
Automatic Translation of WS-CDL

Choreographies to Timed Automata ⋆

Gregorio Diaz, Juan-José Pardo, Maŕıa-Emilia Cambronero,
Valent́ın Valero, and Fernando Cuartero

Departamento de Informática
Universidad de Castilla-La Mancha

Escuela Politécnica Superior de Albacete. 02071 - SPAIN
[gregorio,jpardo,emicp,valentin,fernando]@info-ab.uclm.es

Abstract. In this paper we show how we can translate Web Services
described by WS-CDL into a timed automata orchestration, and more
specifically we are interested in Web services with time restrictions.
Our starting point are Web Services descriptions written in WSBPEL
- WSCDL (XML-based description languages). These descriptions are
then automatically translated into timed automata, and then, we use a
well known tool that supports this formalism (UPPAAL) to simulate and
analyse the system behaviour. As illustration we take a particular case
study, an airline ticket reservation system.

1 Introduction

In the last years some new techniques and languages for developing distributed
application have appeared, such as the Extensible Markup Language, XML, and
some new Web Services frameworks [7,13,18] for describing interoperable data
and platform neutral business interfaces, enabling more open business transac-
tions to be developed.

Web Services are a key component of the emerging, loosely coupled, Web-
based computing architecture. A Web Service is an autonomous, standards-based
component whose public interfaces are defined and described using XML [15].
Other systems may interact with a Web Service in a manner prescribed by its
definition, using XML based messages conveyed by Internet protocols.

The Web Services specifications offer a communication bridge between the
heterogeneous computational environments used to develop and host applica-
tions. The future of E-Business applications requires the ability to perform long-
lived, peer-to-peer collaborations between the participating services, within or
across the trusted domains of an organization.

The Web Service architecture stack targeted for integrating interacting ap-
plications consists of the following components [15]:

⋆ This work has been supported by the CICYT project “Description and Evaluation
of Distributed Systems and Application to Multimedia Systems”,TIC2003-07848-
C02-02 and the UCLM project ”Aplicación de Métodos Formales al Desarrollo y
Verificación de Web Services”

– SOAP[13]: It defines the basic formatting of a message and the basic de-
livery options independent of programming language, operating system, or
platform.

– WSDL[18]: It describes the static interface of a Web Service. Then, at this
point the message set and the message characteristics of end points are here
defined. Data types are defined by XML Schema specifications.

– Registry[7]: It makes visible an available Web Service, and it also describes
the concrete capabilities of a Web Service.

– Security layer: It ensures that exchanged informations are not modified or
forged in a verifiable manner and that parties can be authenticated.

– Reliable Messaging layer: It provides a reliable layer for the exchange of
information between parties.

– Context, Coordination and Transaction layer: It defines interopera-
ble mechanisms for propagating context of long-lived business transactions
and enables parties to meet correctness requirements by following a global
agreement protocol.

– Business Process Languages layer[2,8]: It describes the execution logic
of Web Services based applications by defining their control flows (such as
conditional, sequential, parallel and exceptional execution) and prescribing
the rules for consistently managing their non-observable data.

– Choreography layer[15]: It describes collaborations of parties by defining
from a global viewpoint their common and complementary observable be-
havior, where information exchanges occur, when the jointly agreed ordering
rules are satisfied.

The Web Services Choreography specification is aimed at the composition of
interoperable collaborations between any type of party regardless of the support-
ing platform or programming model used by the implementation of the hosting
environment.

Web Services cover a wide range of systems, which in many cases have strong
time constraints (for instance, peer-to-peer collaborations may have time limits
to be completed). Then, in many Web Services descriptions these time aspects
can become very important. Actually, they are currently covered by the top
level layers in Web Services architectures with elements such as time-outs and
alignments. Time-outs allow each party to fix the available time for an action to
occur, while alignments are synchronizations between two peer-to-peer parties.

Thus, it becomes important for Web Services frameworks to ensure the cor-
rectness of systems with time constraints. For instance, we can think in a failure
of a bank to receive a large electronic funds transfer on time, which may result
in huge financial losses. Then, there is growing consensus that the use of formal
methods, development methods based on some formalism, could have signifi-
cant benefits in developing E-business systems due to the enhanced rigor these
methods bring [14]. Furthermore, these formalisms allow us to reason with the
constructed models, analysing and verifying some properties of interest of the
described systems. One of these formalisms are timed automata [1], which are
very used in model checking [6], and there are some well-known tools supporting
them, like UPPAAL [9,10,16] and KHRONOS [3].

Then, our goal with this paper is to describe how we can translate Web Ser-
vices with time constraints into a formalism using automatic techniques in order
to verify it. This verification process starts from the top level layers of Web Ser-
vices architectures (Business Process Language Layer and Choreography layer).
The particular Business Process Language layer that we use here is the Web
Service Business Process Execution Language (WS-BPEL) [2], and the concrete
Choreography Layer that we use is the Web Service Choreography Description
Language (WS-CDL) [15]. Therefore, the starting point are specification docu-
ments written in WS-CDL and WS-BPEL. However, these description languages
are not very useful for the verification process. Thus, these descriptions are au-
tomatically translated into timed automata, and the UPPAAL tool is used to
simulate and verify the system correctness.

As illustration of this methodology, we use a particular case study, an airline
ticket reservation system, whose description contains some time constraints.

The paper is structured as follows. In Section 2 we describe the main fea-
tures of WSBPEL - WSCDL. The translation of WSCDL documents into timed
automata is presented in Section 3. In Section 4 we apply this methodology to
the case study, and the UPPAAL tool is used to describe, simulate and analyze
the obtained timed automata. Finally, the conclusions and the future work are
presented in Section 5.

2 WSBPEL - WSCDL Description

The Web Services Choreography specification is aimed at being able to precisely
describe collaborations between any type of party regardless of the supporting
platform or programming model used by the implementation of the hosting en-
vironment. Using the Web Services Choreography specification, a contract con-
taining a ”global” definition of the common ordering conditions and constraints
under which messages are exchanged, is produced that describes, from a global
viewpoint, the common and complementary observable behavior of all the par-
ties involved. Each party can then use the global definition to build and test
solutions that conform to it. The global specification is in turn realized by com-
bination of the resulting local systems, on the basis of appropriate infrastructure
support.

In real-world scenarios, corporate entities are often unwilling to delegate con-
trol of their business processes to their integration partners. Choreography offers
a means by which the rules of participation within a collaboration can be clearly
defined and agreed to, jointly. Each entity may then implement its portion of the
Choreography as determined by the common or global view. It is the intent of
WS-CDL that the conformance of each implementation to the common view ex-
pressed in WS-CDL is easy to determine. Figure 1 demonstrates a possible usage
of the Choreography Description Language, where we see that we use WS-BPEL
as the Business Process Execution Layer (BPEL for short).

WS-CDL describes interoperable, collaborations between parties. In order
to facilitate these collaborations, services commit to mutual responsibilities by

Fig. 1. WS-CDL and WS-BPEL usage.

establishing Relationships. Their collaboration takes place in a jointly agreed set
of ordering and constraint rules, whereby information is exchanged between the
parties. The WS-CDL model consists of the following entities:

– Participant Types, Role Types and Relationship Types within a
Choreography. Information is always exchanged between parties within or
across trust boundaries. A Role Type enumerates the observable behavior
a party exhibits in order to collaborate with other parties. A Relationship
Type identifies the mutual commitments that must be made between two
parties for them to collaborate successfully. A Participant Type is grouping
together those parts of the observable behavior that must be implemented
by the same logical entity or organization.

– Information Types, Variables and Tokens. Variables contain informa-
tion about commonly observable objects in a collaboration, such as the in-
formation exchanged or the observable information of the Roles involved.
Tokens are aliases that can be used to reference parts of a Variable. Both
Variables and Tokens have Types that define the structure of what the Vari-
able contains or the Token references.

– Choreographies define collaborations between interacting parties:

• Choreography Life-line: It shows the progression of a collaboration.
Initially, the collaboration is established between the parties; then, some
work is performed within it, and finally it completes either normally or
abnormally.

• Choreography Exception Block: It specifies the additional interac-
tions that should occur when a Choreography behaves in an abnormal
way.

• Choreography Finalizer Block: It describes how to specify additional
interactions that should occur to modify the effect of an earlier suc-
cessfully completed Choreography (for example to confirm or undo the
effect).

– Channels establish a point of collaboration between parties by specifying
where and how information is exchanged.

– Work Units prescribe the constraints that must be fulfilled for making
progress and thus performing actual work within a Choreography.

– Activities and Ordering Structures. Activities are the lowest level com-
ponents of the Choreography that perform the actual work. Ordering Struc-
tures combine activities with other Ordering Structures in a nested structure
to express the ordering conditions in which information within the Choreog-
raphy is exchanged.

– Interaction Activity is the basic building block of a Choreography, which
results in an exchange of information between parties and possible synchro-
nizations of their observable information changes, and the actual values of
the exchanged information.

2.1 WS-BPEL

WS-BPEL is an interface description language. It describes the observable behav-
iour of a service by defining business processes consisting of stateful long-running
interactions in which each interaction has a beginning, a defined behaviour and
an end, all of this being modelled by a flow, which consists of a sequence of
activities. The behaviour context of each activity is defined by a scope, which
provides fault handlers, event handlers, compensation handlers, a set of data
variables and correlation sets.

Let us now see a brief description of these components:

– Events, which describe the flow execution in an event driven manner.
– Variables, which are defined by using WSDL schemes, for internal or ex-

ternal purposes, and are used in the message flow.
– Correlations, which identify processes interacting by means of messages.
– Fault handling, defining the behaviour when an exception has been thrown.
– Event handling, defining the behaviour when an event occurs.
– Activities, which represent the basic unit of behaviour of a Web Service.

In essence, WS-BPEL describes the behaviour of a Web Service in terms of
choreographed activities.

3 Translation

Figure 2 illustrates the relationship between WS-CDL, the choreography layer
and the orchestration level (WS-BPEL), taking an orchestra as a metaphor of

this relation. The key document is the director score, which corresponds to the
WS-CDL document, in which each participant is represented as well as the time
it enters into action. Furthermore, the wind, percussion and strings scores corre-
spond to the WS-BPEL documents, which show the behaviour of each particular
group.

Fig. 2. From the Choreography layer to the Orchestration layer

From this Figure we can also see that WS-CDL documents are translated into
timed automata in a first step, which is the main goal covered with this paper,
and in a second step we intend to translate the timed automata thus obtained
into WS-BPEL documents. Therefore, we now present the automatic translation
from WS-CDL documents into timed automata. For this purpose, we must first
analyse the WS-CDL documents in order to identify the common shared points
between them. The first stage is to obtain the general structure describing the
system that we are analyzing. In timed automata, this structure is defined by
the so-called System, which consists of the individual processes that must be
executed in parallel. Each one of these processes is defined by using a template.
Templates are used to describe the different behaviors that are available in the
system.

Then, for each component of a WS-CDL description we have the following
correspondence in timed automata (see Fig. 3 for a schematic presentation of
this correspondence):

Role : They are used to describe the behaviour of each class of party that we are
using in the choreography. Thus, this definition matches with the definition
of a template in timed automata terminology.

Relation type : They are used to define the communications between two roles,
and the needed channels for these communications. In timed automata we
just need to assign a new channel for each one of these channels, which are
the parameters of the templates that take part in the communication.

Participant type : They define the different parties that participate in the
choreography. In timed automata they are processes participating in the
system.

Channel types : A channel is a point of collaboration between parties, together
with the specification of how the information is exchanged. As said before,
channels of WS-CDL correspond with channels of timed automata.

Variables : They are easily translated, as timed automata in UPPAAL support
variables, which are used to represent some information.

Now the problem is to define the behaviour of each template. This behav-
iour is defined by using the information provided by the flow of choreographies.
Choreographies are sets of workunits or sets of activities. Thus, activities and
workunits are the basic components of the choreographies, and they capture the
behavior of each component. Activities can be obtained as result of a composi-
tion of other activities, by using sequential composition, parallelism and choice.
In terms of timed automata these operators can be easily translated:

– The sequential composition of activities is translated by concatenating the
corresponding timed automata.

– Parallel activities are translated by the cartesian product of the correspond-
ing timed automata.

– Choices are translated by adding a node into the automata which is con-
nected with the initial nodes of the alternatives.

Finally, time restrictions are associated in WS-CDL with workunits and in-
teraction activities. These time restrictions are introduced in timed automata
by means of guards and invariants. Therefore, in case a workunit of an activity
has a time restriction we associate a guard to the edge that correspond to the
initial point of this workunit in the corresponding timed automaton.

4 Case Study: Travel Reservation System

Some examples of the use of WS-CDL can be found in [4,5,11]. The case study
that we are going to use to illustrate how the translation works is inspired from
the work [11], where this particular case study was used to illustrate how timed
automata can be used for the formal verification of properties.

This system consists of three participants: a Traveller, a Travel Agent and
an Airline Reservation System, whose behaviour is as follows:

Role = Template
Relation Type = Channel+

Participant Type = Process+

Channel Type = Channel
Variables = Variables
Choreography = Choreography+ | Activity
Activity = Work Unit | Sequence | Paralelism | Choice
Sequence = Activity+

Paralelism = Activity+

Choice = Activity+

Work Unit = State & Guard & Invariant

where the symbols +, | are BNF notation, and & is used to join information

Fig. 3. Schematic view of the translation

A Traveller is planning on taking a trip. Once he has decided the concrete
trip he wants to make he submits it to a Travel Agent by means of his local Web
Service software (Order Trip). The Travel Agent selects the best itinerary ac-
cording to the criteria established by the Traveller. For each leg of this itinerary,
the Travel Agent asks the Airline Reservation System to verify the availability of
seats (Verify Seats Availability). Thus, the Traveller has the choice of accepting
or rejecting the proposed itinerary, and he can also decide not to take the trip
at all.

– In case he rejects the proposed itinerary, he may submit the modifications
(Change Itinerary), and wait for a new proposal from the Travel Agent.

– In case he decides not to take the trip, he informs the Travel Agent (Cancel

Itinerary) and the process ends.
– In case he decides to accept the proposed itinerary (Reserve Tickets), he

will provide the Travel Agent with his Credit Card information in order to
properly book the itinerary.

Once the Traveller has accepted the proposed itinerary, the Travel Agent
connects with the Airline Reservation System in order to reserve the seats (Re-

serve Seats). However, it may occur that at that moment no seat is available for
a particular leg of the trip, because some time has elapsed from the moment in
which the availability check was made. In that case the Travel Agent is informed
by the Airline Reservation System of that situation (No seats), and the Travel
Agent informs the Traveller that the itinerary is not possible (Notify of Cancel-

lation). Once made the reservation the Travel Agent informs the Traveller (Seats

Reserved). However, this reservation is only valid for a period of just one day,
which means that if a final confirmation has not been received in that period,
the seats are unreserved and the Travel Agent is informed. Thus, the Traveller
can now either finalize the reservation or cancel it. If he confirms the reservation

(Book Tickets), the Travel Agent asks the Airline Reservation System to finally
book the seats (Book Seats).

According to the previous description, the high level flow of the messages
exchanged within the global process (which is called PlanAndBookTrip) is that
shown in Fig. 4.

Fig. 4. Flow of the messages exchanged.

4.1 Translation of the Case Study

Figure 5 presents a detailed piece of the WS-CDL document describing our
example. It describes part of the relationship between the Airline and the Travel
Agent. This interaction establishes the time in which the reservation is available,
in this case one day.

We have used this WSCDL document to obtain the translation into timed
automata. Following the guidelines described above we have obtained in this case
three timed automata: the traveler, the travel agent and the airline company.
These automata are shown in Figures 6, 7 and 8.

Notice the use of the clock x in the timed automaton corresponding to the
airline reservation system, which is used to control when the reservation expires.
This clock is initialized when the action reserved seat is done.

<interaction name="reservation&booking"

channelVariable="travelAgentAirlineChannel"

operation="reservation&booking"

align="true"

initiate="true" >

<participate relationshipType="TravelAgentAirline"

fromRole="TravelAgent" toRole="Airline" />

<exchange name="reservation"

informationType="reservation" action="request" >

<send variable="tns:reservationOrderID" causeException="true" />

<receive variable="tns:reservationAckID" causeException="true" />

</exchange>

<exchange name="booking" informationType="booking" action="respond">

<send variable="tns:bookingRequestID" causeException="true" />

<receive variable="bookingAckID" causeException="true" />

</exchange>

<timeout time-to-complete="24:00" />

<record name="bookingTimeout" when="timeout" causeException="true"/>

<source

variable="AL:getVariable(’tns:reservationOrderCancel’, ’’, ’’)"/>

<target

variable="TA:getVariable(’tns:reservationOrderCancel’, ’’, ’’)"/>

</record>

</interaction>

Fig. 5. Part of WS-CDL especification

5 Conclusions and Future Work

Nowdays Web Services are becoming a powerful tool for the implementation of
distributed applications over Internet. In many cases these services have associ-
ated time restrictions, as we have seen in the case study that we have presented.
Therefore, the specification and design of Web Services can be made by using
some well known formalisms, as timed automata, and tools supporting them
(UPPAAL) in order to verify and validate the system behavior. Consequently,
it becomes of interest to obtain a translation of the specifications written in a
Choreography language (WS-CDL) into timed automata in order to exploit these
capabilities that timed automata can provide us. Thus, in this paper we have
seen how this translation can be made, and it has been applied to a particular
case study. We are currently implementing this translation in a tool that uses
UPPAAL as the engine for the simulation and verification.

Our future work will focus on the second step of this methodology of tra-
duction, in which our intention is the generation of WS-BPEL documents from
WS-CDL documents, using as intermediary objects the timed automata obtained
with the translation presented in this paper. Notice that these timed automata
will have some internal information, which will not be used by UPPAAL, but that
will be necessary in order to obtain the corresponding WS-BPEL documents.

x<24

check_seats? available_seat!
reserve_seat?

reserve_seat_ok!
x:=0

x<24

book_seat?

no_available_seat!

x==24
timeout!

x<24
cancel_reserve_seat?

cancel_reserve_seat_ok!

book_seat_ok!

receive_tickets!

book_seat_no!

reserve_seat_no!

Fig. 6. Timed automata for airline Reservation System.

ordertrip!

available!

cancel_itinerary?

change_itinerary?

reserve_tickets?

reserve_seat!reserve_seat_no?

reserve_seat_ok?timeout?
notify_timeout!

check_seats!

available_seat?

no_available_seat?

no_available!

book_seat!
book_seat_ok?

receive_statement!

cancel_reserve_seat!

cancel_reserve_seat_ok?

accept_cancel!

book_seat_no?

book_ticket?

cancel_reservation?

timeout?

no_reservation!

no_reservation!

Fig. 7. Timed automata for Travel agent web service.

Start

ordertrip?

available?

change_itinerary!

cancel_itinerary!

reserve_tickets!

cancel_reservation!

book_ticket!

receive_statement?

notify_timeout?

receive_tickets?

accept_cancel?

no_available?

no_reservation?

no_reservation?

Fig. 8. Timed automata for traveler.

Once this second step has been completed we will have a complete methodol-
ogy for obtaining correct orchestration descriptions of Web Services from chore-
ography descriptions.

References

1. R. Alur and D. Dill, Automata for modeling real–time systems, In Proceedings
of the 17th International Colloquium on Automata, Languages and Program-
ming, volume 443, Editors. Springer–Verlag, 1990.

2. Assaf Arkin, Sid Askary, Ben Bloch, et. al., Web Services Business Process
Execution Language Version 2.0, Editors. OASIS Open, December 2004.
In http://www.oasis-open.org/committees/download.php/10347/wsbpel-
specification-draft-120204.htm.

3. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis and S. Yovine, Kronos:
A model-checking tool for real-time systems, In Proc. 1998 Computer-Aided
Verification, CAV’98, Vancouver, Canada, June 1998. Lecture Notes in Com-
puter Science 1427, Springer-Verlag.

4. Mario Bravetti, Roberto Lucchi, Gianluigi Zavattaro and Roberto Gorrieri ,
Web Services for E-commerce: guaranteeing security access and quality of ser-
vice, In Proc. of the 19th ACM Symposium on Applied Computing (SAC’04),
special track on E-Commerce Technologies , ACM Press, 2004.

5. Mario Bravetti, Claudio Guidi, Roberto Lucchi and Gianluigi Zavattaro , Sup-
porting E-commerce system formalization with Choreography Languages, In
Proc. of the 20th ACM Symposium on Applied Computing (SAC’05), special
track on E-Commerce Technologies , ACM Press, 2005.

6. Edmund M. Clarke and Jr. and Orna Grumberg and Doron A. Peled, Model
Checking, MIT Press, 1999.

7. Luc Clement, Andrew Hately, Claus von Riegen and Tony Rogers,
UDDI Version 3.0.2, Editors. OASIS Open, 19 October 2004. In
http://uddi.org/pubs/uddi v3.htm.

8. Francisco Curbera et al. Business Process Execution Language for Web Ser-
vices, Version 1.0. In http://xml.coverpages.org/WS-BPELv10.pdf.

9. G. Diaz, F. Cuartero, V. Valero and F. Pelayo, Automatic Verification of the
TLS Handshake Protocol, In proceedings of the 2004 ACM Symposium on
Applied Computing.

10. G. Diaz, K.G. Larsen, J. Pardo, F. Cuartero and V. Valero, An approach
to handle Real Time and Probabilistic behaviors in e-commerce: Validating
the SET Protocol, In proceedings of the 2005 ACM Symposium on Applied
Computing.

11. G. Diaz, J. J. Pardo, M. E. Cambronero, V. Valero and F. Cuartero, Verifi-
cation of Web Services with Timed Autoamata, In proceedings of First Inter-
national Workshop on Automated Specification and Verification of Web Sites,
Valencia, March 2005.

12. Eurostat yearbook 2004. The statistical guide to Europe. Data 1992-2002. Eu-
ropean Commission: EUROSTAT, Office for Official Publications of the Eu-
ropean Communities, 2004

13. Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, et. al., SOAP Version
1.2 Part 1: Messaging Framework , Editors. World Wide Web Consortium, 24
June 2003. In http://www.w3.org/TR/soap12-part1.

14. Constance Heitmeyer and Dino Mandrioli. Formal Methods for Real-Time
Computing. John Wiley & Sons. 1996.

15. Nickolas Kavantzas et al. Web Service Choreography Description Language
(WSCDL) 1.0. In http://www.w3.org/TR/ws-cdl-10/.

16. K. Larsen and P. Pettersson and Wang Yi, Uppaal in a Nutshell, Int. Journal
on Software Tools for Technology Transfer, Editors. Springer–Verlag vol.1,
1997.

17. Jean Paoli, Eve Maler, Tim Bray, et. al.,Extensible Markup Language (XML)
1.0 (Third Edition), Editors. World Wide Web Consortium, 04 February 2004.
In http://www.w3.org/TR/2004/REC-xml-20040204.

18. Sanjiva Weerawarana, Roberto Chinnici, Martin Gudgin, et. al., Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Lan-
guage, Editors. World Wide Web Consortium, 03 August 2004. In
http://www.w3.org/2002/ws/desc/.

19. Simon Woodman, et al., Specification and Verification of Composite Web Ser-
vices, In proocedings of The 8th Enterprise Distributed Object Computing
Conference 2004.

