
Highly Available, Fault-Tolerant, Parallel Dataflows

Mehul A. Shah∗

U.C. Berkeley
mashah@cs.berkeley.edu

Joseph M. Hellerstein
U.C. Berkeley

Intel Research, Berkeley
jmh@cs.berkeley.edu

Eric Brewer
U.C. Berkeley

brewer@cs.berkeley.edu

ABSTRACT
We present a technique that masks failures in a cluster to provide
high availability and fault-tolerance for long-running, parallelized
dataflows. We can use these dataflows to implement a variety of
continuous query (CQ) applications that require high-throughput,
24x7 operation. Examples include network monitoring, phone call
processing, click-stream processing, and online financial analysis.
Our main contribution is a scheme that carefully integrates tradi-
tional query processing techniques for partitioned parallelism with
the process-pairs approach for high availability. This delicate inte-
gration allows us to tolerate failures of portions of a parallel dataflow
without sacrificing result quality. Upon failure, our technique pro-
vides quick fail-over, and automatically recovers the lost pieces
on the fly. This piecemeal recovery provides minimal disruption
to the ongoing dataflow computation and improved reliability as
compared to the straight-forward application of the process-pairs
technique on a per dataflow basis. Thus, our technique provides
the high availability necessary for critical CQ applications. Our
techniques are encapsulated in a reusable dataflow operator called
Flux, an extension of the Exchange that is used to compose par-
allel dataflows. Encapsulating the fault-tolerance logic into Flux
minimizes modifications to existing operator code and relieves the
burden on the operator writer of repeatedly implementing and ver-
ifying this critical logic. We present experiments illustrating these
features with an implementation of Flux in the TelegraphCQ code
base [8].

1. INTRODUCTION
There are a number of continuous query (CQ) or stream pro-

cessing applications that require high-throughput, 24x7 operation.
One important class of these applications includes critical, online
monitoring tasks. For example, to detect attacks on hosts or web-
sites, intrusion detection systems reconstruct flows from network
packets and inspect the flows’ contents [20, 27]. Another example
is processing a stream of call detail records for telecommunica-
tion network management [3, 17]. Phone billing systems perform
various data management operations using call records to charge

∗This work was supported by NSF grant nos. 0205647, 0208588,
a UC MICRO grant, and gifts from Microsft, IBM, and Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . . $5.00.

or even route phone calls. Websites may analyze click streams
in real-time for user targeted marketing or site-use violations [32].
Other applications include financial quote analysis for real-time ar-
bitrage opportunities, monitoring manufacturing processes, and in-
stant messaging infrastructure. Recent research suggests that we
can implement these applications using a more general CQ infras-
tructure that produces continuously processing dataflows [7, 8, 9,
26]. A CQ dataflow is a DAG in which vertices represent operators
and edges denote the direction in which data is passed.

For such critical, long-running dataflow applications, scalability,
high availability, and fault-tolerance are the primary concerns. A
viable approach for scaling these dataflows is to parallelize them
across a shared-nothing cluster of workstations. Clusters are a
cost-effective, highly-scalable platform [2, 10] with the potential to
yield fast response times and permit processing of high-throughput
input streams. However, since these dataflows run for an indef-
inite period, they are bound to experience machine faults on this
platform, either due to unexpected failures or planned reboots. A
single failure can defeat the purpose of the dataflow application
altogether. These applications cannot tolerate losing accumulated
operator state, dropping incoming or in-flight data, and long inter-
ruptions in result delivery. In an intrusion detection scenario, for
example, any one of these problems could lead to hosts being com-
promised. For financial applications, even short interruptions can
lead to missed opportunities and quantifiable revenue loss. Hence,
in addition to scalability, such applications need a fault-tolerance
and recovery mechanism that is fast, automatic, and non-disruptive.

To address this problem, we present a mechanism called Flux that
masks machine failures to provide fault-tolerance and high avail-
ability for dataflows parallelized across a cluster. Flux has the fol-
lowing salient features.

Flux interleaves traditional query processing techniques for par-
titioned parallelism with the process-pairs [15] approach of repli-
cated computation. Typically, a database query plan is parallelized
by partitioning its constituent dataflow operators and their state
across the machines in a cluster, a technique known as partitioned
parallelism [25]. The main contribution of Flux is a technique
for correctly coordinating replicas of individual operator partitions
within a larger parallel dataflow. We address the challenges of
avoiding long stalls and maintaining exactly-once, in-order delivery
of the input to these replicas during failure and recovery. This deli-
cate integration allows the dataflow to handle failures of individual
partitions without sacrificing result quality or reducing availability.

In addition to quick fail-over (a direct benefit of replicated com-
putation) Flux also provides automatic on-the-fly recovery that lim-
its disruptions to ongoing dataflow processing. Flux restores accu-
mulated operator state and lost in-flight data for the failed parti-
tions of the dataflow while allowing the processing to continue for
unaffected partitions. These features provide the high availability

necessary for critical applications that not only cannot tolerate inac-
curate results and data loss but also have low latency requirements.
Moreover, this piecemeal recovery yields a lower mean time to re-
covery (MTTR) than the straight-forward approach of coordinating
replicas of an entire parallel dataflow, thus improving the reliabil-
ity, or mean time to failure (MTTF), of the system. For restoring
lost state, Flux leverages an API, supplied by the operator writer,
for extracting and installing the state of operator partitions.

Inspired by Exchange [13], Flux encapsulates the coordination
logic for fail-over and recovery into an opaque operator used to
compose parallelized dataflows. Flux is a generalization of the
Exchange [13], the communication abstraction used to compose
partitioned-parallel query plans. This technique of encapsulating
the fault-tolerance logic allows Flux to be reused for a wide va-
riety of database operators including stateful ones. This design re-
lieves the burden on the operator writer of repeatedly implementing
and verifying critical fault-tolerance logic. By inserting Flux at the
communication points within a dataflow, an application developer
can make the entire dataflow robust.

In this paper, we describe the Flux design and recovery proto-
col and illustrate its features. In Section 2, we start by stating our
assumptions and outline our basic approach for fault tolerance and
high availability. Inspired by process-pairs, in Section 3, we de-
scribe how to coordinate replicated single-site dataflows to provide
fault tolerance and high availability. Section 4 describes the neces-
sary modifications to Exchange for CQ dataflows and the problems
with a naive application of our single-site technique to partitioned
parallel dataflows. In Section 5, we build on the techniques in the
previous sections to develop Flux’s design and its recovery proto-
col. We also demonstrate the benefits of Flux with experiments
using an implementation of Flux in the TelegraphCQ code base.
Section 6 summarizes the related work. Section 7 concludes.

2. ENVIRONMENT AND SETUP
In this section, we outline the model for dataflow processing

and our basic approach for achieving high availability and fault-
tolerance. We also describe the underlying platform, the faults we
guard against, and services upon which we rely. Finally, we present
a motivating example used throughout the paper.

2.1 Processing Model
A CQ dataflow is a generalization of a pipelined query plan. It

is a DAG in which the nodes represent “non-blocking” operators,
and the edges represent the direction in which data is processed. A
CQ dataflow is usually a portion of a larger end-to-end dataflow.
As an example, consider a packet sprayer that feeds data to a CQ
dataflow. Imagine the dataflow monitors for intrusions and its out-
put is spooled to an administrator’s console. In this example, the
larger dataflow includes the applications generating packets and the
administrators that receive notifications. In this paper, we only con-
centrate on the availability of a CQ dataflow and not the end-to-end
dataflow nor the entry and exit points. We focus on CQ dataflows
that receive input data from a single entry point and return data to
clients through a single exit, thereby allowing us to impose a to-
tal order on the input and output data. Also, we will only discuss
linear dataflows for purposes of exposition, but our techniques ex-
tend to arbitrary DAGs. For the cluster-based setting, we assume
a partitioned dataflow model where CQ operators are declustered
across multiple nodes, and multiple operators are connected in a
pipeline [25].

CQ operators process over infinite streams of data that arrive at
their inputs. Operators export the Fjord interface [24], init() and
processNext() which are similar to the traditional iterator inter-
faces [14]. When the operator is invoked via the processNext()

call, it performs some processing and returns a tuple if available
for output. However, unlike getNext() of the iterator interface,
processNext() is non-blocking. The processNext() method
performs a small amount of work and quickly returns control to
the caller, but it need not return data. Operators communicate via
queues that buffer intermediate results. The operators can be in-
voked in a push-based fashion from the source or in a pull-based
fashion from the output, or some combination [7, 24].

2.2 Platform Assumptions
In this section, we describe our platform, the types of faults that

we handle, and cluster-based services we rely upon external to our
mechanism. For this work, we assume a shared-nothing parallel
computing architecture in which each processing node (or site) has
a private CPU, memory, and disk, and is connected to all other
nodes via a high-bandwidth, low-latency network. We assume the
network layer provides a reliable, in-order point-to-point message
delivery protocol, e.g. TCP. Thus, a connection between two opera-
tors is modeled as two separate uni-directional FIFO queues, whose
contents are lost only when either endpoint fails.

We ignore recurrent deterministic bugs and only consider hard-
ware failures or faults due to “heisenbugs” in the underlying plat-
form. These faults in the underlying runtime system and oper-
ating system are caused by unusual timings and data races that
arise rarely and are often missed during the quality testing process.
When these faults occur, we assume the faulty machine or process
is fail-stop: the error is immediately detected and the process stops
functioning without sending spurious output. Schneider [28] and
Gray and Reuter [15] show how to build fail-stop processes. More-
over, since we aim to provide both consistency and availability, we
cannot guard against arbitrary network partitions [12].

We rely on a cluster service that allows us to maintain a con-
sistent global view of the dataflow layout and active nodes in the
cluster [33]. We call it the controller. We rely on it to update
group membership to reflect active, dead, and standby nodes, setup
and teardown the dataflow, and perform consistent updates to the
dataflow structure upon failures. Standard group communication
software [6, 33] provides functionality for managing membership
and can be used to maintain the dataflow layout. Note, the con-
troller is not a single point of failure, but a uniform view of a highly
available service. Such a service usually employs a highly available
consensus protocol [22], which ensures controller messages arrive
at all cluster nodes in the same order despite failures.

However, we do not rely on the controller to maintain or recover
any information about the in-flight data or internal state of opera-
tors. The initial state of operators must be made persistent by exter-
nal means, and we assume it is always available for recovery. Our
techniques also do not rely on any stable storage for making the
transient dataflow state fault-tolerant. When nodes fail and re-enter
the system, they are stateless. Also, link failures are transformed
into a failure of one of the endpoints.

2.3 Basic Approach
Our goal is to make the in-flight data and transient operator state

fault-tolerant and highly available. In-flight data consists of all tu-
ples in the system from acknowledged input from the source to
unacknowledged output to the client. This in-flight data includes
intermediate output generated from operators within the dataflow
that may be in local buffers or within the network itself.

Inspired by the process-pairs technique [15], our approach pro-
vides fault-tolerance and high availability by properly coordinating
redundant copies of the dataflow computation. Redundant compu-
tation allows quick fail-over and thus gives high availability. We
restrict our discussion in this paper to techniques for coordinating
two replicas; thus, we can tolerate a single failure between recovery

Click
Stream
Source

OutputGroup-By
{src,dst}

Group-By
{app,src}

{src, dst, data, ts}

{app, src, dur}

{user-id,max(dur),avg(dur)}

Figure 1: Example Dataflow

points. While further degrees of replication are possible with our
technique, for most practical purposes, the reliability achieved with
pairs is sufficient [15].

We model CQ operators as deterministic state-machines; thus,
given the same sequence of input tuples, an operator will produce
the same sequence of output tuples. We call this property sequence-
preserving. Most CQ operators fall within this category, for ex-
ample, windowed symmetric hash join or windowed group-by ag-
gregates. Section 3.4 describes how to relax this assumption for
single-site dataflows.

Our techniques ensure that replicas are kept consistent by prop-
erly replicating their input stream during normal processing, upon
failure, and after recovery. With the dataflow model, maintaining
input ordering is straightforward, given an in-order communication
protocol and sequence-preserving operators. However, consistency
is difficult to maintain during failure and after recovery because
connections can lose in-flight data and operators may not be per-
fectly synchronized. Thus, our techniques maintain the following
two invariants to achieve this goal.

1. Loss-free: no tuples in the input stream sequence are lost.

2. Dup-free: no tuples in the input stream sequence are duplicated.

To maintain these invariants, we introduce intermediate opera-
tors that connect existing operators in a replicated dataflow. Be-
tween every producer-consumer operator pair that communicate via
a network connection, we interpose these intermediate operators to
coordinate copies of the producer and consumer. Abstractly, the
protocol is as follows. To keep track of in-flight tuples, we assign
and maintain a sequence number with each tuple. The intermediate
operator on the consumer side receives input from its producer, and
acknowledges the receipt of input (with the sequence number) to
the producer’s copy. The intermediate operator at the producer’s
copy stores in-flight tuples in an internal buffer and ensures our
invariants in case the original producer fails. The acknowledge-
ments track the consumer’s progress and are used to drain the buffer
and filter duplicates. We will show that by composing an existing
dataflow using intermediaries that embody this unusual, seemingly
asymmetric protocol in various forms, the dataflow can tolerate loss
of its pieces and be recovered in piecemeal.

2.4 Motivating Example
As a motivating example, we consider a dataflow that may be

used for analyzing network packets flowing through a firewall (or
DMZ) for a large organization. Suppose a network administrator
wants to track the maximum and average duration of network ses-
sions across this boundary in real time. The sessions may be for
various applications, e.g. HTTP, FTP, Gnutella, etc. Further, sup-
pose the administrator wants these statistics on a per source and
application basis. Such information may be used, for example, to
detect anomalous behavior or identify misbehaving parties. The
linear dataflow in Figure 1 performs this computation; we will use
this as our example throughout the paper.

Egress

Ingress

S-ProdP

S-ConsP

S-ProdS

S-ConsS

Source

Destination

data
ack

P
ri

m
a
ry

S
e

co
n

da
ry

Figure 2: Dataflow Pairs Normal Processing

The data source, the first operator, provides a raw packet stream.
To determine session duration, the network session must be recon-
structed from a packet stream. Each packet stream tuple has the
schema, (src, dst, data, ts), where the source and desti-
nation fields determine a unique session. Each tuple also has a
timestamp, ts, and a data field that contains the payload or sig-
nals a start or end of session. The second operator is a streaming
group-by aggregation that reconstructs each session, determines
the application and duration, and outputs a (app, src, dur) tu-
ple upon session completion. The third operator is also a stream-
ing group-by aggregation that maintains for each application and
source, i.e. (app, src), the maximum and average duration over
a user-specified window and emits a new output at a user-specified
frequency. The final operator is an output operator.

3. SINGLE-SITE DATAFLOW
Inspired by process-pairs, in this section, we describe how to co-

ordinate replicated, single-site CQ dataflows to provide quick fail-
over and thus high availability. We extend our technique to parallel
dataflows in the next section.

For a given CQ dataflow, we introduce additional operators that
coordinate replicas of the dataflow during normal processing and
automatically perform recovery upon machine failure. We refer to
these operators as boundary operators because they are interposed
at the input and output of the dataflow. These operators encapsu-
late the coordination and recovery logic so modifications to exist-
ing operators are unnecessary. Recovery has two phases: take-over
and catch-up. Immediately after a failure is detected, take-over en-
sues. During take-over, we adjust the routing of data within the
dataflow to allow the remaining replica to continue processing in-
coming data and delivering results. After take-over, the dataflow
is vulnerable: one additional failure would cause the dataflow to
stop. Once a standby machine is available, the catch-up phase cre-
ates a new replica of the dataflow, making the dataflow once again
fault-tolerant.

3.1 Dataflow Pairs
In this section, we describe the normal-case coordination neces-

sary between replicated dataflows to guard against failures.

3.1.1 Components of a Single-Site Dataflow
A single-site CQ dataflow is a DAG of non-blocking operators

which are typically in a single thread of control. In our example, the
dataflow is a pipeline. We call any such locally connected sequence
of operators a dataflow segment, as shown in the left portion of
Figure 2. Communication to non-local machines occurs only at the
top and the bottom of the dataflow segment. When we refer to the

top, we mean the end that delivers output and the bottom is the end
that receives input. Likewise, we use “above” to indicate closer to
the output, and vice-versa for “below”.

In top-down execution, the topmost operator invokes the opera-
tors below it recursively through the processNext() method, and
returns the results through an egress operator that forwards results
to the destination. At the bottom are operators that receive data
from an ingress operator. Ingress handles the interface to the net-
work source. The ingress and egress are boundary operators. The
circles are operators in the dataflow; in our running example they
are the streaming group-by operators.

In this paper, we place the ingress and egress operators on sep-
arate machines and assume they are always available. These oper-
ators are proxies for the input and output of the dataflow and may
have customized interfaces to the external world. Existing tech-
niques, e.g. process pairs, may be used to make these operators
highly available, but we do not discuss these further. Our focus
is on the availability of the dataflow that processes the incoming
data and its interaction with these proxy operators. Thus, in the
remaining discussion, we detail ingress and egress alongside the
other boundary operators we introduce.

3.1.2 Normal Case Protocol
To make a single-site dataflow fault-tolerant and highly avail-

able, we have two copies of the entire dataflow running on separate
machines and coordinate the copies through the ingress and egress.
Henceforth, we use the superscript P to denote the primary copy
of an object, and the superscript S to denote the secondary (see
Figure 2). Ingress incorporates the input and forwards it to both
dataflows, loosely synchronizing their processing, and egress for-
wards the output.

The ingress operator incorporates the network input into data
structures accessible to the dataflow execution engine, i.e. tuples.
Once the ingress operator receives an input and has incorporated
it into the dataflow, it sends an acknowledgement (abbreviated as
ack) to the source indicating that the input is stable and the source
can discard it. For push-based sources that do not process acks, the
operator does its best to incorporate the incoming data.

The egress operator does the reverse. It sends the output to the
destination and when an ack is received from the destination, the
egress operator can discard the output. If the destination does not
send acks, result delivery is also just best-effort.

We introduce additional boundary operators called S-Prod and
S-Cons at the top (producing) and at the bottom (consuming) end
of the dataflow segment respectively. We assume each input tu-
ple is assigned a monotonically increasing input sequence num-
ber (ISN) from the source or ingress operator. The ingress oper-
ator buffers and forwards each input tuple to both S-ConsP and
S-ConsS which upon receipt send acks. The S-Cons operators do
not forward an incoming tuple to operators above unless an ack for
that tuple has been sent to the ingress. Acknowledgments, unless
otherwise noted, are just the sequence numbers assigned to tuples.
When ingress receives an ack from both replicas for a specific ISN,
it drops the corresponding input from its internal buffer. Likewise,
both S-Prod operators assign an output sequence number (OSN)
to each output and store the output in an internal buffer. Only
S-ProdP forwards the output to the egress operator after which it
immediately drops the tuple. Egress sends acks to S-ProdS for ev-
ery input received. Once an ack is sent, egress can forward the
input to the destination. Once S-ProdS has received the ack from
egress, it discards the output tuple with that OSN from its buffer.
Note, acks may arrive before output is produced by the dataflow.
S-ProdS maintains these acks in the buffer until the corresponding
output is produced. We will see in Section 5, that this asymmetric,

 not B.full() {t := processNext();
 B.put(t, t.sn, del);}

 status[dest]=ACTIVE

 ^ SEND in conn[dest]

 ^ ACK not in conn[dest]

{t := B.peek(dest);
 send(dest, t);

 B.advance(dest);

 B.ack(t.sn, dest, del);}
 status[dest]=ACTIVE
 ^ ACK in conn[dest] {sn :=recv(dest);

 B.ack(sn, dest, del);}

Guard State Change

State
 Buffer B : { {sn, tuple, mark}, … }
 var del : { PROD | PRIM | SEC }
 status[#]: { ACTIVE,DEAD,STDBY,PAUSE }

 conn[#] : { SEND | RECV | ACK | PAUSE }
 dest : { PRIM, SEC }

1

2

a

3

Figure 3: Abstract Producer Specification - Normal Case

egress protocol is exactly half of the symmetric, Flux protocol.
The dataflow pairs scheme ensures both dataflows receive the

same input sequence and maintains the loss-free and dup-free in-
variants in the face of failures. The former is true because of our
in-order delivery assumption about connections. Next, we show
how to maintain the latter by using the internal buffers. The buffer
serves as a redundant store for in-flight tuples as well as a duplicate
filter during and after recovery. We describe the interface these
buffers support and how the boundary operators use them during
normal processing and recovery.

3.1.3 Using Buffers
The buffer in the ingress operator stores sequence numbers and

associated with those sequence numbers stores tuples and mark-
ings. If a sequence number does not have a tuple associated with
it, we call it a dangling sequence number. The markings indicate
the places from which the sequence number was received. A mark-
ing can be any combination of PROD, PRIM, and SEC. The PROD
mark indicates it is from a tuple produced from below. The PRIM
and SEC markings indicate it is from an ack received from the
primary and secondary destinations, respectively. The buffer also
maintains two cursors: one each for the primary and secondary
destinations. The cursors point to the first undelivered tuple to
each destination. The buffer in S-Prod is the same, except there is
only one destination, so only one cursor exists and only two mark-
ings are allowed, PROD, PRIM. The buffer supports the following
methods: peek(dest), advance(dest), put(tuple,SN,del),
ack(SN,dest,del), ack all(dest,del), reset(dest).

The peek() method returns the first undelivered tuple for the
destination and advance() moves the cursor for that destination to
the next undelivered tuple. The put() method inserts a sequence
number, SN, into the buffer if the SN does not exist. Then, it as-
sociates a tuple with that sequence number, and marks that tuple as
produced. The ack() method marks the sequence number as ac-
knowledged by the given destination. The del parameter for both
put() and ack() indicates which markings must exist for a se-
quence number in order to remove it and its associated tuple from
the buffer. The reset() and ack all() methods are used during
take-over and catch-up, so we defer their description to Section 3.2.

Our operators that produce or forward data use this buffer and
implement the abstract state-machine specification in Figure 3. The
specification contains state variables and actions that can modify
the state or produce output. State variables can be scalar or set-
valued. The values they can hold are declared within braces, and
for set-valued types, these values are separated by bars. Each row
in the specification is an action. Each action has a guard, a predicate
that must be true, to enable the action. Each enabled action causes

a state change. State change commands surrounded by braces im-
ply the sequence of commands is atomic. That is, either all or no
commands are performed, and the action makes no state changes
if any command in the sequence fails. If multiple actions are en-
abled, any one of their state changes may occur. Indented predi-
cates are shorthand for nested conditions; the higher level predicate
must also be true. If the nested condition is also true, their cor-
responding commands are appended to the higher level command
sequence. Actions may also have external actions as pre-conditions
(see Figure 4). While the abstract producer description only speci-
fies actions related to the output side of the operators, it suffices to
illustrate how the buffer is used.

The specification in Figure 3 indicates that any one of three ac-
tions may occur in a data forwarding operator like ingress or S-
Prod. If there is room in the buffer, the operator gets the next in-
coming tuple, determines the sequence number, and inserts it using
put() (action (1)). If a destination is alive and its connection indi-
cates that it should send, then it removes the first undelivered tuple,
sends it, and advances the cursor (action (2)). If the connection also
is not receiving acks, the tuple’s sequence number is immediately
acked in the buffer after sending (action (2a)). If the connection
indicates that acks should be processed, the next acked sequence
number is retrieved and is stored in the buffer (action (3)). Note, if
either t or sn is null, the actions make no state changes.

By setting the variables appropriately, we obtain the behavior of
our boundary operators that produce data. For the ingress oper-
ator, the dest variable ranges over both primary and secondary
connections. For both connections, the conn variable is set to
{SEND,ACK} to indicate that the connections are used for both send-
ing data and receiving acks. The del variable is set to {PROD,
PRIM, SEC} to indicate that all three markings are necessary for
eviction of an entry. For S-Prod,P conn[PRIM]= {SEND}; for
S-Prod,S conn[PRIM] = {ACK}, i.e. data is not forwarded. For
the S-Prod operators, there is only one connection to the egress,
so dest always is set to PRIM, and del is set to {PROD, PRIM}.
Thus, for S-Prod,P entries in the buffer are deleted only after hav-
ing been produced and sent. For S-Prod,S entries are deleted after
having been produced and acked. Note, acks from egress may be
inserted in the S-Prod,S buffer before their associated tuples are
produced, resulting in dangling sequence numbers in the buffer.

The size of the ingress buffer limits the drift of the two repli-
cas; the shorter the buffer the less slack is possible between the
two. Since we assume underlying in-order message delivery, the
buffers can be implemented as simple queues, and the acks can be
sent periodically by S-Cons or egress to indicate the latest tuple
received. With this optimization, ack() acknowledges every tu-
ple with sequence number ≤ SN. This scheme allows us to amor-
tize the overhead of round-trip latencies, but take-over and catch-up
protocols must change slightly. We omit these details due to space
constraints.

The mean-time-to-failure (MTTF) analysis for the dataflow pair
during normal processing is the same as that of process pairs, as-
suming independent failures. The overall MTTF of the system is
(MTTFs)

2/MTTRs where MTTRs is the time to recover a single
machine, MTTFs is the MTTF for a single machine, and MTTRs �

MTTFs [15]. In our case, MTTRs consists of both the take-over
and catch-up phase. The latter only occurs if a standby is available.

3.2 Take-Over
In this section, we describe the actions involved in the take-

over protocol for the boundary operators. We begin by discussing
how controller messages are handled and what additional state the
boundary operators must maintain. We then describe the protocol
and show how it maintains our two invariants after a failure.

 not(status[dest]=DEAD)

 ^ RECV not in

conn[p(dest)]

{status[dest]:=DEAD;

 send(p(dest), reverse);
 conn[p(dest)]:={RECV};}

Guard State ChangeExt. Action

 fail(dest)

{p_fail := true;} fail(pair)

 reverse()
{conn[PRIM]:={SEND};
 r_done:=true;}

 not(status[dest]=DEAD){status[dest]:=DEAD;
 B.ack_all(dest,del);
 del := del - {dest};}

 fail(dest)

E
g

re
s

s
S

-P
ro

d
In

g
re

s
s

S
-C

o
n

s

{p_fail := true;} fail(pair)

1

2

3

a

Figure 4: Take-Over Specification

3.2.1 Controller Messages and Operator Modes
As mentioned before, we rely on the controller to the maintain

group membership and dataflow layout, and it can be implemented
using standard software [6, 33]. Typically, such a service will de-
tect failures via timeout of periodic heartbeats, and inform all ac-
tive nodes of the failed node through a distributed consensus proto-
col [22] (i.e. do a view update) . Note, node failures are permanent;
a reset node enters the cluster at initial state. When a failure mes-
sage arrives from the controller (via a view update), we model it as
an external action fail() invoked on our boundary operators. The
controller also sends availability messages (avail()) used during
catch-up (see Section 3.3). Since the controller can send multiple
messages, we enforce that all enabled actions for a controller mes-
sage complete before actions for the next message can begin.

While controller messages arrive at all machines in same order
within all controller commands, there is no ordering guarantee with
respect to data routed within a dataflow. For example, a fail()
message may arrive at the ingress before some tuple t has been
forwarded and arrive at a S-Cons much after the tuple t has been
received. Thus, our boundary operators must coordinate using mes-
sages within the dataflow to perform take-over.

Moreover, our boundary operators must maintain the status of
the operator on the other end of all outgoing and incoming connec-
tions. Each operator can be in four distinct modes: ACTIVE, DEAD,
STDBY, PAUSE. In the ACTIVE mode, the operator is alive and pro-
cessing. When it is dead, it is no longer part of the dataflow. We
discuss the STDBY and PAUSE modes in Section 3.3 of catch-up.

3.2.2 Re-routing Upon Failure
Upon failure, we need to make two adjustments to the routing

done by our boundary operators to ensure the remaining dataflow
segment continues computing and delivering results. First, in the
ingress operator, we must adjust the buffer to no longer account for
the failed replica. Second, if the primary dataflow segment fails, the
secondary S-Prod must forward data to egress. The actions enabled
upon a failure and during take-over for our boundary operators are
shown in Figure 4. We describe these top-down in our dataflow.

When a failure message arrives at the egress operator, first it sim-
ply adjusts the connection status to indicate that the destination is
dead (action (1)). If the connection to the remaining replica, in-
dexed by p(dest), is receiving results, nothing else happens. Oth-
erwise, the egress operator marks that connection for receiving tu-
ples. Egress also sends a reverse message to the replica (action
(1a)). Hence, if the primary dataflow segment fails, egress begins
processing results from the secondary. The reverse message is sent
along the connection to S-Prod that was used for acks. This mes-
sage is an indication to S-Prod to begin forwarding tuples instead
of processing acks.

When a reverse message arrives at the S-Prod, it simply adjusts
the connection state to begin sending to its only connection (action
(2)). Using the buffer ensures that no results are lost or duplicated.
Once the reverse message arrives, there are no outstanding acks
from egress, given our assumption about in-order delivery along
connections. At this point, there can be two types of entries in the
buffer: unacknowledged tuples, and dangling sequence numbers.
The dangling sequence numbers are from received acks for which
tuples have yet to be produced. No tuples are lost because all lost
in-flight tuples from the primary either remain unacknowledged in
the buffer or will eventually be produced, assuming the ingress is
fault-tolerant. Moreover, newly produced tuples with already acked
sequence numbers will not be resent because the buffer acts as a
duplicate filter. Once produced, a tuple is inserted using the put()
method and is immediately removed if a dangling sequence number
for it exists.

When S-Prod starts sending, the buffer ensures the primary’s cur-
sor points to the first undelivered tuple in the buffer, i.e. the first
unacknowledged tuple. As described in the next section, the S-
Prod and S-Cons operators maintain additional state, p fail, used
to indicate the completion of the take-over phase.

Upon receiving the failure message, the ingress operator first sets
the connection to dead (action (3)). Then, using the ack all()
method, it marks all tuples destined for the dead connection as ac-
knowledged. Like ack(), ack all() will remove tuples contain-
ing all the marks in del. Finally, ingress adjusts the del variable
to only consider the produced marker, PROD, and one of PRIM or
SEC for the remaining connection, when evicting tuples. No tuples
are lost or duplicated because for the remaining connection, the
ingress operator is performing exactly the same actions. Moreover,
the buffer does not fill indefinitely after take-over because del is
modified to ignore the dead connection.

After take-over is complete, the dataflow continues to process
and deliver results. But, it is still vulnerable to an additional failure.

3.3 Catch-Up
To make the dataflow fault-tolerant again, we initiate a recov-

ery protocol called catch-up. Figure 5 shows the specification for
the catch-up phase. During catch-up, a passive standby dataflow
is brought up-to-date with the remaining copy. To do so, we need
another non-faulty machine that has the dataflow operators initial-
ized in STDBY mode. We assume that the controller arranges such
a machine after failure and issues an avail() message to indi-
cate its availability. We also assume that the controller initializes
the standby machine with operators in their initial state and has
the connections properly setup with the boundary operators. Once
available, the state-movement phase begins in which we transfer
state of the active dataflow onto the standby machine. Then in the
fold-in phase we incorporate the new copy into the overall dataflow.
Below, we detail these two phases of catch-up.

3.3.1 State-Movement
We first provide an overview of the state-movement phase. Once

a standby dataflow segment is available, state-movement begins.
Initially, the S-Cons operator quiesces the dataflow segment and
begins state movement. S-Cons leverages a specific API (which
we describe shortly) for extracting and installing the state of the
dataflow operators. This state is transferred through a StateMover
that is local to the machine, but in a separate thread outside the
dataflow. The StateMover has a connection to the StateMovers on
all machines in the cluster. Once state-movement is complete, we
have two consistent copies of the dataflow segment. Next, we detail
the specific actions taken in this phase.

The S-Cons operator initiates the state-movement phase when it
recognizes that a standby dataflow segment is ready via an avail()

message from the coordinator. The S-Cons operators on both the
active and the standby machines rely on a local, but external State-
Mover process for transferring state. The S-Cons on the active ma-
chine is in ACTIVE mode, and the S-Cons on the standby machine
is in STDBY mode. The active S-Cons operator checks with its S-
Prod above to determine if take-over has completed (action (1)).
If so, it signals the StateMover process to begin state movement.
The StateMovers on the standby and active machines communi-
cate, and, when ready for transferring state, they both signal their
respective S-Cons operators with sm ready() (action (2)). Next,
the active S-Cons increments its version number and pauses the in-
coming connection. It also calls initTrans() which is invoked
on every operator in the dataflow segment to quiesce the operators
for movement. Eventually the call reaches the S-Prod above and
pauses the operator. Then state transfer begins.

At this point, we note two important items. First, S-Prod pauses

 move()

 sm_ready()

 my_status=ACTIVE
 ^ p_fail

 ^ S-Prod.tk_done()

 my_status=STDBY

{send(sm,send-req};}

{send(sm,recv-req);}

 avail(pair)

{my_ver:=my_ver+1;
 conn:={PAUSE};

 initTrans();

 move();}

 my_status=ACTIVE

 my_status=STDBY

{st:=getState();

 send(sm, st);

 sm_done();}

{st:=recv(sm);

 installState(st);

 sm_done();}

 sm_done() {endTrans(),p_fail:=false;

 S-Prod.sync(my_ver);

 conn:={RECV, ACK};
 my_status:=ACTIVE;

 send(csync, my_ver);}

{status[dest]:=STDBY;

 conn[dest] := {};}

Guard State ChangeExt. Action
 avail(dest)

 psync(dest,v)

 status[dest]=ACTIVE

 ^ ver[p(dest)] = v

 else

 status[dest]=STDBY

 ^ ver[p(dest)] = v

{ver[dest] := v;

 conn[p(dest)]:={ACK};}

 conn[dest]:={PAUSE};}

 status[dest]:=ACTIVE;}

 conn[p(dest)]:={RECV};

 conn[dest]:={ACK};}

 p_fail ^ r_done {return true;} tk_done()

 sync(ver)

 my_status=STDBY

{p_fail:=r_done:=false;

 send(psync, ver);

 my_status:=ACTIVE;

 conn:={ACK};}

 initTrans()
{p_status:=my_status;

 my_status:=PAUSE;}

 endTrans() {my_status:=p_status;}

E
g

re
s

s
S

-P
ro

d
S

-C
o

n
s

{status[dest]:=STDBY;

 conn[dest]:={};}

 avail(dest)

 csync(dest,

 v)

status[dest]=ACTIVE

 ^ ver[p(dest)]=v

status[dest]=STDBY

 ^ ver[p(dest)]=v

{ver[dest]:=v;

 del:=del+{p(dest)};
 B.reset(p(dest));

conn[p(dest)]:={SEND,ACK};}

{ver[dest]:=v;

 status[dest]:=ACTIVE;

 conn[dest]:={SEND,ACK};}

8

7

1

5

6

2

4

3

In
g

re
s

s

Figure 5: Catch-Up Specification

to prevent additional state changes from occurring during move-
ment (action (3)). We enforce not(my status=PAUSE) as a guard
for every action to stall the dataflow segment completely. (Section 5
shows how to alleviate this stall for parallel dataflows.) Second, we
have introduced version numbers for each dataflow segment. The
version number tracks which checkpoint of the dataflow state has
been transferred. Ingress and egress also maintain the checkpoint
versions for the segments at the other end of their connections. Dur-
ing state movement, the version number is copied so the active’s
and standby’s version values match after movement. These check-
point version numbers are then used to match the synchronization
messages sent during the fold-in phase.

In order to transfer the state of dataflow operators, operator de-
velopers must implement a specific API. First, we require two meth-
ods: getState() and installState() (action (4)) that extract
and marshall, and unmarshall and install the state of the operator,
respectively. S-Cons calls these methods on every dataflow opera-
tor during state movement. For example, for the group-by from our
example, getState() extracts the hash table entries that contain
intermediate per-group state and marshalls it into machine indepen-
dent form; installState() does the reverse. Even S-Prod im-
plements these methods to transfer its internal buffer. Similarly,
we use initTrans() to quiesce the operator before transfer and
endTrans() to restart the operator afterwards.

Once state transfer is finished, the sm done() action is enabled
(action (5)). Next, both S-Cons operators restart their ancestors,
restart their input connection for receiving and acking data, and en-
able sync() on their downstream S-Prod operator. At this point,
the two dataflow copies are consistent with respect to their state,
the amount of input processed, and output sent. The fold-in phase
restarts the input and output streams of the new replica while main-
taining the dup-free and loss-free invariants.

3.3.2 Fold-In
Once state movement is complete both active and standby S-

Prod and S-Cons operators begin fold-in by sending synchroniza-
tion messages to the egress and ingress operators, respectively. The
messages mark the point, within the output or input streams of the
dataflow segment, at which the two new replicas are consistent.
Once the ingress and egress operators receive these messages from
the active and standby, the incoming and outgoing connections are
restarted and fold-in is complete. We first describe the interaction
between the ingress and S-Cons operators, and then describe the
interaction between the egress and S-Prod operators.

S-Cons sends a csyncmessage with its latest checkpoint version
to the ingress operator (action (5)). Note, the csync messages are
sent along the connection to the ingress for sending acks, flushing
all acks to the ingress. Once sent, both S-Cons are active. On the
other side, the ingress must properly incorporate both messages and
restart the connections to the S-Cons operators.

The ingress operator completes fold-in after both csync mes-
sages arrive (action (6)). Since the csync messages can arrive
at the ingress in any order, we must keep track of their arrivals
and take actions to avoid skipping or repeating input to the new
standby. The ver variable maintains the latest checkpoint version
for the dataflow at the other end of each connection. Since versions
are sent only with csync messages, we use ver to indicate whether
a csync was received from the connection. When csync arrives
from the active dataflow segment, we are certain that all acks sent
prior to state transfer have been received. So, in order to avoid drop-
ping input for the new replica, ingress updates del to indicate that
acks from both connections are necessary for deletion. Ingress also
resets the cursor for the standby through reset() which points the
cursor to the first of the unacknowledged tuples in the buffer. Reset

also ensures the markings for both connections match on each en-
try and removes entries with all three or no markings. Note, we are
careful not to restart the connection to the standby segment unless
the csync from the active dataflow segment has arrived. Other-
wise, ingress might duplicate previously consumed tuples to the
new replica. Fold-in is complete when it activates the connection
to the new replica.

Returning to the top of the dataflow segment, once S-Prod opera-
tors receive the sync() from the S-Cons below, they emit a psync
with the latest checkpoint version along the forward connection to
egress (action (7)). After this message is sent, both S-Prod are ac-
tive, and only fold-in for the egress remains to be discussed.

At the egress operator, we must ensure that it does not forward
acks for any in-flight data sent before movement began and that
it does not miss sending acks for any tuples sent after movement
completed (action (8)). If the psync arrives from the active first,
we are careful to pause the connection until the second psync ar-
rives. Otherwise, egress would miss sending acks for tuples re-
ceived after state-movement but before the standby psync arrives.
If psync arrives from the standby first, we are careful not to acti-
vate the connection for acks; otherwise, egress would forward acks
for tuples sent before state-movement. The second psync causes
both connections to be activated. Once egress starts sending acks
to the new replica, fold-in is complete. Once fold-in is completed
at both ends, catch-up is finished and the dataflow is fault-tolerant.

3.4 Conclusion - Dataflow Pairs
There are two properties of this protocol that we want to high-

light. First, with some more modifications, we can make the catch-
up protocol idempotent. That is, even if the standby fails during
movement, the dataflow will continue to process correctly and at-
tempt catch-up again. Idempotency can be extremely useful. For
example, imagine an administrator wants to migrate the dataflow
to a machine with an untested upgraded OS. With such a property,
she can simply terminate a replica, bring up a standby with the new
OS, and if the standby fails, revert back to the old OS. We sketch
the needed changes for achieving idempotent catch-up. On a failure
during movement, the S-Cons operator completes the protocol as if
movement did finish. But, multiple failures can cause the check-
point version numbers on the outgoing (incoming) connections of
ingress (egress) to drift apart. Thus, we must modify the ingress
and egress psync(), csync(), and fail() actions to track this
gap and properly restart connections when the versions match.

Second, note the entire protocol only makes use of sequence
numbers as unique identifiers; we never take advantage of their or-
der, except in the optimizations for amortizing the cost of round-trip
latencies. Some operators exhibit external behavior that depends on
inputs outside of the scope of the dataflow. For example, the output
order of XJoin [31] depends upon the prevailing memory pressures.
If we ignore these optimizations, we can accommodate dataflow
segments that include non-deterministic but set-preserving opera-
tors such as XJoin. That is, given the same set of input tuples, the
operator will produce the same set of output tuples. In this case,
instead of generating new OSNs, we require that outputs have a
unique key which are used in place of sequence numbers. We out-
line methods for maintaining such keys in Section 4.1.

4. PARALLEL DATAFLOW
Parallelizing a CQ dataflow across a cluster of workstations is a

cost-effective method for scaling high-throughput applications im-
plemented with CQ dataflows. For example, in our monitoring sce-
nario, one can imagine having thousands of simultaneous sessions
and thousands of sources. Moreover, the statistics (e.g. max) col-
lected may range over some sizeable window of history. To keep

Consumer
Op2

C2

Thread Boundary

Exchange

Operator Partition

Ex-Prod 2P2

Machine 2

Producer
Op2

Machine 1

P1

Producer
Op1

 Ex-Cons 1 Ex-Cons 2
Consumer

Op1

C1

Figure 6: Exchange Architecture

up with high-throughput input rates and maintain low-latencies, the
dataflow can be scaled by partitioning it across a cluster.

On a cluster, a CQ dataflow is a collection of dataflow segments
(one or more per machine). Individual operators are parallelized
by partitioning their input and processing across the cluster, a tech-
nique called partitioned parallelism. When the partitions of an op-
erator need to communicate to non-local partitions of the next oper-
ator in the chain, the communication occurs via the Exchange[13].
In Section 4.1, we describe Exchange and the necessary extensions
for use in a partitioned parallel CQ dataflow consisting of sequence-
preserving operators that require their input to be in arrival order.

In this configuration, a scheme that naively applies the dataflow
pairs technique without accounting for the cross-machine commu-
nication within a parallel dataflow quickly becomes unreliable. In
Section 4.2, we show that this naive approach, called cluster pairs,
leads to a mean-time-to-failure (MTTF) that falls off quadratically
with the number of machines. Moreover, the parallel dataflow must
stall during recovery, thereby reducing the availability of the sys-
tem. Instead, embedding coordination and recovery logic within
the Exchange speeds up the MTTR thereby improving both avail-
ability and MTTF. The improved MTTF falls off linearly with the
number of machines. In Section 5, we describe the Flux design
which achieves this MTTF.

4.1 Exchange
In a parallel database, an Exchange [13] is used to connect a

producer-consumer operator pair in which the producer’s output
must be repartitioned for the consumer. In our running example,
a viable way to parallelize the dataflow is to partition the group-
bys’ state and input based on (src, dst) at the first level, and
(app, src) at the second. The Exchange ensures proper routing
of data between the partitioned instances of these operators. Ex-
change is composed of two intermediate operators, Ex-Cons and
Ex-Prod (see Figure 6). Ex-Prod encapsulates the routing logic; it
forwards output from a producer partition to the appropriate con-
sumer partition based on the output’s content. In our example, if
the partitioning was hash-based, Ex-Prod would compute a hash
on (app, src) to determine the destination. Since, any producer
partition can generate output destined for any consumer partition,
each Ex-Prod instance is connected to each Ex-Cons instance. Typ-
ically, Ex-Cons and Ex-Prod are scheduled independently in sep-
arate threads and support the iterator interface. Ex-Cons merges
the streams from the incoming connections to a consumer instance.
Since Exchange encapsulates the logic needed for parallelism, the
operator writer can write relational operators while being agnostic
to their use in a parallel or single-site setting.

We make two modifications to Exchange for use in CQ dataflows.
First, to allow a combination of push and pull processing, Ex-Prod
and Ex-Cons must support the non-blocking Fjord interfaces [24].

Second, Ex-Cons must be order-preserving. Some CQ operators,
like a sliding window group-by whose window slides with every
new input, require that its input data arrive in sequential order. In
the parallel setting, since the input stream is partitioned, the input
will arrive in some interleaved order at an Ex-Cons. The streams
output by the individual Ex-Prod instances are, however, in sequen-
tial order. An Ex-Cons instance can recover this order by merging
its input data using their sequence numbers. We can also modify
Ex-Cons to support operators that relax this ordering constraint.

An important related issue is how to maintain sequence numbers
as tuples are processed through the dataflow. We cannot simply
generate new output sequence numbers (OSNs) at Ex-Prod other-
wise the ordering across Ex-Prod instances would be lost. Instead,
we must keep the original ISN intact to reconstruct the order at
the consumer side. For operators that perform one-to-one transfor-
mations, the operators just need to keep the input tuple’s sequence
number (SN) intact. For one-to-many transformations, the output
SN can be a compound key consisting of the input SN, and another
value that uniquely orders all tuples generated from that input. For
example, for a symmetric join, a concatenation of the SNs from
its two input streams will suffice. For many-to-one transformations
like windowed aggregates, the largest SN of the input that produced
the output will suffice. It is the task of operator developers to gen-
erate correct SNs.

4.2 Naive Solution: Cluster Pairs
In this section we describe how to make a parallel dataflow highly

available and fault-tolerant in a straightforward manner using the
technique in Section 3. Assume we still have a single ingress and
egress operator. Also assume we use partitioned parallelism for the
entire dataflow. Each machine in the cluster is executing a single-
site dataflow except the operators only process a partition of the
input and repartition midway if needed.

A naive scheme for parallel fault-tolerance would be to apply
the ideas of the previous section only to the operator partitions on
each machine that communicate with ingress and egress. Using this
technique, we can devote half of the machines in a cluster for the
primary partitions of the dataflow and the other half for the sec-
ondary, with each machine having an associated pair (copy). We
call this scheme cluster pairs. We refer to the set of machines run-
ning either the primary partitions or the secondary partitions as a
replica set. With cluster pairs, an operator partition and its copy are
not processing input in lock-step; thus, when a machine fails, the
copies may be inconsistent. Since partitioned operators communi-
cate via Exchange, we may lose in-flight data on failure making it
impossible to reconcile this inconsistency. Thus, a single machine
failure in either the primary or secondary replica set renders the
entire dataflow replica set useless.

To see why, from our example, imagine a machine in the primary
replica set failed with a partition of the two group-by operators on
it. Lets call the lower streaming group-by operator G1 and the up-
per G2. At the time of failure, a secondary partition of G1 may
have already produced, say a hundred tuples, that its primary copy
was just about to send. Now, if we recovered the state from the
remaining secondary partition, all the primary operator partitions
of G2 that relied on the failed primary partition will never receive
those hundred tuples. From that point forward, the primary parti-
tions will be inconsistent with their replicas. Without accounting
for the communication at the Exchange points, we must recover
the state of the entire parallel dataflow across all the machines in
the primary replica set to maintain consistency and correctness.

The MTTF for this naive technique is the same as the process-
pair approach (MTTFc)

2/MTTRc where MTTFc and MTTRc are
for a replica set. Since the replica set is partitioned over N/2

F-ConsP F-ConsS

F-ProdP F-ProdS

Consumer Consumer

Producer Producer

ack

data

ack

data

Buf Buf

Figure 7: Flux design and normal case protocol.

machines, MTTFc = 2MTTFs/N . Thus, the overall MTTF is
4(MTTFs)

2/(N2MTTRc), a quadratic drop off with N .
The catch-up phase is the bulk of our recovery time, it is the de-

termining factor in this equation. Depending on the available band-
width during catch-up, MTTRs ≤ MTTRc ≤ N × MTTRs. More
importantly, we need all N/2 machines available before catch-
up completes and, during catch-up, the entire parallel dataflow is
stalled. This stall may lead to unacceptably long response times
and perhaps even dropped input.

Clearly, the reliability of the cluster pairs technique does not
scale well with the number of machines, nor does it provide the
high-availability we want during recovery for our critical, high-
throughput dataflow applications. If we had a technique that prop-
erly coordinated input to operator partitions at the Exchange points,
then we could build parallel dataflows that tolerate the loss of indi-
vidual partitions. Also, we would only need to recover the state of
the failed partition, resulting in improved reliability and availabil-
ity. In our configuration above, the MTTF for such a scheme would
be the time for any paired nodes to fail. Since there are N/2 paired
nodes, and the MTTF for any pair is (MTTFs)

2/MTTRs, overall
the MTTF would be 2(MTTFs)

2/(NMTTRs).
To achieve this improved MTTF, we must modify the Exchange

to coordinate operator partition replicas and properly adjust the
routing after failures and recovery.

5. PARTITION PAIRS
Our analysis in the previous section shows that without proper

coordination of operator partitions at their communication points,
recovery is inefficient, leading to reduced reliability and availabil-
ity. In this section, we build on the protocols for the single-site
case and show how to coordinate operator partitions by modifying
the Exchange. We show how to maintain the loss-free and dup-free
invariants for operator partitions rather than entire dataflows. This
design will permit us to recover the dataflow piecemeal and allow
the processing for the unperturbed parts of the dataflow to continue,
thereby improving both reliability and availability.

Our new operator, Flux, has the same architecture as Exchange;
its constituent operators are called F-Cons and F-Prod. For each
F-Cons instance in the primary dataflow, there is a corresponding
F-Cons instance in the secondary dataflow, and likewise for the F-
Prod instances. We call any such pair of instances partition pairs.
The F-Cons protocol is similar to egress’ during normal process-
ing and take-over, and similar to S-Cons during catch-up. F-Prod ’s
protocol is similar to S-Prod during normal case and recovery. Dur-
ing normal processing, each F-Cons instance acks received input
from one of its F-Prod instances to its dual F-Prod in the repli-
cated dataflow (see Figure 7). We assume Flux uses the order-

preserving variant of Exchange to ensure that the input is consumed
in the same order for both partition replicas. F-Prod is responsible
for routing output to its primary consumers and incorporating acks
from the secondary consumers into its buffer.

There are few salient differences between the Flux protocol and
the cluster pairs and dataflow pairs schemes. First, the Flux normal
case protocol is symmetric between the two dataflows. This prop-
erty makes Flux easier to implement and test because it reduces the
state space of possible failure modes and therefore the number of
cases to verify. In the rest of this paper, we artificially distinguish
between the primary and secondary versions of the F-Cons and F-
Prod. From the point of view of an operator, we use the adjective
primary to mean within the same dataflow and secondary to mean
within the dual dataflow. Second, Flux handles both multiple pro-
ducers and multiple consumers. In a partitioned parallel dataflow
these producers and consumers are partitions of dataflow operators.
Finally, the instances of F-Prod or F-Cons (and operators in their
corresponding dataflow segments) are free to be placed on any ma-
chine in a cluster as long as they fail independently. This flexibility
is useful for administrative and load-balancing purposes. The in-
dependence requirement leads to at least one constraint: no two
replicas of a partition are on the same machine.

In this section, we describe the modifications necessary to the
previous normal-case and recovery protocols to accommodate all-
to-all communication between partitioned operators. Since there
may be many such communication points in a dataflow, recovery
proceeds bottom-up, recovering one level at a time. We have al-
ready shown the base cases for the entry and exit points, and now
we will show the inductive step at the Exchange points.

5.1 Flux Normal Case
We specify the normal case forwarding, buffering, and acking

protocol Flux uses to guard against unexpected failures. F-Cons be-
haves the same as egress in Figure 2 except that it manages mul-
tiple connections for multiple producers. For each tuple received
from a connection to a primary F-Prod, it sends an ack of the tu-
ple’s sequence number to the corresponding secondary F-Cons, be-
fore considering the tuple for any further processing. Meanwhile,
for each destination, an F-Prod instance obeys the same abstract,
normal-case specification for producers shown in Figure 3. The ac-
tions remain the same, but the state size increases. It maintains one
set of state variables for each consumer partition pair. We use a
subscript, i, to denote the variable associated with partition i.

Unlike the ingress operator of Figure 2, however, F-Prod only
forwards data to the primary partition, conni[PRIM] = {SEND},
and only processes acks from the secondary, conni[SEC] = {ACK}.
Finally, once a tuple has been produced, sent to the primary, and
acked by the secondary, it is evicted from the buffer, i.e. deli =
{PROD, PRIM, SEC}.

Since F-Prod does not remove any tuples until an ack has been
received, all in-flight and undelivered tuples from F-Prod ’s replica
are in its buffers or will eventually be produced. Thus, this scheme
ensures the loss-free invariant with up to a single failure per par-
tition pair. In the next section, we describe the take-over protocol
which allows the dataflow to continue processing after failures and
ensures that no tuples will be duplicated to consumer instances.

5.2 Flux Take-Over
Take-over ensures that regardless of the number of machine fail-

ures, as long as only one replica of each partition pair fails, the
dataflow will continue to process incoming data and deliver re-
sults. Since the the normal case protocol is symmetric, there are
only four distinct configurations in which a particular F-Prod,P F-
Prod,S F-Cons,P F-ConsS quartet can survive after failures. With-
out loss of generality, these cases are: F-ConsS fails, F-ProdS fails,

F-ConsS and F-ProdS fail, or F-ConsP and F-ProdS and fail. We
describe the take-over actions to handle these cases.

For F-Cons, the take-over specification is exactly the same as
the one for egress, except the fail message now specifies exactly
which partition, i, and copy of F-Prod failed. If the primary fails,
F-Cons sends a reverse message to the secondary and begins re-
ceiving data from the secondary. Like S-Cons, it also notes using
p fail if its replica failed, because it is responsible for catch-up,
as described in the next section.

For F-Prod, take-over is a combination of the ingress actions and
S-Prod actions. Like ingress, when it detects a failure for a con-
sumer instance, it marks all unacked sequence numbers in the cor-
responding buffer for the failed copy using ack all(dest, del).
In this case, in addition to removing entries with all three marks,
this method also removes entries with only the dest mark, leav-
ing only entries relevant to the remaining consumer partition. So,
if the secondary consumer fails, the method will remove all dan-
gling sequence numbers from the secondary, and the buffer only
will contain undelivered tuples for the primary. Or, if the primary
fails, the buffer may contain tuples not yet acked by the secondary
or dangling sequence numbers from the secondary. Moreover, F-
Prod also adjusts del to ignore the failed partition during the pro-
cessing between take-over and catch-up.

Like S-Prod, F-Prod notes if its own replica failed and handles
reverse messages from secondary consumer partitions. The ac-
tion enabled in this case is different (replaces Figure 4-(2)):

reverse(i,SEC) {conni[SEC]:={SEND}; r donei:=true;
deli:=deli+{SEC};}

This state change allows F-Prod to properly forward to both con-
sumers partitions if its replica fails and to just the secondary con-
sumer if the primary consumer partition i also fails.

After takeover, we observe that the Flux protocol maintains the
loss-free and dup-free invariants by noting its similarity to the pro-
tocol on the egress side. In the egress case, we assumed the egress
was fault-tolerant, and in this case, F-Cons is fault-tolerant because
it is replicated. If F-ConsS fails or F-ConsS and F-ProdS fail, the
failed partitions are ignored and buffer entries modified accord-
ingly. If F-ProdS fails or F-ProdS and F-ConsP fail, a reverse
message is sent and once received F-ProdP feeds the remaining
consumer(s). In the latter cases, the buffer filters duplicates. In
all cases, the remaining partitions in both dataflows continue pro-
cessing. For the interested reader, a straight-forward case by case
anaylsis similar to Section 3.2 shows our invariants hold.

5.3 Flux Catch-Up
The catch-up phase for a partition pair is similar to one described

for a single-site dataflow. In this section, we detail the differences.
For the purposes of exposition, we assume no failures occur during
catch-up of a single partition. Achieving the idempotency property
in this case is akin to that in Section 3.4.

Once the a newly reset node is available or a standby machine
is available, the catch-up phase ensues. Each failed dataflow seg-
ment (a partition with its Flux operators) is recovered individu-
ally, bottom-up. F-Cons initiates catch-up when it recognizes that
catch-up for the previous level is complete and that take-over is
complete for its downstream F-Prod (or S-Prod). Like S-Cons, it
stalls the operators within its dataflow segment, and transfers state
through the StateMover. Once finished, synchronization messages
are broadcast to all primary and secondary consumer partitions at
the top of the segment and primary and secondary producer parti-
tions at the bottom to fold in the new partition replica.

There are a few differences between catch-up in this case and the
single-site case which we outline first. First, before state-movement
begins, F-Cons cannot just stall the incoming connections by set-

ting them to PAUSE. Thus, F-Cons pauses the primary incoming
connections through a distributed protocol that stalls the outgoing
connections from all its primary F-Prods. Second, when the con-
tents of the buffer in F-Prod are installed at the standby, all mark-
ings in entries must be reversed and cursor positions swapped. We
need to do this reversal because the primary and secondary desti-
nations are swapped for the new replica. Finally, the fold-in syn-
chronization messages received at F-Prod and F-Cons are handled
slightly differently from the ingress and egress operators. Below,
we detail the distributed pausing protocol and fold-in.

5.3.1 State-Movement
When F-Cons begins state-movement, all of its primary and sec-

ondary producer instances are finished with catch-up. Thus, it is in
the first survival scenario; F-ConsS has failed. If the remaining F-
ConsP just pauses the connection locally and copies over its state
(see Figure 5-(2)), F-ProdP will not properly account for the data
in-flight to F-ConsP immediately after the pause. Those tuples no
longer exist in F-ProdP ’s buffer because it is not receiving or ac-
counting for acks. However, acks for those in-flight tuples will ar-
rive after catch-up at F-ProdP via the new F-ConsS from F-ProdS .
And these acks would remain in the buffer indefinitely.

Hence, we must ensure there are no in-flight data before state-
movement begins. To do so, F-ConsP sends a pause message to
all of its producers, which upon receipt pause the outgoing connec-
tion and enqueue an ack for the pause on the outgoing connection.
Once F-ConsP receives all the incoming pause-acks, it can begin
state transfer. A slight complication arises if F-Cons is order pre-
serving. Since a pause-ack can arrive at anytime, it may prevent
F-Cons from merging and consuming incoming tuples from other
un-stalled incoming connections. This deadlock occurs because
when merging in order, inputs from all partitions are necessary to
select in the next tuple in line. Thus, F-Cons must buffer the in-
flight tuples internally in order to drain the network and receive all
pause acks. Of course, all buffered tuples still need to be acked
to F-ProdS . State transfer is accomplished through the StateMover
and is the same as the single-site case.

5.3.2 Fold-in
After state-movement, the two partition copies are consistent,

and we must restart all connections to the new replica without los-
ing or duplicating input. We first discuss how F-Prod folds in a new
F-Cons replica, then describe how F-Cons folds in a new F-Prod.

Both F-ConsP and the new F-ConsS broadcast to all producer
partitions a csync message with the corresponding checkpoint ver-
sion number. The actions taken by F-Prod are now slightly different
than ingress (replaces Figure 5-(6)):
csync {ver[dest]:=v;
(dest,v)

status[dest]=ACTIVE del += p(dest);
B.reset(p(dest));

∧ dest=PRIM conn[PRIM]:={SEND};

∧ ver[SEC]=v conn[SEC]:={ACK};}

∧ dest=SEC
∧ ver[PRIM]=v conn[PRIM]:={SEND};}

status[dest]=STDBY status[dest]:=ACTIVE;

∧ dest=PRIM
∧ ver[SEC]=v conn[PRIM]:={SEND};}

∧ dest=SEC
∧ ver[PRIM]=v conn[SEC]:={ACK};}

Like the ingress, if a csync arrives from the active connec-
tion, F-Prod resets the buffer and modifies del to account for the
new replica. Otherwise, further processing of data (or acks) to (or
from) the active might evict tuples in the buffer intended for the

19 20 21 22 23
Time (sec)

0

5

10

15

T
hr

ou
gh

pu
t

(K
-t

up
le

s/
se

c)

(a) Throughput

19 20 21 22 23
Time (sec)

0

100

200

300

400

500

A
vg

. L
at

en
cy

 /
T

up
le

 (
m

se
c)

(b) Avg. Latency

Figure 8: Performance During Recovery

new replica. Note, during state movement, the primary forward-
ing connection is paused for both F-Prod replicas. If the primary
connection is connected to the active replica and a csync arrives,
the connection immediately is unpaused. If the primary connec-
tion goes to a standby replica, the connection is restarted only after
the csync from the secondary has arrived. This allows F-ProdS to
consume all in-flight acks sent before the movement. Otherwise,
F-ProdS might duplicate tuples consumed by F-ConsP to the new
F-ConsS . In any case, we start the standby connection only after
both syncs arrive.

At the top of the dataflow segment, like S-Prod, both F-Prod op-
erators broadcast a psync to all remaining F-Cons. Unlike S-Prod,
however, F-Prod can have either one or both F-Cons remaining.
F-Prod still broadcasts the psync but if it is forwarding data to its
secondary, it stops immediately and begins processing acks instead,
i.e. conn[SEC]:={ACK}. The F-Cons in the next level also must
handle the psync messages differently according the following ac-
tion (replacing Figure 5-(8)):

psync {ver[dest]:=v;
(dest,v) status[dest]:=ACTIVE;

dest=SEC
∧ ver[PRIM]=v conn[SEC]:={ACK};

conn[PRIM]:={RECV};}

dest=PRIM conn[PRIM]:={PAUSE};

∧ ver[SEC]=v conn[SEC]:={ACK};
conn[PRIM]:={RECV};}

To avoid missing acks or sending redundant acks, F-Cons cannot
activate a connection upon receiving a psync unless the correspond-
ing psync from the replica has arrived. Thus, if a psync arrives
from the primary connection first, then we must pause that connec-
tion until the second psync has arrived. Otherwise, F-Cons might
miss acking tuples received after state-movement. If a psync ar-
rives from the secondary first, F-Cons cannot start sending acks un-
less the psync arrives from the primary. Otherwise, F-Cons might
resend acks for tuples sent before state-movement. Unlike egress,
after both psyncs arrive, F-ConsP acks F-ProdS and receives data
from F-ProdP regardless of which was active before catch-up.

5.4 Experiment
In this section, we illustrate the benefits of our design by exam-

ining the performance of a parallel implementation of our example
dataflow during failure and recovery. We implemented a streaming
hash-based group-by aggregation operator (2K lines of C code),
our boundry operators, and Flux (11K lines of C code) within the
TelegraphCQ open-source code base.

In this experiment, we partition this dataflow across four ma-
chines in a cluster and place the ingress and egress operators on
a separate fifth machine. The ingress has a 400K duplicate elimi-
nation buffer. We insert a Flux after the first group-by operator to

repartition its output on (app, src). At startup, we place a par-
tition of each operator on each of the four machines, numbered 0
to 3, and replicate them using a chained declustering strategy [16].
That is, each primary partition has its replica on the next machine,
and the last partition has its replica on the first. For example, the
primary copy of partition 3 of the first group-by is on machine 3 and
its replica is on machine 0. In this configuration, when a single ma-
chine fails all four survival scenarios occur in different partitions.
At startup time, we introduce a standby machine with operators in
their initial state. We have not implemented the controller, because
it involves well known techniques implemented by standard clus-
ter management software [33]. We simulate failure by killing the
TelegraphCQ process on one of those machines, which causes con-
nections to that machine to close and raise an error. Each machine
has a Pentium III 1.4 GHz CPU, 512MB of RAM and is connected
to a 100mpbs switch.

For the purposes of the experiment, to approximate the workload
of a high-throughput network monitoring workload, our ingress op-
erator generates sequentially numbered session start and end events
as fast as possible. There are 10K unique (app,src) values (uni-
formly distributed), 100K unique (src,dst) pairs. The second
group-by outputs running statistics every other update.

With this setup, Figure 8 shows the total output rate and average
latency per tuple at the egress. In this experiment, the network is
the bottleneck. At t = 20 sec, when the experiment reaches steady
state, we kill one of the four machines. The throughput remains
steady for about quarter of a second, and then suddenly drops. The
drop occurs because during state movement, the partition being re-
covered is stalled and eventually causes all downstream partitions
to also stall. In this experiment, about 8.5MB of state was trans-
ferred in 941 msec. Once catch-up is finished, at about t = 21 sec-
onds, we observe a sudden spike in througput. This spike occurs
because during movement, all the queues to the unaffected parti-
tions are filled, and ready to be processed once catch-up completes.
Around the same time, figure 8(b) shows an increase in latency be-
cause the input and in-flight data are buffered during movement.
Then the output rate and average latency settle down to normal.
During this entire experiment, the input rate at the ingress stayed
at a constant 42K tuples/sec with no data dropped. This experi-
ment illustrates that with piecemeal recovery and sufficient buffer-
ing (400K), we can effectively mask the effects of machine failures.

To understand the overheads of Flux, we added just enough CPU
processing to the lower-level group-by to make it the bottleneck. In
this configuration, for a single parallel dataflow, the input rate was
82K tuples/sec, for cluster pairs, 40K tuples/sec, and for Flux, 36K
tuples/sec (10% slower than cluster pairs). Additional processing
would only reduce the Flux overhead relative to the others.

6. RELATED WORK
There is a plethora of work on fault-tolerance, availability, and

recovery, but the most closely related work encompasses mecha-
nisms for making generalized computations fault-tolerant. In con-
trast, our work focuses on a narrower but still generally useful style
of computation: CQ dataflows.

The replicated state-machine approach [21] coordinates redun-
dant computation to provide protection against faults in a distributed
environment. Schneider [29] provides a survey of state-machine
based approaches. The critical step in this approach is to reach
consensus among the replicas for a consistent view of the input se-
quence. The Paxos [22] algorithm is the most fault-tolerant method
for reaching distributed consensus. Process-pairs [15] is similar be-
cause it coordinates two processes, but it differs because a single
leader determines input order. Persistent queues [4] are an abstrac-
tion that make messages persistent across failures. They are too

heavyweight for our scenario because they provide transactional
semantics and depend on stable storage. These schemes are black-
box techniques that address a client-sever model rather than a chain
of computations, one feeding the next. They do not exploit the
structure of parallel CQ dataflows to provide improved reliability
and availability.

There are a number of disk-based, checkpoint and replay schemes
for message passing systems. The authors in [11] survey these
methods. The Phoenix project [23] leverages these techniques to
provide persistent COM components. These roll-back recovery
techniques provide reliability, but not the high availability needed
for critical data-streaming applications.

The Isis [5], Horus, Ensemble [6], and Spread [1] projects are
generic group membership and communication toolkits for build-
ing highly available applications. Isis maintains group membership
and provides the application programmer reliable communication
like group broadcast or atomic broadcast. Horus and Ensemble
are extensible systems in which programmer can layer these reli-
able communication primitives as necessary for his or her applica-
tion. Spread provides similar abstractions for wide-area networks.
Such toolkits can be used to implement the controller in our sys-
tem. They have also been used to perform efficient, eager database
replication [19]. But, their primitives offer semantics different than
that necessary for partitioned parallel dataflow computation.

Finally, we list recent work on availability for CQ dataflows. Our
work in [30] describes mechanisms for extending Exchange to pro-
vide load-balancing dataflows. Work in the Aurora system [18]
describes techniques for building highly available, wide-area CQ
dataflows with stateless operators. In contrast, our techniques han-
dle more general, stateful operators and address parallel dataflows.

7. CONCLUSION
In this paper, we show how to achieve high availability and fault-

tolerance for critical, long-running, parallel dataflows. Our main
contribution is a technique for coordinating replicas of operator par-
titions within a larger parallel dataflow. It is a delicate combination
of partitioned parallelism and process pairs. Our technique is more
reliable and more available than the straightforward cluster pairs
approach. Our scheme provides online recovery without stalling
the ongoing dataflow computation because it allows for recovering
the dataflow in piecemeal. The protocols we describe are in en-
capsulated in an opaque dataflow operator called Flux. Thus, an
application developer can reuse Flux with a variety of operators to
make existing, brittle dataflows more robust. We believe integrat-
ing load-balancing mechanisms into Flux is a necessary next step
for providing performance availability [30].

8. REFERENCES
[1] Y. Amir and J. Stanton. The Spread Wide Area Group

Communication System. Technical Report CNDS-98-4,
Johns Hopkins, 1998.

[2] T. Anderson, D. Culler, and D. Patterson. A Case for
Networks of Workstations: NOW. IEEE Micro, Feb. 1995.

[3] J. Baulier, S. Blott, H. Korth, and A. Silberschatz. A
Database System for Real-Time Event Aggregation in
Telecommunication. 1998.

[4] P. A. Bernstein, M. Hsu, and B. Mann. Implementing
Recoverable Requests Using Queues. In SIGMOD, 1990.

[5] K. Birman et al. ISIS: A System For Fault-Tolerant
Distributed Computing. Technical Report TR86-744,
Cornell, 1986.

[6] K. Birman et al. The Horus and Ensemble Projects:
Accomplishments and Limitations. Technical Report
TR99-1774, Cornell, 1999.

[7] D. Carny et al. Monitoring Streams - A New Class of Data

Management Applications. In VLDB, 2002.
[8] S. Chandrasekaran et al. TelegraphCQ: Continuous Dataflow

Processing for an Uncertain World. In CIDR, 2003.
[9] J. Chen, D. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A

Scalable Continuous Query System for Internet Databases.
In SIGMOD, 2000.

[10] D. DeWitt and J. Gray. Parallel Database Systems: The
Future of High Performance Database Systems. CACM, June
1992.

[11] E. Elnozahy, D. Johnson, and Y. Wang. A Survey of
Rollback-Recovery Protocols in Message-Passing Systems.
Technical Report CMU-CS-96-181, CMU, 1996.

[12] S. Gilbert and N. Lynch. Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-tolerant Web
Services. SIGACT News, 2002.

[13] G. Graefe. Encapsulation of Parallelism in the Volcano
Query Processing System. In SIGMOD, 1990.

[14] G. Graefe. Query Evaluation Techniques for Large
Databases. In ACM Computing Surveys, 2002.

[15] J. Gray and A. Reuter. Transaction Processing – Concepts
and Techniques. Kaufmann, 1993.

[16] H. Hsiao and D. DeWitt. Chained Declustering: A New
Availability Strategy for Multiprocessor Database Machines.
In ICDE, 1990.

[17] S. Hvasshovd et al. The ClustRa Telecom Database. In
VLDB, 1995.

[18] J. Hwang et al. A Comparison of Stream-Oriented
High-Availability Algorithms. Technical Report CS-03-17,
Brown, 2003.

[19] B. Kemme and G. Alonso. Don’t Be Lazy, Be Consistent. In
VLDB, 2000.

[20] C. Kruegel, F. Valeur, G. Vigna, and R. A. Kemmerer.
Stateful Intrusion Detection for High-Speed Networks. IEEE
Symposium on Security and Privacy, May 2002.

[21] L. Lamport. The Implementation of Reliable Distributed
Multiprocess Systems. Computer Networks, 1978.

[22] B. Lampson. The ABCD’s of Paxos. In PODC, Aug. 2001.
[23] D. Lomet and R. Barga. Phoenix Project: Fault Tolerant

Applications. SIGMOD Record, June 2002.
[24] S. Madden and M. Franklin. Fjording the Stream: An

Architecture for Queries over Streaming Sensor Data. In
ICDE, 2002.

[25] M. Mehta and D. DeWitt. Managing Intra-operator
Parallelism in Parallel Database Systems. In VLDB, 1995.

[26] R. Motwani et al. Query Processing, Approximation, and
Resource Management in a Data Stream Management
System. In CIDR, 2003.

[27] V. Paxon. Bro: A System for Detecting Network Intruders in
Real-Time. Computer Networks, 1999.

[28] F. Schneider. Byzantine Generals in Action: Implementing
Fail-Stop Processors. Transactions on Computer Systems,
May 1984.

[29] F. Schneider. Implementing Fault-Tolerant Services Using
the State-Machine Approach: A Tutorial. Computing
Surveys, Dec. 1990.

[30] M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin.
Flux: An Adaptive Partitioning Operator for Continuous
Query Systems. In ICDE, 2003.

[31] T. Urhan and M. Franklin. XJoin: A Reactively-Scheduled
Pipelined Join Operator. IEEE Data Engineering Bulletin,
June 2000.

[32] G. Vigna, W. Robertson, V. Kher, and R. A. Kemmerer. A
Stateful Intrusion Detection System for World-Wide Web
Servers. In ACSAC, 2003.

[33] W. Vogels et al. The Design and Architecture of the
Microsoft Cluster Service. In FTCS, 1998.

	page1: 827
	page2: 828
	page3: 829
	page4: 830
	page5: 831
	page6: 832
	page7: 833
	page8: 834
	page9: 835
	page10: 836
	page11: 837
	page12: 838

