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SUMMARY

For analyses of longitudinal repeated-measures data, statistical methods include the random effects model,
fixed effects model and the method of generalized estimating equations. We examine the assumptions
that underlie these approaches to assessing covariate effects on the mean of a continuous, dichotomous or
count outcome. Access to statistical software to implement these models has led to widespread application
in numerous disciplines. However, careful consideration should be paid to their critical assumptions to
ascertain which model might be appropriate in a given setting. To illustrate similarities and differences
that might exist in empirical results, we use a study that assessed depressive symptoms in low-income
pregnant women using a structured instrument with up to five assessments that spanned the pre-natal and
post-natal periods. Understanding the conceptual differences between the methods is important in their
proper application even though empirically they might not differ substantively. The choice of model in
specific applications would depend on the relevant questions being addressed, which in turn informs the
type of design and data collection that would be relevant. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In longitudinal studies each subject is assessed on the same qualitative or quantitative response at
several points in time, and the objective is often to characterize the changes in the outcome over
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time and assess the significant determinants or predictors of the change. The outcomes in the i th
subject are a vector Yi =(Yi1, . . . ,Yini )

′ with time-ordered components Yi j denoting the outcome
assessed at time ti j . In repeated-measures designs the same type of response is evaluated under
different conditions. For example, in a 3-period crossover study, (Yi1,Yi2,Yi3) are the responses
to treatments in periods 1, 2 and 3, respectively, where ‘period’ has the same meaning for all
subjects. The objective in growth curve analyses is to model the expected response as a function
of time. In the classic example of growth assessments in boys and girls by Potthoff and Roy [1],
Yi j is the distance in millimeters from the center of the pituitary to the pterygomaxillary fissure at
ages j =8,10,12 and 14 years. Panel data models [2, 3] also fall within the same general purview
where in standard notation Yit is the outcome measure at time t and one has in a balanced panel
a fixed grid of time points t=1, . . . ,T that represent T years or months or some other time unit.

In these examples dependence exists between the responses Yi j within the same subject and one
needs to apply methods that take into account the correlation in statistical analyses. However, the
extent to which this dependence should be acknowledged will depend upon the objectives of the
analysis. For example, if interest lies primarily on the population response means and the impact
of covariates on these means, then a very detailed consideration of the dependence structure might
be unnecessary and one could opt for robust inference, which does not depend on specification of
the covariance of Yi . On the other hand when subject-specific inference is desired, for instance
in estimating the growth trajectories of individual children, a careful evaluation is warranted for
deciding upon an appropriate covariance structure. In practice paucity of data would also preclude
use of an unstructured covariance for Yi because the available data might not support estimation
of the 1

2ni (ni +1) different variances and covariances.
This paper discusses the structural similarities and dissimilarities of the random effects (RE)

model [2, 4], the linear mixed model [5, 6], the fixed effects (FE) model [2, 3] and the method
of generalized estimating equations (GEE) [7, 8] in addressing correlation in longitudinal data.
The motivation of this paper stems from our analysis of a randomized trial of a nurse–community
health worker team intervention in low-income pregnant women to reduce depressive symptoms
and stress and improve their psychosocial resources during and after their pregnancy [9]. The
control condition was community standard of care that included professional care coordination and
home visiting in the context of a state-sponsored maternal and infant support program. Depressive
symptoms, stress and mastery were assessed using structured instruments at 6 and 11

2 months prior
to the estimated delivery date, and subsequently at 11

2 ,6 and 12 months after delivery. Although
effort was made to adhere to these protocol times there was some variation in the time of actual
assessments. Our objective is to deal with this variation and use all available measurements to assess
changes in outcomes in the intervention and control groups. In this paper we focus on depressive
symptoms as assessed by the CES-D scale (Center for Epidemiologic Studies—Depression) [10].
First, we analyze the responses Yi j at the 5 waves j =1,2,3,4,5 as a continuous measure using
linear RE, FE and GEE models. Second, we use the cutoff of 16 on the CES-D scale (range 0–60)
to define a dichotomous response of indication for depression at each wave and compare results
from the nonlinear RE, FE and GEE models.

Section 2 introduces notation and provides a succinct description of the RE, FE and GEE models
followed by a discussion of their similarities and differences in applications. In Section 3 we
describe our application to the aforementioned nurse–community health worker team study and
a comparison of results of fitting different models. The last section is devoted to discussion and
conclusions.

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:221–239
DOI: 10.1002/sim



FIXED EFFECTS, RANDOM EFFECTS AND GEE 223

2. MODELS

The models described in this paper are for a random draw (Yi ,Xi ) from the population of interest,
where typically the index i denotes the sampling unit, Yi =(Yi1, . . . ,Yini )

′ the time-ordered ni ×1
vector of responses and Xi =(xi1, . . . ,xini )

′ an ni × p matrix of explanatory variables with xi j a
p×1 vector associated with the response Yi j . The conditional mean vector and covariance matrix
are, respectively, li =E(Yi |Xi ) and Vi =E[(Yi −li )(Yi −li )′|Xi ].

In this notation each component of the conditional mean �i j =E(Yi j |Xi ) is a function of all the
covariates. The total number of observations in the sample is N =∑n

i=1 ni . Let g be a known link
function such that g(�i j )=x′

i j� where �=(�1, . . . ,�p)
′ is a p×1 vector of unknown parameters.

Whereas the mean li depends on �, the covariance matrix Vi may depend on � and perhaps
additional parameters � (p1×1 vector) so that the total number of parameters is p+ p1.

The models compared in this paper are summarized in Table I. There are three general categories
of models—the marginal model, RE model and FE model. Each broad category could have linear
and nonlinear cases. We describe briefly the model specification, underlying assumptions and
estimation methods used in each model.

2.1. Marginal model

The marginal model specifies only the conditional mean li =E(Yi |Xi ) but treats parameters in Vi
as nuisance parameters. A distribution function in the exponential family [11] usually suggests the
form of the mean and variance of Yi j . If the conditional mean is correctly specified, the method of

GEE yields a consistent estimator �̂ of � by solving the equation
∑n

i=1D
′
iV

−1
i (Yi −li )=0 where

Di is the ni × p matrix of derivatives of li with respect to �. The asymptotic normality of �̂ and
the sandwich estimator of its asymptotic variance matrix Var(�̂) are robust to misspecification of
Vi and the underlying distribution of (Yi ,Xi ). Although these results for �̂ hold asymptotically,
there can be gains in efficiency if an appropriate covariance structure for Vi can be assumed [12].

2.2. Random effects (RE) model

The marginal model does not make explicit the sources of correlation in the observed data. In the
RE model, correlation is induced through an unobserved heterogeneity �i (q×1 vector) in the
conditional mean specification �i j =E(Yi j |xi j ,�i ). The random coefficient model [13], the linear
or generalized linear mixed effects model [14] and the hierarchical model [15] can all fall under
this umbrella, allowing one for example, to acknowledge dependencies at different levels of a
hierarchy. The key assumptions of the RE model (A1–A3) in Table I allow us to express the
conditional likelihood of Yi given Xi in the form �i =

∫
f (Yi |Xi ,�i =�)h(�)d� where h is the

joint density of �i and f (Yi |Xi ,�i =�)=∏ni
j=1 f (Yi j |xi j ,�i =�).

For example, in the case of binary responses Yi j and logit link function g, we model �i j =
E[Yi j |xi j ,�i ] by log(�i j/(1−�i j ))=x′

i j�+z′
i j�i where zi j (q×1 vector) is a subset of the covari-

ates in Xi . From assumptions (A2) and (A3) in Table I, f (Yi |Xi ,�i )=exp(
∑ni

j=1[Yi j (x′
i j�+

z′
i j�i )− log(1+exp(x′

i j�+z′
i j�i ))]). Assuming that h is a multivariate normal density, numerical

integration (e.g. adaptive Gaussian quadrature) is needed to evaluate �i [4]. The parameters are �
and the variances and covariances in h, which together total p+ 1

2q(q+1) components.
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Table I. Random effects, fixed effects and marginal models with correlated errors.

Model/specification Assumptions Estimation of �

1. Marginal model
li =E(Yi |Xi ) Distribution in exponential family GEE, weighted least squares
g(�i j )=x′

i j� informs mean and variance (quasi-likelihood)
Vi (�)=Var(Yi |Xi ) functions of Yi j

∑n
i=1D

′
iV

−1
i (Yi −li )=0

Di = �li
��′

2. Random effects model
Generalized linear mixed model (GLMM)
�i j =E(Yi j |xi j ,�i ) (A1) �i ’s are independent across Maximum likelihood
g(�i j )=x′

i j�+z′i j�i subjects and independent of Xi estimator (MLE)
(A2) Conditional on (Xi ,�i ), the �=∏n

i=1 �i
Yi1, . . . ,Yini are independent with
density f (Yi j |Xi ,�i )
(A3) Strict exogeneity:
E(Yi j |Xi ,�i )=E(Yi j |xi j ,�i )

Linear mixed models—including hierarchical linear models, random coefficient models
E(Yi |Xi ,�i )=Xi�+Zi�i (B1) �i ’s are independent across MLE, (feasible) generalized
Var(�i |X)=G subjects and conditional on Xi , least squares (GLS) and
Var(Yi |Xi ,�i )=Ri �i ∼N(0,G) generalized method of

moments (GMM)
Vi =ZiGZ′

i +Ri (B2) Conditional on (Xi ,�i ), �̂GLS=(
∑n

i=1X
′
i V̂

−1
i Xi )

−1

Yi |Xi ,�i ∼N(Xi�+Zi�i ,Ri ) ×∑n
i=1X

′
i V̂

−1
i Yi

(B3) Rank E(X′
iV

−1
i Xi )= p

Linear random intercept model
Yi =Xi�+�i1i +εi (B1′)E(�i |Xi )=0 GLS or method of moments
Var(�i |Xi )=�2c (B2′)E(εi |Xi ,�i )=0
Var(Yi |Xi ,�i )=�2eIi (B3) Rank E(X′

iV
−1
i Xi )= p

Vi =�2c1i1
′
i +�2eIi

3. Fixed effects models
Linear fixed effects (FE) models
Yi =Xi�+Zi�i +εi (B2′)E(εi |Xi ,�i )=0 Transformation by
Var(εi |Xi ,�i )=�2eIi (B3) Rank E(X′

iMiXi )= p Mi =Ii −Zi (Z′
iZi )

−1Z′
i and

OLS on transformed data
Linear FE models with Zi =1i
Yi =Xi�+�i1i +εi (B2′)E(εi |Xi ,�i )=0 The covariance, or the dummy
Var(εi |Xi ,�i )=�2eIi (B3) Rank E(X′

iMiXi )= p variable estimator, �̂CV
Mi =Ii −n−1

i 1i1′
i

Yi j =x′
i j�+�i +εi j , (C1) wi j correlated with �yi j−1 but Instrumental variables (wi j )

xi j includes lagged Yi j uncorrelated with �εi j approach
(C2) Rank E(

∑ni
j=2wi j (�xi j )′)= p [3, p. 85]

(C3) E(εi j |xi1, . . . ,xi j ,�i )=0

Nonlinear FE models with binary outcomes
�i j =E(Yi j |xi j ,�i ) (F1) �i ’s are independent across Conditional maximum
g(�i j )=x′

i j�+�i subjects likelihood estimator (CMLE)
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Table I. Continued.

Model/specification Assumptions Estimation of �

g the logit link (F2) Conditional on (Xi ,�i ),
Yi1, . . . ,Yini are independent

�i j =E(Yi j |xi j ,�i ) (F3) Conditional on Xi , Chamberlain’s estimator
g(�i j )=x′

i j�+�i �i ∼N(�+ x̄i�,�2c) [2, p. 487]
g the probit link

Nonlinear FE models with count outcomes
�i j =E(Yi j |xi j ,�i ) (F2) Conditional on (Xi ,�i ), CMLE or MLE with dummy

g(�i j )=x′
i j�+�i Yi1, . . . ,Yini are independent variables

g the log link (F4) Yi j |Xi ,�i ∼POISSON(�i j )

�i j =E(Yi j |xi j ,�i ) (F2) Conditional on (Xi ,�i ) MLE with dummy variables
g(�i j )=x′

i j�+�i Yi1, . . . ,Yini are independent
g the log link (F5) Yi j |Xi ,�i ∼NEGBIN(�i j )

For a count response with log link, log�i j =x′
i j�+z′

i j�i and a Poisson distribution specified under

(A2) give f (Yi |Xi ,�i )=exp(
∑ni

j=1 [Yi j (x′
i j�+z′

i j�i )−exp(x′
i j�+z′

i j�i )− logYi j !]). A distribution
conjugate to the Poisson is the Gamma distribution. With a single random effect (q=1) and exp(�i )
having the one-parameter Gamma distribution with mean 1 and variance � the marginal density is
explicitly

f (Yi |Xi )=
⎛
⎝ ni∏

j=1

	
Yi j
i j

Yi j !

⎞
⎠ �(Yi.+�−1)

�(�−1)
�Yi. (1+�	i.)

−(Yi.+�−1)

where Yi. =∑ni
j=1Yi j , 	i. =∑ni

j=1 	i j and 	i j =exp(x′
i j�). The distribution of Yi j (given xi j ) is a

negative binomial distribution with E(Yi j |xi j )=	i j and Var(Yi j |xi j )=	i j +�	2i j .

2.3. Linear mixed model

For continuous response with the identity link, we can relax the conditional independence
assumption (A2) and derive the unconditional likelihood. Assumptions (B1–B3) in Table I
complete the specification in the linear mixed model. Thus, Yi |Xi ∼N(Xi�,ZiGZ′

i +Ri ) where
Zi =(zi1, . . . ,zini )

′ is a ni ×q matrix of a subset of variables in Xi . Estimation of parameters
in G and Ri can be carried out by maximizing the profile likelihood that first substitutes
for � its generalized least-squares (GLS) estimator, or by restricted maximum likelihood,
which constructs a likelihood that does not depend on � using certain linear transformations
of Yi . This leads to an estimator V̂i and then to the feasible GLS estimator of � given by
�̂GLS=(

∑n
i=1X

′
i V̂

−1
i Xi )

−1(
∑n

i=1X
′
i V̂

−1
i Yi ) (see Appendix A.1). A linear mixed model is a

special form of RE models where the normality is assumed for RE. However, in a linear mixed
model with only random intercepts, for inference on � the normality assumptions in (B1) and
(B2) are not needed because the GLS estimator �̂GLS can be derived under moment conditions
(see Appendix A.2) and assumptions (B1′, B2′, B3).

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:221–239
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2.4. Fixed effects (FE) model

The strong assumption of independence of Xi and �i in the RE model is often implausible in
empirical research using observational data. This assumption is relaxed in the FE model, allowing
the distribution of �i to depend on Xi . The term ‘fixed’ perhaps stems from the econometrics
literature on panel data where the unobserved heterogeneity is time-invariant; hence, ‘fixed’.
Unfortunately, this leads to considerable confusion of nomenclature in the statistical literature where
the term ‘fixed’ usually refers to observed characteristics of the sample. Traditional treatments of
panel data models used the term ‘random effect’ when �i is viewed as a random variable, and
the term ‘fixed effect’ when �i is treated as a parameter. We follow the current exposition [2, 16]
regarding �i as random and emphasize the important distinction between FE and RE models is
whether or not �i are correlated with the regressors Xi .

2.4.1. Linear FE model. The estimation strategies for the FE model vary depending on additional
assumptions on the distribution of the outcome and the link functions. For continuous responses
with the identity link, we can eliminate �i in the model Yi =Xi�+Zi�i +εi via transformation
by the projection Mi =Ii −Zi (Z′

iZi )
−1Z′

i and consistently estimate � via ordinary least-squares
(OLS) estimation from the transformed data MiYi =MiXi�+Miεi under the assumptions (B2′
and B3) in Table I. This is called the FE estimator �̂FE=(

∑n
i=1X

′
iMiXi )

−1(
∑n

i=1X
′
iMiYi ), see

Appendix A.3 for details on implementation.
An important special case is when �i is univariate so that Zi =1i . Then Mi is a demeaning

transformation, i.e.MiYi =Yi −Ȳi is the ni ×1 vector with components {Yi j − Ȳi :1� j�ni } where
Ȳi =n−1

i

∑ni
j=1Yi j and Ȳi = Ȳi1i . Because MiXi has demeaned components {xi j − x̄i :1� j�ni }

only covariates that vary within subjects at their observational level should be used in the
model. For instance xi j should not have an intercept. The FE estimator then reduces to the

covariance estimator �̂CV=(
∑n

i=1
∑ni

j=1 (xi j − x̄i )(xi j − x̄i )′)−1(
∑n

i=1
∑ni

j=1 (xi j − x̄i )(Yi j − Ȳi )).

Its asymptotic properties are derived from assumptions B2′ and Var(εi |Xi ,�i )=�2eIi in
Table I.

If the �i are regarded as unknown constants, the FE estimator is obtained by regressing Yi j on
xi j (without intercept) and the n dummy variables d1i ,d2i , . . . ,dni , where dsi =1 if s= i and dsi =0

if s �= i . For this reason �̂CV is sometimes called the dummy variable estimator. The parameter �i
is estimated by �̂i = Ȳi − x̄′

i �̂CV. Although it is an unbiased estimator of �i , it is not consistent (as
n→∞).

Another important special case is when there are lagged-dependent variables among the regres-
sors. Then strict exogeneity cannot hold and the FE estimator is not consistent. However, under
sequential exogeneity, E(ui j |xi j , . . . ,xi1,�i )=0, by the strategy of differencing between adja-
cent time points to eliminate �i and using an instrumental variable for �xi j =xi j −xi j−1, a
consistent estimator of � can be derived using an instrumental variables (IV) approach under
assumptions (C1–C3). For example, wi j =xi j−1 can serve as an IV for �xi j but there are several
other choices. The literature in this area is too vast to cover in this paper, see Hsiao [3] or
Wooldridge [2].

2.4.2. Nonlinear FE model. In nonlinear FE models with Zi =1i , the dummy variable estima-
tion strategy implemented in linear FE models may lead to inconsistent estimation because of
the incidental parameters problem. Instead, for some special nonlinear FE models a conditional
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maximum likelihood estimator (CMLE) of � can be obtained [17, 18]. The CMLE, also called the
FE estimator, is derived from a conditional likelihood that removes �i by conditioning on a suffi-
cient statistic for �i . This approach is adopted in conditional logistic regression in epidemiologic
designs for matched studies.

For a binary outcome Yi j with logit link, the distribution of Yi given Xi ,�i and mi =∑ni
j=1Yi j ,

does not depend on �i . The conditional log likelihood function from assumptions (F1–F2)
is �i = log{exp(∑ni

j=1Yi jx
′
i j�)[∑a∈Ri exp(

∑ni
j=1 a jx′

i j�)]−1}, where Ri is defined as the set

{a∈Rni :a j ∈{0,1} and ∑ni
j=1 a j =mi }. The disadvantages of the CMLE are that observations

with no variation in Yi j for individual i are not used because they drop out of the likelihood, and
the effects of time-invariant covariates cannot be estimated either.

As emphasized in the econometrics literature [2, 3, 16], the fundamental distinction between RE
and FE is not whether the �i ’s are parameters or random variables, but whether they are correlated
with the observables {xi j :1� j�ni }. A specific form of the relationship between the two, such as
assumption (F3), along with (F1 and F2) and a probit link allows for consistent estimation of model
parameters. In principle a logit link and a logistic distribution for (F3) can also be used but because
of properties of the normal distribution the probit model provides relatively easy computations. For
example, a closed-form expression for the marginal probabilities can be obtained for the probit,
but not the logit model.

For a count outcome Yi j with the Poisson distribution with conditional mean E(Yi j |xi j ,�i )=
exp(x′

i j�+�i ), the incidental parameters �i do not pose a problem for consistent estimation of �.
In addition, a CMLE exists for the Poisson and Type I negative binomial distribution under
assumptions (F2 and F4) and (F2 and F5), respectively [16]. The sufficient statistic for �i is
mi =∑ni

j=1Yi j . Some moment-based estimators with transformed data also exist and are more
efficient under some assumptions [19].

2.5. Comparisons between GEE, RE and FE models

2.5.1. Estimation and diagnosis. In the linear GEE and RE models, the estimator of � has the
same structural form as the GLS estimator. The methods of estimation of the variance Vi =Vi (�)

are of course different. In the GEE method Vi is specified through a working correlation whose
parameters � are estimated by the method of moments. The true variance is not known, but even
though it may be misspecified, the asymptotic variance of the GEE estimator of � can be made
robust to this misspecification by using the empirical variance estimator [7]. However, some loss of
efficiency could result if the assumed working correlation is far from the true correlation. In practice,
infeasible estimates of � could result if the data do not support the correlation structure [12].
Recent evidence has shown that for GEE estimates to converge properly, the estimates of � need
to be within the ranges of feasible values [12]. Only in this case does the GEE ensure consistent
estimation of effects of covariates on the marginal expectation of outcome.

The quasi-likelihood information criterion (QIC) [20] has been advocated with GEE for
choosing a reasonable working correlation and for selecting covariates. The GEE method
structures the covariance matrix in the form Vi =
A1/2

i RiA
1/2
i where Ai is a diagonal matrix

of the variance functions �(�i j ) in Var(Yi j |xi )=
�(�i j ) and 
 a constant. In the linear case
the choice of working correlation matrix Ri is suggested by examining the QIC given by

QIC=−2Q(l̂,I)+2trace(X̂
−1
I R̂e), where X̂I is the variance of �̂I =(X′X)−1X′Y assuming

that Ri =Ii , −2Q(l̂,I)=(Y−X�̂GEE)′(Y−X�̂GEE) for the GEE estimator �̂GEE of � under a
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specified structure Ri , l̂=X�̂GEE and R̂e is the robust variance of �̂GEE. For binary responses,
Q(l̂,I)=∑n

i=1
∑ni

j=1 (Yi j log(�̂i j )+(1−Yi j ) log(1− �̂i j )), where �̂i j estimates �i j (xi j )=
P[Yi j =1|xi j ]=(1+exp(−x′

i j�))−1 under a logit link function. Here X̂I is the model-based

covariance of the estimator of � under the independence working correlation structure, while R̂e is
the robust variance of the GEE estimator �̂GEE under the specified working correlation structure.

In practice there are some caveats in the calculation of QIC [21, 22]. For unbalanced panels,
where the intervals between consecutive time points are unequal, Stata and SAS can force the
estimation assuming equal spacing with the choice of some working covariance structures, for
example, AR(1). The correlation is estimated using subjects with two or more observations (SAS
GENMOD), but all records contribute to the estimation of �. Stata on the other hand restricts the
estimation of � to subjects with two or more observations. To calculate Q(l̂,I) these dropped
observations should be brought back to make the comparison between models fair. To calculate

trace(X̂
−1
I R̂e) we again face the issue that X̂

−1
I could be estimated using more observations than

when �̂e is estimated when the panels are unbalanced.
The linear normal mixed model explicitly incorporates subject-specific RE �i and a residual

error εi that combine the between-subject and within-subject variance to give Vi =ZiGZ′
i +Ri .

Being likelihood-based, the parameters � in G and Ri can be consistently estimated and are
asymptotically unbiased. Several forms for G and Ri are available in software packages such as
SAS and Stata. Information criteria such as Akaike (AIC) and Bayes–Schwarz (BIC) could be used
to guide the selection of an appropriate form for G and Ri . Unlike GEE, the mixed model makes
feasible subject-specific inference using the empirical Bayes estimator �̂i (see Appendix A.1).
Hence, the mixed model allows both marginal and subject-specific inference, for example, on the
subject-specific mean E(Yi |Xi ,�i )=Xi�+Zi�i and the population mean E(Yi |Xi )=Xi�. Recent
evidence [23] suggests that the traditional AIC may not be appropriate to select models for subject-
specific inferences. Vaida and Blanchard [23] propose the conditional AIC (cAIC) and marginal
AIC (mAIC) for model selections when the focus of inference is subject-specific and population
average, respectively. Use of cAIC and mAIC might lead to different model specifications.

Nested RE models can be tested using the likelihood ratio (LR) or score test. However, when
the null hypothesis is on the boundary of the parameter space standard asymptotic results for
the LR test statistic do not hold. This typically happens when testing the null hypothesis that
one or more of the RE (variance components) are zero. For example, when testing for a single
random effect versus none the correct asymptotic distribution of the LR statistic is a 50 :50
mixture of a degenerate-at-zero 2 distribution and a 2 distribution with 1 degree of freedom
[4, 5, 24].

Differences in the above models are not only in the estimation methods but also in their
interpretations. As such, the selection of models depends not only on statistical diagnosis but also
on the goal of the analysis. If one is interested in the average effect of covariates on the response in
a population, then marginal models are the choice, which is why marginal models are also called
population-average models. If one is interested in subject-specific effects of variables then the RE
models are more appropriate. From RE models the marginal mean estimates can be obtained by
averaging across the distribution of the subject-specific RE. When there is reason to suspect that
unobserved heterogeneity is correlated with explanatory variables then the FE models are more
appropriate because the RE model would yield inconsistent estimates. Further discussion is given
in Section 2.5.3.
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2.5.2. Missing data in GEE, RE and FE models. Under some assumptions on the distribution
of missingness in the responses, using only the available data in estimation will lead to valid
inference. Let si denote the binary selection indictors for non-missing responses Yi , i.e. si j =1 if
Yi j is observed, and si j =0, otherwise. The standard GEE assumes that missingness is completely
at random (MCAR) [5], E(Yi |Xi ,si )=E(Yi |Xi ). In the econometrics literature selection is said
to be ignorable, or that selection is exogenous [2].

In the linear RE and FE models similar assumptions apply to estimation from the selected
sample. For example, the conditional mean and variance of the error εi in the FE model would
be modified with (Xi ,si ,�i ) in the conditioning set. Although in linear and nonlinear models
likelihood-based estimation on the selected sample is valid under the assumption f (Yi |Xi ,si ,�i )=
f (Yi |Xi ,�i ), we can also obtain valid inference under the missing at random (MAR) assumption,
also called selection on observables. Here f (si |Yi ,Xi ,�i )= f (si |Y0

i ,Xi ) where Y0
i is the observed

component of the response. It is also assumed that the selection distribution f (si |Y0
i ,Xi ) does not

share parameters with f (Yi |Xi ); hence, the inference can be based only on f (Y0
i |Xi ) [25]. For

example, estimation in the linear normal mixed model is valid under the MAR assumption. Other
approaches, such as the inverse-probability of selection weighting scheme [26, 27], are useful to
accommodate missing data patterns that are neither MCAR nor MAR as in estimation of medical
costs where missingness is due to informative censoring [28, 29]. Specific schemes are available in
the econometrics literature that take into consideration the type of missing pattern, such as attrition
in panel data models, which is a case of the monotone missingness pattern [2, 27].
2.5.3. Interpretation of regression coefficients. In some situations the distinction between the
marginal model and the RE model is not important in that the parameter estimates have both
the population-average and the subject-specific interpretation and there is an explicit connection
between the two models. For example, a linear marginal model with compound symmetry Vi =
�2((1−�)Ii +�Ji ), Ji =1i1′

i , is equivalent to a model with random intercept �i ∼N(0,�2c) and
error εi j ∼N(0,�2e). Another example is a linear marginal model with an exponential temporal
correlation, which is derivable from a random intercept model where the error term follows a
first-order autoregressive process. For the linear model, the conditional effects and marginal effects
� are the same.

With binary outcomes and the probit link, the comparison between the coefficients �RE in the
RE model with a random intercept �i ∼N(0,�2c), with the coefficients �M in the marginal model, is
�RE/�M=(1+�2c)

1/2. This is obtained by comparison of the function form of the mean response
in the two models and should not be viewed as comparison of numerical estimates. In the same
context with the logit link, there is an approximate relationship [24], �RE/�M≈(1+a2�2c)

1/2,
where a2=16

√
3/15�.

With count outcomes with the log link and normally distributed RE �i ∼N(0,G), the marginal

mean is E(Yi j |Xi )=exp(x′
i j�+ 1

2z
′
i jGzi j ), which reduces to exp(x′

i j�+ 1
2�

2
c) for a single random

intercept. This shows that �RE and �M differ only in the intercept. With count outcomes it is common
to use �i ∼N(− 1

2�
2
c,�

2
c) or generally E(exp�i )=1 in order to have the same exponential form of

the response means in the marginal and RE models [30]. We emphasize that these comparisons
should not be construed as comparisons between parameter estimates. For example, the Poisson
count model without RE and the RE model with a log-Gamma distributed random effect (leading
to a marginal negative binomial count model) has the same function form of the mean response,
but the estimated coefficients can be very different.
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2.5.4. Testing between FE and RE models—the Hausman test. The major distinction between
the FE and RE models is whether or not the RE are correlated with covariates Xi . When Xi is
correlated with the RE, i.e. Xi is endogenous, the RE estimators are no longer consistent.

In the simple RE and FE models with a single random intercept �i the estimates �̂RE are
closer to �̂FE when the proportion of variance due to the intercept is large [2]. A formal test
of endogeneity of Xi proposed by Hausman [31] is based on the difference between �̂RE and
�̂FE, where the null hypothesis is that Xi is exogenous (and so the RE assumptions hold). As
�̂FE is consistent when �i is correlated with Xi , but �̂RE is inconsistent, a statistically significant
difference between the two estimates is interpreted as evidence against the RE assumption (B1′).
Assuming (B2′) holds under the null and the alternative hypotheses and the RE variance structure
Var(�i |Xi )=�2c and Var(εi |Xi ,�i )=�2eIi holds under the null, the Hausman statistic H =(�̂FE−
�̂RE)′[Var(�̂FE)−Var(�̂RE)]−(�̂FE− �̂RE) under the null is distributed asymptotically as 2k where

k= rank[Var(�̂FE)−Var(�̂RE)].
The above form of the Hausman statistic does not hold if the relative efficiency of RE estimators

is not established under other variance structures on (�i ,εi ) [2]. Specifically, when �i or εi are not
identically distributed, Var(�̂FE− �̂RE) �=Var(�̂FE)−Var(�̂RE). If the homoskedasticity assumption
for the RE model is violated a robust form of the Hausman test can be devised via an auxiliary
regression or via bootstrap [16].

There are several caveats in using the Hausman test. First, the strict exogeneity assumption
(B2′) is maintained under both the null and the alternative hypotheses. Second, standard statistical
packages usually implement the test under the compound-symmetry form Vi =�2eIi +�2cJi . Third,
the test is sensitive to misspecification of the model and the power of the test is low for typically
encountered sample sizes [32]. The sampling distribution of the test statistic may not be well
approximated by a 2 distribution.

3. THE NURSE–COMMUNITY HEALTH WORKER TEAM STUDY

We demonstrate the application of linear and nonlinear GEE, RE and FE models with data
from a community-based, multi-site randomized controlled trial for Medicaid pregnant women
conducted in Kent County, Michigan. The intervention—a nurse and Community Health Worker
team home visiting program—was compared with the standard Community Care that included a
home visiting program from nurses or other professionals. Following an enrollment interview (<24
weeks gestation), psychosocial outcomes were measured at 34–36 weeks gestation and 6 weeks,
six months, and 12 months after delivery, providing up to 5 assessments on each women. For our
analysis we use 530 women (out of 613 in the main study) who had a live birth. The excluded
women include those who had a spontaneous or elective abortion, fetal loss, or had agreed to
adoption or lost custody of their infant.

The treatment and control groups were balanced with respect to demographic and baseline
psychosocial variables, including CES-D, perceived stress and mastery. At enrollment, over half of
the women screened positive for depressive symptoms (CES-D �16) and nearly a third had scores
that indicated probable depression (CES-D �24). Perceived stress was measured with Cohen’s
Perceived Stress 14-item scale and mastery with the Pearlin 7-item Sense of Mastery scale [33, 34].
These two scales were transformed to have a range 0–100. Higher scores for mastery are favorable
but higher scores for stress are unfavorable.

Copyright q 2008 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:221–239
DOI: 10.1002/sim



FIXED EFFECTS, RANDOM EFFECTS AND GEE 231

The CES-D was available on all 530 women at baseline and on 79–87 per cent of these women
at subsequent waves. Using the CES-D as a continuous variable Yi j we compare the differences in
GEE, RE and FE estimates in Table II. Time is measured in months anchored at the participant’s
infant birth date. As there was some variation across participants in their actual assessment times
at each wave, we regarded time as a continuous variable. In addition to variables involving time,
stress and mastery were time-dependent leaving only the indicator variable for control group as
time invariant.

Table II. Linear model for CES-D: GEE, RE, FE estimates.

Parameter GEE∗ RE† FE‡
(model SE) (model SE) (model SE)
[robust SE] [robust SE] [robust SE]

Intercept �0 −9.5397§ −5.7156§ · · ·
(2.1234) (2.1251)
[2.3846] [2.2513]

Control �1 −0.2371 −0.2198 · · ·
(0.3770) (0.4726)
[0.4637] [0.4698]

Time �2 −0.2393§ −0.2618§ · · ·
(0.0428) (0.04311)
[0.0433] [0.04448]

Time×control �3 −0.0581 −0.06148 · · ·
(0.0606) (0.06085)
[0.0606] [0.06055]

Time×time �4 0.0007 0.001261 · · ·
(0.0042) (0.00413)
[0.0041] [0.00423]

Time×time×control �5 0.0084 0.009096 · · ·
(0.0059) (0.00586)
[0.0057] [0.00583]

Stress �6 0.8781§ 0.7819§ 0.6907§

(0.0450) (0.04456) (0.07409)
[0.0521] [0.04859] [0.09556]

Mastery �7 0.1307§ 0.1105§ 0.1356§

(0.0283) (0.02817) (0.04808)
[0.0290] [0.02738] [0.05110]

Stress×mastery �8 −0.0075§ −0.00665§ −0.00592§

(0.0006) (0.00064) (0.00106)
[0.0007] [0.00065] [0.00127]

Number of observations 2240 2240 1981
Number of subjects 530 530 412

CES-D=Center for Epidemiologic Studies-Depression scale (range 0–60).
SE=Standard error.
Entries are: estimate, model-based SE (.), robust SE [.].∗GEE under independence working correlation.
†Normal model, Vi =ZiGZ′

i +Ri with Zi =[1i ti t2i ], G unstructured and Ri single banded.
‡Within-subject transformation, Mi =Ii −Zi (Z′

iZi )
−1Z′

i , Zi =[1i ti t2i ].
§Significant at 1 per cent using model-based SE.
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For the marginal GEE analysis we estimated several models with different mean and variance
specifications. The covariance structures compared using QIC included unstructured, compound
symmetry, auto-regressive, 2- and 3-dependent structures. An m-dependent covariance structure
has only the first m diagonal bands, with all other entries set to zero. The covariate specifications
included various combinations of the control group indicator, time, time squared, stress and mastery.
The smallest QIC was attained for the independence model with eight covariates as shown in
Table II (column 2).

The linear mixed (a special RE) model uses the covariance Vi =ZiGZ′
i +Ri , where Zi has three

columns, intercept, time and time squared. The choice of RE was made by examining the evolution
ofYi over time. Information criteria were computed from AIC=−2�+2d and BIC=−2�+d logn,
where � is the restricted maximum log likelihood, d the number of covariance parameters in the
model and n the number of subjects. On the basis of AIC, BIC and LR tests for nested RE models,
we chose G unstructured (six covariance terms) and Ri as a single-banded diagonal matrix (five
variance terms). Thus, in contrast with the GEE this approach indicated the necessity for addressing
correlation. The LR test of the independence model (one variance term) versus the mixed model
with Zi =[1i ti ] was highly significant (p<0.0001) based on a 50:50 mixture of 2 distributions [5]
with degrees of freedom 1 and 2. The LR test comparing models with Zi =[1i ti ] and Zi =[1i ti t2i ]
RE was also statistically significant (p=0.010). Table II (column 3) shows that RE estimates of �
are very similar to the estimates from GEE. Robust standard errors were calculated by the standard
sandwich formulae using the appropriate residuals (see Appendixes A.1–A.3).

The test of the hypothesis H0 : L�=0, where L is a known r× p matrix of rank r is based on the
statistic F=(L�̂)′[L ′Var(�̂)L]−1(L�̂)/r , which under H0 has an approximate F distribution with
degrees of freedom (r,ddfm). The appropriate ddfm is a matter of some controversy. By default SAS
uses the CONTAIN method with several other options (e.g. Kenward–Roger and Satterthwaite) to
account for the downward bias in standard errors due to the estimation of parameters in G and
Ri and improve the accuracy of the F-test [35, 36]. With the large sample size of this study the
conclusions remain the same under these different options.

Table II suggests that effects involving the treatment group could be eliminated. The mean
difference between control and treatment group at a fixed time t (with stress and mastery also
held fixed) is �1+�3t+�5t

2. The �-parameters are subscripted as shown in Table II (column 1).
A test of H0 :(�1,�3,�5)=0 via a F-test did not reveal significance (p=0.477). The corresponding
chi-square score test under the GEE analysis is also not significant (p=0.515).

The signs on the estimated coefficients for the scales stress and mastery are plausible and in the
expected direction, where CES-D and stress are negatively scored, meaning higher scores indicate
worse outcomes and the mastery scale is positively scored. The gradient of mean CES-D relative
to stress is �6+�8 MASTERY, which is positive, but decreasing with increasing mastery. The
gradient with respect to MASTERY is �7+�8 STRESS, which is positive for STRESS<16.6 and
then negative for STRESS>16.6 (Table II, column 3). Thus, higher stress has negative impact on
CES-D, whereas higher mastery has generally a positive impact.

The FE estimates �̂FE are shown in Table II (column 4). The within-subject transformation
Mi =Ii −Zi (Z′

iZi )
−1Z′

i eliminates from consideration covariates that are in the column space of
Zi =[1i ti t2i ], where ti is the ni ×1 time vector. For estimation we require ni >3, which results
in 412 subjects (79 with 4 assessments and 333 with 5 assessments). This data set was also used
in the RE analysis and yielded estimates similar to those from the mixed model using all records.
When E(�i |Xi ) �=0, the RE estimates are inconsistent whereas the FE estimates are consistent.
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The robust version of the Hausman test statistic was calculated using an auxiliary regression. The
test was highly significant (3-df 2 distribution, p<0.0001) suggesting that the FE estimates are
perhaps more reliable.

Although the GEE and RE estimates were comparable, the independence working correlation
suggested by QIC for the former was deemed inappropriate. All preliminary analyses of the data
pointed to the need to address correlations. For the goals of the analysis (effects of stress, mastery
on CES-D), estimates from the RE model are preferred (Table II, column 3). As there are concerns
about the RE assumptions, the FE analysis would be our choice. However, from the FE analysis
of the adopted model, a treatment effect cannot be estimated.

Table III summarizes the results of analyses of CES-D as a binary outcome. The CES-D scale
(0–60) was dichotomized at 16, with Yi j =1 if CES-D �16. With the GEE method, the model for
Yi j is the logit model:

log

(
�i j (xi j )

1−�i j (xi j )

)
=x′

i j�

where �i j (xi j )= P[Yi j =1|xi j ]. The structure of the covariance matrix is Vi =A1/2
i RiA

1/2
i where

Ai is a diagonal matrix of the variance functions �(�i j )=�i j (xi j )(1−�i j (xi j )).
We used QIC to compare some covariance structures in all models with the covariates shown

in Table III (column 1). The smallest QIC was attained for the exponential temporal correlation
structure Ri ={exp(−d jk/�) :1� j,k�ni }, where d jk is the temporal distance between the j th and
kth observations. The estimates are shown in column 2. The joint test of H0 :(�3,�4,�5)=0 is
not significant. Starting with the main effects model (control, time, stress, mastery) the QIC was
used to select among super models with interactions of the main effects model. This also resulted
in the main effects model.

The RE model is

log

(
�i j (xi j ,�i )

1−�i j (xi j ,�i )

)
=x′

i j�+z′
i j�i

where �i j (xi j ,�i )= P[Yi j =1|xi j ,�i ]. Estimation of � is based on maximum marginal likelihood of
Yi =(Yi1, . . . ,Yini ) given Xi as described in Section 2.2. This is computationally quite challenging
with several RE. With a single normally distributed random effect (�i ∼N(0,�2)) two computational
methods were used (1) optimization of the marginal likelihood based on integral approximation
such as adaptive quadrature and (2) approximating the nonlinear mixed model by a linear mixed
model (linearization method). The linearization is accomplished by an expansion of �i j (xi j )=
(1+exp(−(x′

i j�+�i )))
−1 about a current estimate of (�,�i ) and then using the ensuing pseudodata

to estimate a linear mixed model. The process is iterative until some convergence criterion is
satisfied. Results from these two estimation schemes were used to inform a model with Zi =
[1i ti ] and �i bivariate normal, �i ∼N(0,G). The model with G having compound symmetry (two
parameters) was adequate (Table III, column 3). More complex forms for G required it to be
non-positive definite to assure convergence.

The LR test comparing the model without RE with the model with a single random intercept
was highly significant. This test is based on a 50:50 mixture of a degenerate-at-zero distribution
and a 1-degree of freedom 2 distribution. There was no significant difference between the inter-
cept plus slope model over the intercept only model, based on the LR test of a 50 :50 mixture
of 2 distributions with 1 and 2 degrees of freedom. Computations were carried out using the
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Table III. Nonlinear model for the probability (CES-D �16): GEE, RE, FE estimates.

Parameter GEE∗ RE† FE‡
(model SE) (model SE) (model SE)
[robust SE] [robust SE] [robust SE]

Intercept �0 −0.4183 −0.4471 · · ·
(0.4554) (0.5033)
[0.5270] [0.5336]

Control �1 −0.2535 −0.2829 · · ·
(0.1502) (0.1639)
[0.1596] [0.1653]

Time �2 −0.0362§ −0.0410§ −0.0841¶

(0.0153) (0.0169) (0.0020)
[0.0156] [0.0160] [0.0214]

Time×control �3 −0.0297 −0.0274 −0.0101
(0.0221) (0.0244) (0.0285)
[0.0222] [0.0229] [0.0295]

Time×time �4 −0.0029 −0.0031 −0.0011
(0.0017) (0.0018) (0.0021)
[0.0017] [0.0017] [0.0023]

Time×time×control �5 0.0041 0.0041 0.0037
(0.0023) (0.0025) (0.0031)
[0.0022] [0.0023] [0.0031]

Stress �6 0.0901¶ 0.0928¶ 0.0734¶

(0.0052) (0.0057) (0.0081)
[0.0055] [0.0057] [0.0083]

Mastery �7 −0.0542¶ −0.0553¶ −0.0621¶

(0.0053) (0.0058) (0.0091)
[0.0061] [0.0062] [0.0087]

Number of observations 2240 2240 1366
Number of individuals 530 530 303

CES-D=Center for Epidemiologic Studies-Depression scale (range 0–60).
SE=Standard error.
Entries are: estimate, model-based SE (.), robust SE [.].∗Under exponential temporal working correlation.
†Random effects, �i ∼N(0,G),Zi =[1i ti ] with G compound symmetry.
‡Single random intercept model was estimated using conditional maximum likelihood.
§Significant at 5 per cent, using model-based standard error.
¶Significant at 1 per cent.

GLIMMIX and NLMIXED procedures in SAS [37] and the xtmelogit and gllamm routines in Stata
[38, 39].

The FE estimates in column 4 of Table III are derived under CMLE with a single random effect.
There is an inevitable loss of sample size because in the conditional model subject strata with∑ni

j=1Yi j =0 or ni are non-informative. In addition, the effects of time-constant covariates cannot
be estimated because they do not appear in the conditional likelihood function.
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4. DISCUSSION

In this paper we described the structural assumptions that underlie the method of generalized
estimating equations (GEE), random effects (RE) and fixed effects (FE) approaches to estimating
covariate effects in both linear and nonlinear models. The versatility of these models has spawned
several monographs and books addressing both theory and practice in many applications that encom-
pass the biomedical disciplines [5, 14, 40–44], social and behavioral sciences [4, 13, 15, 45–47]
and econometrics [2, 3, 48]. The context we used in this paper is repeated response measures Yi =
(Yi1, . . . ,Yini )

′ associated with explanatory variables Xi =(xi1, . . . ,xini )
′ with inference focused

on the regression parameter � in specification of the conditional mean �i j =E(Yi j |Xi ) through
the link function g(�i j )=x′

i j�. In the presence of unobserved heterogeneity �i we model �i j =
E(Yi j |Xi ,�i ) by g(�i j )=x′

i j�+z′
i j�i . For valid inference we need a consistent estimator �̂ of �,

which is generally achieved in the GEE, RE and FE settings by correct specification of �i j under
their corresponding assumptions, e.g. whether or not �i is uncorrelated with Xi . Appropriately
accounting for the correlation between the repeated responses through specification of the variance
Vi =E(Yi |Xi ) is also important because it can affect the validity of the standard errors of the
estimated �. When the assumptions of a specific model hold, the model-based standard errors
will be efficient. However, to guard against possible misspecification of Vi a robust form of the
estimated variance matrix of �̂ should be used.

Does this mean that serious consideration should not be given to selecting an appropriate structure
for Vi? In the GEE method valid inference based on �̂ is feasible if �i j is correctly specified even
though the variance may be misspecified. We do not need to introduce an unobserved (random)
heterogeneity �i together with its attendant assumptions as in the RE model. However, under the
assumptions of the RE, our estimator will be more efficient than the corresponding GEE estimator.
In the linear setting with normally distributed �i and residual errors εi , we can use likelihood-
based methods to estimate both � and the covariance parameters in Vi . Consideration can be
given to different competing structures for Vi and empirical Bayes estimators �̂i of the unobserved
heterogeneity derived from the posterior distribution (of �i given Yi ). This allows for subject-
specific inference, for example, on the conditional response means E(Yi |Xi ,�i )=Xi�+Zi�i , as
well as on the population average E(Yi |Xi )=Xi�. Access to statistical software (e.g. MIXED
and GLIMMIX in SAS, xtmixed in Stata) for analysis of this (normal) linear mixed model has
produced numerous applications in several disciplines.

Without the strong normality assumptions of the linear mixed model, we can still achieve
consistent estimation of � and robust standard errors using essentially moment assumptions on
(�i ,εi ). For practical reasons only simple structural forms for Vi are useful such as the variance
component structure, which is ubiquitous in the econometrics literature [2, 16] where it is called
the RE model. A critical assumption of the RE model is that the unobserved heterogeneity �i
is uncorrelated with the covariates (specifically, E(�i |Xi )=0). Without this assumption the RE
estimator in this setting would be inconsistent. Removing this restriction leads to FE models, but
it comes with some cost. As FE estimation uses a within-subject transformation or conditioning to
eliminate �i , inference on the effects of time-constant covariates is not possible. Several approaches
to circumvent this deficiency are available in the econometrics literature, for example, the Hausman
and Taylor hybrid linear model [2, 16] and techniques of quasi-differencing in some nonlinear
models [16]. The standard FE analysis also removes observations that have too few repeated
components. For example, with a single random intercept to account for unobserved heterogeneity,
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subjects with a single record will be eliminated. In contrast the RE analysis would retain these
records. If one is interested in evaluating a treatment effect this might seem to be a serious drawback
of the FE analysis. We argue that due consideration should be given at the design stage of the
study so that an appropriate model for assessing a treatment effect can be applied. Crossing the
treatment indicator with the time variable is one way to retain the treatment variable in the FE
analysis. However, under the full RE assumptions, the RE estimator is more efficient than the FE
estimator. A comparison of the RE and FE estimators can be carried out using a Hausman-type
2 test.

Our illustration of the GEE, RE and FE analyses for estimating covariate effects on CES-D
in the Nurse–Community Health Worker team intervention study has shown that empirically the
methods might not differ substantively. Generally, statistical significance remained the same across
the analyses, although some differences in effect size were noticed. As noted above fundamentally
different assumptions underlie these models and careful consideration must be given to these
assumptions in subject-matter applications.

In nonlinear RE models practical considerations may force use of a relatively small number of
normally distributed RE, for instance in the normal-logistic model for correlated binary outcomes.
In our application, however, estimation of P[CES-D�16] by a RE normal-logistic model did not
require long run-times for 1 and 2 RE with available software, but convergence problems arose with
3 RE. More elaborate variance structures that incorporate more RE are perhaps better handled via
linearization methods within the generalized linear mixed model (GLMM) framework. Although
the GEE method is easily implemented in many nonlinear models, care must be exercised in
choosing a working variance structure for Vi due to parameter constraints forced by the functional
dependence of between means �i j and covariances [49].

Under full likelihood specification the RE model for linear and some nonlinear outcomes, we
can derive both subject-specific and population-average estimates of the � coefficients but only
the latter is possible with the GEE method. Finally, the FE model with a single unobserved
heterogeneity is based on conditional maximum likelihood and leads to estimates of � for covariates
that are time varying. The interpretation of � as population-average log-odds ratios cannot be
made because logit(P[Yi j =1|xi j ,�i ])=x′

i j�+�i contains the unknown �i . However, a within-
subject interpretation can be made of a covariate that changes within subject (e.g. time varying).
In conclusion, understanding the conceptual differences between GEE, RE and FE methods is
important even though empirically they might not differ substantively as we see in our application.
The choice of model for a particular application would depend on the relevant questions being
addressed, which in turn informs the type of design and data collection that would be relevant.
We should not rely on statistical tools to mitigate deficiencies in design and data acquisition.

APPENDIX A

A.1. Linear mixed effects model

In the linear mixed effects model, minimization with respect to � of the sum of squares∑n
i=1 (Yi −Xi�)′V̂−1

i (Yi −Xi�) yields the feasible generalized least-squares (GLS) estimator

�̂GLS=(
∑n

i=1X
′
i V̂

−1
i Xi )

−1(
∑n

i=1X
′
i V̂

−1
i Yi ). A consistent estimator V̂ of Vi =ZiGZ′

i +Ri is
obtained by estimating the parameters in G and Ri under the normal assumptions (B1–B2). This
is achieved by full maximum likelihood, or restricted maximum likelihood after transforming
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the log-likelihood to a function of only G and Ri . Consistency and asymptotic normality
follow directly from the expression for �̂GLS and the asymptotic variance is estimated by
Var(�̂GLS)=(

∑n
i=1X

′
i V̂

−1
i Xi )

−1. This is generally a slight underestimate of the true variance

because the variability in V̂i is ignored, but for most practical purposes the bias is small. In testing
the hypothesis H0 : L�=0 where L is a matrix with full row rank r , this bias is usually accounted
for by using the approximate F-statistic F=(L�̂GLS)

′[L ′Var(�̂GLS)L]−1(L�̂GLS)/r with degrees
of freedom (r,d) where d is calculated by inflating the variance matrices of both �̂GLS and �̂i −�i .
Several choices are available for the degrees of freedom d [35, 36], which are now available in
many statistical software.

To make inference robust to choice of the variance structure of Vi , we might use the
empirical Huber–White [50, 51] heteroscedasticity consistent estimator of Var(�̂GLS) given by
(
∑n

i=1X
′
i V̂

−1
i Xi )

−1(
∑n

i=1X
′
i V̂

−1
i ε̂i ε̂

′
i V̂

−1
i Xi )(

∑n
i=1X

′
i V̂

−1
i Xi )

−1, where ε̂i =Yi −Xi �̂GLS are the
GLS residuals. The corresponding F-statistic for testing H0 : L�=0 has degrees of freedom (r,d).

For subject-specific analyses the empirical Bayes estimates �̂i =ĜZ′
i V̂

−1
i (Yi −Xi �̂GLS) of the

RE are obtained by substitution of estimates for �,G and Vi in the conditional means E(�i |Yi ).
The variance is Var(�̂i −�i )=Ĝ−ĜZ′

i V̂
−1
i [V̂i −Xi Var(�̂GLS)X

′
i ]V̂−1

i Zi Ĝ.

An alternative derivation of (�̂GLS, �̂i ) solves the mixed model equations of Henderson [52, 53],
which result from minimizing

∑n
i=1 ((Yi −Xi�−Zi�i )

′R−1
i (Yi −Xi�−Zi�i )+�′

iG
−1�i ) with

respect to � and �i regarded as parameters. This objective function is justified from the likelihood
f (Yi ,�i |Xi )= f (Yi |Xi ,�i ) f (�i |Xi ) and the assumptions (B1–B2).

A.2. Linear random intercept model

Under assumptions (B1′, B2′, B3) use the pooled ordinary least-squares (POLS) estimator �̂POLS=
(
∑n

i=1X
′
iXi )

−1(
∑n

i=1X
′
iYi ) to get the POLS residuals ṽi =Yi −Xi �̂POLS. Then E(ṽ′ṽ)=N(�2e+

�2c)− p�2e−�2c trace [J′X(X′X)−1X′J] where ṽ (N×1) and X (N× p) are the stacked {ṽi :1�i�n}
and {Xi :1�i�n}, respectively, and J=diag{1i :1�i�n}. Next, obtain the residuals ε̂i =Mi (Yi −
Xi �̂CV) from the demeaned model MiYi =MiXi�+Miεi , where Mi =Ii −1i (1′

i1i )
−11′

i . If ε̂ is

the stacked {ε̂i :1�i�n} we get E(ε̂′ε̂)=�2e(N−n−(p−1)). Hence, we get estimators (�̂2e, �̂
2
c)

and V̂i = �̂2eIi + �̂2c1i1
′
i is used to define the RE estimator �̂RE, which has the same expression as

�̂GLS in A.1. As such, Var(�̂RE) also has the same form and expression for the robust variance,
but uses the RE residuals ε̂i =Yi −Xi �̂RE.

A.3. Linear FE model

Under (B2′ and B3) the FE estimator �̂FE=(
∑n

i=1X
′
iMiXi )

−1(
∑n

i=1X
′
iMiYi ) is consistent asymp-

totically normal with Var(�̂FE)=�2e(
∑n

i=1X
′
iMiXi )

−1. To obtain a consistent estimator of �2e use

the FE residuals ε̂i =Mi (Yi −Xi �̂FE) where Mi =Ii −Zi (Z′
iZi )

−1Z′
i . Denoting the stacked {ε̂i :

1�i�n}, {Yi :1�i�n},{Xi :1�i�n} and M=diag{Mi :1�i�n} by ε̂,Y and X, respectively, we
have ε̂=[M−MX(X′MX)−X′M]Y=QY where A− is a generalized inverse of A. An estimator of
�2e is motivated by E(ε̂′ε̂)=�2e trace(Q)=�2e(N−nq− trace(MX(X′MX)−X′M)). Note that taking
Zi =1i we get the same expression as in A.2 because q=1 and the demeaned MX would exclude
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the intercept term only assuming that no time-invariant variables are in X. The robust asymptotic
variance of �̂FE is (

∑n
i=1X

′
iMiXi )

−1(
∑n

i=1X
′
iMi ε̂i ε̂

′
i iMiXi )(

∑n
i=1X

′
iMiXi )

−1.
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