Adaptive Quantization and Fast Error Resilient
Entropy Coding for Image Transmission

R. Chandramouli, N. Ranganathan, and Shivaraman J. Ramadoss

Abstract— Recently, there has been an outburst of re-
search in image and video compression for transmission over
noisy channels. Channel matched source quantizer design
has gained prominence. Further, the presence of variable
length codes in compression standards like the JPEG and
the MPEG has made the problem more interesting. Er-
ror resilient entropy coding (EREC) [20] has emerged as
a new and effective method to combat catastrophic loss in
the received signal due to burst and random errors. In this
paper, we propose a new channel matched adaptive quan-
tizer for JPEG image compression. A slow, frequency non-
selective Rayleigh fading channel model is assumed. The
optimal quantizer that matches the human visibility thresh-
old and the channel bit error rate is derived. Further, a new
fast error resilient entropy code (FEREC) that exploits the
statistics of the JPEG compressed data is proposed. The
proposed FEREC algorithm is shown to be almost twice as
fast as EREC in encoding the data and hence the error re-
silience capability is also observed to be significantly better.
On an average, a 5% decrease in the number of significantly
corrupted received image blocks is observed with FEREC.
Upto a 2 dB improvement in the peak signal to noise ratio
of the received image is also achieved.

Keywords— JPEG, image compression, error resilient cod-
ing, fading, adaptive quantization.

I. INTRODUCTION

MAGE transmission through band limited and high bit

error rate fading communication channels, like the wire-
less mobile channels, requires good compression algorithms
and error resilient coding techniques. Short fade intervals
induce high bit error rates. As a result, high data frame
errors occur. Shannon showed that source and channel
coding can be fundamentally separated. The entropy rate
reduction is done by the source encoder and the protection
against channel errors by the channel encoder. However,
the separation is justifiable only in the limit of an arbitrary
encoding complexity. In practical systems, when the com-
plexity and the delay are the main constraints the tandem
source-channel coding is not optimal [1]. The source and
channel encoders are dependent on each other. Combined
source-channel coding for image coding has been studied
in [2]. In [3], the problem of optimum quantizer design for
signal transmission over noisy channels is studied. Zero-
memory quantizers with smaller bit rates are shown to
perform better than high rate quantizers for very noisy
channels.
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Variable length codes are frequently used in low rate im-
age coding systems. But these are known to be highly
susceptible to channel errors. The critical bits need to be
protected from channel errors in order to prevent the com-
plete loss of a transmitted image. The synchronization of
the decoder to the received bit stream could be lost due to
bit errors. This leads to error propagation and the loss of
the source symbols. The loss of a few blocks of symbols
causes displacements in the received image. Error correct-
ing codes that protect the critical bits from channel errors
for image transmission are analyzed in [4]-[7]. Examples
of the critical bits are the EOB (end of block) markers in
JPEG compressed images and the most significant bit of a
source symbol. An error in the most significant bit could
cause higher degradation than a corrupted least significant
bit. The loss of EOB due to errors leads to catastrophic
error propagation as shown in Fig. 1. Therefore, the high
priority bits need to be protected using channel coding or
other methods. But the redundancy due to channel coding
reduces the compression efficiency. Therefore, an optimal
trade-off between the rate of the source coder and the chan-
nel coder is essential.

(&) original image (b) error propagated image

Fig. 1. Effect of Error Propagation

Bit errors in variable length codes cause synchronization
loss. In [9]-[13], synchronization codes to reduce this loss
are discussed. But these codes have to be used infrequently
in order to reduce the amount of redundancy. Also, the er-
ror propagation is limited only to the maximum separation
between the sync words. Error propagation between differ-
ent sets of variable length codes is not limited by the sync
codes. However, most of the compression algorithms use

different types of variable length codes.



Residual redundancy at the output of the source encoder
in practical systems is due to the constraints on the encoder
complexity and delay. This redundancy can be exploited
at the decoder to perform forward error correction. In [14],
the redundancy at the output of a DPCM coder has been
used to correct channel errors. The redundancy in the ad-
jacent vector quantizer indices is exploited in [15]. Adap-
tive interpolation in the spatial, temporal and frequency
domains is used in [16] to recover damaged regions of the
received video signal. Hybrid methods that incorporate
many of these techniques for error protection, correction
and error recovery of video signals for wireless channels are
discussed in [17]-[18].

Error resilient coding reduces the redundancy due to
channel coding and yet protects against error propagation.
Recently, error resilient encoding for image and video trans-
mission have been proposed in [19]-[20]. In [19], error re-
silient codes for subband image coding using vector quan-
tization is studied. The positions and values of the active
blocks of bits are encoded. A comma bit terminates each
active block. But it requires a additional overhead of 0.6
bits over the entropy bound to code the position of each
transmitted sample. This overhead is reduced in [20] using
a bit re-organization algorithm. The variable lengths of
data blocks (in bits) are placed into a fixed number of slots
of equal size using an error resilient entropy coder (EREC).
Initially, each block of data is placed into its correspond-
ing slot either fully or partially. Then, a predefined offset
sequence is used to search for empty slots to place the re-
maining bits of each block from the successive stages of the
algorithm. This is done until all the bits are packed into
one of the slots. The decoder synchronizes at the start of
each block with minimal redundancy. EREC ensures that
the bits at the beginning of each block is more immune
to error propagation than those at the end. Therefore the
error propagation is predominant only in the higher fre-
quencies which are subjectively less important in images.
Error resilient coding using bit re-organization has many
advantages. A graceful degradation with increasing chan-
nel bit error rate is obtained. During burst errors, channel
coding fails miserably if the depth of interleaving is in-
sufficient. Deep interleaving causes unacceptable delays.
On the other hand, error resilient entropy coding produces
data that is corrupted only as long as the burst length with
little or no additional delay and redundancy.

In this paper, we propose an adaptive quantizer and an
efficient error resilient encoder for JPEG compressed im-
age transmission over mobile wireless channels. A slow,
frequency non-selective Rayleigh fading channel model is
assumed. For very low bit error rates, the quantization ta-
ble given in [21] for optimal human visual quality is used
for compression. When the channel bit error rate changes,
each entry in the quantization table is multiplied by an op-
timum factor M™* to control the bit rate at the output of the
quantizer. The value of M* is computed using a quadratic
model that relates the average number of received image
blocks in error and the channel bit error rate. The model
parameters are estimated using extensive simulation and

statistical regression. M™ is computed for bit error rates
ranging from 107° to 107!, The optimal quantizer for a
particular channel bit error rate is designed using the corre-
sponding value of M*. In order to enhance the robustness
of the adaptive system, we also propose a fast error resilient
entropy coder (FEREC). Through simulations, it is shown
that the encoder is twice as fast as EREC in packing the
blocks of data into slots. As a result FEREC possesses su-
perior error containment capabilities. The peak signal to
noise ratio of the received image using FEREC is observed
to be higher than that with EREC. A total number of 50
images are tested.

The paper is organized as follows. In Section II the base-
line JPEG scheme used in our analysis is introduced and
discussed briefly. Section III discusses the slow, frequency
non-selective Rayleigh fading channel model. The bit er-
ror rate for BPSK transmission is derived as a function
of the average signal to noise ratio. The fading channel
simulator used in our experiments is discussed. The new
adaptive quantization strategy is given in Section IV. The
dependence of the quantizer on both the source and channel
statistics is explained. The optimum quantization param-
eter M* based on a new model is also derived. In Section
V the proposed fast error resilient entropy coding method
is given. The assumptions, observations and the algorithm
are explained in detail. The working of the algorithm is
illustrated using a simple example. The simulation results
are given in Section VI. The advantages of the proposed
adaptive quantization and the fast error resilient coder are
supported through simulations. The assumptions used to
design the fast error resilient encoder are also validated. Fi-
nally, conclusions and future work are discussed in Section
VII.

II. THE BASELINE JPEG

The JPEG compression standard is widely used for still
image compression [21]. The input image, X, is partitioned
into N x N sub-blocks followed by the 2-D discrete cosine
transform (DCT) for each sub-block. DCT reduces the in-
herent redundancy in the signal. The quantization of the
DCT coefficients controls the achieved compression ratio.
The DC coefficient has higher energy than the AC coef-
ficients. Therefore, most of the AC coefficients are quan-
tized to zero. Each DCT coefficient is divided by the cor-
responding quantization factor in the quantization table
and truncated to an integer value. Dequantization is the
inverse process. The quantization table in JPEG is de-
signed using criteria based on the visibility threshold val-
ues for the DCT basis functions. Table I gives the visibil-
ity threshold values of the quantizer for a 8 x 8 sub-block
of an image [21]. It is clear from the table that the DC
and the lower frequency AC coefficients are finely quan-
tized and the higher frequency AC coefficients are coarsely
quantized. This is because, the energy of the DCT co-
efficients are concentrated mostly in the lower frequency
coefficients. The quantization error is controlled by the
quantization threshold values. The quantized coefficients
are then zig-zag scanned, run-length and Huffman encoded



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99
TABLE 1

THE 8 x 8 JPEG QUANTIZATION TABLE

to get the final JPEG compressed image. Decompression
is the exact reverse process.

I1I. FADING CHANNEL MODEL

Fading is caused due to randomly time-varying channel
responses. If the signaling interval T is smaller than the co-
herence time of the channel, the channel attenuation and
phase shift are approximately constant for that time in-
terval. This leads to a slowly fading channel. When the
signal bandwidth is much smaller than the coherence band-
width of the channel, the channel is said to be frequency
non-selective. That is, all the frequency components of
the transmitted signal undergo the same attenuation and
phase shift. In this study, we consider a slow, frequency
non-selective Rayleigh fading channel with additive white
Gaussian noise (AWGN). If the transmitted signal is s(t),
the received equivalent low pass signal in one signaling in-
terval is

r(t) = ae 0s(t) + 2(t), 0<t<T (1)

where « is the random channel attenuation and ¢ is the ran-
dom phase shift. z(¢) represents the complex valued white
Gaussian noise process. The probability density function
of a and ¢ are given by

fo) = ST az0 2)
96 = 5o —m<p<n ®

Since the channel fading is slow, it can be assumed that
the phase shift ¢ can be estimated from the received signal
with very small error. Hence, coherent detection of the
received signal is possible. If Ej, denotes the energy per bit
and Ny is the noise power, then the conditional bit error
probability for BPSK modulation is [1]

pe(7) = H(\/27) (4)
where v = a2 E}, /Ny is the signal to noise ratio for a fixed
aand H(z) = \/% [ e~t"/2dt. Therefore, the probability
of error for any attenuation « is given by

/0 mpe(v)p(v)dv (5)

1 5
2 1+ 7%

DPe =

where 7 = ﬁ—ZE(oﬂ) is the average signal to noise ratio.

The fading channel simulator that we used is based
on [23]. The set-up of the slow, frequency non-selective
Rayleigh fading channel simulator used in our analysis
is shown in Fig. 2. Two independent time-varying zero
mean Gaussian noise sources are used for the in-phase (I-
channel) and the quadrature phase channels (Q-channel).
The Gaussian random variables g; and g, pass through
a low pass filter that simulates the effects of the Doppler
frequency shift. The filtered in-phase and the quadrature
phase noise components, namely, g/ (t) and g?(t) together
give the Rayleigh distributed fading channel.
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Fig. 2. Fading channel simulator

IV. ADAPTIVE QUANTIZER DESIGN

In this section, we briefly discuss the effects of the chan-
nel on the source quantizer. A new model to design the
quantizer that matches the channel and the human visibil-
ity threshold level is proposed. The optimal quantizer is
chosen based on the feedback from the receiver regarding
the channel error rate.

A. Channel Effects on Source Quantizer

The errors in the reconstructed image sub-blocks are
both due to the quantization and channel errors. At high
bit error rates, p., a high rate quantizer is more sensitive
to the channel errors. This causes many received blocks of
data to be in error. But, we do not use any explicit channel
coding in order to design a simple encoder and also avoid
the additional redundancy. Also, we want to study purely
the performance of the adaptive quantizer and FEREC. So,
a lower rate quantizer is used by scaling up the entries of
the quantization table by the quantizer factor, M, result-
ing in a fewer number of transmitted bits. This causes a
reduction in the number of bit errors and hence the sub-
block errors in the received signal. The number of blocks
that are in error is a minimum for the optimal choice of
M, namely, M*. If the bit rate is reduced further then the
quantization errors contribute significantly to the degra-
dation in the received signal. Therefore, the number of



image sub-blocks in error increases again. If X denotes the
source image, U is the quantized image and V is the re-
ceived image, then the reconstruction error variance for a
noisy channel is given by

U;%ec = E[X_V]z
= E(X-U)+U-V)
= EX-UP+E[U-VP+2E[X -U) (U -V)]

_ 2 2 2
= o,+o0.+20,

(6)

The quantities o7, o) and o7, denote the quantization,

channel and the mutual error variance. The mutual error
arises when the channel noise is mapped into reconstruc-
tion noise. This is equal to zero when the channel error
probability is zero or a Max-quantizer is used [24]. But
in practice, the contribution of o2, can be neglected for
a small bit error probability [3], [24]. Therefore, the re-
constructed error is approximately equal to the sum of the
errors due to quantization and the channel. This leads to
the quantizer limited and the channel limited conditions.
But, in our simulations we have implicitly accounted for
the mutual error variance. The quantization error variance
is minimized using the optimal quantization values in Ta-
ble T under error free channel conditions. When the channel
is noisy, o2 is minimized by scaling the values of Table I by
a proper choice of the quantizer parameter, M. Therefore,
o2, is minimized by the optimal choice of M. Thus, the

rec
optimal value M* is a function of both o7 and o?.

B. @Q-C Modeling

Computing closed form expression for the optimal visi-
bility quantization threshold values under noisy conditions
is difficult. Therefore, an empirical method is used to com-
pute the optimal quantizer. A N x N sub-block of the
received image is deemed erroneous if the peak signal to
noise ratio (PSNR) for that block given by

PSNR =10log,,

is less than 40 dB. We call the quantizer-channel error
trade-off as the Q-C curve. It relates the number of image
sub-blocks in error and the value of M. The parameters
of the model are computed empirically using statistical re-
gression for bit error rates ranging from 1075 to 10~!. The
rate of the quantizer can be adapted to the channel bit er-
ror rate by suitably changing M. M* is computed for each
channel error rate. A look-up table is used for the adap-
tive quantization. To compute M*, M is varied in steps of
0.1 and the average number of erroneously received image
sub-blocks is computed for each p,. The Q-C curves (non-
smooth) when N = 8 averaged over 50 images compressed
using the baseline JPEG configuration are shown in Fig. 3,
4 and 5.

580

570

a
(o2}
o

a1
a
o

a1
N
o

Average no. of blocks in error

510

500

490
1

Quantizer multiplication factor (M)

Fig. 3. Q-C curve for pe=10~"

560

540

520

500

480

Average no. of blocks in error

460

440 I I I I I
4 5

Quantizer multiplication factor (M)

Fig. 4. Q-C curve for pe=10"2

As expected, for a high value of p., the channel errors
dominate. But this effect diminishes with coarser quan-
tization. For higher values of M, the quantization error
dominates. For a fixed p, the figures suggest that the Q-C
curve can be modeled as

g +a1M +CLQM2

oy (5)]

B is the average number of received image sub-blocks that
are in error and a;, ¢ = 0, 1,2 are the unknown parameters
of the model. We use statistical regression to estimate the
a;’s. It is clear from Fig. 3-Fig. 5 that the model fits the
actual Q-C curve very well. It is possible that the modeling
error could be large when the channel behaves abnormally.
But we have found through experiments that the second

B(M) =

2
4aray — aj

(8)
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De M
10-1 | 4.69
1072 | 4.71
1073 | 2.7
1074 | 2.3
10—5 1

TABLE 11

LOOK-UP TABLE FOR M*

order model works well most of the time. Clearly, M* is
given by

M*

arg min B(M)
= —(a1/2az) (9)
The value of M* for various p, is given in Table II.

V. FAsT ERROR RESILIENT ENTROPY CODER

We say that the error resilient encoder has converged
when all the data bits have been packed into the slots.
The number of stages for the algorithm to pack the bits
is defined to be the speed of the algorithm. The speed
of convergence of the EREC depends mainly on the effi-
ciency of the search strategy (the offset sequence) to find
an empty slot. Though the search method used in EREC
is intuitively appealing and simple, it fails to exploit the
statistics of the data fully. Various compression methods
produce data with different statistical properties. By using
this information to design the offset sequence we can design
faster and better error resilient entropy coders. We propose
an error resilient encoder that uses the fact that the lengths
of the successive symbols (in bits) of a JPEG encoded sig-
nal are highly correlated due to the zig-zag scanning along
with run length and Huffiman encoders. We introduce some

terminology that will be used to describe the proposed al-
gorithm. Let b;, i = 1,2,---, N; denote the i*" block of
data to be placed in N; slots of length each equal to L.
Here, N; corresponds to the total number of output sym-
bols from the Huffman encoder and L is the average code
length. Let [(b;) denote the number of bits in block b; to
be placed into the slots and I(s?') be the number of bits in
slot s; at stage n of the algorithm. The indicator function
is denoted by I. In the definition given below we drop n
for convenience.

Definition 1: The set F={s;, si11,- -, sx} is called a full
cluster if I{l(s]-):L} =1,7=141+1,--- k, I{l(si,l):L} =0
and I{l(sk,+1):L} =0.

Definition 2: The set E={s;, s;11,---,sx} is called a
partially full cluster if Iy, =1y =0, j = d,i+1,---,k
Tasiy=ry = 1 and Tes )=y = 1.

The output blocks of the JPEG source coder whose
length exceeds L are more likely to be followed by similar
blocks. Likewise, blocks of size less than the average length
will precede blocks of the same nature. The initial stage of
FEREC is similar to EREC. Therefore, If;;,)>7) = 1 im-
plies Iyy(5;)=ry = 1 immediately after the first stage. Since
consecutive blocks have similar lengths, the probability of
block b; finding a partially full slot s; is high for j > i +1
when [(b;) > L. Therefore, the block has to cross the full
cluster and reach the partially full cluster in the successive
stages to be placed in a slot. If Fy, F5,---, F,, denote the
m full clusters, then the average length of a full cluster is
given by

3

1
and for r partially full cluster it is equal to
1
L.— [;[C(El) +C(By), - + C(Er)ﬂ (11)

where, C denotes the cardinality of a set and [.] is the
ceiling function. On an average a block crosses [(Lf +
L.)/2] slots to find a free slot. This suggests that a better
initial offset, ¢1 equal to [(Ls + L.)/2] should speed up
the packing of the data bits into the slots. Since, among
the deterministic offset schemes the bi-directional search is
found to be better in [19], we use a variation of it for the
successive stages. In particular, the offset for the successive
stages is given by

—n, ifn=2
On = &1+ (2k — 1) (mod Ny) if n =2k + 1(12)
¢1 — (2k —1) (mod Ny) ifn=2k+2

for k =1,2,---. The algorithm can be described as follows

for i=1 to NV
/* Initialize lengths of slots */
length(s?)=[L]
endfor
n=1
for i= 1 to NV



/* Compute number of bits in s; */
k;=min(1(b;),[L])
/* Place b; in s; at stage n */
endfor
for i= 1 to N,
/* No. of bits in b; remaining to be placed */
ri=1(b;)-[L]
endfor
repeat
/* Increment stage number */
n =n+l
for i= 1 to N,
lf T > 0
if ([L] — kitg,) >0
temp = min([L] — kiye.,.7i)
sivg, (Kive, +1:kipg, +temp)=
bl(l(bl) — ri+1:l(bi)—ri+temp)
/* Update the number of bits in b; remaining
to be placed */
r;=r;-temp
/* Update the number of bits in s; 44, */
kit¢,=kitq, +temp
endif
endif
endfor
until r; < 0Vi=1,2,---, N;

The algorithm arranges the blocks such that an error
propagation does not affect the most significant bits of
other blocks. This is especially important in the case of the
JPEG encoder, where, the most significant bits carry more
information than the least significant bits. To understand
how the FEREC algorithm prevents the error propagation
from affecting the most significant bits, let us consider the
decoding of the slots into their respective blocks after a
noisy transmission. Both the encoder and the decoder are
assumed to know the values of the total number of FEREC
slots Ny, the length of each slot and the total number of
transmitted bits. The decoding is done until the end of a
block is reached. If a bit in a block gets corrupted it is pos-
sible that the end of the block is not detected. This means
that the least significant bits of other blocks can be treated
as a part of the current block. Hence, any error that occurs
in a particular block affects only the least significant bits
of the other block but not the most significant bit.

An Exzample

The working of FEREC is explained using an example. We
map a set of 8 blocks of length 11, 9, 4, 3,9, 12, 6, 2 bits
respectively onto the 8 slots of size equal to 7 bits each
using FEREC. The full clusters are {11, 9} and {9, 12}
and the partially full clusters are {4, 3} and {6, 2}. This
gives Ly = L, =2. Therefore, the initial offset is equal to
2.

The various stages of the algorithm is shown in Fig. 6.
The search for empty slots is done using successive offsets
equal to 0, 2, -2, 3, -1. The offset 0 corresponds to the

initial mapping of the blocks onto the slots.

VI. SIMULATION RESULTS

Simulations were done using fifty 256 x 256 8-bit gray
level images that were compressed using the baseline JPEG
in order to compare the speed and error resilience of EREC
and FEREC. The images are given in [22]. The image sub-
block size was chosen to be 8 for encoding. The Huffman
encoded data was re-organized using FEREC before trans-
mission. The fading channel simulator described in sec-
tion IIT was used for the experiments. For each bit error
rate, the parameters of the simulator were computed and
the Rayleigh fading envelope was generated. A transmis-
sion rate of 64 kb/s was considered. A carrier frequency
of 2 GHz and a Doppler frequency of 2 Hz was used to
simulate the slow, non-frequency selective Rayleigh fading
channel. We further assume that the values of the total
number of FEREC slots, V7, the length of each slot and
the total number of transmitted bits is sent to the decoder
as protected header information. Table IT was assumed to
be known to both the encoder and the decoder. No post-
processing was done on the received image to mitigate the
effect of channel errors. Depending on the feedback from
the receiver regarding the channel conditions the transmit-
ter adaptively chose the optimal quantizer using Table II
to enhance the error resilience capability. In [19] a ran-
dom offset sequence is shown to converge faster than the
bi-directional and uni-directional search sequence. We ob-
served a similar behaviour with FEREC. Without loss of
generality, we used the bi-directional offsets for our compar-
isons since the main difference between EREC and FEREC
is in the initial offset computation. Channel bit error rates
ranging from 10~* to 107! were considered. Fig. 7 shows
the original image for which the results are reported.

Fig. 7. Original image-"House”

A. Performance of adaptive quantization

Fig. 8-Fig. 10 show the reconstructed image with (M #
1) and without (M = 1) adaptive quantization. The
proposed optimal quantizer multiplication factor (QMF)
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Fig. 8. Reconstructed images when p. = 10~2

Image quantized with QMF=1.0 Image quantized with QMF=2.7

Fig. 9. Reconstructed images when p. = 1072



Image quantized with QMF=1.0

Image quantized with QMF=2.3

Fig. 10. Reconstructed images when p, = 1074

matched to p, is observed to result in a better performance
than a fixed quantizer. Both the visual quality and the re-
ceived PSNR is higher than fixed quantization. A similar
trend is observed for other bit error rates also.

B. Speed-up of FEREC over EREC
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Fig. 11. Number of iterations for EREC and FEREC

The speed-up of FEREC over EREC is defined as

No. of iterations for EREC to converge

Speed-up =
PeECP = N, of iterations for FEREC to converge

(13)
The decrease in the number of unplaced data blocks with
the iteration number is shown in Fig. 11 for the ”House”
image. FEREC is observed to converge in nearly half the
number of iterations when compared to EREC. Therefore,
the error resilient property of FEREC is expected to be
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Fig. 12. Speed-up of FEREC over EREC for 50 images

better than EREC. We find that this is true as discussed
later. The speed-up of FEREC for fifty images is shown in
Fig. 12. Tt is observed to be nearly 2 for most of the images.
The images corresponding to the numbers are given in [22].
This speed-up is achieved due to the search strategy that
avoids searching the slots which are more likely to have
been filled by other blocks in the previous iterations. We
note that there could be a decrease in the speed-up when
the data lengths are not sufficiently correlated. However,
the output of the JPEG coder has a significant amount
of correlation. Therefore, we almost always gain due to
FEREC.
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C. Percentage of significant corruption

The percentage of significantly corrupted received image
sub-blocks is an important measure of comparison. A sub-
block is said to be significantly corrupted if its PSNR is
less than 40 dB. The threshold is set to 40 dB because
this corresponds to a good visual quality. Fig. 13 shows
the percentage of significantly corrupted sub-blocks for the
"House” image for various channel bit error rates. FEREC
is observed to outperform EREC.
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Fig. 14. PSNR without adaptive quantization for EREC and FEREC

D. Peak SNR and bit error rate

The peak SNR of the received image using EREC and
FEREC is shown in Fig. 14 and Fig. 15. The results
are compared in the absence and the presence of adaptive
quantization. Both the algorithms exhibit similar trend
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Fig. 15. PSNR with adaptive quantization for EREC and FEREC

with the adaptive quantizer resulting in a higher PSNR.
FEREC consistently gives a higher PSNR than EREC for
both the cases. Though PSNR alone does not truly reflect
the visual quality, when combined with the percentage of
significantly corrupted blocks it throws enough light on the
performance of these algorithms.

VII. CONCLUSIONS

An adaptive quantizer for JPEG compressed image
transmission in a slow, frequency non-selective Rayleigh
fading channel is presented. The quantizer design incorpo-
rates the source and the channel characteristics using the
Q-C curves. A fast error resilient coding technique that ex-
ploits the JPEG compressed source statistics is proposed.
It is shown that it performs better than the EREC algo-
rithm in terms of the speed of its convergence and error
resilience. The average speed-up of FEREC is nearly two
over a set of fifty images. On an average, a 5% decrease
in the number of significantly corrupted blocks is also ob-
served. The improvement in the peak SNR of the received
image is upto 2 dB when compared to EREC. Modifications
of the method that take into account the characteristics of
compressed video is an interesting problem to study.
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