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Impact of Channel Prediction on Adaptive Coded
Modulation Performance in Rayleigh Fading

Geir Egil Øien, Member, IEEE, Henrik Holm, Member, IEEE, and Kjell Jørgen Hole, Member, IEEE

Abstract—Adaptive coded modulation (ACM) is a promising
tool for increasing the spectral efficiency of time-varying mobile
channels while maintaining a predictable bit-error rate (BER). An
important restriction in systems with such a transmission scheme is
that the transmitter needs to have accurate channel-state informa-
tion (CSI). Earlier analysis of ACM systems usually assumes that
the transmitter has perfect knowledge of the channel or that the
CSI is accurate but outdated. In this paper, we investigate the ef-
fects of predicting the CSI using a linear fading-envelope predictor
in order to enhance the performance of an ACM system. For the
case in which multidimensional trellis codes are used on Rayleigh-
fading channels, we obtain approximative closed-form expressions
for BER and average spectral efficiency. Numerical examples are
given for the case of Jakes correlation profile and maximum a pos-
teriori-optimal predictor coefficients.

Index Terms—Adaptive modulation, antenna diversity, channel
estimation, fading channels.

I. INTRODUCTION

WIRELESS radio communication is frequently perturbed
by multipath fading. A flexible model for such fading

is Nakagami multipath fading (NMF) [1]. The much-used
Rayleigh-fading model, which will be assumed throughout
this paper, is a special case of NMF. One way of coping with
the varying channel quality resulting from NMF in general
and Rayleigh fading in particular is by employing adaptive
coded modulation (ACM) [2]–[5]. An important restriction in
ACM systems is that the transmitter needs to have accurate
channel-state information (CSI). Earlier analysis of ACM sys-
tems usually assume that the transmitter has perfect knowledge
of the channel or that the CSI is accurate but outdated. In a
practical ACM scheme, the CSI will have to be estimated at the
receiver and then fed back to the transmitter. The estimation
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will not be perfect and there will be some nonzero and possibly
time-varying delay in the feedback channel. In this paper, we
obtain closed-form expressions describing how estimation error
and feedback delay affect some key performance measures of
an ACM system.1

To improve the reliability of signal detection, pilot symbols
can be inserted regularly into the data stream. This technique
is called pilot-symbol-assisted modulation (PSAM) [6]–[8].
PSAM is also well suited for channel estimation in an ACM
system. The requirements of the estimation technique then are
slightly different from the signal-detection case. Specifically,
a channel predictor should be implemented by estimating the
channel signal-to-noise ratio (CSNR) at the time in the future
when it will be used. This way, the system takes the feedback
delay into account.

A system as shown in Fig. 1 (baseband model) is assumed
from now on. This figure also covers the case in which the re-
ceiver has more than one receive antenna, enabling a potential
diversity-combining gain [9, Ch. 6].

When performing discrete rate adaptation by switching be-
tween the available transmitter–receiver pairs, the transmitter
must rely on the accuracy of CSI periodically fed back from the
receiver end. In practice, the CSI provides information about
the CSNR as predicted at the receiver at the time of signal
reception. The true channel quality at the transmitter update
time , where is the return channel delay, may there-
fore deviate from the value available to the transmitter. Thus, the
transmitter may make the wrong assumption about the channel
quality and transmit at too high or too low a rate. This may lead
to changes in average bit-error rate (BER) and average spectral
efficiency (ASE) compared to the case of perfect CSI. Exactly
what kind of changes that will occur depends on several factors,
the most important being the fading correlation, feedback delay

, average channel quality, number of codes/signal constella-
tions used (i.e., the degree of adaptivity), and how the CSNR is
predicted. In this paper, we will analyze how these factors in-
fluence the BER and ASE.

The rest of the paper is organized as follows. In Section II,
an indepth description of the system model is given. Section III
discusses linear pilot-symbol-assisted channel prediction. Sec-
tion IV analyzes some key features of the system (ASE and
BER) for an arbitrary linear prediction algorithm. In Section V,
the predictor that is optimal in the maximum a posteriori (MAP)
sense is introduced and properties that are necessary to perform

1Note that the “feedback delay” does not consist of the actual transmission
delay only; it will also incorporate the time it takes to perform the estimation and
the processing time needed by the transmitter to activate the transmission mode
that should be employed. For simplicity, the sum of these delays is referred to
as feedback delay.

0018-9545/04$20.00 © 2004 IEEE
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Fig. 1. ACM system with pilot-symbol-assisted channel estimation (for coherent detection purposes) and prediction (for transmitter adaptation purposes).

the analysis of the system are derived. Section VI concerns ex-
periments on a certain example set of codes. Finally, the contri-
butions of the paper are summarized in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Denoting the transmitted complex baseband signal (after
pilot-symbol insertion) at time index by , the received
signal after transmission on a flat-fading channel can be written
as . For a system with antenna
diversity like the one suggested in Fig. 1, the received signal on
the th subchannel is denoted as .
Here, the random variable (RV) is the complex fading
amplitude and is complex-valued additive white
Gaussian noise (AWGN) with statistically independent real
and imaginary components. is the information signal,
except for time instants ( , ), when
the pilot symbols are transmitted. The value of has to be
determined as a tradeoff between the requirement for adequate
sampling of the fading process, calling for a small , and the
requirement for high spectral efficiency, calling for a large .
We assume that all pilot symbols have the same absolute value

. The pilot symbols will, in practice, often be
modulated according to a pseudorandom sequence in order to
avoid spectral peaks (see, for instance, [10, Sec. 4.5]).

To be able to represent the results in closed form, it is assumed
that each subchannel is perturbed by flat Rayleigh fading, which
is a special case of NMF with Nakagami parameter
[9, p. 53]. Then, is a complex-valued Gaussian variable
with zero mean. Furthermore, each subchannel is assumed to be
wide-sense stationary (WSS). The fading power
is, therefore, time invariant and the autocorrelation of mea-
sured at two different time indices and is only dependent
on the time difference. Note that although the well-known Jakes
spectrum will be used in our numerical results later in this paper,
our analytical framework will not place any constraints on the
actual shape of the autocorrelation sequence and corresponding
Doppler spectrum.

Furthermore, a constant average transmit power (in watts)
and a one-sided power spectral density (in watts per Hertz)

Fig. 2. CSNR range is split into N + 1 CSNR intervals. When the
instantaneous CSNR falls in the lowest interval, an outage occurs; whereas, in
the upper N intervals, a transmission mode with rate R is employed.

of the complex AWGN in every subchannel are assumed. For
a one-sided information bandwidth (in Hertz), the received
instantaneous CSNR on subchannel at a given time is then

(1)

with expected value .
In addition to the time-invariance assumptions, it is also as-

sumed that the subchannels are statistically independent and
identically distributed (i.i.d.). The fading power is, therefore,
independent of , as is the expectation . However, the latter
is indexed by anyway to indicate that this is not the overall
expected CSNR on the channel.

Under the assumption of statistically independent antenna
branches, maximal ratio combining (MRC) can be implemented
in the receiver. The overall received CSNR at time will then
be [9, Sec. 6.3]

(2)

On a Rayleigh-fading channel, is exponentially dis-
tributed. It can be shown [11] that after MRC is gamma
distributed with a shape parameter and expectation . In
practice, this means that the overall channel with MRC behaves
like an NMF channel with Nakagami parameter and
fading power .

In an ACM system like the one depicted in Fig. 1, the adap-
tive coder/modulator has a set of transmitter-receiver pairs
available, denoted as transmitter–receiver pair .
Transmitter has a rate of information bits per symbol,
such that . The CSNR range is split
into CSNR intervals, as depicted in Fig. 2, and the trans-
mitter–receiver pair is to be used when CSNR falls in the
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interval . In most ACM references, is—for each
—chosen as the lowest CSNR necessary for the

transmitter–receiver pair to be able to operate at a BER below
the designer-specified target BER, , at transmit power
on an AWGN channel. However, we stress that the theoretical
analysis in this paper does not depend on the CSNR intervals
being chosen according to this criterion. In our numerical ex-
amples, however, this is assumed.

Letting and will result in
for all . No available transmitter–receiver pair
satisfies the BER requirement when the CSNR is lower than
interval ; hence, no information is transmitted when falls
in the interval and there will consequently be an outage
during which information must be buffered at the transmitter
end. For a more thorough introduction to how the ACM system
operates; see, for instance, [5] and [12].

The transmitter needs CSI in order to select the best code;
this is accomplished by letting the transmitter perform period-
ical prediction of the CSNR, at a rate equal to (at least) the
highest possible transmitter adaptation rate. Here, we will as-
sume that the CSNR is predicted and transmitted back to the
transmitter every time a new pilot symbol arrives. The return
channel delay (understood here as the time delay between the
time of CSNR prediction and the closest subsequent time of al-
lowed transmitter update) is assumed to be an integer number
of pilot-symbol intervals, i.e., , where is the
number of pilot-symbol intervals and [s] is the duration of
one channel symbol. Finally, the return channel is assumed to
be free of errors.

As a final comment, we note that channel prediction is only
necessary for the CSI, which is fed back to the transmitter. For
the actual signal detection in the receiver, the signal may be
buffered before detection (assuming that a certain receiver delay
is acceptable, such as in data transmission)—cf., Fig. 1. CSI esti-
mation can then be accomplished by using an optimal noncausal
Wiener interpolator filter [6]–[8], [13], which will smooth the
noise, improve CSI reliability beyond what can be achieved by
a predictor, and allow for true coherent detection to be used. We
therefore assume perfect coherent detection in the receiver.

III. LINEAR PILOT-SYMBOL ASSISTED CHANNEL PREDICTION

For any pilot-symbol time instant ( , ;
), divide the noisy signal received on each sub-

channel by the known pilot-symbol value. The result can be in-
terpreted as a memoryless maximum-likelihood (ML) estimate
of based on one received observation [14]

(3)

The two terms are statistically independent and are also both
zero-mean complex Gaussian, so their sum is a complex
Gaussian with variance equal to the sum of their variances. Let
us assume that a transmit update is desired channel symbols
ahead in time of the last received pilot symbol, i.e., at time

. This means that we should predict the channel fading
at this time instant. Throughout this paper, we will limit to
be an integer number of pilot-symbol periods, i.e., for

, i.e., we predict the channel in pilot symbol
instants only. This is not a restrictive assumption, since a
pilot symbol should be transmitted at least every tenth to 20th
symbol (this will be demonstrated in Section V-B).

A prediction of can be made from the memory-
less ML estimates given by (3). Here, is a designer-
chosen constant. Since we are dealing with complex Gaussian
processes, the optimal fading envelope predictor in the MAP
(and ML) sense is known to be a linear function of these obser-
vations [15]. We therefore restrict our study to linear prediction
from now on.

Allowing for complex predictor filter coefficients, any linear
predictor of order can be written on the form

(4)

where is the predictor filter
coefficient vector corresponding to subchannel and delay
and where

(5)

is the vector of the memoryless ML estimates of the complex
fading amplitude in the last pilot-symbol instants.

The optimal filter coefficient vector will be stated in Sec-
tion V; for the moment, we just assume that the coefficient
vector is known. Due to the WSS assumption, the time index

will from now on be omitted when referring to and other
vectors where it is applicable.

It can be shown [8], [11] that the predicted fading envelope
is described by the Rayleigh distribution with power

for some constant , which depends on the predictor co-
efficients. Expressions for will be provided for the general case
in the Appendix and for the MAP-optimal case in Section V.

A. MRC

As discussed in Section II, the receiver will implement MRC.
The composite channel will then, consequently, behave like a
Nakagami- channel and the true CSNR will be gamma dis-
tributed with shape parameter and expectation

. Since the receiver implements MRC, a reasonable predic-
tion of the squared overall channel gain is

(6)

Again, as was the case for the actual effective channel gain,
we have a sum of squared Gaussian RVs. Hence, the effec-
tive predicted channel gain obeys a Nakagami- distribution
with . The predicted overall CSNR

is then gamma distributed with shape param-
eter and expectation

(7)

Hence, the true and the expected CSNR are both gamma dis-
tributed. The parameter can be viewed both as the ratio be-
tween the expectation of the predicted and the true subchannel
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CSNR and as the ratio between the squared mean (variance) of
the predicted and the true complex fading amplitude. It follows
from the definition that the ratio is independent of the number
of receive antennas.

B. Correlation Coefficient

An important factor affecting the error performance in an
ACM system is the correlation between the predicted and true
CSNR. The BER expressions, which will be developed in the
next section, will be functions of the normalized correlation co-
efficient between the predicted and the true CSNR, i.e.,

(8)

Additionally, it can be shown [11], [16] that the overall corre-
lation coefficient is the same as the correlation coefficient for
the channel between the transmitter and any of the receive
antennas. It follows that may be expressed as

(9)

IV. SYSTEM ANALYSIS

A. BER Analysis

During our analysis, it will be assumed that stays in the
same CSNR interval between two successive pilot symbols.
Again, this is not a restrictive assumption, since a pilot symbol
should be transmitted at least every tenth to 20th symbol
(cf., Section V-B). With parameters suggested in this section
and assuming that the correlation is described by the Jakes
spectrum, the correlation of instantaneous SNR with a
separation of ten or 20 symbols will be 0.9995 or 0.998,
respectively. The parameters suggested in Section V-B include,
among others, a terminal speed of m/s (108 km/h); as
such a quite conservative assumption. A lower speed will yield
higher correlation.

The BER (averaged over all codes and all CSNRs) is given
as the average number of bits in error, divided by the average
number of bits per symbol transmitted, i.e., the ASE [3], [16]

(10)

where is the information rate of code , is the proba-
bility that code will be used, and is the average BER
experienced when code is used.

The probability is simply the probability that the predicted
CSNR falls in the interval and for Rayleigh fading
with MRC it can be shown [3] that

(11)

where is the normalized incomplete gamma function
[17, eq. 11.3].

In (10), only strictly positive values of are used. Note that
can also be zero, corresponding to the CSNR interval .

When the CSNR is smaller than , no information will be sent.
However, for applications without strict delay (real-time) con-
straints, this is of little importance as long as the ASE is maxi-
mized (thus, minimizing the overall transmit time for large in-
formation sets).

The average BER for code may be written as [3]

(12)
where is the BER experienced when applying code

. The choice of is based on the belief that the CSNR is ,
while it actually is . That is, , and therefore all functions of
should be viewed as dependent on in the expressions to follow.
Furthermore, is the joint distribution of the actual
and the predicted CSNR. In our case, this will be a bivariate
gamma distribution [18] because and are both individually
gamma distributed (cf., Section III-A) and mutually correlated
(cf., Section III-B). See Tang et al. [8] for more details.

Definition 1 (Bivariate Gamma Distribution): The RVs
and are described by a bivariate gamma distribution

with common shape parameter , scale parameters
and , respectively, and correlation coefficient

if their
joint pdf is given by

(13)

Here, is the gamma function (see, e.g., [19, eq. 8.310-1]).
is the modified Bessel function of the first kind and order

(see, e.g., [19, eq. 8.445]) and is the Heaviside step func-
tion (see, e.g., [19, p. xliv]). We use the shorthand notation ,

to denote that and follow a bi-
variate gamma distribution. When , the joint pdf reduces
to the product of two univariate gamma pdfs (with the aid of [20,
eq. 9.6.7].)

The key to further analysis of the general BER expression
(10) is to approximate the BER–CSNR relationship for code
by an analytical expression that will make the integral (12) solv-
able. Such an expression will be dependent of the type of codes
assumed. Hole et al. [5], [16] demonstrated that a very good
fit to the actual BER–CSNR relationship for multidimensional
trellis codes on AWGN channels could be found by applying the
expression

when

when
(14)

where and are code-dependent constants that may be
found by a least-squares curve fitting to simulated BER–CSNR
data on AWGN channels. is the number of points in the
symbol constellation used by the trellis code. The exponen-
tial part of the formula in (14) is a very good approximation
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Fig. 3. Accuracy of the BER approximation in (14), for example codes n =

1; 2; 3 from [5].

when the CSNR is high (see, e.g., [5] for a theoretical argu-
ment for this fact), but is not very good for low CSNRs. In-
deed, this BER approximation could become larger than 0.5 for
low CSNRs. The BER value 0.5 is, therefore, introduced along
with the boundary , which is the smallest
CSNR ensuring that the exponential BER approximation does
not exceed 0.5. The resulting curve approximation is depicted in
Fig. 3 for the example codes used in [5]. For clarity
of presentation and since the same trends are seen for all the
codes, we have excluded codes in this figure.

It is seen that the exponential approximation in (14) is very
accurate for BER levels below . For BERs between
and 0.5, the approximation tends to produce a somewhat larger
value than the true BER, in effect acting as an upper bound. One
would perhaps expect that the overall effect would be to make
our results somewhat conservative. However, experiments have
shown that the overall approximation of the average BER in our
ACM context is in fact quite insensitive to this overestimation
of the individual BER curves at values above . We attribute
this to the fact that when the individual BER curves are aver-
aged, the values in this region are weighted by very small prob-
abilities—in other words, it is in practice very unlikely that a
code resulting in instantaneous BER above will be chosen
for use in the ACM system. Therefore, it is of little or no con-
sequence to our results that the BER approximation is too large
in this region.

Also, one should keep in mind that the simulated BER per-
formance points have been found assuming perfect coherent de-
tection. At low CSNRs, this is hard to maintain in practical sys-
tems; thus, the simulated BER points are probably too optimistic
compared to a real system and the true BER performance will
lie closer to our upper bound for low CSNRs.

In the subsequent analysis, we assume that multidimensional
trellis codes are used as component codes in the adaptive coder.
This is justified by their good performance in ACM as demon-
strated, e.g., in [5]. Equation (14) will, therefore, be employed
from now on.

After applying (14) to (12), the result can be expressed as a
sum of three integrals

(15)

where

(16)

(17)

(18)

and , , and are integrals of ,
, and , respectively. Manipulations as

shown in [11] yield closed-form expressions for these three
integrals. They can now be expressed as

(19)

(20)

and

(21)
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While these expressions are admittedly very complex, it is
easy to see that , , and are strongly depen-
dent on the value of the ratio of the expectations and on the
correlation coefficient of the predicted and true CSNR. In ad-
dition, they are all functions of the number of receive antennas

and of the expected value of the CSNR. It will also be
seen later that the expressions yield numerical results that are
easy to interpret and correspond with intuition. Other parame-
ters affecting the average BER are the curve fitting parameters

, , , (constant for a given set of transmitter–receiver
pairs) and the CSNR interval thresholds (constant for a given
target BER).

The last component of (10) that is needed in order to calculate
BER is the information rate of each code .
For the case when -dimensional trellis codes are
used, code ’s information rate can be expressed as [5], [11],
[16]

(22)

Every th channel symbol is a pilot symbol and, consequently,
cannot convey information; this is reflected in (22).

We are now able to combine (11), (15), (19)–(21), and (22)
to obtain the average BER from (10).

B. ASE

The ASE is defined as the average transmission rate divided
by the bandwidth and can be calculated as the average number
of bits per channel symbol, i.e., the denominator of (10)

(23)

Note that the ASE as defined above is a meaningful measure
of system performance only as long as the target BER constraint
is fulfilled. If the BER becomes greater than , the system
does not provide the desired transmission reliability and the re-
ceived data stream might be meaningless to the end user.

V. MAP-OPTIMAL RAYLEIGH-FADING ENVELOPE PREDICTION

In this section, we state the MAP-optimal solution for a fading
envelope predictor in Rayleigh fading and analyze its proper-
ties. Note that in an actual implementation of an ACM system,
it is probably more feasible to utilize a less complex and, thus,
suboptimal predictor. The choice of a MAP-optimal solution is
made out of a desire to investigate the influence on ACM perfor-
mance of the best possible linear predictor (in an mean-square
error sense), for any predictor order. The tradeoff between com-
plexity and optimality in a practical system is a subject for fur-
ther research.

It is shown in [11] and [21] that the MAP-optimal prediction
filter coefficient vector for the complex fading amplitude on a
Rayleigh channel can be expressed as

(24)

Remember that the time index denotes the delay counted in
the number of channel symbols. As noted earlier, we will re-
strict ourselves to predicting the channel only at pilot-symbol
instants (meaning that it is assumed that every transmitted code-
word starts with a pilot symbol). The components of (24) consist
of the vector that contains the correlation between the fading
at the pilot-symbol instants and the fading to be predicted at time
instant and the matrix , which is the autocorrelation ma-
trix of the fading at the pilot-symbol instants. Introducing the
correlation function , which describes the normalized cor-
relation between two instances of fading as a function of the
time delay between them, components of and can be
expressed as

(25)

and

(26)

When the familiar Jakes spectrum is used (see, for instance,
[3, Sec. 5], [9, Sec. 2.1], or [14, Sec. 12.2.3]), the correlation
function will have the expression

(27)

where is the zeroth-order Bessel function of the first kind.
(in Hertz) is the Doppler spread [9] due to ter-

minal mobility at velocity (in meters per second) and carrier
frequency (in Hertz). (in meters per second) is the speed of
light. In the numerical results to follow, we have used a fading
correlation described by (27). However, we repeat that this is
not a restriction in our theoretical framework.

A. Ratio and Correlation Coefficient

When the MAP-optimal predictor is used, the ratio of the
expected CSNRs ( , ) and the correlation coefficient be-
tween the estimated and true squared channel gain are equal and
given by [11]

(28)

This can be shown as follows. For a MAP-optimal predictor,
the filter coefficients are described by (24). Inserting this ex-
pression into the formula for the ratio in (32) from the Ap-
pendix and noting that all the quantities in the expression are
real valued, we obtain

(29)
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Fig. 4. Correlation coefficient as a function of normalized time delay f T � j
with CSNR 20 dB, L = 10, and K = 1000.

From (24) and (29), we see that the numerator of the expression
for in (41) becomes when the MAP-optimal from (24) is
inserted, which yields the desired result [(28)].

B. Illustration of the Prediction Advantage

The discussion here will be concerned with the correlation
coefficient . Since and are shown to be equal in the MAP-
optimal case, it will apply to both of them.

An illustration of the advantage of employing an optimized
predictor is shown in Fig. 4. The correlation coefficient is
plotted there as a function of the normalized time delay
for the MAP-optimal predictor (solid line) and for the case when
the last received pilot symbol—divided by the pilot-symbol
value—is used as a prediction (dashed-dotted line). The latter
is also shown for the case when there is no noise on the channel
(dashed line). Relevant parameters are the carrier frequency

GHz and a terminal velocity m/s (108 km/h);
the resulting Doppler spread is consequently Hz.
Assuming a transmission bandwidth of kHz and
Nyquist signaling, the symbol duration is s and the
normalized Doppler spread will be . Other
parameters employed in Fig. 4 are expected CSNR dB
and prediction filter length . The pilot symbols are
inserted every tenth channel symbol, i.e., . Thus, the
past horizon used by the predictor in this case spans the last 10
000 symbol periods, sampled at ten-symbol intervals.

The expression for in (28) is easily seen to be dependent
on ; an increase in the expected CSNR will naturally cause
an increase of , as illustrated in Fig. 5, by letting run from
0–40 dB.

Some comments on the choice of pilot-symbol period are
in order. The pilot-symbol transmission and detection can be
viewed as a sampling of a band-limited process. The Doppler
spectrum is typically bandlimited to [9, Ch. 2]; thus, the
pilot symbols should be transmitted at a rate of at least ac-
cording to the sampling theorem [22]. Hence,
and any would yield adequate sampling when

Fig. 5. Correlation coefficient as a function of normalized delay f T � j and
expected subchannel CSNR � (in decibels).

Fig. 6. Correlation coefficient � as a function of delay, plotted for expected
subchannel CSNR � = 0; 10; . . . ; 40 (measured in decibels) and for
pilot-symbol spacing L = 5; 10; and 15. The prediction filter length is
K = 1000.

the Doppler spread is . However, note that
this is only valid when the pilot symbols are not corrupted
by noise, which is always present in a wireless communica-
tion system. Meyr et al. [14, Sec. 14.2.2] suggest that if the
system throughput is to be maximized, pilot symbols need
to be transmitted at much smaller intervals than the Nyquist
interval suggested by the Doppler spectrum on a noisy channel.
As Fig. 6 illustrates, relatively small variations of yield
substantial improvement of —even when is several orders
of magnitude smaller than 1000. The variations in correlation
are most notable for the smaller CSNRs. For or 10 dB,
the relative gain of decreasing the pilot-symbol spacing from

to 5 is substantial compared to when the CSNR is more
advantageous. As will be shown in the next section, the BER
performance also benefits from the oversampling following
from a smaller .

The number of pilot symbols upon which the prediction is
done must, of course, be limited, yet remain sufficiently high.
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Fig. 7. Correlation coefficient plotted analogously to Fig. 6. However, the
pilot-symbol spacing is kept still at L = 10 and the filter order is varied from
K = 500 to K = 1500.

Meyr et al. [14, Sec. 14.2.2] claim that quasioptimal perfor-
mance will be achieved if , for noncausal
detection. A practical problem then is that the filter order can
easily become very large if is to be kept small. For instance,
with parameters from the discussion above (
and ), . For , . Fortunately,
the results indicate that may be decreased without necessarily
increasing correspondingly; note, for instance, that is kept
constant at in Fig. 6. The effect of increasing the filter
order while keeping constant is shown in Fig. 7. Several au-
thors have viewed the fading as an autoregressive process [23],
[24], which may explain the minute advantage of increasing

compared to the improvement resulting from decreasing ,
shown in Fig. 6.

To sum up, our choice of predictor order in sub-
sequent experiments is not seen as a practical predictor length,
but rather intended as an approximation of the use of an infi-
nite-order predictor, taking the entire past into account. This re-
sults in quasioptimal performance, i.e., it approximates the best
possible predictor performance for our channel model. Prac-
tical predictors will always result in a performance deteriora-
tion compared to these results. Some more experimental results,
illustrating the effects of reducing the predictor order, are pro-
vided in [25].

VI. EXAMPLE SYSTEM

In order to assess bounds for the performance of a system
incorporating antenna diversity and channel prediction, a spe-
cific system similar to the one in [5] is investigated. The and

parameters for the BER expression of the individual codes
are summarized in Table I with the calculated thresholds be-
tween the CSNR intervals.

Parameters not directly tied to the codes, albeit dependent on
the implementation, are the carrier frequency GHz, a
bandwidth of kHz, and a terminal velocity of

m/s. A prediction filter length of is utilized.

TABLE I
PARAMETERS a AND b FOR THE EXAMPLE CODEC, ALONG WITH

THRESHOLDS  FOR TARGET BER = 10

Fig. 8. BER as a function of feedback delay and of expected subchannel CSNR
(in decibels).H = 2 receive antennas are utilized and the pilot-symbol spacing
is L = 10. In this plot, as in all subsequent plots, the prediction filter length is
kept constant at K = 1000.

A. BER Performance

In order to calculate the average BER, the expressions from
Section IV-A are employed. In Fig. 8, the BER has been plotted
as a function of subchannel CSNR and of feedback delay for a
pilot-symbol spacing of . It is assumed that the system
uses two receive antennas and combines the signals with MRC.
When a target is decided, the operation of the system will
be acceptable whenever . When ,
the system does not operate properly. The shape of the BER
surface is, therefore, not significant, except for the contour at

. In Fig. 9, the contour lines at
have been plotted for pilot-symbol spacing and
for and receive antennas. The middle (dashed) line
for corresponds to the contour curve at in
Fig. 8. This figure shows that a large improvement (in the form
of lowering the CSNR requirements or, equivalently, allowing
for a longer delay) can be achieved by using more than one
receive antenna. Naturally, decreasing the pilot-symbol spacing
will also lead to some performance gain, since the quality of the
predicted instantaneous CSNR is increased.

When the CSNR is 10 dB and when every th channel
symbol is a pilot symbol, receive antenna and the ve-
hicle speed, the carrier frequency and transmission bandwidth
assumed earlier lead to an acceptable normalized delay of

. This corresponds to an actual delay of
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Fig. 9. Regions for which system performance is acceptable, plotted for pilot-
symbol spacing L = 5; 10; 15 and for H = 1; 2; and 4 receive antennas.
The curves indicate the largest delay that is allowed in order to achieve the
BER requirements for a given expected subchannel CSNR (in decibels). Thus,
acceptable performance results when the point specified by a CSNR/delay
combination is below and to the right of the curve for system parameters L
and H .

Fig. 10. ASE as a function of feedback delay and expected subchannel CSNR
(in decibels). L = 10, H = 2. Note that the ASE is almost independent of
the feedback delay when normalized time delay is in the region of 0–0.25 (the
biggest delay corresponding to an actual delay of 1.25 ms for the simulation
parameters otherwise employed).

s or symbols. Increasing the number of receive
antennas to leads to an acceptable delay of s. Note
that the CSNR here is the CSNR per antenna branch and that
the CSNR after MRC will be approximately 13 dB.

B. ASE Performance

As explained in the previous section, the BER can largely be
divided into two regions—acceptable (smaller than ) and
unacceptable (larger than ). The BER analysis is, there-
fore, significant mainly for determining acceptable operation re-
gions. As long as the system can be relied upon to operate at
acceptable BER levels, the ASE is the key performance feature.

Using the expression in (23), the ASE in Fig. 10 is plotted
as a function of CSNR and of delay (similar to that in Fig. 8).

Fig. 11. ASE as a function of expected subchannel CSNR (in decibels), plotted
for various L and H , for zero delay.

The contour shown on the resulting three-dimensional (3-D)
curve corresponds to the BER contours in Fig. 9 and divides the
ASE curve into a “relevant” part (where the BER constraints
are fulfilled, to the left of the contour) and an “irrelevant” part
(where the BER constraints are violated, to the right of the con-
tour). As Fig. 10 indicates, as long as the system is in the ac-
ceptable operating region, ASE seems to be almost indepen-
dent of the normalized time delay. This is reasonable, since
the delay only affects the expected value of the predicted
CSNR, which appears in the second argument to the normal-
ized incomplete gamma function in (23). Another way to state
this is that the probability of using each individual code is not
changed very much by varying the delay, even though increased
delay of course means increased probability of using each code
incorrectly. Thus, at some given normalized time delay value,
which is highly dependent on the expected subchannel CSNR,
the system slides into the “unacceptable” region to the right of
the contour.

In Fig. 11, the ASE is plotted for zero delay as a function
of the expected subchannel CSNR. Plots have been made for

and for and receive antennas. It
is apparent that the ASE reaches a ceiling when the CSNR
grows large, the ceiling dependent upon . This is because the

-dimensional codes have a spectral efficiency of
. For the system considered here, . The spectral

efficiency of the largest code (and, hence, the largest possible
spectral efficiency for the set of codes) is consequently 8.5.
Remember, however, that the spectral efficiency of the system
under consideration is also affected by the pilot-symbol spacing

. A smaller naturally leads to a smaller relative part of
the transmission time that is available for the transmission
of information. Thus, the maximal possible ASE is

. For , the maximal possible ASE is
7.933, decreasing to 6.8 for .

Here it is emphasized that the CSNR under consideration
is, again, the subchannel CSNR; thus, most of the difference
between the and curve bundles in Fig. 11 stems
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from the gain. Even if the results for the BER in
Fig. 9 were also affected by the beneficial total CSNR of an
MRC system when increasing the number of antennas, the
BER takes advantage of the lower variance of the underlying
gamma distribution when is increased. This is not the case
for the ASE.

VII. DISCUSSION AND CONCLUSION

The results obtained reveal that delay in the feedback channel
and erroneous CSI due to noise may have a significant impact
on the BER in an ACM system. The increased BER limits the
region where the system can operate reliably with respect to per-
mitted delay and average CSNR. However, using MAP-optimal
fading envelope prediction, the results show that ACM also is
still feasible for practical feedback delays and channel-model
parameters. In an actual implementation of an ACM system, it
may, however, be more feasible to utilize a less complex and,
thus, suboptimal predictor. The tradeoff between complexity
and optimality is a subject for further research.

The system under consideration utilizes pilot symbols with
fixed power and equal pilot- and information-symbol power. It
has not been claimed here that this is optimal; indeed, for un-
coded adaptive modulation it has recently been shown that it is
not [26]. More power to the pilot symbols yields a better esti-
mate, whereas less pilot-symbol power would leave more to the
actual transmission of data. A system where the pilot-symbol
power is adapted to the channel quality might also be consid-
ered. Similar arguments apply to the pilot-symbol spacing. De-
creasing the pilot-symbol spacing under adverse channel condi-
tions might yield a better channel estimate, which in turn could
cause a lower overall BER—or, equivalently, a larger operating
region.

Finally, we reemphasize the following: Our numerical
examples here are obtained for an ACM system with CSNR
thresholds chosen to fulfill the target BER constraint under the
assumption of perfect CSI. However, our analytical framework
allows for any choice of CSNR thresholds. By varying the
thresholds, we will perform a tradeoff between ASE and system
robustness with respect to faulty CSI. Increasing the thresholds
will mean a smaller ASE, but also a higher tolerance against
feedback delay and noise. Analytically based approaches for
performing such an increase are suggested in [26] for uncoded
adaptive modulation and in [27] for an ACM framework
similar to that considered in this paper. One avenue for future
research is to combine the analytical framework in this paper
with these approaches, to explore the possible tradeoffs in the
ASE-robustness design space.

APPENDIX

STATISTICAL PROPERTIES OF THE

PREDICTED FADING AMPLITUDE

Tang et al. [8] derive general formulas for the expectation of
the square of a linear noncausal estimate of the fading amplitude
and for the power correlation coefficient between the estimate
and the true fading amplitude. Here, it is demonstrated that the
formulas also apply to the case of linear prediction.

A. Expectation of

The expectation of (or, equivalently, the variance of )
can be expressed as

(30)

where is the noise accompanying the fading . Since the
noise is assumed to be white, its covariance matrix is simply the

identity matrix multiplied by the noise variance .
Thus

(31)

Defining as the ratio of the to the and assuming that
where is the average transmit power, we obtain

(32)

B. Correlation Coefficient

In calculating an expression for the correlation coefficient
between the predicted and true

value of the CSNR at time index , we first concentrate
on the correlation between and as

(33)

Since noise and fading are statistically independent and both
zero mean

(34)

Again invoking the assumption that , using
and introducing (and, similarly,

for the scalar ), where indicates the real part
(inphase or I-component) of a complex baseband symbol

(35)
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Since and

(36a)

and it turns out that similar expressions exist for the scalar vari-
ance/cross-correlation expressions, namely

and
(36b)

Thus, it can be concluded that

(37)

It is known (see, for instance, [28, Sec. 8.2]) that, for zero-mean
real Gaussian RVs , , , and , the following formula can be
used to find the fourth-order moment

(38)

It is demonstrated in [11] that the above formula may also be
used when two of the RVs are column vectors

(39)
With (39) in mind and utilizing the expression for from (32)

(40)

By inserting (40) in (9), the final expression for the correlation
coefficient is obtained as

(41)
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