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Abstract

COOL v2

1

is an object oriented persistent computing system for distributed programming.

With COOL v2 , C++ objects can be persistent and shared freely between applications and

distributed across sites in a completely transparent manner from the programmer`s point of

view.

To address the problem of maintaining distributed shared data coherency, data persistency

and address allocation coherency, we developed the persistent context space model which en-

capsulates distributed shared memory and persistent memory, and controls distributed shared

memory address allocation.

This paper outlines existing solutions of object addressing in persistent and distributed

environments and contrasts these with the persistent context space model and its integration

in an operating system architecture.

1 Introduction

The use of the UMA

2

programming model on distributed systems has been investigated as

a means to preserve programming simplicity and bene�t at the same time from the increased

parallelism of a MIMD multiprocessor architecture. Chandy [8] expects future operating

systems to mask distribution and integrate NUMA

3

architectures with a single address space

programming model in order to ease the use of distributed resources. In terms of performance,

Larowe [22] veri�es that UMA applications can come close to highly tuned NUMA ones on

distributed architectures if memory management is carefully implemented. We think that

this apparently small performance penalty is worthwhile trading for a simpler programming

model.

Distributed shared memory [25] extends the concept of shared memory to a loosely cou-

pled network of sites. This can already be found in commercial operating systems like CHO-

RUS [27] and DOMAIN [24].

Unfortunately, the use of the distributed shared memory model alone is not completely

transparent to applications, that is, information on shared memory segments has to be passed

around between remote applications so that each one instructs its local kernel to map the

correct memory segment at the correct address.

There are many solutions to this, however the most promising, and successful, use language

semantics to denote language units, and hence memory that must be shared. Object oriented

languages implicitly provide these units of sharing, objects, and hence provide an excellent

starting point from which to tackle the distributed shared memory problem.

Using the object oriented paradigm, can we avoid the problem of distributed address

allocation? Can applications share objects freely and transparently as if they were local

without caring about address allocation and control at application level? In a language

1

COOL v2 stands for the second version of the CHORUS Object Oriented Layer.

2

UMA stands for Uniform Memory Access

3

NUMA - Non UMA
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like C++, where objects are identi�ed by the use of local virtual memory pointers, this

transparency seems not so easy to achieve because there is an obvious relationship between

virtual memory and object semantics, that is, n C++ object identi�ers (pointers) are address

dependent. We argue that run-time and operating system support is necessary to solve

this. Examples of distributed computing systems with a centralized programming style are

Clouds [15], Amber [9] and Orca [3].

Our goal in the COOL v2 project is to build a distributed computing system with a UMA

programming metaphor for a loosely distributed type of architecture. We have adopted the

object oriented paradigm for its simplicity and programming power and developed a �rst

prototype for C++. Not wanting to touch the compiler, we explored the transparent use

of C++ objects in a persistent distributed environment, relying on run-time and operating

system support and on a pre-processor. Objects only have meaning to applications; the COOL

v2 operating system treats objects as data that is persistent and can be shared.

To achieve this level of transparency and because we are using a UMA pointer-based

language, we have to deal, at the operating system level, with four main problems:

data persistency In a persistent programming system all data is potentially persistent,

i.e., objects outlive the scope of applications [2].

address allocation coherency for persistent data Persistent programming with a lan-

guage where objects are identi�ed by virtual memory pointers assumes that an object

referenced at some address has to be the same when referred by another application

later on at the same address. Address allocation has to take into account persistent

addresses already in use.

address allocation coherency for shared data Low-level object pointers are address de-

pendent. In order to be shared concurrently, applications have to use the same addresses

for the same data.

shared data coherency Data has to be kept coherent when used at the same time by

various distributed applications. Sharing data concurrently assumes a one-copy seman-

tics of shared data with a single-writer multiple-reader coherence with some level of

granularity (object, segment or page).

We developed the persistent context space model to address the problems above and imple-

mented it in COOL v2, allowing the support pointer based languages like C++ in a distributed

environment. The model is based on the following items:

1. all data is potentially persistent;

2. persistent memory addresses are allocated in a persistent manner, i.e., addresses are

allocated until explicitly deleted;

3. memory is shared concurrently with the distributed shared memory model of Li [25] at

�xed addresses;

4. data can be shared at di�erent addresses in exclusive periods of time, providing memory

relocation;

c
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5. data is relocated accessing the semantics of the objects that are stored inside.

This paper is organized as follows. In section 2 we overview background work on this

subject. In section 3 the persistent context space is presented. In section 4 we explain the

operating system requirements to accommodate the persistent context space model, and we

draw our conclusions in section 5.

2 Background

In this section we outline basic concepts used throughout the rest of the paper and we will

overview background work under the light of the above issues, that is, how do current re-

search systems provide distributed coherency of data sharing, address allocation and data

persistency.

2.1 Basic concepts

In current programming systems, e.g. UNIX, applications execute on virtual machines in

processes; processes abstract computation and contexts represent resources. In particular, a

context has a linear and contiguous address space of memory from 0 to some maximum value.

Data can be mapped in context memory using some allocation request. The address space is

limited to the machine architecture

4

and is used only for volatile entities. Persistent data is

preserved on secondary storage in external formats (objects or simple data structures).

Several contexts can exist on each processor with separate address spaces. With the shared

memory model, it is possible to map at the same time, and in a single site

5

, the same memory

into di�erent address spaces, thus in di�erent contexts.

In the following section we overview some background work in terms of data sharing and

persistency as well as address allocation. We are particularly interested in systems that are

distributed.

2.2 Uniform address spaces for shared data

2.2.1 Clouds

The Clouds system [14] also works on a connected network of workstations; the system behaves

like a single large computer. It implements a local segmented machine [15] and objects are a

set of segments that can be shared across machines; it embeds a coherency protocol to assure

one-copy semantics of objects (and objects' segments) with multiple cached copies of the same

segment on di�erent compute servers

6

. It thus uses distributed shared memory (DSM).

Objects are global and seen in all compute servers. Objects' segments are virtual memory

segments and are always assigned the same virtual address [28]. So, objects are identi�ed by

4

Current 32 bit machines have 4 gigabytes of virtual memory.

5

A site is a set of tightly coupled processors and memory (volatile and persistent) with network connection.

6

Clouds uses a minimal kernel approach with the Ra kernel whereas we use the Chorus micro-kernel
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address and there is a uniform address space for all shared (and persistent) objects. They are

installed in virtual memory the moment they are instantiated.

Clouds segments are persistent by nature, and so are objects. There is a naming system

to identify persistent segments by capability given the segment's address.

2.2.2 Orca

Orca [3] is a programming language and run-time system to program distributed applica-

tions. It implements the shared data object model and was tested on both multiprocessor and

distributed architectures. Shared objects are replicated, with a given policy, on processors

within the address space of specialized object managers (one per processor). User applica-

tions share memory directly with these object managers, which ensure one-copy semantics of

objects. We can see this as distributed shared memory.

Object managers have a global single address space, providing a uniform and unique

address space for the shared objects.

2.2.3 Monads

Monads [21] is a computer system that simulates a virtual and global shared memory in a

network of workstations. Each MONAD-PC computer has an address translation unit that

can swizzle on-the-
y long addresses (60 bits - 2

48

pages of 4 kilobytes) to smaller main

memory addresses. It allows the existence of 2

32

objects identi�ed by global virtual addresses

and each address encapsulates a coded capacity. Each object can have a size of 2

28

bytes.

2.2.4 �C++

�C++ [7] is a concurrent system, although not a distributed one; it executes on shared

memory uniprocessor or multiprocessor computers. �C++ maps objects directly on virtual

memory and, like the systems presented above, it uses a single address space model, that is,

parallel �C++ applications are spawned in UNIX processes that share the same and complete

address space.

2.2.5 Amber

The Amber system [9] spawns applications on a set of Fire
y processors that share a common

global address space, so that each object is assigned a di�erent and unique virtual address.

Each object, although shared by a number of processors, will only exist on one processor and

will be remotely invoked by processes running on the others; to forward object invocations

there are object representatives on each client processor (this is the proxy [30] mechanism).

Proxies exist for each object at the same virtual address. So, Amber preserves a global address

space for parallel applications without using distributed shared memory.
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2.2.6 MMK

MMK

7

[4] uses an Amber-like methodology with a uniform address space, where objects have

only one copy and remote procedure calls (RPC) are employed to perform remote invocations

just like the Amber system. It runs on a iPSC/2 Hypercube of 32 processors.

2.2.7 ARCADE

The ARCADE system [11] o�ers a kernel interface to allocate and share memory between

applications through explicit mention of the memory addresses of data units that are to be

shared; data units are identi�ed by address. Direct pointers into data units can not exist;

a special system pointer data unit link exists in order to build dynamic data structures.

Data units are associated with the semantics of what is stored inside the moment they are

created. There is a mechanism that uses this information to transform data between di�erent

heterogeneous representations thus providing a mechanism to have heterogeneous distributed

shared memory. It is not an object oriented system and our interest resides in the fact that

distributed data structures can be built with ARCADE.

2.2.8 PLATINUM

PLATINUM [13] is an operating system kernel for NUMA multiprocessors and implements

the abstraction of coherent memory which can be accessed uniformly by all processors in

the system. It is interesting to note that the PLATINUM coherent memory assures the same

memory object mappings throughout the di�erent processors and thus also implements global

and unique address spaces for shared data.

2.2.9 Linda

Linda [17] is not a traditional system nor a complete language. It is a set of objects and

operations that are intended to be injected in another language, so it can be considered

a set of low level mechanisms to add distributed programming to a language. It provides

a tuple-space which is a global content-addressable shared memory to support distributed

data structures. Kaashoek et al. [20] conclude that even if Linda provides more support to

build distributed applications than traditional message passing or shared-variable models, it

is still unclear how to build distributed data structures with a language that seems to be too

low-level.

Linda applications share global data structures in a distributed environment in an address

dependent way.

7

MMK stands for Multiprocessor Multitasking System
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2.2.10 Conclusion

To summarize, Clouds, Monads, Amber, Orca, MMK and �C++ all have a uniform and

single address space for shared objects. Clouds and Orca use distributed shared memory and

�C++ local shared memory. Amber and MMK provide one-copy semantics of objects with

proxies. Clouds is the only persistent distributed system overviewed here.

2.3 Models for persistency in object oriented systems

Object oriented persistent programming avoids the use of an external persistent representation

of objects and the conversion between both formats. Persistent systems have to deal with

object identi�cation, both internal and external, and thus with object pointers. Ideally,

persistent and volatile structures do not di�er at all because, if they do, pointers have to

be swizzled [34] between in-core and passive formats. The system can still avoid pointer

swizzling if objects occupy permanently a piece of virtual memory if their identi�cation is

address dependent, but in this case the total system memory available is limited by the

virtual machine memory size. This is indeed the case with C++ where objects are identi�ed

by a virtual memory pointer. So, if all persistent objects are global, the user sees its address

space reduced to what is provided by the memory management unit of the processor that runs

the application. This is, for example the case of Clouds and an implementation of Napier [26].

The address space provided by a context is too small for a persistent system with a single

level store because persistent data can be of the order of magnitude of secondary storage.

Several solutions to this problem have been proposed.

2.3.1 Second level storage

In our previous COOL v1 system [19] we experimented with explicit context persistency and

object persistency. Object persistency was supported with a basic store and a load mechanism

that, coupled with language level relocatable pointers, allowed us to break the binding between

objects and address spaces. In addition, we allowed objects to be migrated between address

spaces, in the same or di�erent sites, with object relocation when needed [23].

This method can be used in a transparent manner by the use of pre-processors [29],

inserting secondary level store/retrieve commands whenever persistent objects are used.

2.3.2 Name-based addressing of objects

Gehringer's model [16] adopts a name-based mapping where objects are referenced by name.

He de�nes modules of objects (or groups of objects). Each module is an address space by itself

and objects in di�erent modules inter-reference themselves by name rather than by address.

The object space for each process using this scheme is essentially unlimited. As we will see

later, the persistent context space model also allows multiple separate address spaces but in

a manner where objects do not need to be address independent.
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2.3.3 Capability-based addressing

Buhr [6] proposes an interesting model to mitigate persistent and volatile data, structuring

object name spaces like a �le system hierarchy; objects can reference themselves also by

name. He proposes a segmented architecture with low-level segment support possibly with

Intel iAPX*86 microprocessors. Objects are made accessible within an address space through

paging. There is no need for �xed address allocation because references between objects

in the same segment are always relative and inter-segment references are name based; also,

segments can be mapped at any address. Although, with this model, objects can not have

direct pointers and this solution requires hardware support..

If pointers to objects are the problem, a di�erent approach is the use of pointer swiz-

zling [34] to convert between in-core small object pointer formats and persistent long formats.

The later can be seen as a capability for persistent passive objects. The shortcoming of this

approach is the need to convert always all object pointers whenever persistent objects are

to be used. Even if these operations can be clustered to reduce overhead [33] we think that

maintaining separate persistent contexts can allow valid direct object pointers without the

need for external format conversion and diminish the number of these operations.

2.4 Direct addressing in a global address space

A frequently used approach in persistent systems is a single address space for all persistent

objects and the consequent use of direct object memory pointers as object identi�ers (argu-

ments in favor of the single address space approach can be found in [21]). Trying to access

passive objects on not yet mapped memory pages produces a page-faults that will load directly

the right object at the right address. An example of such a system is an implementation of

Napier [26] developed by Vaughan et al. [32] over the Mach [1] microkernel.

Napier is a persistent type system developed by the PISA project. It consists of a language

and a persistent store and executes on a persistent abstract machine (PAM) [12]. Objects

in this implementation of Napier are assigned permanent virtual addresses and persistent

applications execute against a single global address space.

3 The persistent context space model

The persistent context space model is intended to be used by systems that need to manipulate

address dependent data in a distributed and persistent environment. It can be used in an

object oriented system if we consider objects as data. The persistent context space model is

composed of:

� persistent contexts to provide persistent data and control address allocation of per-

sistent data inside an address space of virtual memory,

� context spaces to provide distributed shared data coherence and maintain address

allocation coherence between a collection of contexts that support parallel processes

and share data.
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Data is structured in units that are shared and turned persistent as a whole.

In this section we de�ne the basic component of the model - complete data space, and

the extension of contexts with two orthogonal properties, persistence and distribution, giving

place respectively to the persistent context and the context space abstractions. The complete

model, the persistent context space, deals with both.

3.1 Persistent complete memory spaces

Data is mapped in memory at arbitrary addresses. Mapping persistent data enhances tradi-

tional context memory with the property of persistence. Persistent memory outlives the scope

of its creators and persists from on program activation to the next. There is the problem

of the coherence of persistent memory because it depends on the semantics of applications.

For example if an object is turned persistent and points to another object, then the second

object has to be saved as well. One can assume that all data of an address space is persis-

tent or try to create smaller persistent elements in order to break the limitation of a single

address space and still be able to support direct object pointers. This control can also highly

bene�t garbage collection algorithms [18]. Assuming that objects are address dependent, it

is mandatory that all references maintain its meaning between di�erent applications and on

the activation of the same data structures.

An object ensemble has references between its objects, and is considered complete if there

are no unresolved references, that is, if all referenced objects are virtually present in the

ensemble. This object ensemble de�nes complete data. When mapped into an address space

it becomes a complete memory space.

An application which has unresolved references can not be guaranteed to execute correctly;

an application with no unresolved references is said to execute in a complete memory space

of persistent and complete data.

3.1.1 Structuring complete data: clusters and containers

Complete data is structured with the system notion of container. In this respect we follow

Eos [18] terminology.

In [6], name spaces of objects inside segments are structured like a traditional �le hierarchy

for the following reasons:

� Segments can be tailored to accommodate one or more objects according to user needs.

This raises the notion of object clustering.

� The model needs to enable the construction of active memory trees of segments that

execute applications with the right objects; this is already captured with the notion of

container.

In order to support the need for object clustering and to improve system e�ciency, by reducing

page-faults and increase the e�ciency of in-core memory use [31], we organize containers in

a collection clusters (also like Eos). A cluster is a set of segments and a segment is a linear
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cluster

container

objectpointer

Figure 1: A container with two clusters

sequence of bytes and is persistent. A segment can be part of only one cluster and is always

bound to an address. Segments are considered the smallest data unit at system level, but

clusters are the smallest data unit that can be be shared and turned persistent in a single

operation.

Direct references between data in di�erent containers is not allowed (between di�erent

containers objects reference each other through representatives - proxies). An example of one

container with two clusters having several objects and object references is depicted in �gure

1.

An application needs at least one mapped container in order to be executed. When

mapped, a container becomes a complete memory space. The limit of this model, regard-

ing persistent data sizes for applications, is that each container has to be smaller than the

maximum size of an address space for the target machine. If applications need to work with

greater data sizes then the address space of the virtual machine implemented by the operating

system in a context, then data has to be divided into smaller containers.

Applications can also share data, using the same containers . They can not share a simple

open structured cluster that supports data that is not topologically closed because at least

one of the applications would not execute on a complete data space (the cluster would have

data pointing directly to the other application's data).

The smallest unit of intersection between two containers is in fact another smaller con-

tainer. The smallest container has a single cluster with a single segment. Containers are

similar to segments of the model proposed by Buhr [6]. In his model, references between ob-

jects in di�erent segments are global and make explicit mention of segments; this is supported

at language level (in the persistent context space model this is made with object representa-

tives).

With the persistent context space model there is no need to organize objects in name
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spaces. When mapping a container, objects that exist within the container are virtually

mapped and their direct pointers are valid without the need for pointer swizzling [34]. More-

over, clusters can tailor objects in sensible sized units for object sharing, persistence, and

locality of related objects.

3.2 Persistent contexts

Like the models of Buhr and Gehringher presented in section 2, we also think that the best

solution is to provide multiple persistent address spaces. It is simpler to adapt a programming

system based on C++ if we can keep address dependent object identi�cation. We want to

allow direct object pointers at system level and retain the multiple address space environment

model at the same time.

A persistent context is a simple context that has one or more containers mapped into its

address space. A persistent context sees the address space of persistent memory provided by

a virtual machine and assures coherent address allocation for persistent data, so that objects

occupy always disjoint address spaces. Multiple persistent contexts can exist on the system

executing on di�erent virtual machines exactly like common contexts. Persistent data retains

statically allocated addresses and su�ers complete relocation if moved inside the persistent

context (this is possible for complete data units). This guarantees the validity of low level

direct object pointers (or identi�ers) for all containers mapped into a persistent context.

persistent context persistent context

container
container
with proxies

remote
invocation

Figure 2: Remote invocation between 2 persistent contexts

Applications running on di�erent persistent contexts can cooperate distributedly with the

two following models:

� Message passing Applications can communicate explicitly, or the system transforms

direct object addresses in an address space independent scheme like capability-based

c

 Chorus Systems, 1995 -10- September 1992



Chorus Systems A model for memory addressing CS/TR-92-52

addressing (by the use of the proxy mechanism [30]). Figure 2 draws an example of

object invocation using message-passing with two persistent contexts.

� Memory sharing Containers in di�erent persistent contexts can have smaller con-

tainers in common. The same container can occupy di�erent address in each di�erent

persistent context so it has to be shared exclusively in di�erent periods of time and

relocated each time it is mapped into a persistent context. This is viewed as transparent

container migration between persistent contexts and is possible because all information

regarding a container is present inside the container itself being used by the system to

perform relocation (like virtual memory that is only virtually present).

3.3 Context spaces

In traditional programming systems, shared memory is mapped simultaneously into address

spaces of di�erent contexts, normally at the same addresses; in most situations the shared

information is in fact address dependent.

An application runs in di�erent contexts if it is distributed across di�erent sites and wants

to take advantage of increased parallelism and su�er di�erent protection policies (in protected

address spaces of di�erent contexts). In this case, the application has to communicate in-

formation around with the traditional message passing mechanism or by sharing memory

directly (distributed shared memory is implemented with message passing [25]). Applications

can work in di�erent virtual machines (local or remote to each other) and share memory int

separate address spaces within what we call a context space.

A context space is a set of contexts that are willing to share potentially all memory they

can address. The processes executing in the virtual machines that are part of a context space

will see only a single and uniform address space. The granularity of memory shared between

them is a cluster.

All systems presented in section 2 have a single context space. We want to be able to

create multiple context spaces.

3.4 Persistent context spaces

A persistent context space mitigates both persistent contexts and context spaces.

A persistent context space is a set of distributed persistent contexts that are able to share

a single uniform address space where one or more containers can be mapped. Figure 3 depicts

a container mapped in two persistent context spaces, one with three contexts and another

with one context only.

In this model, a persistent application is executed in parallel by a number of processors

that have contexts in one or more sites with a common global address space of persistent

memory. Within a persistent context space there is the guarantee of the uniqueness of address

allocation for shared persistent objects.

Several persistent context spaces can exist and share the same data in parallel. This data

is assured access coherence and address allocation coherence. Containers migrate between
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persistent context space

container

cluster

persistent context space

persistent contexts

address
space

Figure 3: Persistent context space example

containers on di�erent persistent context spaces being unmapped from one persistent context

space, mapped in the target and relocated. If this migration degrades the system performance

there are two possibilities to react in favor of a better con�guration:

� use proxies to access remote objects; if objects are uses intensively this is a good ap-

proach [5];

� join the persistent contexts spaces into a single one; the decision can be taken at user

level, by the user itself or by the administrator, or the system can react automati-

cally. This choice depends on the run-time system, on the user interface and on the

implementation of the model.

4 Operating system requirements to support the Persistent

Context Space model

The model presented above was implemented in COOL v2. Instead of presenting the COOL

v2 architecture and the implementation of the model we will concentrate on the mechanisms

that an operating system ought to have in order to support persistent context spaces. System

needs to implement the model relate mainly to memory management at various levels:

� memory persistency;

� memory clustering and structuring, i.e. clusters and containers;

� cluster mapping into contexts and relocation;

� mutual exclusion control when the same container is used simultaneously at di�erent

addresses;
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� and shared memory coherency.

Each functionality above needs a set of system services and key architecture particularities.

4.1 Persistency support: mappers and secondary stores

Persistent memory is organized in containers as explained above. Each container is further

subdivided in clusters; a cluster being a set of persistent segments.

All the entities mentioned above should be capability-based addressable. This can be done

via special mappers (segment, cluster and container mappers).

Segments are persistent and need to be saved on secondary stores; this is also true for

the information on clusters and containers. Mappers need to address directly or indirectly

persistent storage devices. Capabilities identifying these persistent entities also have to be

unique during the lifetime of the entity they represent.

4.2 Amalgamation of complete memory in containers

In traditional systems, virtual memory is allocated explicitly. In computing systems with

persistent virtual memory that memory persists once allocated until explicitly deleted.

The system has to guarantee memory allocation growth in clusters and containers (that

de�ne complete memory as explained in section 3). It all starts with an empty container that

consists of an empty cluster with a segment of null size; then, each time memory is allocated

it is appended to that cluster within the segment (or a new one).

The system has also to provide the user with tools choose on which cluster memory should

be allocated; the system assumes always a default cluster. This information is of fundamental

importance because, during run-time, the operating system has to know if direct pointers

between two clusters can be used, if not proxies are installed instead.

This functionality to manipulate agglutination of memory has to exist at the language

interface.

4.3 The exception mechanism for mapping

An application starts to run within a �rst process in a context. The �rst step is to establish

the persistent complete memory space that is to be activated (one or more containers). This

memory can change, of course, during application execution.

An exception mechanism should exist to produce memory faults that will map the correct

memory at the right place. The �rst container mapping can be considered the highest level

fault. It makes visible the next level in the structure, that is, clusters.

The second exception level is the segment fault: upon an access to some unmapped

memory address, the exception handler veri�es if there is some existing cluster, part of the

current complete memory space, that contains a segment with the needed address when
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mapped; it then maps the right cluster. Finally, in a page-based architecture, each segment

is divided in pages, so it is only e�ectively read to in-core memory if it is really accessed (in

a third level fault).

After mapping, memory may need to be relocated. This is dependent on the semantics of

memory contents and only application levels are aware of it. The relocation itself is based on

symbolic information and only known symbols can be relocated. The problem is that there

may be pointers that have no correspondent symbols generated normally by the compilation

chain, so, special high level run-time code has to exist in order to access intrinsic semantic

information of memory contents at user-level in a transparent manner.

The run-time system can relocate clusters through all the symbols it �nds regarding a

particular cluster.

4.4 The upcall mechanism for unmapping

The upcall mechanism [10] can also be considered an exception (but a distributed one). As we

saw, cluster mapping and relocation is done automatically by the run-time system at memory

fault. But to produce a memory fault, and thus oblige relocation on some cluster within a

particular persistent context space, there is a need to unmap it �rst from another persistent

context space because it could be in use at di�erent addresses.

An upcall has to be issued from the kernel to the run-time system in order to unmap the

cluster transparently from the application contexts. This upcall can be performed with a

message passing mechanism to allow distribution.

4.5 Combining exception and upcall mechanisms to assure mutual exclu-

sion

With the exception and upcall mechanisms in place it is straight forward to assure mutual

exclusion of clusters that need to be mapped at di�erent addresses, i.e., that belong to di�erent

active persistent contexts spaces.

During memory fault handling, if the system sees that a cluster is being used by another

persistent context space it upcalls all contexts in that context space to force the unmapping,

and proceeds. Later on, if any one of the other contexts needs that cluster again, it will do

exactly the same in the inverted sense.

After remapping a cluster, the system has to verify if the container information on that

cluster is still valid. The container may have a di�erent set of clusters changed by the context

of another persistent context. This has to be done immediately after cluster mapping because

it may now reference directly another cluster after being changed in the persistent context

space where it was previously mapped.
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4.6 Shared memory coherency

Memory mapped in a context space needs to be assured single-writer multiple reader coherence

between all distributed contexts that have it mapped into its address space. A distributed

shared memory system such as proposed by Li [25] should be used.

5 Conclusion and future work

We strongly believe that future parallel computing systems will evolve towards simpler user

distributed environments. With COOL v2 we accomplished a persistent computing system

with a centralized object oriented interface.

One of the problems in distributed and persistent operating systems is the transparent use

of shared data. In COOL v2, we have developed and implemented the persistent context space

model to control persistent memory and distributed shared memory allocation. Distributed

shared memory mechanisms are used to control data coherency. We have presented related

work on the subject, the reasons that led us to create the persistent context space model, and

the model itself.

We are currently experimenting further with persistent context spaces, studying memory

migration between separate persistent contexts, and separation/mitigation of persistent con-

texts based on containers. The key issue is the overhead associated with these operations,

which are necessary in order to keep the system running. We want to �nd out which con-

�gurations are appropriate to which applications and a way to evolve automatically towards

con�gurations with better performance. Also, extending C++ with container semantics is

still matter of research in the COOL v2 project.

The �rst COOL v2 prototype is currently running on a network of 386 based workstations

running the CHORUS micro-kernel.
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