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Abstract—This paper proposes an adaptive neuro-fuzzy 

approach for designing robust power system stabilizers (PSS) 
in order to improve the stability of a multi-machine power 
system under fault conditions. Simulations were carried out 
using several fault tests at transmission line on a Two-Area 
Multi-machine Power System that consists of four machine and 
ten buses. The system is simulated in Simulink Software while 
the PSS is implemented using Fuzzy Logic Toolbox in Matlab. 
As a reference the PSS model, Delta w PSS has been used for 
comparison with the PSS under consideration. The result shows 
that power transfer response using the model is more robust 
than Delta w PSS, especially for both single line to ground fault 
and symmetrical three phase fault. 
 

Index Terms—Power system stabilizer, transient stability, 
multi-machine power system, neuro-fuzzy adaptive. 
 

I. INTRODUCTION 

ower system oscillations, especially low frequency 
electromechanical oscillations have been a major 
concern in power system planning and operation. On the 

other hand, increasing operating and maintenance costs as 
well as continuously increasing demand on electrical energy 
has forced power companies to call upon all of their installed 
capacities despite rapidly fluctuating operating conditions. 
These reasons and the apparition of low frequency local and 
inter area oscillations hindering power flow have caused 
renewed interest in robust PSS techniques. Low frequency 
oscillations are detrimental to the goals of maximum power 
transfer and optimal power system security. A contemporary 
solution to this problem is the addition of power system 
stabilizers (PSS) to the automatic voltage regulators on the 
generators in the power system. The damping provided by 
this additional stabilizer provides the means to reduce the 
inhibiting effects of the oscillations. For large scale power 
systems comprising of many interconnected machines, the 
PSS parameter tuning is a complex exercise due to the 
presence of several poorly damped modes of oscillation. The 
problem is further being complicated by continuous 
variation in power system operating conditions. In the 
simultaneous tuning approach, exhaustive computational 
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tools are required to obtain optimum parameter settings for 
the PSS, while in the case of sequential tuning, although the 
computational load is fewer, evaluating the tuning sequence 
is an additional requirement. There is a further problem of 
eigenvalue drift. 

Among techniques to enhance power flow, power system 
stabilizers have been used with field proven efficient for 
more than 80 years resulting in savings of millions of dollars 
[1]. PSS have been installed in many countries in the early 
60s which witnessed the expansion of system excitation task 
by using auxiliary stabilizing signals to control the field 
voltage to damp system oscillations in addition to the 
terminal voltage error signal. This part of excitation control 
has been coined as PSS, i.e. power system stabilizer [2]. 
Early PSS were basically static phase lead compensators 
inserted ahead of the regulator exciter to supply 
supplementary stabilizing signals to compensate for the large 
phase lag introduced by the excitation system. Yet rapidly 
fluctuating loading conditions require a more intelligent and 
more robust approach. Advances in so called intelligent 
control [3] have thrusted forward their applications in power 
system control driven by progress in computing technology 
as well as theoretical advances methodologies based on 
hwnan intelligence emulating algorithms such as fuzzy 
systems, artificial neural networks, genetic algorithms, etc.  

New trends were set in PSS leading to a profusion of 
papers amid which Kothari et al. [4] who developed a 
variable structure power system stabilizer with desired 
eigenvalues in the slidiug mode. Hariri and Malik [5] 
combined fuzzy control with learning propriety of neural 
network to elaborate a PSS which could lead the equilibrium 
state to be trapped into local minima. Hoang and Tomosovic 
[6] introduced an adaptive fuzzy PSS with 49 fuzzy rules. 
Abido and Abdel-Magid [7] made use of an evolutionary 
programming algorithm to calculate the optimal values of a 
classical lead-lag PSS. Rashidi et al. [8] in which autbors 
proposed to adapt the gain of the discontinuous component 
of the control signal used in the sliding mode controller 
using a fuzzy inference system augmented by linear state 
feedback applied to a sliding surface with an integral term. 
Elshafei et al. [9] proposed power system stabilization using 
fuzzy logic and direct adaptive technique. Hossein-Zadeh 
and Kalam [10] developed an indirect adaptive indirect 
fuzzy. Elshafei et al. [11] extended the direct adaptive fuzzy 
approach to include stabilization of multi-machine power 
systems. 

An intelligent robust PSS combining advantages of fuzzy 
logic and sliding mode control calling upon a fuzzy 
supervisor to continuously modulate their respective control 
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action is proposed in this study. First a fuzzy stabilizer is 
developed as well as a sliding mode PSS using pole 
placement technique in the sliding mode [4] are elaborated 
to enhance oscillations damping in a single machine power 
system connected to an infinite bus through a double line 
feeder. Continuous action of both separate stabilizers is 
managed through a fuzzy supervisor that enforces SMC 
action when away from the equilibrium point and 
emphasizes FLC action when near the steady-state situation 
greatly reducing chattering. Fraile-Ardanuy and Zufiria [12] 
proposed an adaptive power system stabilizer using ANFIS 
and Genetic Algorithms. Genetic algorithms are used to tune 
a conventional PSS and then, the relationship between these 
operating points and the PSS parameters is learned by the 
ANFIS. The PSS has been tested on a synchronous machine-
infinite bus model. 

In this research, an adaptive neuro-fuzzy based for PSS 
design in order to improve the stability of power system is 
presented. Simulations were carried out using several fault 
tests at transmission line on a Two-Area Multi-machine 
Power System. The simulation has been tested on a four 
machine ten bus power system. Simulation of a neuro-fuzzy 
PSS and a Delta w PSS of a power system, under normal 
load, is presented. A fuzzy supervisory controller is then 
added to modulate control action of the previous developed 
PSS. Discussion of simulation is then presented and results 
are compared to neuro-fuzzy PSS and to Delta w PSS to 
assess chattering reduction and performance enhancements 
followed by this study. 

II.  FUNDAMENTAL THEORY 

A. Power System Stabilizer  

The basic function of a power system stabilizer is to 
extend stability limits by modulating generator excitation to 
provide damping to the oscillation of synchronous machine 
rotors relative to one another. The oscillations of concern 
typically occur in the frequency range of approximately 0.2 
to 3.0 Hz, and insufficient damping of these oscillations may 
limit ability to transmit power. To provide damping, the 
stabilizer must produce a component of electrical torque, 
which is in phase with the speed changes. The 
implementation details differ, depending upon the stabilizer 
input signal employed. However, for any input signal, the 
transfer function of the stabilizer must compensate for the 
gain and phase of excitation system, the generator and the 
power system, which collectively determines the transfer 
function from the stabilizer output to the component of 
electrical torque which can be modulated via excitation 
system [13].  

Implementation of a power system stabilizer implies 
adjustment of its frequency characteristic and gain to 
produce the desired damping of the system oscillations in the 
frequency range of 0.2 to 3.0 Hz. The transfer function of a 
generic power system stabilizer may be expressed as 
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where Ks represents stabilizer gain and Gf (s) represents 
combined transfer function of torsional filter (if required) 
and input signal transducer. The stabilizer frequency 
characteristic is adjusted by varying the time constant Tw, T1, 

T2, T3 and T4. A torsional filter may not be necessary with 
signals like power or delta-P-omega signal [14]. 

A power system stabilizer can be most effectively applied 
if it is tuned with an understanding of the associated power 
characteristics and the function to be performed by the 
stabilizer. Knowledge of the modes of power system 
oscillation to which the stabilizer is to provide damping 
establishes the range of frequencies over which the stabilizer 
must operate. Simple analytical models, such as that of a 
single machine infinite bus (SMIB) system, can be useful in 
determining the frequencies of local mode oscillations 
during the planning stage of a new plant. It is also desirable 
to establish the weak power system conditions and 
associated loading for which stable operation is expected, as 
the adequacy of the power system stabilizer application will 
be determined under these performance conditions. Since the 
limiting gain of the some stabilizers, viz., those having input 
signal from speed or power, occurs with a strong 
transmission system, it is necessary to establish the strongest 
credible system as the “tuning condition” for these 
stabilizers. Experience suggest that designing a stabilizer for 
satisfactory operation with an external system reactance 
ranging from 20% to 80% on the unit rating will ensure 
robust performance [15]. 

B. Adaptive Neuro-Fuzzy Method  

Adaptive neuro-fuzzy method (or Adaptive neuro-fuzzy 
inference system, ANFIS) has been became a popular 
method in control area. In this section, we give a brief 
description of the principles of Adaptive neuro-fuzzy 
inference system (ANFIS) which are refered to [16]. The 
basic structure of the type of fuzzy inference system could 
be seen as a model that maps input characteristics to input 
membership functions. Then it maps input membership 
function to rules and rules to a set of output characteristics. 
Finally it maps output characteristics to output membership 
functions, and the output membership function to a 
singlevalued output or a decision associated with the output. 
It has been considered only fixed membership functions that 
were chosen arbitrarily. Fuzzy inference is only applied to 
only modeling systems whose rule structure is essentially 
predetermined by the user's interpretation of the 
characteristics of the variables in the model. However, in 
some modeling situations, it cannot be distinguish what the 
membership functions should look like simply from looking 
at data. Rather than choosing the parameters associated with 
a given membership function arbitrarily, these parameters 
could be chosen so as to tailor the membership functions to 
the input/output data in order to account for these types of 
variations in the data values. In such case the necessity of the 
adaptive neuro fuzzy inference system becomes obvious. 
The neuro-adaptive learning method works similarly to that 
of neural networks. Neuro-adaptive learning techniques 
provide a method for the fuzzy modeling procedure to learn 
information about a data set. It computes the membership 
function parameters that best allow the associated fuzzy 
inference system to track the given input/output data. A 
network-type structure similar to that of a neural network 
can be used to interpret the input/output map so it maps 
inputs through input membership functions and associated 
parameters, and then through output membership functions 
and associated parameters to outputs,. The parameters 
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associated with the membership functions changes through 
the learning process. The computation of these parameters 
(or their adjustment) is facilitated by a gradient vector. This 
gradient vector provides a measure of how well the fuzzy 
inference system is modeling the input/output data for a 
given set of parameters. When the gradient vector is 
obtained, any of several optimization routines can be applied 
in order to adjust the parameters to reduce some error 
measure (performance index). This error measure is usually 
defined by the sum of the squared difference between actual 
and desired outputs. ANFIS uses a combination of least 
squares estimation and back propagation for membership 
function parameter estimation. 

The suggested ANFIS has several properties: 
1.  The output is zeroth order Sugeno-type system. 
2.  It has a single output, obtained using weighted average 

defuzzification. All output membership functions are 
constant. 

3.  It has no rule sharing. Different rules do not share the 
same output membership function, namely the number 

of output membership functions must be equal to the 
number of rules. 

4.  It has unity weight for each rule. 
Fig. 1 shows Sugeno’s fuzzy logic model. Fig. 2 shows 

the architecture of the ANFIS, comprising by input, 
fuzzification, inference and defuzzification layers. The 
network can be visualized as consisting of inputs, with N 
neurons in the input layer and F input membership functions 
for each input, with F*N neurons in the fuzzification layer. 
There are FN rules with FN neurons in the inference and 
defuzzification layers and one neuron in the output layer. 
For simplicity, it is assumed that the fuzzy inference system 
under consideration has two inputs x and y and one output z 
as shown in Fig. 2. For a zero-order Sugeno fuzzy model, a 
common rule set with two fuzzy if-then rules is the 
following: 

Rule 1: If x is A1 and y is B1, Then f1 = r1       (2) 
Rule 2: If x is A2 and y is B2, Then f2 = r2       (3) 
 

 

 
Fig. 1. Sugeno’s fuzzy logic model 

 
Fig. 2. The architecture of the ANFIS. 
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Here the output of the ith node in layer n is denoted as 

On,i: 
Layer 1.  Every node i in this layer is a square node with a 
node function: 

1
iO  = µAi(x), for i = 1, 2,                  (4) 

 or,  
1
iO  = µBi-2(y), for i = 3, 4                (5) 

 
where x is the input to node-i, and Ai is the linguistic label 
(small , large, etc.) associated with this node function. In 

other words, 1
iO is the membership function of Ai and it 

specifies the degree to which the given x satisfies the 
quantifier Ai. Usually µAi(x) is chosen to be bell-shaped 
with maximum equal to 1 and minimum equal to 0, such as 
the generalized bell function: 

i

i

i

A 2b

a

cx
1

1
(x)µ








 −
+

=              (6) 

Parameters in this layer are referred to as premise 
parameters. 
Layer 2. Every node in this layer is a circle node labeled Π 
which multiplies the incoming signals and sends the product 
out. For instance, 

2
iO  = wi = µAi(x) x µB(y),  i = 1, 2.            (7) 

Each node output represents the firing strength of a rule. (In 
fact, other T-norm operators that performs generalized AND 
can be used as the node function in this layer.)  
Layer 3. Every node in this layer is a circle node labeled N. 
The i-th node calculates the ratio of the i-th rule’s firing 
strength to the sum of all rules firing strengths: 

21

i3
i ww

w
wO

+
== ,   i = 1, 2.              (8) 

For convenience, outputs of this layer will be called called 
normalized firing strengths. 
Layer 4.  Every node i in this layer is a square node with a 
node function: 

)iiiiii
4
i ryqx(pwfwO ++==            (9) 

where iw  is the output of layer 3, and {pi, qi, ri} is the 

parameter set. Parameters in this layer will be referred to as 
consequent parameters. 
Layer 5.  The single node in this layer is a circle node 
labeled Σ that computes the overall output as the summation 
of all incoming signals, i.e., 

∑= ii
5
i fwO                            (10)  

 

III.  METHODOLOGY  

The procedure of this research is shown in Fig. 3. The 
simulation environment based on MATLAB software 
package is selected. It is used as the main engineering tool 
for performing modeling and simulation of multi-machine 
power systems, as well as for interfacing the user and 
appropriate simulation programs. MATLAB has been 
chosen due to availability of the powerful set of 

programming tools, signal processing, numerical functions, 
and convenient user-friendly interface. In this specially 
developed simulation environment, the evaluation 
procedures can be easily performed. We have used Fuzzy 
logic Toolbox of MATLAB to develop the ANFIS model 
with 4 inputs and single output as given in Fig. 6. 

 
 

 
 

Fig. 3. Procedure of the research. 
  

IV.  EXPERIMENTAL RESULTS 

A. Multi-machine Power System  

The multi-machine power system is shown in Fig. 4 that 
consists of two fully symmetrical areas linked together by 
two 230 kV lines of 220 km length. Each area is equipped 
with two identical round rotor synchronous acts as thermal 
plant generators rated 20kV/900MVA connected to 
transformer (T1, T2, T3, and T4). The synchronous machines 
(M1, M2, M3, and M4) in all area have identical parameters, 
except for inertia which is H = 6.5s for all generators in Area 
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1 and H = 6.175s for all generators in Area 2. Thermal 
generating plants having identical speed regulators and fast 
static exciters with a 200 gain at all locations. Each 
generator produces 700 MW. The loads are assumed 
everywhere as constant impedance load. The Area 1 and 
Area 2 loads are 967 MW (L1) and 1767 MW (L2) 
respectively. The load voltage profile was improved by 
installing 187 MVAr capacitors (C1 and C2) in each area to 
make closer to unity. Area 1 is exporting to Area 2 through 
two tie-lines and a single tie-line with power transfer level 
413 MW and 353 MW, respectively. 

 

 

Fig. 4. Multimachine power system.  

 

B. Adaptive Neuro-Fuzzy PSS  

The design process of the Adaptive Neuro-Fuzzy 
(ANFIS) for PSS go through the following steps: 
1. Generation a suitable training data. 
In order to use the ANFIS technique for power system 
stability using PSS, the input parameters limit should be 
determined precisely. The input parameters are obtained 
from recording devices sparsely located at sending end in a 
power system network. Due to limited available amount of 
practical fault data of transmission lines, it is necessary to 
generate training/testing data using simulation.  To generate 
data for the typical transmission system, a computer program 
have been designed to generate training data for different 
faults.  
2. Selection of a suitable ANFIS structure for a given 
application. 

Various ANFIS are designed for PSS to extend stability 
limits by modulating generator excitation to provide 
damping to the oscillation of synchronous machine rotors 
relative to one another.  Membership function of inputs 
variable for PSS is shown in Fig. 5, while the structure of 
Sugeno type ANFIS for PSS is shown in Fig. 6. 
3. Training the ANFIS. 
Various network configurations were trained in order to 
establish an appropriate network with satisfactory 
performances. The ANFIS’s are trained to detect presence of 
fault, classify fault and finally when the stability system is 
achieved.  
 

 

Fig. 5. Membership function of Inputs Variable for PSS 

 

 
 

Fig. 6. Structure of Sugeno type ANFIS for PSS.

 

 

Fig. 7. Power transfer from Area1 to Area2. 
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Fig. 8. Performace of Delta w PSS for angle speed of machine (ω), active power of machine (Pa), and terminal voltage of machine when 
single line to ground fault occurs in transmission line. 

 

 

Fig. 9. Performace of Neuro-Fuzzy based PSS for angle speed of machine (ω), active power of machine (Pa), and terminal voltage of 
machine when single line to ground fault occurs in transmission line. 

 

 

Fig. 10. Performace of Delta w PSS for angle speed of machine (ω), active power of machine (Pa), and terminal voltage of machine when 
symmetrical three phase fault occurs in transmission line. 
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Fig. 11. Performace of Neuro-Fuzzy based PSS for angle speed of machine (ω), active power of machine (Pa), and terminal voltage of 
machine when symmetrical three phase fault occurs in transmission line. 

 
4. Evaluation of the trained ANFIS using test patterns until 
its performance is satisfactory. 
When Network is trained, ANFIS’s should be given an 
acceptable output for unseen data. When output of test 
pattern and network’s error reached an acceptable range 
then, fuzzy system is adjusted in the best situation which 
means the membership functions and fuzzy rules are well 
adjusted. All of these steps above are done off-line and when 
the structure and parameters of ANFIS are adjusted, it can 
be used as an on-line the PSS. 

In this simulation, multi-machine power system is 
demonstrated under a single line to ground fault simulation 
and then cleared with opening breaker on line which fault 
occurred. Disconnecting one of two tie-line transmission 
lines can change the area power transfer level into single-
line power transfer level. System will oscillate to its new 
stable point, during that time system parameters will deviate. 
Power transfer from Area1 to Area2, voltage deviation 
response at M1, and power armature deviation response at 
M1 are observed and shown in Fig. 7. 

Fig. 8 shows the performance of Delta w PSS for angle 
speed of machine (ω), active power of machine (Pa), and 
terminal voltage of machine when single line to ground fault 
occurs in transmission line. The multi-machine power 
system has achieving the stability state in 5s, although the 
system has oscillating in 3s. The Delta w PSS need to 
improve in order to stable the multi-machine power system 
more robust. The powerful of Neuro-Fuzzy based PSS is 
shown in Fig. 9. In Fig. 9, the PSS has successfully created 
the stability of multi-machine power system in 3s, although 
the system has oscillating in 2s. The time for stability is 
faster than Delta w PSS. Therefore, Neuro-Fuzzy based PSS 
more robust than Delta w PSS in order to achieve the 
stability of multi-machine power system. 

Fig. 10 shows the performance of Delta w PSS for angle 
speed of machine (ω), active power of machine (Pa), and 
terminal voltage of machine when symmetrical three phase 
fault occurs in transmission line. The multi-machine power 
system has achieving the stability state in 7s, although the 
system has oscillating in 4s. The Delta w PSS need to 
improve in order to stable the multi-machine power system 

more robust. The powerful of Neuro-Fuzzy based PSS is 
shown in Fig. 9. In Fig. 11, the PSS has successfully created 
the stability of multi-machine power system in 4s, although 
the system has oscillating in 3s. The time for stability is 
faster than Delta w PSS. Therefore, Neuro-Fuzzy based PSS 
more robust than Delta w PSS in order to achieve the 
stability of multi-machine power system. 

V. CONCLUSIONS 

In this study, we present an adaptive neuro-fuzzy 
approach for the design of power system stabilizer (PSS). 
The PSS has been tested on a two-area multi-machine power 
system that consists of four machines and ten buses under 
several fault conditions. Simulation for two different fault 
conditions seems to indicate that the approach puts to good 
use the advantages of the PSS model. Simulation test 
showed the effectiveness of the robustness of the proposed 
adaptive neuro-fuzzy based PSS, especially for both single 
line to ground fault and symmetrical three phase fault. 
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