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Abstract. In this paper we are describing and illustrating the Incremental Model
Reference Adaptive Polynomial Controllers Network (IMRAPCN). This algorithm is
a polynomial version of the conventional linear controllers network. Two important
properties of that system are: (1) its behaviour is clearly understandable because each
polynomial controller can be interpreted in linear terms and (2) it is capable of an
autonomous construction of its structure which involves the clustering of the validity
space. We illustrate its control capability according to the control of two highly non
linear systems. The results show that the IMRAPCN enables a very accurate control
of the non linear systems over a wide operating range. This system can be used for
the control of a possibly discontinuous non linear system and it is not affected by the
“stability-plasticity dilemma”. The use of polynomial controllers network enables a
much more accurate control of a non linear system than the one that can be obtained
by using linear controllers network. Finally, a polynomial controllers network of low
order (e.g. cubic polynomial) is much more flexible than a single polynomial controller.
This flexibility could make the polynomial controllers network adaptable to any kind
of system. From these features the IMRAPCN appears very promising as a powerful
and general algorithm for the control of non linear systems.

Keywords. Incremental controllers network; Adaptive control; Polynomial
controller; Model reference adaptive controller; Polynomial system identification

Introduction

The control of a non linear system is often achieved
through the use of a single linear controller; the sys-
tem is linearised around an equilibrium point and the
resulting controller is valid only for a local region of the
system. For example figure 1 depicts the non linearity of
a system according to a range of state values (e.g. angle
values). The linearisation of the system (plotted in dash

1 Note that this article is submitted to the TJC

line in fig. 1) shows that the controller will only be loc-
ally valid because the linearisation starts to diverge from
the non linear behaviour of the system when the angle is
more than 20 degrees. Thus, we can assume that beyond
the region of validity of the controller the performance
of the controller will be poor. This is a serious prob-
lem when the system is highly non linear. One standard
way to overcome the problem is to adapt continually the
identification (i.e. the linearisation) of the system and
thus the controller; this is conventional adaptive control.



Such a method can only be effective if the dynamic of the
system is changing smoothly and quite slowly through
time. Therefore, if the function is discontinuous adaptive
control can not be applied. In addition the slowness of
such an adaptation may result in a large transient error
(Narendra et al., 1995). Perhaps a more serious problem
is related to ”the basic design problem” for learning ma-
chine emphasised by (Carpenter and Grossberg, 1988):
the “stability-plasticity dilemma”: while the controller is
adapting to an operating region of the system it is for-
getting previous adaptations concerning other regions.
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Fig. 1. Local validity of a single linear controller. The
function f(angle) is depicted by a plain line and its
linear approximation is depicted by a dotted line.

A simple way to have a control system valid for the en-
tire system is to use a certain number of controllers each
one locally valid for a different operating region of the
system. A clustering of the state space of the system is
used in this study in order to select the valid control-
ler concerning a current operating point. In figure 2 six
local linearisations of the system are shown. Each one is
roughly valid for a different region of the state space (i.e.
the validity space) of the system. From these local linear-
isations of the system arise an accurate non linear model
of the system. Hence, if we design a controller for each
local identification we are very likely to obtain a multi
linear controllers system adapted for the control of the
entire non linear system. Following Johansen and Foss
(Johansen and Foss, 1992) and Murray-Smith and Hunt
(Murray-Smith and Hunt, 1995), we call such a multi
controllers system a “Controllers Network” (CN). This
controller will not suffer from the stability-plasticity di-
lemma since different controllers will be adapted for dif-
ferent regions of the system. Hence, and as highlighted
by (Narendra et al., 1995), this CN can be adapted for

different, discontinuities of the system. Another advant-
age of such a non linear controller is that its behaviour
is easily understandable because each controller is lin-
ear. The only requirement to apply that algorithm is to
know the relative order of the system.
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Fig. 2. Entire validity of a controllers network. The func-
tion f(angle) is depicted by a plain line and 6 local
linear approximations of this function are depicted
by different dash lines.

However, a very high (possibly infinite) number of lin-
ear controllers can be required to control accurately a
highly non linear system. This amount of linear control-
lers can be very significantly reduced by using polyno-
mial controllers even of as low order as cubic polyno-
mial. This reduction of the amount of controllers will
lead to a much more accurate identification and con-
trol of the system than the one obtained by using linear
functions. Moreover, although polynomial functions are
non linear we can apply to them most of the tools de-
veloped in linear theory. An important advantage is the
possibility to apply a linear regression method (e.g. least
squares method) to identify the parameters of a polyno-
mial function. Therefore, using polynomial controllers
(instead of using linear controllers) in controllers net-
work, might result in a powerful algorithm for the con-
trol of non linear systems. Qur purpose is to describe
such a polynomial controllers network. This algorithm
is the polynomial version of the Incremental Linear Con-
trollers Network we have recently developed (see (Ronco
and Gawthrop, 1996) or (Ronco and Gawthrop, 1997h)).

In the next section we briefly describe the Incremental
Controllers Network (ICN). This system consists of a
controllers Network and a Progressive Control Design
(PCD) algorithm. The controllers network is the clus-
tering method used to select the valid controller each



time. The PCD is used to construct incrementally the
controllers network. The core of our study concerns the
description of the Model Reference Adaptive Polynomial
Controller (MRAPC) which is the polynomial version
of the Model Reference Adaptive Controller (MRAC).
The MRAPC is the building block of the ICN. Hence
the ICN and the MRAPC together lead to the Incre-
mental Model Reference Adaptive Polynomial Control-
ler Network (IMRAPCN). We will illustrate the control
capability of IMRAPCNSs of different polynomial order
compared to single MRAC and single MRAPC. We will
conclude this study by discussing the advantages of this
method and our future work in this area.

Incremental Controllers network
Controllers Network

In this section we present a system capable of activ-
ating each time the valid controller. Different solutions
are possible. For simplicity, we propose here to use a
spatial clustering approach. As we discuss in (Ronco
et al., 1996a) and (Ronco and Gawthrop, 1997a), this
approach is most effective when the clustering space is
single dimensional and when only one system variable
leads to a non linear behaviour of the system. These
are very restrictive features. We use that method here
for simplicity and because we will consider in this paper
only first order systems. In this case the clustering can
be achieved on the single dimension axis shaped by the
system output at time ¢ — 1 y; ;. However, it is vital to
generalise our method for systems of any order and thus
it will be necessary to use different clustering criteria. In
(Narendra et al., 1995) the authors propose to select the
controller according to the best current model of the sys-
tem. The controller linked to that model is the one selec-
ted. This can obviously be a valid solution only if there
is a mapping from model to controller which preserves
the notion of “best”. In (Gawthrop and Ronco, 1996)
we propose an alternative: to use the a posteriori con-
trol error to select the valid controller. This control error
is determined according to previous values of that error.

The clustering of a single dimensional Euclidean space
can be achieved using a network of very simple basis
functions each one corresponding to a segment. You can
see in detail the components of such a basis function
in figure 3. Each basis function is characterised by a
centre and a “single dimension width”. In (1) you can see
that to determine the activity of a basis function, first
the absolute Fuclidean distance (’distance 1’) between
the centre of the basis function and the input pattern
"X’ is computed. The distance (’distance 2’) between
the boundary of the basis function and the pattern can

then be determined by subtracting the width of the basis
function to the 'distance 1’. The basis function the most
activated will correspond to the one having the smallest
"distance 2’ between the basis function (boundary) and
the pattern.

Distance2 = ||centre — X || — width (1)
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Fig. 3. Description of the components of the basis func-
tions used in that paper for the clustering of a single
dimension space. Two basis basis functions are de-
picted. Each one is composed of a center and a
width.

Now, by connecting one controller to each basis func-
tion we obtain a network of controllers. In this study we
chose to select one controller each time using a “winner
takes all” method. For each control error at time t-1, the
controller connected to the basis function the most ac-
tivated is selected . Hence, the output of the controllers
network (CN) corresponds to the output of the selected
controller.

Note that the interpolation between controllers outputs
is very smooth because the use of a polynomial function
even of very low order (e.g. cubic polynomial) enables a
very accurate local identification and control of the sys-
tem. Hence it is not necessary to perform a weighted sum
of the controllers’ output to obtain a smooth interpola-
tion between controllers, as did originally (Johansen and
Foss, 1992) when developing the local model network.

Let us now sketch the behaviour of the CN feedback
control system (see fig. 4). Note that by controller we
are not referring to the MRAC in particular because we
believe that other kinds of controllers (e.g. General Pre-
dictive Controller) could be used as the building block
of the CN. At the first stage of the CN feedback control,
the initial value of the system output y;_; is supplied to
the CN. We select the controller having its basis function
the most activated by the opearating point y;_;. This
controller inputs a control signal u;_; to the system ac-
cording to the control error e. From the new operating
point y; 1 the valid controller is selected. Thus, a shift
between controllers is achieved while the control error is
reduced towards zero.

Under some circumstances (as discussed by(Narendra et
al., 1995) and (Ronco and Gawthrop, 1997a)), it may be



more appropriate to base selection on a weighted average
of past values of y; but this is not pursued further here.
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Fig. 4. Block diagram of the controllers network closed
loop system.

Progressive control design

Tt is vital to find out the required number of controllers
and their region of validity in order to efficiently ap-
ply a controller network (see for further details (Ronco
and Gawthrop, 1996) (Ronco and Gawthrop, 1997h)).
We can find different attempts to solve that cluster-
ing problem in the literature (see for details pp43-46 in
(Murray-Smith, 1994)). We believe that the incremental
approach is the more appropriate. We are here propos-
ing to apply a “progressive control design” (PCD). The
underlying idea of this algorithm is to build on line the
controllers network according to the current control er-
ror. A sketch of the PCD algorithm is presented next
(see for further detail about the PCD (Ronco and Gaw-
throp, 1996) (Ronco and Gawthrop, 19970)).

[1] Initialisation of the system
[2] Selection of the valid controller according to y;_4
(i.e. the operating point).
[3] Activation of the system using the control input U
determined by the selected controller.
[4] Determination of the error between the actual out-
put of the system and the desired output.
[5] If that error is significant
(a) The basis function connected to the selected
controller is updated in order it covers the cur-
rent operating point and previous ones for which
that controller was valid.
(b) The parameters of the controller are updated
in order to fit the upgraded operating region.
[6] If the error is significant
(a) Addition of a new controller to the controllers
network
(b) Centreing of the basis function connected to
that new controller at the current operating
point
(c) Design of the controller according to the local
identification of the system around the current
operating point
(d) Back to stage [1]

[7] Back to stage [2] (while the system has not reached
the desired value (i.e. the goal)).

At the end of the PCD the CN will be structured with
the required number of controllers concerning the con-
trol problem and the region of validity of each controller
will be adequate. So, using the CN with the PCD we end
up with an Incremental Controllers Network (ICN) cap-
able of an autonomous construction of its own structure
and leading to a control adaptation of an entire non
linear system.

Model Reference Adaptive Polynomial Controller
Local Polynomial System Identification

Most of the controllers are designed more or less ac-
cording to the identification of the system. To keep the
advantages of using a linear controller (and thus linear
theory) a linear identification of the system must be per-
formed. Although polynomial functions are non linear
they belong to the class of function underlying a linear
combination of M specified functions of x. The general
form of a polynomial function is a function p defined for
all numbers x by

p(z) = anvzN +an_12V T 4+ L+ a1z + ag (2)

where N is a non negative integer and ag, a1, ..., an are
fixed real numbers (i.e. the parameters). If ay # 0 then
p(z) has degree N. We can see that p(z) is simply a
sum of non linear functions of x. Thus this function can
be rewritten as

p) =3 e 3

This characteristic enables any linear regression method
(e.g. least square) to be applied in order to identify the
parameters of the polynomial function. In fact, most of
the linear theory holds for this special case of linear
function. Thus, a polynomial function has the advant-
age of representing non linearly a function without the
drawback of other nonlinear functions.

To perform a polynomial identification of a MISO sys-
tem it is necessary and sufficient to have at one’s dispos-
ition (N + 1)M input-output data. M relates here the
number of input variables of the function to identify.
The general polynomial equation of a MISO system can
therefore be rewritten as

p(x) = Z > aya? (4)



In a control point of view, if we consider only SISO dy-
namics systems, M equals O % 2 the order of the system
O time the two system variables (i.e the control input U
and the first order system state y). Thus the polynomial
equation of a SISO open loop control system could be
described by

M 0
Yk = Z Z biug,_; + aijyi (5)
i=1 j=N
where k is the discrete time index. The problem of that
equation is that it makes the design of the controller
rather complex since the control input U is polynomial.
To avoid that complication it is much more reasonable
to assume that the control input has a linear effect on
the system. Although the local identification will be sim-
plified, we will end up with much accurate local iden-
tifications than the ones obtained by locally linearising
the system. In addition, when the control input U will
have effectivly a non linear impact on the system, the
local linearisation of the effect of U will only involve
an increase of controllers. In the context of the control-
lers network that increase of controllers should not make
much difference to the control quality.

Assuming that the effect of the control input U on the
system is linear, the number of data required to perform
the polynomial identification of the closed loop system
can be reduced to (N + 1) x O + O and the polynomial
equation of a SISO open loop control system can be
rewritten as

0 0
yk =Y biuk i Y aiyl_; (6)
i—1 i=N

Now to perform the polynomial identification it is ne-
cessary to know the system order. That can be usu-
ally known in advance. The problem in fact is to define
a priori the polynomial order O. Although polynomial
functions are known to be capable to model most of the
functions it is also known that a risk of severe oscillation
increases quickly according to the order of the polyno-
mial. To illustrate that phenomena we have ploted on
figure 5 the results obtained from different polynomial
approximations of the function f(z) = H—% on the in-
terval [—4,4]. 13 equally spaced points were chosen for
each approximation (they are symbolised by a '+’ in
each sub-plot). Each sub-plot depictes the function to
approximate by a plain line and the polynomial approx-
imation by a dotted line. The sub-plots intitle Polyl,
Poly3, Poly6 and Poly12 approximation are concerned
respectively by an approximation performed by a first
order, third order, sixth and twelve order polynomial
function of the form 4. You can first note that the ap-

proximation performed are not accurate at all. More im-
portantly, you can see that more the order of the poly-
nomial is high more the approximation is oscillating.
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Fig. 5. Plots of polynomial approximations of the func-
tion f(x) = ﬁ on the interval [—4, 4]. Each sub-
plot depictes the function to approximate by a plain
line and the polynomial approximation by a dot-
ted line. The sub-plots intitle Poly1l, Poly3, Poly6
and Poly12 approximation are concerned respect-
ively by an approximation performed by a first or-
der, third order, sixth and twelve order polynomial
function of the form 4.

In addition to this oscillation problem, when the func-
tions to identify are not smooth, polynomial functions
are not really suitable for the modelisation. Hence, as
emphase (Lancaster and Salkauskas, 1986) it is much
more efficient to use piecewise polynomial functions of
low order to obtain a very accurate and flexible fit of an
unknown function, rather than trying to find the single
polynomial function fitting the data. That constitutes
another argument for the use of a network of controllers
or models, since such a network performes a piecewise
approximation of a function. To illustrate that fact we
have use a Polynomial Model Network (PMN) to per-
form the identification of the function f(z) = # This
PMN is a CN composed of cubic polynomial models.
The results are shown in fig. 6. You can see that the
graph of pmn(z) matches perfectly the graph of f(z).
Only 5 controllers were required to obtain this perfect
identification. This identification is significantly better
than the one obtained by a 15th order polynomial (see
fig. 7). The identifications have been obtained using the
30 points '+’ dipected on each figure. The graphes have
been obtained using 100 points homogeneously spread
within x[—4;4]. This shows as well that the generalisa-
tion capability of the PMN is very good. A progressive
identification method, similar of the PCD, where used



to perform the clustering depected in the bottom of fig.
6.
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Fig. 6. Plot of the PMN identification of the function
flx) = ﬁ on the interval [—4,4]. f(z) is depicted
by a plain line and its PMN approximation by a
dotted line. The 30 points used for the identification
are depicted by a '+’. Finally, in the bottom of that
figure you can see the clustering used by the PMN.
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Fig. 7. Plot of the 15th order polynomial identification
of the function f(z) = # on the interval [—4, 4].
f(z) is depicted by a plain line and its PMN ap-
proximation by a dotted line. The 30 points used

for the identification are depicted by a '+’.

Note that an other advantage of using local models is
that the polynomial functions (that are indeed continu-
ous functions) can be bounded, simply by using bounded
basis function as a gaussian function. This bounded prop-
erty can be of great interest in cases of bounded systems,
that are widely spread especially in the field of chem-
istry.

Model Reference Adaptive Polynomial Controller

We would like to first note that though we are presenting
a Model Reference Adaptive Controller (MRAC) ver-
sion of the Polynomial Controllers Network (PCN) other
kinds of controllers could have been used, as for example,

the general predictive controller. Note also that we will
consider discrete time first order SISO systems during
the remainder of this paper. This is only for simplicity
because it is straightforward to generalise the current
first order discrete time Model Reference Adaptive Poly-
nomial Controller (MRAPC) to a continuous 2nd-3rd
order MRAPC.

A MRAC is a very intuitive way to design controllers.
The idea is to design the controller in order that it makes
the system tracking the output given by a predefined
model of the closed loop system i.e. “the model refer-
ence output” g (see fig. 8). Therefore this transient out-
put corresponds to the desired transient response of the
system defined by

Yy = byry + ArYr—1 (7)

where k is the time indice, ry is the control goal and y
is the system output. 8" = [b, a,] (with b, =1 —a,
to give y = r in the steady state) is the vector of the
parameters to set in order to define the desired transient
system output. Note that this transient model of the
closed loop system is linear rather than polynomial.
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Fig. 8. The model reference adaptive controller. The
controller is updated indirectly according to 8 (i.e.
the vector of parameters referring to the identifica-
tion of the system) and 6" (i.e. the given vector of
parameters defining the closed loop model).

For the design of the controller the closed loop system
has to be determined. This can be done indirectly by
first identifying the system. Referring to (6), each poly-
nomial local model of the system corresponds to the
following first order polynomial model

0
y (k) = bug_1 + Z a;jyi (8)

j=N

where N is the polynomial order.



Linear regression method can be applied to identify the
vector of parameters § = [1 b an ag]. We use
here the singular value decomposition (SVD) to identify
on line these parameters. To do so an iterative informa-
tion matrix S; (9) has to be built on line. The best fit in
a least squares sense is the vector corresponding to the
smallest singular value.

S =Sr 1+ Xp X[ (9)

where Xy = [yx  wug—1 yYr—1] is the vector of the vari-
ables of the local model (8) at time k.

Each first order polynomial controller is defined by

0

up_1 = Kirg_1 + Z K7+2y)z,1 (10)
j=N

where K, Kx + 2 are the parameters determined
from the equalisation of the closed loop system (11) and
the reference closed loop model (7). From that equalisa-
tion we obtain ky = b=, ky = %0 kg = L0y = 22
e by +2= % As you can see, since (7) is a linear
equation and (11) a polynomial one, cancellations oc-
cur except for the two parameters related to u;_; and
yt—1. These cancellations do not disrupt the control of
the system.

0
ye = bEirp— + ) (a; — bKjpa)yl . (11)

j=N

Ilustration

In order to clarify and illustrate the behaviour of the
IMRAPCN we have decided to use systems where the
control difficulty is related to their non linearity rather
than to their dynamics. Thus we are going to consider
the control of first order systems. The first system will
be used to demonstrate the advantage of the IMRAPCN
compared essentially to single MRAC and IMRACN (i.e.
the linear version of the IMRAPCN). The second system
will be used to show how low order IMRAPCN are much
more suitable than single MRAPC.

IMRAPCN wversus single and multi MRAC

In order to show the efficiency of the control IMRAPCN
compared to single MRAC and IMRACN, we are going
to use the following first order discrete time system

Yk = sin (yg—1) + Ur—1 (12)

This system will have to be controlled in order to reach
yr = m being initialised at yo = 0. The non linearity
of that system corresponds to figure 9. As you can see
this is a rather difficult problem since this function is
non-monotonic.
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Fig. 9. Plot of the non linearity of the open loop system
f (y) = sin (y) according to values of system output
y comprised between 0 and 7.

The controller will have to track the closed loop model
(7) where a, = 0.05 and b, = 0.95. We use a very low
slope for the desired transient system output in order
that most of the states y; of the system are covered.
Note that this is the simplest method to do so but there
are other ways to cover the entire control possibilities.
For example this can be achieved by initialising the sys-
tem at different positions each time (as we did in (Ronco
et al., 1996b) and (Ronco et al., 1996¢)) and/or by chan-
ging each time the slope of the closed loop model (7).

Before starting the IMRAPCN it is necessary to set the
acceptable control error related to the “model reference
error” €.

ek = U1, — Yl (13)

This error € is used to determine whether or not the
controller currently selected is correctly controlling the
system. If that error is more than a predefined value
a new controller is added to the controllers network
(CN). Thus a small error requirement will involve the
creation of many controllers. Note that to have many or
just a few controllers composing the CN is not an issue.
The computing time involved by a CN composed of a
huge number of controllers is the same as one involved
by a CN composed of few controllers because only one
controller is activated each time. In addition, the time
involved by the selection of the valid controller is not
significant since that selection implies very few compu-
tations. Thus it is always better to ask for a very small
er in order that the system output y; tracks as closely
as possible the “real model reference output” g (10).



gk =b,r + argkfl (14)

We require for the control of system (2) to never make an
error € up to 0.001 in order to obtained a very accurate
control of the system.

Before presenting the results obtain with IMRAPCNs
of different polynomial orders let us consider the res-
ults obtained by two single linear MRACSs, one having
a forcing term (i.e. a constant parameter) and the other
one not. From figure 10 you can clearly see that all
the results are very bad since all the MRAC’s graphs
are far from closely tracking the desired system output
graph. In particular, with no forcing term, the MRAC
never makes the system reache the desired output (see
MRAC’s graph). With a forcing term (see MRACI’s
graph) it tends to reach the desire output after 2500
sampling times which is around 25 times slower than
expected. In addition, the transient output of the sys-
tem control by MRACT is really not smooth. Further-
more, if we reinitialise the system and thus test again
the MRAC1 we notice that it behaves in a completely
different manner than previously. It is reaching the de-
sired output after very few sampling time (almost 15
times quicker than expected) and then hold the system
at that position. This change in behaviour can be inter-
preted according to the “stability-plasticity dilemma”.
At the end of the previous control adaptation the MRAC
became adapted for the last operating conditions y[3, 7]
and forgot its adaptation to previous operating condi-
tions. This is why, at the second iteration, the MRAC
seems only adapted for the very last operating condi-
tions and not at all for the previous ones (for more
details about “stability-plasticity dilemma” in adaptive
control see (Ronco and Gawthrop, 1996) or (Ronco and
Gawthrop, 1997b). Those results show clearly that single
MRAC can not be applied to systems significantly non
linear like (12).

It is now important to see what will be the efficiency
of the IMRAPCN for the control of (12). Thus we are
now going to show the result obtained by IMRAPCNs
of different polynomial orders. Each local close loop sys-
tem will be polynomials of the form of equation (11).
Since the control of the system is completely related to
its identification we are first going to present the res-
ults concerning the system identification of (12). Those
results are depicted in fig. 11. In each sub-plot of that
figure the graph of the system is represented by a plain
line and the graph of the model of that system is in
dotted line. The top left plot depicts the identification
of the system performed by the linear IMRAPCN. 35
models were required to obtain this identification. This
identification is really not accurate concerning the oper-
ating region y[1,2.5]. In that region almost each model

system output

—— Desired system output
—- MRAC output
MRAC1 output
* MRAC?2 output

. . .
0 50 100 150 200 250
sampling time

Fig. 10. Graph of the transient system output when
the system (12) is controlled by different kind of
MRAC: MRAC’s graph concerns the result ob-
tained by a single MRAC having no forcing term,;
MRACT’s graph is the result obtained by a single
MRAC having a forcing term; MRAC2’s graph is
the result obtained after a second control of the
system using the same controller (i.e. MRAC1)

fits only one input-output data. This explains why in
the clustering (shown in the bottom of that sub-plot)
the width of each basis function is so narrow. In fact,
to have a perfect identification of this region, it will be
necessary to have a rather high number of modeles (pos-
sibly infinite if we wanted to obtain a perfect identific-
ation). This problem of very local validity of a system
linearisation makes clear the necessity of using non lin-
ear functions as building blocks of a networks of models
or of controllers. This is the main reason why we are us-
ing here polynomial instead of linear functions. You can
see, from the sub-plot untitled Poly2 model, that using
simply a square IMRAPCN significantly reduced the re-
quired number of models to approximate that function.
Only seven models are required to obtain a very good
approximation of the system. What is interesting to no-
tice is that the most non linear part of the system y[1, 2]
is accuratly approximated by a single model. This makes
clear, that for the identification of non linear systems,
polynomials, even of very low order, are much more ap-
propriate than linear models. The bottom left sub-plot
untitled Poly3 model shows the same kind of results. In
this case the required number of models is reduced to
3. In fact a single model of a polynomial order equal
to 6 can accurately approximate the system (see right
bottom sub-plot untitled Poly6 model).

Now, concerning the control of system (12), the result
are shown in figure 12. You can see that, even for the
linear IMRAPCN, the control performed by any IM-
RAPCN is perfect, since for each case, the actual sys-
tem output matches perfectly the desired system out-



Polyl model Poly2 model
1
0.8
s _ 06
] ]
0.4
0.2
Ot H LLELTETTTTTHIFA A Ot A e bt
0 1 2 3 0 1 2
y y
Poly3 model Poly6 model
1 1
0.8 0.8
_06 _06
<) =)
o4 o4
0.2 0.2
0 i I 0 ;
0 1 2 3 0 1 2

Poly1 control

Poly2 control

system output
=
ul = ul N

o

system output

o

50 100 150
sampling time
Poly3 control

200

50 100 150 200
sampling time
Poly6 control

system output
=
u LAl N

o

system output

o §
o

50 100 150
sampling time

200

50 100 150 200
sampling time

Fig. 11. Plot of the system identifications performed by
a linear polynomial model network (see plot Polyl
model), a square polynomial model network (see
plot Poly2 model), a cubic polynomial model net-
work (see plot Poly3 model) and a 6th order poly-
nomial model network (see plot Poly6 model). In
each of the sub-plots the system is depicted by a
plain line and the model of the system is depicted
by a dotted line. In the bottom of each sub-plot is
depicted the clustering achieved by each polynomial
controllers network.

put. Compared to the very poor control performances
we obtained with single MRACs (see fig. 10) IMRAPCN
appears to be a powerful method for the control of non
linear systems.

We must point out that those results were obtained by
controlling the same system, always initialised at the
same point and with the same closed loop model. Hence
no interpolation property was tested, since the same
data points were involved each time. It would have been
different, if noise was included in the system, or simply,
if we had tested the control interpolation of each TM-
RAPCN by using, at the end of the PCD, other para-
meters determining the closed loop model. We have done
the latter interpolation test by making each controller
tracking a new closed loop model (7) defined by a, =
0.1 and b, = 0.9 after having designed each controller
for the tracking of (7) with a, = 0.05 and b, = 0.95.
We obtained the same perfect control as in figure 12 for
all the IMRAPCN but the linear IMRAPCN. For the
linear IMRAPCN new controllers were requiered in or-
der to control new situations involved by the new closed
loop model (7). This means that the very local valid-
ity of each linear controller can involve the creation of
a new controller for each new situation. Hence, such a
linear controllers network, due to its poor generalisation
capability, is not really appropriate for the control of a

Fig. 12. Plots of the transient system output obtained
by using respectively a linear IMRAPCN (see plot
Polyl control), a square IMRAPCN (see plot Poly?2
control), a cubic IMRAPCN (see plot Poly3 con-
trol) and a 6th order IMRAPCN (see plot Poly6
control). In each of the sub-plots the transient de-
sired system output is depicted by a plain line and
the transient actual system output is depicted by a
dotted line.

highly non linear system. This certainly justifies the use
of IMRAPCN of higher order than one.

Low order IMRAPCN versus high order MRAPC

In this section we want to illustrate the ability of a IM-
RAPCN to control accurately a system obviously not
suitable for a polynomial approximation. Such a system
follows:

Uk = lyr—1| + Ur (15)

This system will have to be controlled in order to reach
yr = 1 being initialised at yo = —1. The behaviour of
that system corresponds to figure 13. As you can see,
this is a difficult approximation problem for a polyno-
mial function, since the system behaves linearly except
for a sharp change of sign that occurs at y = 0.

The first point to raise is that a polynomial of low order
can approximate very accurately a linear system. That
is due to the linear regression method used. At least,
least square methods and the SVD, are capable of find-
ing out that only the first order polynomial is relevant
in the equation and thus, that the rest of parameters,
related to higher order polynomials, must be equalised
to 0. This is why we have obtained perfect identifica-
tions of system (15) using low order IMRAPCN (see
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Fig. 13. Plot of the non linearity of the open loop system
f(y) = |y| according to values of system output y
comprised between -1 and 1.

the sub-plot untitled Polyl model in figure 14) and cu-
bic IMRAPCN (see sub-plot untitled Poly3 model in
figure 14). Each time only two models were required.
The clustering achieved by each IMRAPCN is shown on
the bottom of each sub-plot in fig. 14.
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Fig. 14. Plot of the system identifications performed by
a linear polynomial model network (see plot Polyl
model) and a cubic polynomial model network (see
plot Poly3 model). In each of the sub-plots the sys-
tem is depicted in plain line and the model of the
system is depicted in dotted line. In the bottom of
each sub-plot is depicted the clustering achieved by
each polynomial controllers network.

The control of the system achieved by the linear and cu-
bic polynomial is perfect as well (see the two sub-plots
in the top of fig. 15). This is not the case of the con-
trol achieved by a single MRAC (see the bottom left
sub-plot of fig. 15). The change of sign is so sharp that
the controller makes the system reach 5000000 instead
of 0 when the change of sign occurs. It eventually ad-

apts itself to the new situation but it is much too late
since the transient system output is far from satisfact-
ory. If you make that same controller (now adapted for
the operating region y[0, 1]) control again the system ini-
tialised at yo = —1, an important error occurs making
the system reach the desired output in almost one step
(see the bottom right sub-plot of fig. 15). This shows
again that single adaptive controllers are defeated by
the “stability-plasticity dilemna”.
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Fig. 15. Plots of the transient system output obtained
by using respectively a linear IMRAPCN (see plot
Poly1 control), a cubic IMRAPCN (see plot Poly3
control), a single MRAC (see plot MRAC control)
and the same MRAC just mentioned but after hav-
ing already controlled the system 15. In each of the
sub-plot the transient desired system output is de-
picted in plain line and the transient actual system
output is depicted in dotted line.

We have tried as well to adapt single polynomial MRACs
of high order for the control of system (15). We could not
find a solution although perhaps one exists. That shows
anyway that, for the control of non linear systems, it is
much more suitable to use IMRAPCN of low order than
trying to adapt a single polynomial MRAC that perhaps
does not even exist.

Conclusion

In this paper we have described and illustrated the IM-
RAPCN which is the polynomial version of the ILCN
we have recently developed (see (Ronco and Gawthrop,
1996) and (Ronco and Gawthrop, 19976)). The result
obtained illustrate the powerful capability of the IM-
RAPCN:



e It enables a very accurate control of a non linear
system over a wide operating range.

e Its behaviour is clearly understandable because each
polynomial controller can be interpreted in linear
terms.

e It is not affected by the “stability-plasticity dilem-
ma”.

e It is capable of an autonomous construction of its
structure which involves the clustering of the valid-
ity space.

Our contribution is to develop a polynomial version of
the conventional linear controllers network. We have
seen that the use of polynomial controllers network en-
ables a much more accurate control of a non linear sys-
tem than the one that can be obtained by using linear
controllers network. In addition, a polynomial control-
lers network of law order (e.g. cubic polynomial) is much
more flexible than a single polynomial controller. This
flexibility makes the polynomial controllers network ad-
aptable to any kind of system. A single polynomial con-
troller does not have this powerful adaptation capability.
From these features the IMRAPCN appears very prom-
ising as a powerful and general algorithm for the control
of non linear systems.

This introductory paper makes two simplifying assump-
tions:

(1) the system is set in discrete-time and
(2) the system is first order.

We believe that both restrictions can be removed. One
promising way forward to remove the second simpli-
fication is to cluster on quantities which remain one-
dimensional for high-order system; for example reference-
model error.

Further work will consider the use of other kinds of con-
trollers than the MRAC as building block of the poly-
nomial controllers network. One potential candidate is
the general predictive controller.
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