
INCREMENTAL MODEL REFERENCE ADAPTIVE POLYNOMIALCONTROLLERS NETWORK 1Eric Ronco and Peter J. GawthropTechnical Report CSC-96013Centre for System and ControlUniversity of Glasgowericr, peterg @mech.gla.ac.ukAbstract. In this paper we are describing and illustrating the Incremental ModelReference Adaptive Polynomial Controllers Network (IMRAPCN). This algorithm isa polynomial version of the conventional linear controllers network. Two importantproperties of that system are: (1) its behaviour is clearly understandable because eachpolynomial controller can be interpreted in linear terms and (2) it is capable of anautonomous construction of its structure which involves the clustering of the validityspace. We illustrate its control capability according to the control of two highly nonlinear systems. The results show that the IMRAPCN enables a very accurate controlof the non linear systems over a wide operating range. This system can be used forthe control of a possibly discontinuous non linear system and it is not a�ected by the\stability-plasticity dilemma". The use of polynomial controllers network enables amuch more accurate control of a non linear system than the one that can be obtainedby using linear controllers network. Finally, a polynomial controllers network of loworder (e.g. cubic polynomial) is much more exible than a single polynomial controller.This exibility could make the polynomial controllers network adaptable to any kindof system. From these features the IMRAPCN appears very promising as a powerfuland general algorithm for the control of non linear systems.Keywords. Incremental controllers network; Adaptive control; Polynomialcontroller; Model reference adaptive controller; Polynomial system identi�cationIntroductionThe control of a non linear system is often achievedthrough the use of a single linear controller; the sys-tem is linearised around an equilibrium point and theresulting controller is valid only for a local region of thesystem. For example �gure 1 depicts the non linearity ofa system according to a range of state values (e.g. anglevalues). The linearisation of the system (plotted in dash1 Note that this article is submitted to the IJC
line in �g. 1) shows that the controller will only be loc-ally valid because the linearisation starts to diverge fromthe non linear behaviour of the system when the angle ismore than 20 degrees. Thus, we can assume that beyondthe region of validity of the controller the performanceof the controller will be poor. This is a serious prob-lem when the system is highly non linear. One standardway to overcome the problem is to adapt continually theidenti�cation (i.e. the linearisation) of the system andthus the controller; this is conventional adaptive control.



Such a method can only be e�ective if the dynamic of thesystem is changing smoothly and quite slowly throughtime. Therefore, if the function is discontinuous adaptivecontrol can not be applied. In addition the slowness ofsuch an adaptation may result in a large transient error(Narendra et al., 1995). Perhaps a more serious problemis related to "the basic design problem" for learning ma-chine emphasised by (Carpenter and Grossberg, 1988):the \stability-plasticity dilemma": while the controller isadapting to an operating region of the system it is for-getting previous adaptations concerning other regions.
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Fig. 1. Local validity of a single linear controller. Thefunction f(angle) is depicted by a plain line and itslinear approximation is depicted by a dotted line.A simple way to have a control system valid for the en-tire system is to use a certain number of controllers eachone locally valid for a di�erent operating region of thesystem. A clustering of the state space of the system isused in this study in order to select the valid control-ler concerning a current operating point. In �gure 2 sixlocal linearisations of the system are shown. Each one isroughly valid for a di�erent region of the state space (i.e.the validity space) of the system. From these local linear-isations of the system arise an accurate non linear modelof the system. Hence, if we design a controller for eachlocal identi�cation we are very likely to obtain a multilinear controllers system adapted for the control of theentire non linear system. Following Johansen and Foss(Johansen and Foss, 1992) and Murray-Smith and Hunt(Murray-Smith and Hunt, 1995), we call such a multicontrollers system a \Controllers Network" (CN). Thiscontroller will not su�er from the stability-plasticity di-lemma since di�erent controllers will be adapted for dif-ferent regions of the system. Hence, and as highlightedby (Narendra et al., 1995), this CN can be adapted for

di�erent discontinuities of the system. Another advant-age of such a non linear controller is that its behaviouris easily understandable because each controller is lin-ear. The only requirement to apply that algorithm is toknow the relative order of the system.
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LC1 LC2 LC3 LC4 LC5 LC6Fig. 2. Entire validity of a controllers network. The func-tion f(angle) is depicted by a plain line and 6 locallinear approximations of this function are depictedby di�erent dash lines.However, a very high (possibly in�nite) number of lin-ear controllers can be required to control accurately ahighly non linear system. This amount of linear control-lers can be very signi�cantly reduced by using polyno-mial controllers even of as low order as cubic polyno-mial. This reduction of the amount of controllers willlead to a much more accurate identi�cation and con-trol of the system than the one obtained by using linearfunctions. Moreover, although polynomial functions arenon linear we can apply to them most of the tools de-veloped in linear theory. An important advantage is thepossibility to apply a linear regression method (e.g. leastsquares method) to identify the parameters of a polyno-mial function. Therefore, using polynomial controllers(instead of using linear controllers) in controllers net-work, might result in a powerful algorithm for the con-trol of non linear systems. Our purpose is to describesuch a polynomial controllers network. This algorithmis the polynomial version of the Incremental Linear Con-trollers Network we have recently developed (see (Roncoand Gawthrop, 1996) or (Ronco and Gawthrop, 1997b)).In the next section we briey describe the IncrementalControllers Network (ICN). This system consists of acontrollers Network and a Progressive Control Design(PCD) algorithm. The controllers network is the clus-tering method used to select the valid controller each



time. The PCD is used to construct incrementally thecontrollers network. The core of our study concerns thedescription of the Model Reference Adaptive PolynomialController (MRAPC) which is the polynomial versionof the Model Reference Adaptive Controller (MRAC).The MRAPC is the building block of the ICN. Hencethe ICN and the MRAPC together lead to the Incre-mental Model Reference Adaptive Polynomial Control-ler Network (IMRAPCN). We will illustrate the controlcapability of IMRAPCNs of di�erent polynomial ordercompared to single MRAC and single MRAPC. We willconclude this study by discussing the advantages of thismethod and our future work in this area.Incremental Controllers networkControllers NetworkIn this section we present a system capable of activ-ating each time the valid controller. Di�erent solutionsare possible. For simplicity, we propose here to use aspatial clustering approach. As we discuss in (Roncoet al., 1996a) and (Ronco and Gawthrop, 1997a), thisapproach is most e�ective when the clustering space issingle dimensional and when only one system variableleads to a non linear behaviour of the system. Theseare very restrictive features. We use that method herefor simplicity and because we will consider in this paperonly �rst order systems. In this case the clustering canbe achieved on the single dimension axis shaped by thesystem output at time t� 1 yt�1. However, it is vital togeneralise our method for systems of any order and thusit will be necessary to use di�erent clustering criteria. In(Narendra et al., 1995) the authors propose to select thecontroller according to the best current model of the sys-tem. The controller linked to that model is the one selec-ted. This can obviously be a valid solution only if thereis a mapping from model to controller which preservesthe notion of \best". In (Gawthrop and Ronco, 1996)we propose an alternative: to use the a posteriori con-trol error to select the valid controller. This control erroris determined according to previous values of that error.The clustering of a single dimensional Euclidean spacecan be achieved using a network of very simple basisfunctions each one corresponding to a segment. You cansee in detail the components of such a basis functionin �gure 3. Each basis function is characterised by acentre and a \single dimension width". In (1) you can seethat to determine the activity of a basis function, �rstthe absolute Euclidean distance ('distance 1') betweenthe centre of the basis function and the input pattern'X ' is computed. The distance ('distance 2') betweenthe boundary of the basis function and the pattern can

then be determined by subtracting the width of the basisfunction to the 'distance 1'. The basis function the mostactivated will correspond to the one having the smallest'distance 2' between the basis function (boundary) andthe pattern.Distance2 = jjcentre�X jj � width (1)
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Distance 2Fig. 3. Description of the components of the basis func-tions used in that paper for the clustering of a singledimension space. Two basis basis functions are de-picted. Each one is composed of a center and awidth.Now, by connecting one controller to each basis func-tion we obtain a network of controllers. In this study wechose to select one controller each time using a \winnertakes all" method. For each control error at time t-1, thecontroller connected to the basis function the most ac-tivated is selected . Hence, the output of the controllersnetwork (CN) corresponds to the output of the selectedcontroller.Note that the interpolation between controllers outputsis very smooth because the use of a polynomial functioneven of very low order (e.g. cubic polynomial) enables avery accurate local identi�cation and control of the sys-tem. Hence it is not necessary to perform a weighted sumof the controllers' output to obtain a smooth interpola-tion between controllers, as did originally (Johansen andFoss, 1992) when developing the local model network.Let us now sketch the behaviour of the CN feedbackcontrol system (see �g. 4). Note that by controller weare not referring to the MRAC in particular because webelieve that other kinds of controllers (e.g. General Pre-dictive Controller) could be used as the building blockof the CN. At the �rst stage of the CN feedback control,the initial value of the system output yt�1 is supplied tothe CN. We select the controller having its basis functionthe most activated by the opearating point yt�1. Thiscontroller inputs a control signal ut�1 to the system ac-cording to the control error e. From the new operatingpoint yt�1 the valid controller is selected. Thus, a shiftbetween controllers is achieved while the control error isreduced towards zero.Under some circumstances (as discussed by(Narendra etal., 1995) and (Ronco and Gawthrop, 1997a)), it may be



more appropriate to base selection on a weighted averageof past values of y; but this is not pursued further here.
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yt-1Fig. 4. Block diagram of the controllers network closedloop system.Progressive control designIt is vital to �nd out the required number of controllersand their region of validity in order to e�ciently ap-ply a controller network (see for further details (Roncoand Gawthrop, 1996) (Ronco and Gawthrop, 1997b)).We can �nd di�erent attempts to solve that cluster-ing problem in the literature (see for details pp43-46 in(Murray-Smith, 1994)). We believe that the incrementalapproach is the more appropriate. We are here propos-ing to apply a \progressive control design" (PCD). Theunderlying idea of this algorithm is to build on line thecontrollers network according to the current control er-ror. A sketch of the PCD algorithm is presented next(see for further detail about the PCD (Ronco and Gaw-throp, 1996) (Ronco and Gawthrop, 1997b)).[1] Initialisation of the system[2] Selection of the valid controller according to yt�1(i.e. the operating point).[3] Activation of the system using the control input Udetermined by the selected controller.[4] Determination of the error between the actual out-put of the system and the desired output.[5] If that error is signi�cant(a) The basis function connected to the selectedcontroller is updated in order it covers the cur-rent operating point and previous ones for whichthat controller was valid.(b) The parameters of the controller are updatedin order to �t the upgraded operating region.[6] If the error is signi�cant(a) Addition of a new controller to the controllersnetwork(b) Centreing of the basis function connected tothat new controller at the current operatingpoint(c) Design of the controller according to the localidenti�cation of the system around the currentoperating point(d) Back to stage [1]

[7] Back to stage [2] (while the system has not reachedthe desired value (i.e. the goal)).At the end of the PCD the CN will be structured withthe required number of controllers concerning the con-trol problem and the region of validity of each controllerwill be adequate. So, using the CN with the PCD we endup with an Incremental Controllers Network (ICN) cap-able of an autonomous construction of its own structureand leading to a control adaptation of an entire nonlinear system.Model Reference Adaptive Polynomial ControllerLocal Polynomial System Identi�cationMost of the controllers are designed more or less ac-cording to the identi�cation of the system. To keep theadvantages of using a linear controller (and thus lineartheory) a linear identi�cation of the system must be per-formed. Although polynomial functions are non linearthey belong to the class of function underlying a linearcombination of M speci�ed functions of x. The generalform of a polynomial function is a function p de�ned forall numbers x byp (x) = aNxN + aN�1xN�1 + :::+ a1x+ a0 (2)where N is a non negative integer and a0; a1; :::; aN are�xed real numbers (i.e. the parameters). If aN 6= 0 thenp (x) has degree N. We can see that p (x) is simply asum of non linear functions of x. Thus this function canbe rewritten as p (x) = 0Xj=N ajxj (3)This characteristic enables any linear regression method(e.g. least square) to be applied in order to identify theparameters of the polynomial function. In fact, most ofthe linear theory holds for this special case of linearfunction. Thus, a polynomial function has the advant-age of representing non linearly a function without thedrawback of other nonlinear functions.To perform a polynomial identi�cation of a MISO sys-tem it is necessary and su�cient to have at one's dispos-ition (N + 1)M input-output data. M relates here thenumber of input variables of the function to identify.The general polynomial equation of a MISO system cantherefore be rewritten asp (x) = MXi=1 0Xj=N aijxj (4)



In a control point of view, if we consider only SISO dy-namics systems, M equals O � 2 the order of the systemO time the two system variables (i.e the control input Uand the �rst order system state y). Thus the polynomialequation of a SISO open loop control system could bedescribed by yk = MXi=1 0Xj=N biujk�i + aijyjk�i (5)where k is the discrete time index. The problem of thatequation is that it makes the design of the controllerrather complex since the control input U is polynomial.To avoid that complication it is much more reasonableto assume that the control input has a linear e�ect onthe system. Although the local identi�cation will be sim-pli�ed, we will end up with much accurate local iden-ti�cations than the ones obtained by locally linearisingthe system. In addition, when the control input U willhave e�ectivly a non linear impact on the system, thelocal linearisation of the e�ect of U will only involvean increase of controllers. In the context of the control-lers network that increase of controllers should not makemuch di�erence to the control quality.Assuming that the e�ect of the control input U on thesystem is linear, the number of data required to performthe polynomial identi�cation of the closed loop systemcan be reduced to (N + 1) �O + O and the polynomialequation of a SISO open loop control system can berewritten as yk = OXi=1 biuk�i 0Xj=N aijyjk�i (6)Now to perform the polynomial identi�cation it is ne-cessary to know the system order. That can be usu-ally known in advance. The problem in fact is to de�nea priori the polynomial order O. Although polynomialfunctions are known to be capable to model most of thefunctions it is also known that a risk of severe oscillationincreases quickly according to the order of the polyno-mial. To illustrate that phenomena we have ploted on�gure 5 the results obtained from di�erent polynomialapproximations of the function f(x) = 11+x2 on the in-terval [�4; 4]. 13 equally spaced points were chosen foreach approximation (they are symbolised by a '+' ineach sub-plot). Each sub-plot depictes the function toapproximate by a plain line and the polynomial approx-imation by a dotted line. The sub-plots intitle Poly1,Poly3, Poly6 and Poly12 approximation are concernedrespectively by an approximation performed by a �rstorder, third order, sixth and twelve order polynomialfunction of the form 4. You can �rst note that the ap-

proximation performed are not accurate at all. More im-portantly, you can see that more the order of the poly-nomial is high more the approximation is oscillating.
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Fig. 5. Plots of polynomial approximations of the func-tion f(x) = 11+x2 on the interval [�4; 4]. Each sub-plot depictes the function to approximate by a plainline and the polynomial approximation by a dot-ted line. The sub-plots intitle Poly1, Poly3, Poly6and Poly12 approximation are concerned respect-ively by an approximation performed by a �rst or-der, third order, sixth and twelve order polynomialfunction of the form 4.In addition to this oscillation problem, when the func-tions to identify are not smooth, polynomial functionsare not really suitable for the modelisation. Hence, asemphase (Lancaster and Salkauskas, 1986) it is muchmore e�cient to use piecewise polynomial functions oflow order to obtain a very accurate and exible �t of anunknown function, rather than trying to �nd the singlepolynomial function �tting the data. That constitutesanother argument for the use of a network of controllersor models, since such a network performes a piecewiseapproximation of a function. To illustrate that fact wehave use a Polynomial Model Network (PMN) to per-form the identi�cation of the function f(x) = 11+x2 . ThisPMN is a CN composed of cubic polynomial models.The results are shown in �g. 6. You can see that thegraph of pmn(x) matches perfectly the graph of f(x).Only 5 controllers were required to obtain this perfectidenti�cation. This identi�cation is signi�cantly betterthan the one obtained by a 15th order polynomial (see�g. 7). The identi�cations have been obtained using the30 points '+' dipected on each �gure. The graphes havebeen obtained using 100 points homogeneously spreadwithin x[�4; 4]. This shows as well that the generalisa-tion capability of the PMN is very good. A progressiveidenti�cation method, similar of the PCD, where used



to perform the clustering depected in the bottom of �g.6.
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Fig. 6. Plot of the PMN identi�cation of the functionf(x) = 11+x2 on the interval [�4; 4]. f(x) is depictedby a plain line and its PMN approximation by adotted line. The 30 points used for the identi�cationare depicted by a '+'. Finally, in the bottom of that�gure you can see the clustering used by the PMN.
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Fig. 7. Plot of the 15th order polynomial identi�cationof the function f(x) = 11+x2 on the interval [�4; 4].f(x) is depicted by a plain line and its PMN ap-proximation by a dotted line. The 30 points usedfor the identi�cation are depicted by a '+'.Note that an other advantage of using local models isthat the polynomial functions (that are indeed continu-ous functions) can be bounded, simply by using boundedbasis function as a gaussian function. This bounded prop-erty can be of great interest in cases of bounded systems,that are widely spread especially in the �eld of chem-istry.Model Reference Adaptive Polynomial ControllerWe would like to �rst note that though we are presentinga Model Reference Adaptive Controller (MRAC) ver-sion of the Polynomial Controllers Network (PCN) otherkinds of controllers could have been used, as for example,

the general predictive controller. Note also that we willconsider discrete time �rst order SISO systems duringthe remainder of this paper. This is only for simplicitybecause it is straightforward to generalise the current�rst order discrete time Model Reference Adaptive Poly-nomial Controller (MRAPC) to a continuous 2nd-3rdorder MRAPC.A MRAC is a very intuitive way to design controllers.The idea is to design the controller in order that it makesthe system tracking the output given by a prede�nedmodel of the closed loop system i.e. \the model refer-ence output" y (see �g. 8). Therefore this transient out-put corresponds to the desired transient response of thesystem de�ned by yk = brrk + aryk�1 (7)where k is the time indice, rk is the control goal and yis the system output. �r = [br ar] (with br = 1 � arto give y = r in the steady state) is the vector of theparameters to set in order to de�ne the desired transientsystem output. Note that this transient model of theclosed loop system is linear rather than polynomial.
e Systemr ut-1 ytCont.+-

Cont.
design θ

θr +

-
e

yt

Open loop
Model

Model
Close loop

θr

Fig. 8. The model reference adaptive controller. Thecontroller is updated indirectly according to � (i.e.the vector of parameters referring to the identi�ca-tion of the system) and �r (i.e. the given vector ofparameters de�ning the closed loop model).For the design of the controller the closed loop systemhas to be determined. This can be done indirectly by�rst identifying the system. Referring to (6), each poly-nomial local model of the system corresponds to thefollowing �rst order polynomial modely (k) = buk�1 + 0Xj=N ajyjk�1 (8)where N is the polynomial order.



Linear regression method can be applied to identify thevector of parameters � = [1 b aN ::: a0]. We usehere the singular value decomposition (SVD) to identifyon line these parameters. To do so an iterative informa-tion matrix St (9) has to be built on line. The best �t ina least squares sense is the vector corresponding to thesmallest singular value.S = Sk�1 +XkXTk (9)where Xk = [yk uk�1 yk�1] is the vector of the vari-ables of the local model (8) at time k.Each �rst order polynomial controller is de�ned byuk�1 = K1rt�1 + 0Xj=NKj+2yjk�1 (10)where K1 ::: KN + 2 are the parameters determinedfrom the equalisation of the closed loop system (11) andthe reference closed loop model (7). From that equalisa-tion we obtain k1 = brb , k2 = a0b , k3 = a1�arb , k4 = a2b ,..., kN + 2 = aN+2b . As you can see, since (7) is a linearequation and (11) a polynomial one, cancellations oc-cur except for the two parameters related to ut�1 andyt�1. These cancellations do not disrupt the control ofthe system.yk = bK1rk�1 + 0Xj=N(aj � bKj+2)yjk�1 (11)IllustrationIn order to clarify and illustrate the behaviour of theIMRAPCN we have decided to use systems where thecontrol di�culty is related to their non linearity ratherthan to their dynamics. Thus we are going to considerthe control of �rst order systems. The �rst system willbe used to demonstrate the advantage of the IMRAPCNcompared essentially to single MRAC and IMRACN (i.e.the linear version of the IMRAPCN). The second systemwill be used to show how low order IMRAPCN are muchmore suitable than single MRAPC.IMRAPCN versus single and multi MRACIn order to show the e�ciency of the control IMRAPCNcompared to single MRAC and IMRACN, we are goingto use the following �rst order discrete time systemyk = sin (yk�1) + Uk�1 (12)

This system will have to be controlled in order to reachyk = � being initialised at y0 = 0. The non linearityof that system corresponds to �gure 9. As you can seethis is a rather di�cult problem since this function isnon-monotonic.
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Fig. 9. Plot of the non linearity of the open loop systemf (y) = sin (y) according to values of system outputy comprised between 0 and �.The controller will have to track the closed loop model(7) where ar = 0:05 and br = 0:95. We use a very lowslope for the desired transient system output in orderthat most of the states yk of the system are covered.Note that this is the simplest method to do so but thereare other ways to cover the entire control possibilities.For example this can be achieved by initialising the sys-tem at di�erent positions each time (as we did in (Roncoet al., 1996b) and (Ronco et al., 1996c)) and/or by chan-ging each time the slope of the closed loop model (7).Before starting the IMRAPCN it is necessary to set theacceptable control error related to the \model referenceerror" e. ek = jyk � ykj (13)This error e is used to determine whether or not thecontroller currently selected is correctly controlling thesystem. If that error is more than a prede�ned valuea new controller is added to the controllers network(CN). Thus a small error requirement will involve thecreation of many controllers. Note that to have many orjust a few controllers composing the CN is not an issue.The computing time involved by a CN composed of ahuge number of controllers is the same as one involvedby a CN composed of few controllers because only onecontroller is activated each time. In addition, the timeinvolved by the selection of the valid controller is notsigni�cant since that selection implies very few compu-tations. Thus it is always better to ask for a very smallek in order that the system output yk tracks as closelyas possible the \real model reference output" ŷk (10).



ŷk = brr + arŷk�1 (14)We require for the control of system (2) to never make anerror ek up to 0.001 in order to obtained a very accuratecontrol of the system.Before presenting the results obtain with IMRAPCNsof di�erent polynomial orders let us consider the res-ults obtained by two single linear MRACs, one havinga forcing term (i.e. a constant parameter) and the otherone not. From �gure 10 you can clearly see that allthe results are very bad since all the MRAC's graphsare far from closely tracking the desired system outputgraph. In particular, with no forcing term, the MRACnever makes the system reache the desired output (seeMRAC's graph). With a forcing term (see MRAC1'sgraph) it tends to reach the desire output after 2500sampling times which is around 25 times slower thanexpected. In addition, the transient output of the sys-tem control by MRAC1 is really not smooth. Further-more, if we reinitialise the system and thus test againthe MRAC1 we notice that it behaves in a completelydi�erent manner than previously. It is reaching the de-sired output after very few sampling time (almost 15times quicker than expected) and then hold the systemat that position. This change in behaviour can be inter-preted according to the \stability-plasticity dilemma".At the end of the previous control adaptation the MRACbecame adapted for the last operating conditions y[3; �]and forgot its adaptation to previous operating condi-tions. This is why, at the second iteration, the MRACseems only adapted for the very last operating condi-tions and not at all for the previous ones (for moredetails about \stability-plasticity dilemma" in adaptivecontrol see (Ronco and Gawthrop, 1996) or (Ronco andGawthrop, 1997b). Those results show clearly that singleMRAC can not be applied to systems signi�cantly nonlinear like (12).It is now important to see what will be the e�ciencyof the IMRAPCN for the control of (12). Thus we arenow going to show the result obtained by IMRAPCNsof di�erent polynomial orders. Each local close loop sys-tem will be polynomials of the form of equation (11).Since the control of the system is completely related toits identi�cation we are �rst going to present the res-ults concerning the system identi�cation of (12). Thoseresults are depicted in �g. 11. In each sub-plot of that�gure the graph of the system is represented by a plainline and the graph of the model of that system is indotted line. The top left plot depicts the identi�cationof the system performed by the linear IMRAPCN. 35models were required to obtain this identi�cation. Thisidenti�cation is really not accurate concerning the oper-ating region y[1; 2:5]. In that region almost each model
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Fig. 10. Graph of the transient system output whenthe system (12) is controlled by di�erent kind ofMRAC: MRAC's graph concerns the result ob-tained by a single MRAC having no forcing term;MRAC1's graph is the result obtained by a singleMRAC having a forcing term; MRAC2's graph isthe result obtained after a second control of thesystem using the same controller (i.e. MRAC1)�ts only one input-output data. This explains why inthe clustering (shown in the bottom of that sub-plot)the width of each basis function is so narrow. In fact,to have a perfect identi�cation of this region, it will benecessary to have a rather high number of modeles (pos-sibly in�nite if we wanted to obtain a perfect identi�c-ation). This problem of very local validity of a systemlinearisation makes clear the necessity of using non lin-ear functions as building blocks of a networks of modelsor of controllers. This is the main reason why we are us-ing here polynomial instead of linear functions. You cansee, from the sub-plot untitled Poly2 model, that usingsimply a square IMRAPCN signi�cantly reduced the re-quired number of models to approximate that function.Only seven models are required to obtain a very goodapproximation of the system. What is interesting to no-tice is that the most non linear part of the system y[1; 2]is accuratly approximated by a single model. This makesclear, that for the identi�cation of non linear systems,polynomials, even of very low order, are much more ap-propriate than linear models. The bottom left sub-plotuntitled Poly3 model shows the same kind of results. Inthis case the required number of models is reduced to3. In fact a single model of a polynomial order equalto 6 can accurately approximate the system (see rightbottom sub-plot untitled Poly6 model).Now, concerning the control of system (12), the resultare shown in �gure 12. You can see that, even for thelinear IMRAPCN, the control performed by any IM-RAPCN is perfect, since for each case, the actual sys-tem output matches perfectly the desired system out-
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Fig. 11. Plot of the system identi�cations performed bya linear polynomial model network (see plot Poly1model), a square polynomial model network (seeplot Poly2 model), a cubic polynomial model net-work (see plot Poly3 model) and a 6th order poly-nomial model network (see plot Poly6 model). Ineach of the sub-plots the system is depicted by aplain line and the model of the system is depictedby a dotted line. In the bottom of each sub-plot isdepicted the clustering achieved by each polynomialcontrollers network.put. Compared to the very poor control performanceswe obtained with single MRACs (see �g. 10) IMRAPCNappears to be a powerful method for the control of nonlinear systems.We must point out that those results were obtained bycontrolling the same system, always initialised at thesame point and with the same closed loop model. Henceno interpolation property was tested, since the samedata points were involved each time. It would have beendi�erent, if noise was included in the system, or simply,if we had tested the control interpolation of each IM-RAPCN by using, at the end of the PCD, other para-meters determining the closed loop model. We have donethe latter interpolation test by making each controllertracking a new closed loop model (7) de�ned by ar =0:1 and br = 0:9 after having designed each controllerfor the tracking of (7) with ar = 0:05 and br = 0:95.We obtained the same perfect control as in �gure 12 forall the IMRAPCN but the linear IMRAPCN. For thelinear IMRAPCN new controllers were requiered in or-der to control new situations involved by the new closedloop model (7). This means that the very local valid-ity of each linear controller can involve the creation ofa new controller for each new situation. Hence, such alinear controllers network, due to its poor generalisationcapability, is not really appropriate for the control of a
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Fig. 12. Plots of the transient system output obtainedby using respectively a linear IMRAPCN (see plotPoly1 control), a square IMRAPCN (see plot Poly2control), a cubic IMRAPCN (see plot Poly3 con-trol) and a 6th order IMRAPCN (see plot Poly6control). In each of the sub-plots the transient de-sired system output is depicted by a plain line andthe transient actual system output is depicted by adotted line.highly non linear system. This certainly justi�es the useof IMRAPCN of higher order than one.Low order IMRAPCN versus high order MRAPCIn this section we want to illustrate the ability of a IM-RAPCN to control accurately a system obviously notsuitable for a polynomial approximation. Such a systemfollows: yk = jyk�1j+ Uk�1 (15)This system will have to be controlled in order to reachyk = 1 being initialised at y0 = �1. The behaviour ofthat system corresponds to �gure 13. As you can see,this is a di�cult approximation problem for a polyno-mial function, since the system behaves linearly exceptfor a sharp change of sign that occurs at y = 0.The �rst point to raise is that a polynomial of low ordercan approximate very accurately a linear system. Thatis due to the linear regression method used. At least,least square methods and the SVD, are capable of �nd-ing out that only the �rst order polynomial is relevantin the equation and thus, that the rest of parameters,related to higher order polynomials, must be equalisedto 0. This is why we have obtained perfect identi�ca-tions of system (15) using low order IMRAPCN (see
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Fig. 13. Plot of the non linearity of the open loop systemf(y) = jyj according to values of system output ycomprised between -1 and 1.the sub-plot untitled Poly1 model in �gure 14) and cu-bic IMRAPCN (see sub-plot untitled Poly3 model in�gure 14). Each time only two models were required.The clustering achieved by each IMRAPCN is shown onthe bottom of each sub-plot in �g. 14.
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Fig. 14. Plot of the system identi�cations performed bya linear polynomial model network (see plot Poly1model) and a cubic polynomial model network (seeplot Poly3 model). In each of the sub-plots the sys-tem is depicted in plain line and the model of thesystem is depicted in dotted line. In the bottom ofeach sub-plot is depicted the clustering achieved byeach polynomial controllers network.The control of the system achieved by the linear and cu-bic polynomial is perfect as well (see the two sub-plotsin the top of �g. 15). This is not the case of the con-trol achieved by a single MRAC (see the bottom leftsub-plot of �g. 15). The change of sign is so sharp thatthe controller makes the system reach 5000000 insteadof 0 when the change of sign occurs. It eventually ad-

apts itself to the new situation but it is much too latesince the transient system output is far from satisfact-ory. If you make that same controller (now adapted forthe operating region y[0; 1]) control again the system ini-tialised at y0 = �1, an important error occurs makingthe system reach the desired output in almost one step(see the bottom right sub-plot of �g. 15). This showsagain that single adaptive controllers are defeated bythe \stability-plasticity dilemna".
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Fig. 15. Plots of the transient system output obtainedby using respectively a linear IMRAPCN (see plotPoly1 control), a cubic IMRAPCN (see plot Poly3control), a single MRAC (see plot MRAC control)and the same MRAC just mentioned but after hav-ing already controlled the system 15. In each of thesub-plot the transient desired system output is de-picted in plain line and the transient actual systemoutput is depicted in dotted line.We have tried as well to adapt single polynomial MRACsof high order for the control of system (15). We could not�nd a solution although perhaps one exists. That showsanyway that, for the control of non linear systems, it ismuch more suitable to use IMRAPCN of low order thantrying to adapt a single polynomial MRAC that perhapsdoes not even exist. ConclusionIn this paper we have described and illustrated the IM-RAPCN which is the polynomial version of the ILCNwe have recently developed (see (Ronco and Gawthrop,1996) and (Ronco and Gawthrop, 1997b)). The resultobtained illustrate the powerful capability of the IM-RAPCN:



� It enables a very accurate control of a non linearsystem over a wide operating range.� Its behaviour is clearly understandable because eachpolynomial controller can be interpreted in linearterms.� It is not a�ected by the \stability-plasticity dilem-ma".� It is capable of an autonomous construction of itsstructure which involves the clustering of the valid-ity space.Our contribution is to develop a polynomial version ofthe conventional linear controllers network. We haveseen that the use of polynomial controllers network en-ables a much more accurate control of a non linear sys-tem than the one that can be obtained by using linearcontrollers network. In addition, a polynomial control-lers network of law order (e.g. cubic polynomial) is muchmore exible than a single polynomial controller. Thisexibility makes the polynomial controllers network ad-aptable to any kind of system. A single polynomial con-troller does not have this powerful adaptation capability.From these features the IMRAPCN appears very prom-ising as a powerful and general algorithm for the controlof non linear systems.This introductory paper makes two simplifying assump-tions:(1) the system is set in discrete-time and(2) the system is �rst order.We believe that both restrictions can be removed. Onepromising way forward to remove the second simpli-�cation is to cluster on quantities which remain one-dimensional for high-order system; for example reference-model error.Further work will consider the use of other kinds of con-trollers than the MRAC as building block of the poly-nomial controllers network. One potential candidate isthe general predictive controller.1. REFERENCESCarpenter, G. A. and S. Grossberg (1988). The art ofadaptive pattern recognition by a self-organisingneural network. IEEE Computer 21(3), 77{88.Gawthrop, Peter J. and Eric Ronco (1996). Local modelnetworks and self-tuning predictive control. In:IEEE med.Johansen, T. A. and B. A. Foss (1992). A narmaxmodel representation for adaptive control based onlocal model. Modeling, Identi�cation, and control13(1), 25{39.
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