values on many different psycho-
logical symptoms of .01 to .77.

As discussed by Cohen (1977, p. 283), we could
use the value

Table 2
Summary of Studies Identified by Kendall-Tackett,
Williams, and Finkelhor (1993)

Total no. of studies

as our effect size so that it has the same scale as r, the
correlation coefficient. However, when r\ is applied to
a study with two groups, this approximation only
holds true when there are equal numbers of subjects
per group. In our example, r would approximate T\ if
the studies have equal numbers of abused and non-
abused participants, which holds true in some of the
studies. If this condition is not true, the analyst should
transform t]2 to d as illustrated by Cohen (1977). We
use r as an approximation to T) here to illustrate power
computation with r.

Kendall-Tackett et al. (1993) found a range of val-
ues of T| from .10 to .88. We can posit a value of r =
.10 as a conservative value for the effect size in these
studies. As described in Hedges and Olkin (1985), the
distribution of the sample correlation coefficient de-
pends on the unknown value of the population corre-
lation and is nonnormal. Transforming sample corre-
lation coefficients to Fisher's z where

z = '/2 log [(1 + r)/(l - r)]

normalizes the distribution. In this case, a value of r
= .10 gives a Fisher's z value of 0.10.

We now need to estimate v., the variance of the
weighted mean for Fisher's z. The variance of Fish-
er's z is Vj = !/(«, - 3), which depends on sample
sizes within studies, nt. Kendall-Tackett et al. (1993)
reported a range of sample sizes from 8 to 369 but
also stated that the majority of studies used sample
sizes of between 25 and 50. We can take n = 25 as a
conservative estimate of within-study sample size.
Thus, we have an estimate of v, = l/(25 - 3) = 1/22
= 0.045.

To obtain an estimate of v., we need an estimate of
k, the number of studies. Although Kendall-Tackett et
al. (1993) identified 45 studies for review, not all
studies used nonclinical samples. Table 2 provides a
summary of numbers of studies identified by Kendall-
Tackett et al. Depending on the psychological symp-
tom, a range of 6 to 38 studies use nonclinical
samples, with a mean of about 17 studies. We could
take 10 as a conservative guess of the number of
studies focusing on a particular symptom.

If we estimate that we will gather at least 10 studies
(k = 10) with a sample size of 25 and a Fisher's z

Symptom

Anxiety
Fear
Posttraumatic stress disorder
Depression
Poor self-esteem
Somatic complaints
Mental illness
Aggression
Sexualized behavior
School-learning problems
Behavior problems
Self-destructive behavior
Composite symptoms

Nonclinical

14
6
8

38
11
16
15
24
25
13
31
9

21

Clinical

3
3
2

10

7
10
12
8
3
7

6

Note. From "Impact of Sexual Abuse on Children: A Review and
Synthesis of Recent Empirical Studies," by K. A. Kendall-Tackett,
L. M. Williams, and D. Finkelhor, 1993, Psychological Bulletin,
113, p. 166. Copyright 1993 by the American Psychological Asso-
ciation. Reprinted with permission.

transformation equal to 0.10, our estimate of v. can be
computed as v. = v/k, or [l/(25 - 3)]/10 = (1122)1
10 = 0.0045. The power of the one-tailed test at a =
.05 for £ = 0 requires the computation of X =
(0.10 - 0)/Vo.0045 = 1.49. The power to reject the
hypothesis that £ = 0 at a = .05 is given by inserting
A. into Equation 7 to obtain p = 1 - $(1.64 - 1.49) =
1 - $(0.15) = 1 - 0.56 = .44. The two-tailed power
of the test at significance level a = .05 (a/2 = .025)
is given by inserting X into Equation 8 to obtain p =
1 - $(1.96 - 1.49) + $(-1.96 - 1.49) = 1 - $(0.47)
+ $(-3.45) = 1 - 0.68 + 0.00 = .32. Given our
assumptions of r = .10, k = 10, and common within-
study sample size of 25, we have little power to detect
a correlation of .10 between child sexual abuse expo-
sure and adult outcomes.

Testing for Heterogeneity of Effect
Size Parameters

Before pooling the estimates of effect size from a
series of k studies, it is important to determine wheth-
er the studies can reasonably be described as sharing
a common effect size. A statistical test for the homo-
geneity of population effect sizes is formally a test of
the hypothesis
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versus the alternative that at least one of the effect
sizes 6, differs from the remainder.

An exact small-sample test of H0 (which is also the
likelihood ratio test of this hypothesis) is based on the
statistic

(9)

where T. is the weighted estimator of effect size given
in Equation 3. The test statistic Q is the_ sum of
squares of the Tt about the weighted mean T., where
the z'th square is weighted by_the reciprocal of the
variance of Tt. Because (Tt - T.)2 can be seen as a
(crude) estimate of between-studies variation, each
term of Q can also be interpreted as a ratio of be-
tween-studies to within-study variances given that w,
= 1/v,

If all k studies have the same population effect size
(i.e., if H0 is true), then the test statistic Q has a
chi-square distribution with k - 1 degrees of freedom.
Therefore, if the obtained value of Q exceeds the
100(1 - a) percent critical value of the chi-square
distribution with k — 1 degrees of freedom, we reject
the hypothesis that the 0,- values are equal.

The test statistic Q is given in Equation 9, which
has the chi-square distribution with k — 1 degrees of
freedom when the null hypothesis of homogeneity (0j
= ... = 0fc) is true. When the null hypothesis of
homogeneity is not true, that is, when some of the
effect sizes differ, then Q has a noncentral chi-square
distribution with k - 1 degrees of freedom and non-
centrality parameter X given by

k

1=1

where 6. is the weighted mean of 0 , , . . . , 0^ given by

(11)

The power of the test based on Q at significance level
alpha is therefore

p = 1 - F(ca\k - 1; X), (12)

where F(x\v; X) is the cumulative distribution func-
tion of the noncentral chi-square with v degrees of
freedom and noncentrality parameter X and where ca

is the 100(1 - a) percent point of the central chi-
square distribution. This distribution is tabulated and
widely available in statistical software.

A rough approximation to the noncentral chi-square
distribution using the central chi-square distribution
was given by Patnaik (1949). This approximation
gives the distribution of Q as approximately a con-
stant

a = 1 + X/(/t - 1 + X)

times a central chi-square distribution with

v = (k - 1) + X2/[(fc - 1) + 2X]

degrees of freedom. The power is approximately

1 - F(ca/alu; 0), (13)

where F(x\v\ 0) is the cumulative distribution function
of the central chi-square distribution with v degrees of
freedom.

Conventions for heterogeneity. Although Equa-
tions 12 and 13 provide expressions for the power of
the heterogeneity test, they are not useful unless a
value of X can be computed, which in turn depends on
the values of the individual effect size parameters
Sj, . . . , %h which may be difficult to guess in the
preliminary stages of a meta-analytic study. An alter-
native procedure for developing plausible values of X
when the v, values are identical (and might be used if
they are nearly so) is to treat X as (k — l)/v times the
"variance" of the 0;, and thus X is (k - 1) times the
ratio of the between-studies "variance" to the within-
studies variance. Past experience in an area might
suggest plausible values for this ratio. For example,
Schmidt (1992) examined many meta-analyses in psy-
chology and found that the ratio of between-studies
variance to within-studies variance rarely exceeds one
and that 0.33 is a more typical value (corresponding to
Schmidt and Hunter's, 1977, 75% rule—the average
conditional variance is 75% of the total variance of
the estimates). Therefore, one might adopt the con-
vention that X = .33(fc -!) = (*- l)/3 is a small
degree of heterogeneity, X = .61 (k - 1) = 2(k - l)/3
is a medium degree of heterogeneity, and X = (k - 1)
is a large degree of heterogeneity.

Example: Power of the homogeneity test. Sup-
pose we only have the information provided in the
Kendall-Tackett et al. (1993) review. In order to com-
pute an approximate power of the homogeneity test,
we must make a number of assumptions. Our earlier
example used conservative estimates for the common
within-study sample size (n = 25) and for the number
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of studies (k = 10). Because we do not know the
values of the 6, (in this case, estimates of the indi-
vidual correlations from each study), we have to as-
sume a specific degree of heterogeneity among the 6,
to make the statistical power computation. Here we
calculate three possible values of X, the noncentrality
parameter, based on whether we assume there is a
small degree of heterogeneity, medium heterogeneity,
or high heterogeneity. That is, X = (k - 1) * .33
(small heterogeneity), X = (k - 1) * .67 (medium
heterogeneity), or A. = (k - 1) * 1.0 (large heteroge-
neity), which correspond to X = (10 -1 )* .33 =
2.97, X = (10 - 1) * .67 = 6.03, and X = (10 - 1)
* 1.0 = 9.0.

The statistical program SPSS (1999) provides the
noncentral distribution function of the chi-square in
the transformation menu as NCDF.CHISQ (q, df, nc)
where q is the ca, 100 (1 - a) percent point of the
central chi-square distribution; df is the degrees of
freedom or k - 1; and nc is the noncentrality param-
eter, or X. In SAS (SAS Institute, 1990), the function
PROBCHI (x, df, nc) gives the cumulative distribution
of the chi-square distribution where x is equal to ca as
described above; dfis the degrees of freedom; and nc
is the noncentrality parameter, X. Assuming k = 10,
we have a value for c05 of 16.92, the 95% point of the
chi-square distribution with 10-1 = 9 degrees of
freedom. For a small amount of heterogeneity, the
power of the homogeneity test given in Equation 12 is
p = 1 - F(16.92I10 - 1; 2.97) = 1 - 0.83 = .17. A
moderate amount of heterogeneity yields the power as
p = 1 - F( 16.9219; 6.03) = 1 - 0.66 = .34. With a
large amount of heterogeneity, the power is p = I -
/^ 16.9219; 9.0) = 1 - 0.49 = .51. Given our conser-
vative guesses about parameters of the studies, we
would not expect much power to detect differences
among studies in their estimates of the overall corre-
lation between child sexual abuse and psychological
outcomes.

If we have k = 18 studies as estimated by the
Neumann et al. (1996) review, we have our estimated
values for X equal to (18 - 1) (.33) = 5.61 for a small
amount of heterogeneity, (18 - 1) (.67) = 11.39 for a
medium amount of heterogeneity, and (18 - 1) (1.0)
= 17 for a large amount of heterogeneity. The value
of the central chi-square with 18-1 = 17 degrees of
freedom at cos is 27.59. The power for a small
amount of heterogeneity is given in Equation 12 as p
= I - F(27.59I17; 5.61) = 1 - 0.77 = .23. For a
medium amount of heterogeneity, the power is p =
F(27.59I17; 11.39) = 1 - 0.50 = 0.50. A large

amount of heterogeneity gives a power value of p =
1 - F(27.59I17; 17) = 1 - 0.28 = .72. With a larger
number of studies, we have more power to detect
significant differences among effect sizes, though
only if we expect a large amount of heterogeneity.

When tabulations of the noncentral chi-square are
not available, Patnaik's (1949) approximation is com-
puted from Equation 13 by estimating the auxiliary
constants a and u With a small amount of heteroge-
neity and k = 10 studies, a = 1 + 2.97/(10 - 1 + 2.97)
= 1.25, v = (10 - 1) + (2.97)2/[(10 - 1) + (2 * 2.97)]
= 9.59, and the power of the homogeneity test is p =
1 - F( 16.92/1.2519.59; 0) = 1 - 0.83 = .17. With a
moderate amount of heterogeneity, a = 1 + 6.03/(10
- 1 + 6.03) = 1.40, v = (10 - 1) + (6.03)2/[(10 - 1)
+ (2 * 6.03)] = 10.73, and the power of the homo-
geneity test is/? = 1 - F(16.92/1.4I10.73; 0) = 1 -
0.66 = 0.34. With a large amount of heterogeneity, a
= 1 + 9.0/(10 - 1 + 9.0) = 1.50, v = (10 - 1) +
(9.0)2/[(10 - 1) + (2 * 9.0)] = 12.0, and power of the
homogeneity test is p = 1 - F(16.92/1.4I10.73; 0) =
1 - 0.49 = .51. All three values match those given by
the exact computations.

Note that knowing the exact values of the sample
sizes for the computation of the v, does not assist in
the computation of power unless one has a guess for
the value of the between-studies variance. As can be
seen in Equation 10, the noncentrality parameter X is
the ratio of the between-studies variance to the within-
study variance. Thus, the noncentrality parameter X
can be calculated exactly if the reviewer has estimates
of the between-studies variance as well as the values
of the v,-. Without knowledge of the between-studies
variance, the reviewer must hypothesize various plau-
sible values of the ratio of between-studies to within-
study variance as we have done in the example above.

Statistical Inference in
Random-Effects Meta-Analysis

In this section we describe procedures for estimat-
ing the mean JJL of the effect size distribution under-
lying the results of a series of studies using an analysis
based on the random-effects model. There are obvious
similarities between estimating a common underlying
effect size by taking the mean of the estimates and
estimating the mean of the effect size distribution. In
both procedures, the pooled estimate is usually com-
puted by taking the weighted mean across studies of
the sample effect size estimates, and it is not unusual
for either of these estimates to be called the average
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effect size. However, it is important to note that the
quantity we are estimating (the mean of the effect size
distribution) in random-effects models does not have
exactly the same interpretation as the one we are es-
timating (the single or average underlying effect size)
in fixed-effects models. In the case of random-effects
models, for example, some individual effect size pa-
rameters may be negative even though u, is positive.
That corresponds to the substantive idea that some
realizations of the treatment may actually be harmful
even if the average effect of the treatment u- is ben-
eficial.

The Variance of Estimates of Effect Size

In the fixed-effects model, the effect sizes 0, were
fixed, but unknown, constants. Under this assumption
the variance of 71,- is simply v,-. In the random-effects
model, the 9, are not fixed but are themselves treated
as random and have a distribution of their own. There-
fore, it is necessary to distinguish between the vari-
ance of Tj assuming a fixed 9, and the variance of Tt

incorporating the variance of 9 as well. The former is
the conditional sampling variance of Tt, and the latter
is the unconditional sampling variance of 71,-.

It is convenient to decompose the observed effect
size estimate into fixed and random components

= 6,- (14)

where e, is a sampling error of Tt as an estimate of 9,,
and 9, can itself be decomposed into the mean u, of the
population from which the 9 values are sampled and
the error £, of 9,- as an estimate of u,. In this decom-
position, only |x is fixed, and we assume both £,• and
the e, values are random with expected value zero.
The variance of e, is v,-, the conditional sampling vari-
ance of Tj, which is known. The variance of the popu-
lation from which £,, . . ., %k are sampled is T2.
Equivalently, we might say that T2 is the variance of
the population from which the study-specific effect
parameters 9j, . . . , %k are sampled. Frequently, T2 is
called the between-studies variance component.

Because the effect size 9, is a value obtained from
a distribution of potential 9, values, the unconditional
sampling variance of Tt involves T2. A direct argu-
ment shows that this sampling variance is

= V,. + T2. (15)

Methods of estimation for random-effects models
have been suggested in different meta-analytic con-
texts by DerSimonian and Laird (1986), Hedges
(1983), and Schmidt and Hunter (1977). They make

use of the method of moments to estimate the be-
tween-studies variance component and are analogous
to the methods often used to estimate variance com-
ponents in analyses of variance (ANOVAs) of bal-
anced designs.

Estimating the Between-Studies
Variance Component

Estimation of the between-studies variance com-
ponent T2 uses the same principles as estimation of
the variance components in ANOVA. One estimate of
T21S

c
0

if Q > k - 1
(16)

where c is given by

c = (17)
1=1

the wt values are the weights given in Equation 2 used
in the fixed-effects analysis, and Q is given by Equa-
tion 9. Estimates of T2 are set to 0 when Q - (k — 1)
yields a negative value, because T2, by definition, can-
not be negative.

Estimating the Mean Effect Size

The logic of using weighting is the same in ran-
dom-effects procedures as it is in fixed-effects proce-
dures, but the choice of weights differs somewhat
because random-effects models include in their defi-
nition of variance a component of variance T2 asso-
ciated with between-studies differences in effect pa-
rameters, which fixed-effects models do not. That is,
the total variance vf for the <th effect size estimate T,
is defined by vf = T2 + v,-. Because the additional
component of variance is the same for all studies, it
both increases the total variance of each effect size
estimate and tends to make the total variances of the
studies (the vf values) more equal than the sampling
error variances (v, values).

Because the true value of T2 is rarely known, we
usually substitute an estimate of this variance compo-
nent such as that given in Equation 16 into Equation
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15 in place of T2 (DerSimonian & Laird, 1986;
Hedges & Olkin, 1985). This yields

whether (x - (JLO

null hypothesis
= 0) is accomplished by testing the

_
T.=- (18)

using the statistic

where the weight wf is an estimated optimal weight
that is the reciprocal of an estimate of the total vari-
ance of Tf given by

w = l/(vf) = l/(v; + T2). (19)

Here we use the asterisk to distinguish the weights,
means, and variances in the random-effects procedure
from the corresponding quantities in the fixed-effects
procedure.

The sampling variance v.* of the random-effects
£stimate (of the mean of the effect size distribution)
T* is given by the reciprocal of the sum of the ran-
dom-effects weights, that is

1
(20)

The standard error SE(T*) of the mean effect estimate
T* is just the square root of its sampling variance, that
is, SE(f*) = Vi;*. Note that whenever the between-
studies variance component (estimate) f2 is greater
than 0, the standard error Vv* of the mean estimated
using the random-effects procedure will be larger than
VK, the standard error of the mean estimated using the
fixed-effects procedure. If T2 = 0, the standard errors
(and the mean estimates) of the random- and fixed-
effects procedures will be identical.

Tests for the Mean of the Effect
Size Distribution

If the random effects are approximately normally
distributed, the weighted mean T* is approximately
normally distributed about the mean effect size pa-
rameter |A that it estimates. As in the fixed-effects
case, the fact that this mean is normally distributed
with the variance given in Equation 20 leads to
straightforward procedures for constructing tests of
hypotheses about the mean effect size. An approxi-
mate significance test of whether the mean effect JJL
differs from a predefined constant JJLO (e.g., a test of

Z*=- (21)

which has the standard normal distribution when jx.
= (JLO. The one-tailed test consists of rejecting HQ at
level alpha if Z* > ca, where ca is the 100 (1 - a)
percent point of the standard normal distribution (e.g.,
ca = 1.645 for a = .05).

The test statistic Z* has the standard normal distri-
bution when JJL. = |X0, but if |x. =1= jx0, Z* has a normal
distribution with mean

X* = (U.. (22)

and variance 1.
Because the one-tailed test at significance level al-

pha rejects the null hypothesis if Z* > ca, the power of
the one-tailed test that JJL. = JJLO is given by

p = 1 - 4>(ca - X*), (23)

where <J>(jc) is the standard normal cumulative distri-
bution function.

The computation of the power of the two-tailed test
is only slightly more complicated. The two-tailed test
at significance level alpha rejects the null hypothesis
if IZ*I > c^, that is, if Z* > ca/2 or if Z* < -c .̂
Therefore, the power of the one-tailed test that
|x = |AO is given by

p = 1 - <J>(Ca/2 - X*) + QX-c^ - X*). (24)

Conventions for heterogeneity. Equations 23 and
24 provide expressions for the power of the random-
effects test, but they are not useful unless a value of
X* can be computed, which in turn depends on both
the conditional variances v,, . . . , vk; the mean u..; and
the between-studies variance component T2. As in the
homogeneity test in the fixed-effects case, we adopt
the convention with a common value of v that T2 =
.33v = v/3 is a small degree of heterogeneity, T2 =
.61 v = 2v/3 is a medium degree of heterogeneity, and
T2 = v is a large degree of heterogeneity. We can take
all the v,. values as approximately equal, which gives
v.* approximately equal to (v + T2)/k, where v is the
common value of the v, values. Note that if the v,-
values are not identical, (v + T2)//c will be strictly
larger than v.*, and using (v + T2)/fc in place of v* in
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power calculations will result in an underestimate of
the statistical power.

Example: Standardized mean differences. Sup-
pose we wanted to estimate a random-effects model
with the studies of the effects of childhood sexual
abuse, using information from Neumann et al. (1996).
The power for the test that the overall mean effect is
zero requires knowledge of v* which depends on T2,
the variance component; v, the common variance of
the study effect sizes; and k, the number of studies. In
our earlier example, we estimated the mean effect size
as 0.20, the minimum value of the effect size that is of
substantive interest. We also estimated the common
variance of effect sizes across studies, v, = 0.111, a
value based on a within-study sample where N = 48,
n-f = 12, and «N = 36. To estimate r2, we need to
know Q as well as the values of the individual weights
for each study (the variance of the effect sizes for each
study). We have one of two options here: (a) Estimate
T2 from Equation 16 by assuming equal weights for
each study based on v, or (b) use the convention for
small, medium, and large degrees of heterogeneity
with T2 equal to v/3, 2v/3, and v, respectively. Using
(b), we find that a small degree of heterogeneity rep-
resents a value of T2 = .33v = .33 * 0.111 = 0.037,
a medium degree of heterogeneity a value of T2 =
.67v = .67 * 0.111 = 0.074, and a large degree of
heterogeneity a value of T2 = v = 0.111. We can then
estimate v* = (v + T2)/£ for our three values of T2, or
v* = (0.111 +0.037)/18 = 0.0082 for small hetero-
geneity, v* = (0.111 + 0.074)718 = 0.0103 for me-
dium heterogeneity, and v* = (0.111 + 0.111)718 =
0.012 for large heterogeneity.

When the heterogeneity is small, the mean value of
the test statistic, Z, is given by X = (0.20 - 0.0)7
V0.0082 = 2.21. The power of the one-tailed test at
significance level a = .05 given in Equation 23 is p
= 1 - $(1.64 - 2.21) = 1 - $(-0.57) = 1 - 0.28 =
.72. With a medium degree of heterogeneity, the mean
value of the test statistic, Z, is given by X =
(0.20 - 0.0)/V0.0103 = 1.97. The power at signifi-
cance level a = .05 given in Equation 23 is
p = 1 - $(1.64 - 1.97) = 1 - $(-0.33) = 1 - 0.37
= .63. A large degree of heterogeneity gives a value
of X = (0.20 - 0.0)/V0.012 = 1.82, with a power of
p = 1 - $(1.64 - 1.82) = 1 - $(-0.18) = 1 - 0.43
= .57. With approximately 18 studies, a mean effect
size of 0.20, and within-study sample size of 48, we
have power ranging from .57 to .72 for detecting a
mean effect size different from zero in a random-
effects model. Note that with a larger degree of het-

erogeneity, we have less power to detect a nonzero
mean in random effects than in fixed effects.

The power of the two-tailed test given in Equation
24 with a small amount of heterogeneity is p = 1 -
$(1.96 - 2.21) + $(-1.96 - 2.21) = 1 - $(-0.25) +
$(-4.17) = 1 - 0.40 - 0.00 = .60. A medium
amount of heterogeneity gives the power of the two-
tailed test as p = 1 - $(1.96 - 1.97) + $(-1.96 -
1.97) = 1 - $(-0.01) + $(-3.93) = 1 - 0.50 - 0.00
= .50. For a two-tailed test with a large amount of
heterogeneity, we have power of p = 1 - $(1.96 -
1.82) + $(-1.96 - 1.82) = 1 - $(0.14) + $(-3.78)
= 1 - 0.56 + 0.00 = .44. With a two-tailed test, we
have less power than in the one-tailed test for detect-
ing a difference of 0.20 between exposed and nonex-
posed adults. Note that even with a small amount of
heterogeneity, we have little power in the random-
effects case with a nondirectional hypothesis.

Testing the Significance of the Effect Size
Variance Component

The test that T2 = 0 in the random-effects model is
the same as the test of homogeneity in the fixed-
effects model using the Q statistic. The reason is that
if T2 = 0, then

thus the effect size parameters are fixed, but un-
known, constants. This is analogous to the situation
with F tests in one-way random- and fixed-effects
ANOVAs. In the ANOVA, the null distributions of
the test statistics are identical, but the nonnull distri-
butions of the F ratios differ. Similarly, although the
null distributions of the Q statistics are identical in
fixed and random effect size models, the nonnull dis-
tributions of Q differ under the two models.

The test statistic Q has the chi-square distribution
with k - 1 degrees of freedom when the null hypoth-
esis that T2 = 0 is true. When the null hypothesis of
homogeneity is not true, that is, when T2 > 0, then Q
has a distribution of rather complex form (a weighted
linear combination of chi-square distributions) that is
not extensively tabulated. However, an approximation
to that distribution that is adequate for estimating sta-
tistical power is known.

In the case that the conditional variances are equal,
that is, vl = . . . vk = v, then Q has a distribution that
is (v + T2)/v = 1 + T2/v times a central chi-square,
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with (k - 1) degrees of freedom, so the power of the
test that TZ = 0 is

- F[cavl(v (25)

where F(x\v\ 0) is the cumulative distribution function
of a central chi-square with v degrees of freedom and
ca is the 100(1 - a) percentile point of the chi-square
distribution with k - 1 degrees of freedom.

When the conditional variances are unequal, an ap-
proximation to the distribution of Q can be derived
using a method (Satterthwaite, 1946) that approxi-
mates the distribution of Q by a gamma random vari-
able with mean and variance equal to that of Q. Be-
cause T2 is an unbiased estimator of T2 (except for
truncation), the mean \LQ of Q under this model is

V.Q (k- 1),

where c is given by Equation 17 and the variance of
O-Q of Q is given as (Hedges & Vevea, 1998)

+ 2 2**- (26)

Then the distribution of Q is approximated as a
gamma with shape parameter r given by

r = (4/a2,

and scale parameter m given by

OT = (JLg/CT2,.

The power of the test that T2 = 0 in the random-
effects case is

1 - F(ca\r, m), (27)

where F(x\r, m) is the cumulative distribution func-
tion of a gamma variate with shape parameter r and
scale parameter m and ca is the 100(1 - a) percentile
point of the chi-square distribution with k-\ degrees
of freedom.

For an example, we can return to the Kendall-
Tackett et al. (1993) qualitative review, where we
assumed that we had k = 10 studies with a common
sample size of 25, giving us a common value of v (for
the transformed Fisher's z scores) as v = l/(25 - 3)
= 1/22 = 0.045. For a small amount of variability,
we assume the variance component T2 = 0.33 (v) =
0.33 (0.045) = 0.015. Because we are concerned only

with the estimate of T2, we do not need to posit an
estimate of z, the mean effect size. The power of the
test for a = .05 for small heterogeneity is given in
Equation 25 as

= 1 - F[(16.92 * 0.045)7(0.045 + 0.015)|9; 0]
= 1-F(12.69|9; 0)
= 1-0.82
= .18,

where 16.92 is the 100(1 - a) percentile point of the
chi-square distribution with 10-1 = 9 degrees of
freedom. A medium amount of heterogeneity in-
creases the power of the test to p - 1 - F(10.1319; 0)
= 1 - 0.66 = .34. When the studies have a large
amount of heterogeneity, the power of the test is given
as p = 1 - F(8.46I9; 0) = 1 - 0.51 = .49. The
greater the differences between the studies' effect
sizes, the more likely we are to detect a significant
value for the variance component though none of
these values are high. In general, the power as esti-
mated from both the Kendall-Tackett et al. (1993) and
Neumann et al. (1996) reviews is not large for tests of
the random-effects model.

Contrasts Among Effect Sizes

Omnibus tests for homogeneity can reveal that the
effect parameters are not all the same, but they are not
useful for revealing the specific pattern of mean dif-
ferences that might be present. For example, the Q
statistic might reveal that there was variation in the
effects, but the omnibus statistic gives no insight
about which studies might be associated with the larg-
est effect sizes. In other cases, the omnibus test sta-
tistic may not be significant but we may wish to test
for a specific difference that the omnibus test may not
have been powerful enough to detect. As in conven-
tional ANOVA, contrasts or comparisons are used to
explore the differences among group means (Hedges
& Olkin, 1985; Rosenthal & Rubin, 1982). Contrasts
can be used in precisely the same way to examine
patterns among group mean effect sizes in meta-
analysis. In fact all of the strategies used for selecting
contrasts in ANOVA (such as orthogonal polynomials
to estimate trends, Helmert contrasts to discover dis-
crepant groups, etc.) are also applicable in meta-
analysis.

A contrast (parameter) is just a linear combination
of group means

-y = c,6, + ... + ckQk, (28)
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where the coefficients c,, . . . , ck (called the contrast
coefficients) are known constants that satisfy the con-
straint Cj + . . . + ck = 0 and are chosen so that the
value of the contrast will reflect a particular compari-
son or pattern of interest. For example, the coeffi-
cients C[ = 1, c2 = -1, c3 = . . . = ck — 0 might be
chosen so that the value of the_ contrast is the differ-
ence between the effect size 0j of Study 1 and the
effect size 62 of Study 2. Sometimes we refer to a
contrast among population effect sizes as a. population
contrast or a contrast parameter to emphasize that it
is a function of population parameters and to distin-
guish it from estimates of the contrast. The contrast
parameter specified by coefficients Cj, . . . , ck is usu-
ally estimated by a sample contrast

G = c,r, + . . . + ct T*. (29)

The estimated contrast G has a normal sampling dis-
tribution with variance VG given by

= c v, + . . . + (30)

Note that although the notation used here for con-
trasts suggests that they compare individual study ef-
fect sizes, they can be used to compare groups of
studies or to compare a single study with a group
mean. All that is required is the appropriate selection
of contrast coefficients to define the "groups" of stud-
ies involved.

Because the estimated contrast G has a normal dis-
tribution with known variance VG, tests of statistical
significance are relatively easy to construct. Note,
however, that just as with contrasts in ordinary
ANOVA, test procedures differ depending on whether
the contrasts were planned or were selected using in-
formation from the data. Here we discuss only proce-
dures for testing planned comparisons.

A test of the null hypothesis that y = 0 uses the
statistic

ZG = G/V^. (31)

A one-tailed test of the null hypothesis that -y = 0
uses the statistic ZG given above but rejects the hy-
pothesis that -y = 0 and declares the contrast to be
significant at level of significance alpha if ZG > ca.
The two-tailed test rejects the null hypothesis that "y
= 0 (declares the contrast to be significant at the level
of significance alpha) if IZGI > ca/2, where ca/2

 K me

100 (1 - a/2) percent point of the standard normal
distribution.

When the null hypothesis that -y = 0 is true, ZG has
the standard normal distribution, but when the null

hypothesis is false, ZG has mean y/vvc and variance 1.
Because the one-tailed test at significance level alpha
rejects the null hypothesis if ZG > ca, the power of the
one-tailed test that -y = 0 is given by

p = \ - (32)

where <&(x) is the standard normal cumulative distri-
bution function.

The computation of power in the two-tailed test is
only slightly more complicated. Because the two-
tailed test at significance level alpha rejects the null
hypothesis if IZGI > caJ2, that is, if ZG > c^ or if zc
< -cafi, the power of the two-tailed test that -y = 0 is
given by

p = \ -

For example, the Neumann et al. (1996) review of
the effects of childhood sexual abuse in women re-
ported on a number of study moderators and their
relationship to effect size. One important moderator is
the locus of abuse. As Rind et al. (1998) argued, stud-
ies with participants restricted to those abused by
close family members may estimate larger effect sizes
than studies in which participants include those
abused by strangers or by family members. We can
use the results of Neumann et al. to get an idea of
whether we are likely to have enough power to detect
this difference.

As can be seen in Table 1, Neumann et al. (1996)
identified 8 studies in which the locus of abuse was
intrafamilial, with an average effect size of 0.47 and a
95% confidence interval ranging from 0.29 to 0.69.
Another 29 studies included participants reporting a
mixed locus of abuse, with an average effect size of
0.35 and a 95% confidence interval ranging from 0.30
to 0.39. We could posit a G, the sample contrast value,
of 0.20, as the minimum difference we care about
detecting in the meta-analysis. We need to compute
the common variance for the effect sizes in each
group of studies. For the intrafamilial abuse studies,
we have the lower bound of the 95% confidence in-
terval equal to 0.29 = 8L = d. - ca/2 "Jv., where d. =
0.47 and cal2 = 1 .96. From this equation, we obtain
v. = t(0.29-0.47)/(-1.96)]2 = (0.0092)2 = 0.0085
as our value for the variance of the mean effect size
for studies with intrafamilial abuse. For the mixed
abuse studies, we have a lower bound of the 95%
confidence interval equal to 0.30 = 0.35 - 1.96 Vv!,
giving v. = 0.00065. The variance of the contrast G
is VG = (I)2 0.0085 + (-1)2 0.00065 = 0.00905. The
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power of the one-tailed test that -y = 0 is given by
Equation 32, or

p=l- $(ca - y\Q
= 1 - $(1.64 - 0.20/V0.00905)
= 1-$(1.64-2.10)
= 1 - $(-0.46)
= 1 -0.32
= .68.

If we found a difference of 0.20, with studies similar
to those found by Neumann et al., we would have
power of .68 to detect a significant difference between
the effect sizes of studies focusing on intrafamilial
abuse versus those with mixed abuse. The power of
the two-tailed test, if we did not have an idea of the
direction of the difference, would give 1 - $(1.96 -
2.10) + $(-1.96 - 2.10) = 1 - $(-0.14) - $(-4.06)
= 1 - 0.44 + 0.0 = .36. We would have a small
amount of power to detect a difference of 0.20 with
the numbers of studies given by Neumann et al.

Conclusion

Analysis of the power of statistical tests is an im-
portant part of planning any scientific research study,
including meta-analyses. Computation of statistical
power is essential to know whether tests of hypoth-
eses are likely to detect the effects expected (if they
obtain in the population). Although many people be-
lieve that meta-analyses necessarily have high statis-
tical power, the examples used in this article, which
come from published meta-analyses, demonstrate that
this is not necessarily the case. Tests of heterogeneity
are particularly vulnerable to low statistical power
given the degree of heterogeneity that is plausible in
most meta-analytic situations.

The inclusion in a meta-analysis of studies with
very small sample sizes may have a paradoxical effect
of decreasing the power of random-effects tests of the
mean effect size. That is, it is possible that small
studies may introduce enough heterogeneity into the
analysis to more than compensate for the added in-
formation about the mean that they provide. Conse-
quently, one may actually achieve higher statistical
power by excluding such studies. Although exclusion
of small studies cannot increase statistical power in
fixed-effects analyses, there are still reasons to con-
sider this option.

If only studies that individually have high statistical
power are included in the meta-analysis, the meta-

analysis will necessarily (in the case of fixed-effects
analyses) or probably (in the case of random-effects
analyses without too much heterogeneity) have high
power. Power considerations aside, publication selec-
tion (the tendency of studies with statistically signifi-
cant results to be more likely to be published) pro-
duces larger bias in studies with low statistical power
than studies with high statistical power. Therefore,
exclusion of studies with low individual statistical
power may provide some protection against the ef-
fects of publication selection (Kraemer, Gardner,
Brooks, & Yessavage, 1998).

Power computations in primary analysis require
knowing at least the effect size and the sample size.
In meta-analysis the sample size has two compo-
nents: the number of studies and the within-study
sample size. When the statistical analysis explicitly
takes into account the heterogeneity of effects, then
information about the heterogeneity of effects is
also required in both primary analysis and meta-
analysis.

Power analyses for future meta-analyses could be
facilitated by more complete reporting of research re-
views that might be used to obtain information for
power analyses. Perhaps the best information would
be a table reporting key substantive characteristics,
sample sizes, and (for meta-analyses) effect sizes for
all studies in the review. In the absence of such a
table, reports of the distribution of sample sizes and
the between-studies variance component (for meta-
analyses) would be useful. We advocate computing
the variance component (not just the standard devia-
tion of the effect size estimates) as a descriptive sta-
tistic to describe heterogeneity of effects even if a
fixed-effects analysis is used. Reporting these vari-
ance components would provide important informa-
tion for computing power in future random-effects
analyses and (across reviews) would increase the
available knowledge about typical levels of effect size
heterogeneity.

In order for power analysis to be a scientific enter-
prise, determination of the parameters on which
power depends must be taken seriously. The use of
data from previous reviews or data from representa-
tive samples of studies considered for inclusion in the
review corresponds to sound practice in power analy-
sis in primary research. Informed professional judg-
ment may also be used, but it is difficult to evaluate its
accuracy a priori. Simply taking a wild guess and
inserting values into the formulas in this article is little
better than simply guessing the power.
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