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fMRI resting state networks define distinct modes of long-distance

interactions in the human brain
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Functional magnetic resonance imaging (fMRI) studies of the human

brain have suggested that low-frequency fluctuations in resting fMRI

data collected using blood oxygen level dependent (BOLD) contrast

correspond to functionally relevant resting state networks (RSNs).

Whether the fluctuations of resting fMRI signal in RSNs are a direct

consequence of neocortical neuronal activity or are low-frequency

artifacts due to other physiological processes (e.g., autonomically

driven fluctuations in cerebral blood flow) is uncertain. In order to

investigate further these fluctuations, we have characterized their

spatial and temporal properties using probabilistic independent

component analysis (PICA), a robust approach to RSN identification.

Here, we provide evidence that: i. RSNs are not caused by signal

artifacts due to low sampling rate (aliasing); ii. they are localized

primarily to the cerebral cortex; iii. similar RSNs also can be identified

in perfusion fMRI data; and iv. at least 5 distinct RSN patterns are

reproducible across different subjects. The RSNs appear to reflect

‘‘default’’ interactions related to functional networks related to those

recruited by specific types of cognitive processes. RSNs are a major

source of non-modeled signal in BOLD fMRI data, so a full under-

standing of their dynamics will improve the interpretation of functional

brain imaging studies more generally. Because RSNs reflect interac-

tions in cognitively relevant functional networks, they offer a new

approach to the characterization of state changes with pathology and

the effects of drugs.
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Introduction

The functioning of the human brain during rest can be

investigated using different functional imaging techniques (Biswal

et al., 1995; Shulman et al., 1997; Gusnard and Raichle, 2001).

While the resting state is an ill-defined condition, consistent

functional patterns across individuals should represent common

‘‘default’’ or ‘‘idling’’ state activity. Long-range coherences in these

activities therefore could reflect strong functional connectivities.

fMRI images obtained using blood oxygen level dependent

(BOLD) contrast show signal fluctuations at rest. These fluctua-

tions occur at low frequencies (0.01–0.05 Hz) and have been

shown to be coherent across widely separated (although function-

ally related) brain regions (e.g., bihemispheric sensorimotor

cortices) (Biswal et al., 1995; Lowe et al., 1998; Cordes et al.,

2000). Regions showing coherent fluctuations therefore constitute

a ‘‘resting state network’’ (RSN). We and others have appreciated

that there is more than one spatially distinct RSN in a resting brain

image dataset, with each RSN having a distinct signal time-course

(De Luca et al., 2002; Greicius et al., 2003).

Whether the fluctuations of resting fMRI signal in RSNs are a

direct consequence of neuronal activity or whether they reflect

phenomena such as cardio-respiratory motion or vascular modu-

lation is uncertain. The normally low sampling rate of fMRI

images (Jezzard et al., 2002) causes temporal aliasing of variations

of the BOLD fMRI signal induced by cardiac and respiratory

cycles into a low-frequency range, similar to that of the RSN signal

fluctuations. Some low-frequency coherences in resting BOLD

fMRI data are clearly a consequence of this physiological noise

(Lowe et al., 1998; Xiong et al., 1999; Cordes et al., 2000).

However, studies conducted in ways that avoid aliasing of the

fMRI signal (using a fast image sampling rate) show that many

low-frequency coherences are still present, suggesting that RSNs

and (higher frequency) physiological noise are phenomenologi-

cally distinct processes (Biswal et al., 1995; Lowe et al., 1998).

Additional patterns related directly to vascular processes inde-

pendent of cortical neuronal function have been identified as low-

frequency fluctuations in resting fMRI data (Kiviniemi et al., 2000;

Wise et al., 2004). The most direct data relating some patterns of
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low-frequency coherence in fMRI data to neuronal activity come

from evidence that the underlying fluctuations are correlated with

modulations of cortical electrical activity detected by EEG (Gold-

man et al., 2002; Leopold et al., 2003; Moosmann et al., 2003;

Laufs et al., 2003). The observation of changes in patterns with

neurological disease (e.g., Alzheimer’s disease; Greicius et al.,

2004) is consistent with this.

An important concern in studying RSNs is whether the method

used for their identification is appropriately sensitive, yet relatively

unbiased. Methods based on direct correlations with time-courses

of signal change identified from a ‘‘seed’’ voxel are limited to

applications to regions for which there is an a priori expectation of

a network pattern.

Here, we have applied probabilistic ICA (PICA) to the

characterization of RSNs in resting brain BOLD contrast datasets.

We have made a series of observations designed to test: i. the

independence of PICA-defined RSNs from artifacts related to

cardio-respiratory motion; ii. the localization of potential gener-

ators of RSNs; iii. the relation of BOLD RSNs to coherences

defined with perfusion imaging; iv. the reproducibility of RSNs

across subjects; and v. the specific patterns of coherent activity

across the brain.
Methods

All fMRI data were acquired from healthy volunteers (age

range 22–51 years). In all experiments, subjects were at rest; they

were instructed to relax with their eyes closed, without falling

asleep, as confirmed by the subjects after completion of the

experiment. MRI data were acquired on a 3 T Varian/Siemens MRI

system at the Oxford Centre for Functional Magnetic Imaging of

the Brain, except the data of experiment 1, which were collected on

a 1.5 T Philips Gyroscan MRI system at the NMR Centre of the

University of Siena. Temporal and spatial resolutions of fMRI data

varied across the experiments; they are detailed in the following

sections.

All data were first pre-processed using tools from the FMRIB

Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl) (Smith et

al., 2004), applying the following procedures: motion correction

(Jenkinson et al., 2002), spatial smoothing using a Gaussian kernel

of FWHM 5 mm, mean-based intensity normalization of all

volumes by the same factor, and high-pass temporal filtering

(Gaussian-weighted least-squares straight line fitting, with high-

pass filter cut-off of 250s). Following the pre-processing, the data

were analyzed using MELODIC (Multivariate Exploratory Linear

Optimised Decomposition into Independent Components), an

implementation of probabilistic independent component analysis

(PICA) (Beckmann and Smith, 2004), also part of FSL.

Independent component analysis (ICA) is becoming a popular

exploratory method for analyzing complex data such as that from

fMRI experiments. ICA views the 4D data as a sum of a set of

spatiotemporal components, each of which consists of a spatial

map modulated in time by that component’s associated time-
Fig. 1. Resting state networks and the aliasing problem. (A and B) BOLD fM

distribution of probabilistic independent components and their relative power spec

cardiac fluctuation (with harmonics). PICA separates the physiological noise induc

with low (more typical) temporal resolution (TR = 3000 ms). Spatial distribution o

resting state networks (C) and aliased cardiac-related artifact (D). PICA can separat

All the maps are thresholded with alternative hypothesis, P > 0.5.
course. It attempts to separate the different components by making

the assumption that the spatial maps are statistically independent of

each other, and, having different time-courses, they will ideally

each represent a different artefact or activation pattern. By using

the entire 4D dataset at once in this multivariate analysis, this kind

of approach does not need to be fed any temporal model. In

attempting to find RSNs in fMRI data, it is preferable to use a

methodology that does not require the additional experimental

sessions, extra analysis steps, and potential bias associated with

activation-derived seeding.

The application of ‘‘model-free’’ methods such as ICA,

however, has previously been restricted both by the view that

results can be hard to interpret, and by the lack of ability to

quantify statistical significance for estimated spatial maps. Beck-

mann and Smith (2004) proposed a probabilistic ICA (PICA)

model for fMRI which models the observations as mixtures of

spatially non-Gaussian signals and artefacts in the presence of

Gaussian noise. It was demonstrated in the same work that using

an objective estimation of the amount of Gaussian noise through

Bayesian analysis of the number of activation and (non-Gaussian)

noise sources, the problem of overfitting can be overcome. The

approach proposed for estimating a suitable model order (i.e., how

many ICA components to find) also allows for a unique

decomposition of the data and reduces problems of interpretation

as each final component is more likely to be due to only one

physical or physiological process.

Experiment 1

The objective of this experiment was to assess if aliasing of

physiological processes (cardiac and respiratory cycles) is distin-

guishable from ‘‘true’’ RSNs observed in fMRI data. The cardiac

and respiratory cycles occur around 1 Hz and 0.3 Hz respectively.

Consequently, these can become aliased at typical TRs (2–3 s),

giving significant power at the frequencies typical of RSNs.

Because at low TRs (below 125 ms) such aliasing is avoided, in

this experiment, BOLD fMRI data were collected using a very

short TR (120 ms); see also Lowe et al. (1998). In addition, longer

TR (3 s) BOLD fMRI data were collected and compared to the

results from the low TR data. This was in order to test (via spatial

comparison of PICA components) whether RSN signal is distinct

(and distinguishable) from aliased signal changes related to the

cardiac or respiratory cycles.

Two BOLD echo planar imaging fMRI datasets were collected

from a single subject at 3 T, with the following parameters. In the

first dataset (long TR), three axial slices covering the motor cortex

(in-plane resolution 3.75 � 3.75 mm, slice thickness 7 mm, no gap,

TR = 3000 ms, TE = 30 ms, 200 volumes) were collected during

bilateral finger tapping (30s ON–OFF paradigm). In the second

dataset (short TR), one single slice covering the motor cortex (in-

plane resolution 3.75 � 3.75 mm, slice thickness 7 mm, TR = 120

ms, TE = 30 ms, 2200 volumes) was collected during rest.

The comparison of the maps obtained from the two experiments

was performed by means of spatial correlation coefficients. In
RI data collected with high temporal resolution (TR = 120 ms). Spatial

tra respectively for (A) a resting state network in the motor cortex and (B)

ed by the cardiac cycle from the RSN. (C and D) BOLD fMRI data collected

f probabilistic independent components and their relative power spectra for

e the aliased physiological noise induced by the cardiac cycle from the RSN.
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addition, an estimation of the aliased frequency, at different TRs, of

the fundamental frequency, was also carried out for the cardiac and

respiratory cycle.

Experiment 2

The objective of this experiment was to address the issue of

spatial localization of RSNs, specifically their localization with

respect to gray matter localization. BOLD fMRI images with

relatively high spatial resolution, compared to a typical fMRI

resolution (such as 4 � 4 � 7 mm), were collected to

investigate whether RSNs are localized within gray matter.

Two BOLD fMRI datasets were collected from two subjects

at 3 T during rest. In the first subject, the following parameters

were employed: 12 axial slices, in-plane resolution 2 � 2 mm,

slice thickness 6 mm, no gap, TR = 3000 ms, TE = 40 ms,

300 volumes. In the second subject, the following parameters

were employed: 30 axial slices, in-plane resolution 2 � 1.5

mm, slice thickness 1.75 mm, no gap, TR = 10 s, TE = 40 ms,

200 volumes. The parameters were optimized to achieve high

spatial resolution and are different in the two subjects as we

varied the balance between resolution and signal-to-noise in the

two cases.

Experiment 3

More than one mechanism could contribute to the origin of

these signals. If low-frequency coherences localized to gray matter

arise from neuronal activity, then we hypothesize that they should

also be reflected as local increases in blood flow. To test for such

coherences specifically in cerebral blood flow changes across the

brain, arterial spin-labeling perfusion imaging was used to acquire

serial images of the resting brain.

For this purpose, we acquired resting ASL (arterial spin

labeling) perfusion fMRI data (Kwong et al., 1992; Biswal et

al., 1997). The ASL contrast mechanism is purely sensitive to

blood flow, as opposed to BOLD fMRI, which is also sensitive

to local oxygenation. Three perfusion fMRI datasets were

collected from one single subject at rest, with the following

parameters: 5 axial slices (totaling 15 slices covering whole

brain), in-plane resolution 4 � 4 mm, slice thickness 6 mm, no

gap, TR = 2000 ms, TE = 20 ms, TI = 1400 ms, 200 volumes.

Previously, an RSN in the motor cortex was found in ASL data

using a seeding approach (Biswal et al., 1997). As with the

BOLD contrast, we applied PICA to the resting ASL data to

define spatiotemporal networks, enabling us to look for multiple

independent RSNs (if present) without the need for prespecifi-

cation of the number of RSNs expected or selection of a seed

voxel.

Experiment 4

The objective of this experiment was to investigate the spatial

reproducibility of the RSNs across different subjects. Spatial

reproducibility was assessed through spatial correlation of the

RSN maps. Whole-brain BOLD fMRI datasets were collected from

10 subjects at 3 T, during rest, using the following parameters: 45

axial slices, in-plane resolution 3 � 3 mm, slice thickness 3 mm, no

gap, TR = 3400 ms, TE = 40 ms, 200 volumes.

After the separate single-subject PICA analyses, in order to

combine the results from different subjects, RSN maps were first
aligned to the subjects’ structural images and then into a standard

(MNI152) space. They were then smoothed using a 5 mm FWHM

Gaussian kernel. This was carried out to reduce the effect of

structural differences between subjects (i.e. equivalent to the

smoothing often applied in standard multi-subject fMRI experi-

ments) (Jezzard et al., 2002, Chapter 14).

Spatial consistency between different RSN maps was quantified

by finding the (spatial) normalized correlation coefficient of each

map from one subject with each map of another subject. The

correlations were thresholded at 0.15, corresponding to a proba-

bility level P < 0.00015.

RSN maps that were spatially consistent across all subjects

were detected by looking for consistent sets of pair-wise

correlations between all subjects (in all the directions). In other

words, let us suppose we had only three subjects. If map j of group

1 (where group indicates the set of maps obtained from a PICA

decomposition of one subject’s data) was correlated with map i of

group 2 and with map k of group 3, in order to declare these maps

consistent, we had to verify that map k was also correlated with

map j. This was not always true since we were dealing with

thresholded correlation coefficients.

After identifying spatial maps that are consistent across

subjects, we then created group maps using a fixed-effects analysis.

For inference, we then ran mixture-modeling (alternative hypoth-

esis testing, thresholded at P > 0.5 for ‘‘activation’’ vs. null

(Beckmann and Smith, 2004) to create the thresholded results for

each group-level RSN.

Finally, we tested whether diffusion-derived anatomical (white

matter) connectivity supports the found networks. We used a

probabilistic representation of thalamic nuclei derived from

diffusion tensor data (Johansen-Berg et al., 2005, http://

www.fmrib.ox.ac.uk/connect) to test whether RSN peaks lying in

the thalamus were both functionally connected to particular cortical

areas in the RSN maps (i.e., part of the same RSN) and

anatomically connected in the diffusion atlas to these same cortical

areas.
Results

Characterization of spatiotemporally distinct patterns of coherent

signals in BOLD and ASL images from the unstimulated brain:

resting state networks

PICA applied to a time series of echo planar brain images

acquired from a subject at rest using either typical (3 s) or short

(0.12 s) TR generates a series of spatiotemporally distinct patterns

of coherent signal changes defined by BOLD fMRI (Fig. 1).

Coherent RSN patterns can be identified having most power at

very low frequencies (0.01–0.05 Hz, Figs. 1A, C). These are

spatially very similar at both long and typical TR (compare also

with Figs. 3–5) and are also temporally very similar and having

the characteristic power spectrum of RSNs. A cardiac-related

component can be clearly seen in Fig. 1B, where the (temporal)

power spectrum peaks at the expected frequency of approximately

1 Hz. The associated spatial map has very strong similarity to Fig.

1D—suggesting that PICA has successfully identified the cardiac

component even in the typical TR (where the time-course is

aliased, as can be seen in the power spectrum of Fig. 1D) and

successfully separated the RSN from the cardiac component. In

these datasets, the only robust physiological components found
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Fig. 2. Cortical localization of resting state networks. In relatively high-resolution BOLD fMRI datasets (in-plane resolution of 2 � 2 mm), RSN components

are localized in cortical gray matter. The green lines represent the gray–white matter border in the selected area, after manually segmenting the image.
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were the RSNs and the cardiac pulsation—that is, we did not find

strong signal relating to respiration.

The apparent anatomical co-localization of low-frequency RSN

coherences with gray matter were confirmed using higher-

resolution fMRI. In both higher-resolution datasets, patterns were

seen which corresponded (spatially) very well with the more

typical resolutions acquired. For example, Fig. 2 shows an RSN

spatial component resulting from PICA applied to the 2 � 2 mm

in-plane resolution data. This has clear spatial similarity to the

maps shown in Figs. 4 and 5, and it can be seen that the voxels

involved in the RSN do indeed lie within gray matter. The 2 �
1.5 � 1.75 mm data gave a similar general spatial pattern, but the

greatly reduced voxel size in this dataset resulted in much noisier

and less interpretable results.

The ASL perfusion data showed low-frequency coherences in a

pattern similar to that found with BOLD contrast (Fig. 3). PICA

performed on perfusion fMRI resting data disclosed five inde-

pendent component (ICs) whose spatial and temporal character-

istics strongly matched the RSNs observed in BOLD fMRI resting

data (compare with Figs. 4 and 5).

Resting state networks are found consistently across subjects and

define functional–anatomically related regions in the brain

If RSNs define ‘‘default’’ states of coherent activity across the

brain, then they should be reproducible between healthy, alert

individuals. The number of components extracted by ICA from
Fig. 3. Resting state networks are identifiable in perfusion fMRI data. PICA perfo

(ICs) whose spatial and temporal characteristics strongly matched the RSNs obse
each subject varied from 42 to 67. This included scanner-related

artefacts such as EPI ghosting and physiological artefacts such as

cardiac pulsation. Spatial cross-correlation showed that a consistent

set of five spatiotemporally distinct patterns was identified for all

10 subjects studied. Fig. 4 illustrates the five RSNs found with a

typical single subject’s dataset.

To understand the anatomical relations of these resting fluctua-

tions, the 5 spatiotemporally distinct RSNs from the 10 different

subjects were registered individually into common brain space maps

using PICA. The resulting group average RSN maps confirmed

defined distinct patterns for each network (Fig. 5). Co-representation

of the group average networks together emphasizes the comple-

mentary patterns of activation.

The coordinates of maxima in each activation cluster defined in

the group maps were used to localize functional–anatomical

regions attributed to the RSN. Individual RSNs then were

classified spatially both on the basis of coordinates in standard

space (Table 1) and by regional anatomy:

1. RSN1: a posterior network characterized by involvement predo-

minantly of occipital cortex, as well as temporal–parietal regions;

2. RSN2: a posterior– lateral and midline network involving

primarily the precuneus and anterior pole of the prefrontal

lobe, as well as parietal regions.

3. RSN3: a lateral and midline network including the pre- and

post-central gyri, as well as midline regions including the

thalamus and hippocampus.
rmed on perfusion fMRI resting data disclosed five independent component

rved in BOLD fMRI resting data (compare with Fig. 5).



Fig. 4. Consistently identified resting state networks. Five RSNs from a

single subject illustrating those found consistently from all subjects are

shown. Maps are thresholded at P > 0.5 (alternative hypothesis threshold,

for activation versus null). Each row represents the three most interesting

slices of one distinct RSN. The RSNs are shown on the corresponding

structural image transformed into standard space.

Fig. 5. Group resting state network maps. From top to bottom: (1) RSN 1

including visual cortical areas. The RSN reported here includes the main

visual functional network. (2) RSN 2 including visuospatial and executive

system. The RSN reported here includes the emotion/visuospatial

processing functional network. (3) RSN 3 including sensory and auditory

system. (4) RSN 4 including the dorsal pathway. (5) RSN 5 including

ventral pathway. The crosses indicate the positions of the centers of the

major clusters, and the corresponding coordinates are reported in Table 1

for each corresponding map (map obtained with alternative hypothesis

threshold P > 0.5).
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4. RSN4: a network involving dorsal parietal and predominantly

lateral prefrontal cortex.

5. RSN5: a ventral network dominated by coherences between the

inferior occipital parietal, temporal, and inferior prefrontal cortices.

Using the coordinates in Table 1, we were able to test more

specifically the relationship between the anatomy of signal

correlations defined in the RSNs and anatomical connectivity based

on our prior definition of thalamo-cortical pathways using diffusion

tensor imaging (Johansen-Berg et al., 2005). Using a probabilistic

representation of the normal human thalamus defined on the basis of

white matter connectivity to cortical regions, the anatomical

relations between the thalamic activation cluster in RSNs 2 and 3

(Fig. 6) and the cortical regions were explored. The thalamic peak of

coherence from the group RSN2 map corresponds to a region in the

probabilistic thalamic atlas (Johansen-Berg et al., 2005, http://
www.fmrib.ox.ac.uk/connect) with strongest connectivity to the

prefrontal cortex, the localization of the correlated prefrontal activity

in this RSN. By contrast, the anatomical localization of the thalamic

cluster in RSN3 (Fig. 6) corresponds to a region that connects most

anatomically strongly with motor cortex. Together, these results are

consistent with a correspondence between regions showing RSN

coherence and those with strong anatomical connectivities.
Discussion

Several previous reports have described specific patterns of

low-frequency coherent signal in time series of gradient echo MRI

from unstimulated brain (the brain ‘‘at rest’’). The most commonly

recognized pattern includes particularly the sensorimotor cortex

bilaterally (corresponding to RSN 3 defined here) (Biswal et al.,

 http:\\www.fmrib.ox.ac.uk\connect 


Table 1

Coordinates of the major clusters of the RSNs, as shown in Fig. 5 (cross

points) in stereotactic space of Talairach and Tournoux (1988)

Cluster x y z Anatomical region

RSN 1 1 6 �78 �3 BA18 Lingual gyrus

2 24 �78 �10 BA18 Lingual gyrus

3 �30 �89 20 BA19 Middle occipital

gyrus

RSN 2 1 �2 �51 27 BA31 Cingulate gyrus

2 53 �57 23 BA39 Superior temporal

gyrus

3 2 54 �3 BA10 Medial frontal

gyrus

4 �20 �19 �18 Hippocampus

5 6 �19 6 Thalamus

RSN 3 1 �4 �6 40 BA24 Cingulate gyrus

2 �51 �7 8 BA6 Precentral gyrus

3 �55 �18 8 BA41 Superior temporal

gyrus

4 57 �5 20 BA4 Precentral gyrus

5 12 �17 0 Thalamus

6 22 �16 �13 Hippocampus

RSN 4 1 �2 �21 43 BA31 Paracentral lobule

2 46 6 34 BA9 Middle frontal

gyrus

3 44 �48 46 BA40 Inferior parietal

lobule

4 �38 �56 48 BA7 Superior parietal

lobule

5 �55 �58 �9 BA37 Inferior temporal

gyrus

RSN5 1 62 �37 �3 BA21 Middle temporal

gyrus

2 52 26 �4 BA47 Inferior frontal

gyrus

3 6 46 18 BA9 Medial frontal

gyrus

4 8 �46 41 BA31 Cingulate gyrus

5 8 �16 40 BA24 Cingulate gyrus

Brain regions are identified by putative Brodmann area (BA).

Fig. 6. RSN and thalamic connectivity. Top: the cross indicates the voxel

in RSN 2 (x = 6, y = �19, z = 6 in MNI space) used for seeding an

anatomical connectivity investigation, using a standard-space anatomical

thalamus connectivity atlas. Bottom: the cross indicates the seeding voxel

in RSN 3 (x = 12, y = �17, z = 0 in MNI space). A distinct pattern of

anatomical connectivity is associated with the different resting state

coherence.
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1995; Lowe et al., 1998; Xiong et al., 1999). Other work

characterized a predominantly occipital network (corresponding

to RSN1 here) (Goldman and Cohen, 2003; Moosmann et al.,

2003). Our study extends this description, using a relatively

unbiased approach to analysis based on probabilistic ICA

(Beckmann and Smith, 2004). We have identified 5 spatiotempor-

ally distinct patterns of low-frequency coherences across the brain.

The PICA method clearly distinguishes these patterns of activity

from those associated with cardio-respiratory motion of the brain,

even without sampling that is rapid with respect to the primary

frequencies of these processes. We additionally have provided

evidence for cortical localization of these coherences and for

similar patterns associated with changes in local blood flow,

consistent with the neuronal origin of the signals.

Our analysis using PICA found multiple patterns of coherence

involving distinct functional–anatomical networks across the

brain. While the coordinated neuronal activity that we infer is

reflected in these hemodynamic changes may have a specific

processing function, at this point, any such functions are unclear.

Instead, therefore, we interpret the coherences more generally as

indicative of ‘‘default’’ or ‘‘idling’’ mode of interactions between

functionally integrated regions. As such, the coherences provide
insight into the dynamic functional architecture of the brain in the

absence of activity coordinated for a specific task.

Previous work has provided evidence that some RSNs are

correlated with slow modulations of EEG-measured neuronal

activity in the alpha band (Goldman and Cohen, 2003; Goldman

et al., 2002; Laufs et al., 2003) and mu band (Moosmann et al.,

2003). Changes in the strengths of some coherences have been

reported with neurological diseases (Greicius et al., 2004). Note

that, while Goldman showed alpha-related changes in (our) RSNs

1 and 3, Laufs’ results appear spatially more similar to (our) RSNs

4 and 5. Therefore, though we can conclude that there does seem to

be a strong correlation between the RSN time-courses and

modulation of the alpha EEG component, much remains to be

understood as to the exact nature of this link.

The PICA approach offers specific advantages relative to

correlation-based analysis with ‘‘seeding’’ of a region identified by

a prior stimulus activation study. The latter limits analysis to

coherences specifically searched for.While the PICAmethod cannot

be ideally sensitive to all such longer-range coherences, our results

emphasize the potential richness of the time series data and the

substantial extent of long-range coherences in fMRI datasets. A

second limitation of the seeding approach is that it assumes that RSN

coherences are related directly to regions identified by arbitrarily

chosen types of activation. The strongest resting coherences may not

be localized to the specific regions of functional cortex probed. For

example, the low-frequency coherences between regions of sensor-

imotor cortex identified here were not maximal in the motor cortex

hand regions previously used as seeds for correlation analysis. Thus,

methodological differences potentially account for the more

extensive patterns of activation implicated in RSNs reported here,

as well as for the increased number of distinct patterns of coherent

activity that we have identified. Reassuringly, where comparable

regions are explored, results from correlation in PICA (or other ICA

methods) are generally consistent (Greicius et al., 2004; De Luca et

al., in press).

The reproducibility of patterns of coherence across the brain was

explored directly in our study. Reproducibility of patterns between

the individuals was good. There is some evidence that prior

experience (e.g., training on a specific task) may modulate the

relative strengths of coherences (Waites et al., 2005), though it is
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clear from our data that, while such modulation can occur, the RSNs

are quite robustly found across subjects. It remains to be seen

whether RSNs can provide useful clinical or cognitive markers in the

absence of an experimental task.

The ability to differentiate physiological noise variations from

different sources is inherent to multivariate decomposition techni-

ques such as PICA. In addition to signal changes that are potentially

neuronally mediated and those related to cardio-respiratory cycles,

coherences can be found that appear more specifically localized to

regions with large draining veins and may represent changes

associated with either cerebral blood volume modulation or gross

vessel movements (Kiviniemi et al., 2000). Instrument-related

artefacts also can be identified (Beckmann and Smith, 2004).

The group-level RSNs identified relate to functional–anatom-

ically distinct systems. RSN1 includes the striate and extra-striate

cortex, regions involved in visual processing (Haxby et al., 1994).

The relationship to slow modulation of alpha wave activity

previously described suggests that this RSN could be modulated

by levels of alertness, although this has not yet been demonstrated.

RSN2, which involves the precuneus, anterior pole, and midline

structures including the thalamus and hypothalamus, as well as

medial parietal cortex, is closely related to patterns described as

‘‘deactivated’’ during active tasks in PET cerebral blood flow

studies (Shulman et al., 1997; Mazoyer et al., 2001). These

regions have been suggested to be associated in a functional

network related to internal monitoring and states of consciousness

(Gusnard and Raichle, 2001). RSN3 involves the post-central

gyrus, insula, and midline cingulate in superior frontal gyrus.

These regions are involved in motor control and somatosensation

(Hsiech et al., 1999), suggesting that the network reflects

functional and anatomical interactions relevant to the control of

action. RSN4 includes occipital, dorsal, parietal, and prefrontal

regions. Parietal and prefrontal regions are closely functionally

integrated in a wide range of cognitive processes. The pattern here

may recall more specifically the network of brain regions implicated

in visual perception for action, the so-called ‘‘where’’ pathway

(Ungerleider and Haxby, 1994). RSN5, by contrast, involves

predominantly more inferior regions of occipital, parietal, and

prefrontal cortex in a pattern recalling the complementary visual

perceptual ‘‘what’’ pathway (Ungerleider and Haxby, 1994).

The agreement of RSN spatial localization and anatomical

connectivity suggests that RSNs follow similar spatial organization

to that inferred from DTI anatomical connectivity.

In summary, our analysis with PICA has identified several

independently varying patterns of signal coherence across the brain

in resting state BOLD fMRI. Similar patterns were shown to be able

to be found with the more specific measure of hemodynamic

response provided by perfusion imaging. The cortical localization

of the generators and the similarity of the patterns to known

functional–anatomical networks suggest that these arise with long-

range coherences in neuronal activity. Although the interactions

may have independent functional roles, these are not yet apparent.

Their association with the unstimulated or ‘‘resting’’ brain suggests

that they arise from ‘‘default’’ or ‘‘idling’’ state of these functional

networks. They could thus simply represent a form of ‘‘noise’’

distributed across the networks as a consequence of their functional

connectivity. Even in this instance, however, they potentially

provide information on functional systems and the dynamics of

interactions within them. They also may prove to be a useful probe

for functional alterations in the brain as a consequence of changes in

brain state, disease, or pharmacological interventions.
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