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Abstract

Adapting the classifier trained on a source domain to

recognize instances from a new target domain is an impor-

tant problem that is receiving recent attention. In this pa-

per, we present one of the first studies on unsupervised do-

main adaptation in the context of object recognition, where

we have labeled data only from the source domain (and

therefore do not have correspondences between object cat-

egories across domains). Motivated by incremental learn-

ing, we create intermediate representations of data between

the two domains by viewing the generative subspaces (of

same dimension) created from these domains as points on

the Grassmann manifold, and sampling points along the

geodesic between them to obtain subspaces that provide a

meaningful description of the underlying domain shift. We

then obtain the projections of labeled source domain data

onto these subspaces, from which a discriminative classi-

fier is learnt to classify projected data from the target do-

main. We discuss extensions of our approach for semi-

supervised adaptation, and for cases with multiple source

and target domains, and report competitive results on stan-

dard datasets.

1. Introduction

In pattern classification problems, we are often con-

fronted with situations where the data we have to train a

classifier is ‘different’ from that presented during testing.

Of the several schools of thought addressing this problem,

two prominent ones are transfer learning (TL) [32], and do-

main adaptation (DA) [4]. These two strategies primarily

differ on the assumptions of ‘what’ characteristics of data

are changing between the training and testing conditions.

Specifically, TL addresses the problem where the marginal

distribution of data in the training set X (source domain)

and the test set X̃ (target domain) are similar, while the

conditional distributions of labels, P (Y |X) and P (Ỹ |X̃)
with Y and Ỹ denoting labels in either domain, are dif-
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ferent. On the other hand, DA pertains to the case where

P (Y |X) ≈ P (Ỹ |X̃), but P (X) significantly varies from

P (X̃). This specific scenario occurs very naturally in un-

constrained object recognition settings, where the domain

shift can be due to change in pose, lighting, blur, and reso-

lution, among others.

Understanding the effects of domain change has received

substantial attention from the natural language processing

community over the last few years (e.g. [4, 8, 16]). Al-

though many fundamental questions still remain on the as-

sumptions used to quantify a domain shift, there are several

methods that have demonstrated improved performance un-

der some domain variations. Given labeled samples from

the source domain, these methods can be broadly classified

into two groups depending on whether the target domain

data has some labels or it is completely unlabeled. The for-

mer is referred to as semi-supervised DA, while the latter is

called unsupervised DA. While semi-supervised DA is gen-

erally performed by utilizing the correspondence informa-

tion obtained from labeled target domain data to learn the

domain shifting transformation (e.g. [16]), unsupervised

DA is based on the following strategies: (i) imposing cer-

tain assumptions on the class of transformations between

domains [39], or (ii) assuming the availability of certain

discriminative features that are common to both domains

[8, 29].

In the context of object recognition, the problem of

matching source and target data under some pre-specified

transformations has been extensively studied. For instance,

given appropriate representation of objects such as contours

or appearance information, if it is desired to perform recog-

nition invariant to similarity transformations, one can use

Fourier descriptors [43], moment-based descriptors [25] or

SIFT features [27]. Whereas in a broader setting where

we do not know the exact class of transformations, the

problem of addressing the domain changes has not re-

ceived significant attention. Some recent efforts focus on

semi-supervised DA [33, 7, 26]. However, with the ever-

increasing availability of image/video data from diverse de-

vices such as a digital SLR camera or a webcam, and image

collections from the internet, it is not always reasonable to
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Figure 1. Say we have labeled data X from the source domain corre-

sponding to two classes + and ×, and unlabeled data X̃ from the target

domain belonging to class ×. Instead of assuming some relevant features

or transformations between the domains, we characterize the domain shift

between X and X̃ by drawing motivation from incremental learning. By

viewing the generative subspaces S1 and S2 of the source and target as

points on a Grassmann manifold GN,d (green and red dots respectively),

we first sample points along the geodesic between them (dashed lines) to

obtain ‘meaningful’ intermediate subspaces (yellow dots). We then ana-

lyze projections of labeled ×, + (green) and unlabeled × (red) onto these

subspaces to perform classification. (All figures are best viewed in color).

assume the availability of labels in all domains. Specific

example scenarios include, a robot trained on objects in in-

door settings with the goal of recognizing them in outdoor

unconstrained conditions, or when the user has few labeled

data and lots of unlabeled data corresponding to same ob-

ject categories, where one would want to generalize over

all available data without requiring manual effort in label-

ing. Having said that, unsupervised DA is an inherently

hard problem since we may not have any knowledge on

how the domain change has affected the object categories.

Contributions: Instead of assuming some information on

the transformation or features across domains, we propose

a data-driven unsupervised approach that is primarily moti-

vated by incremental learning. Since humans adapt (better)

between extreme domains if they ‘gradually’ walk through

the path between the domains (e.g. [34, 12]), we propose:

• Representing the generative subspaces of same dimen-

sion obtained from X and X̃ as points on the Grass-

mann manifold, and sample points along the geodesic

between the two to obtain intermediate subspace rep-

resentations that are consistent with the underlying ge-

ometry of the space spanned by these subspaces;

• We then utilize the information that these subspaces

convey on the labeled X , and learn a discriminative

classifier to predict the labels of X̃ . Furthermore, we

illustrate the capability of our method for handling

multiple source and target domains, and in accommo-

dating labeled data in the target, if any.

Organization of the paper: Section 2 reviews related

work. Section 3 discusses the proposed method. Section

4 provides experimental details and comparisons with DA

approaches for object recognition and natural language pro-

cessing, and the paper is concluded in Section 5. Figure 1

illustrates the motivation behind our approach.

2. Related Work

One of the earliest works on semi-supervised domain

adaptation was performed by Daumé III and Marcu [16]

where they model the data distribution corresponding to

source and target domains to consist of a common (shared)

component and a component that is specific to the individ-

ual domains. This was followed by methods that combine

co-training and domain adaptation using labels from either

domains [36], and semi-supervised variants of the EM al-

gorithm [14], label propagation[42] and SVM [18]. More

recently, co-regularization approaches that work on aug-

mented feature space to jointly model source and target do-

mains [15], and transfer component analysis that projects

the two domains onto the reproducing kernel Hilbert space

to preserve some properties of domain-specific data dis-

tributions [31] have been proposed. Under certain as-

sumptions characterizing the domain shift, there have also

been theoretical studies on the nature of classification error

across new domains [6, 4]. Along similar lines, there have

been efforts focusing on domain shift issues for 2D object

recognition applications. For instance, Saenko et al [33]

proposed a metric learning approach that could use labeled

data for few categories from the target domain to predict

the domain change for unlabeled target categories. Berg-

amo and Torresani [7] performed an empirical analysis of

several variants of SVM for this problem. Lai and Fox [26]

performed object recognition from 3D point clouds by gen-

eralizing the small amount of labeled training data onto the

pool of weakly labeled data obtained from the internet.

Unsupervised DA, on the other hand, is a harder problem

since we do not have any labeled correspondence between

the domains to estimate the transformation between them.

Differing from the set of many greedy (and clustering-

type) solutions for this problem [35, 23, 11], Blitzer et al

[10, 9] proposed a structural correspondence learning ap-

proach that selects some ‘pivot’ features that would occur

‘frequently’ in both domains. Ben-David et al [5] gener-

alized the results of [10] by presenting a theoretical anal-

ysis on the feature representation functions that should be

used to minimize domain divergence, as well as classifica-

tion error, under certain domain shift assumptions. More

insights along this line of work was provided by [8, 29].

Another related method by Wang and Mahadevan [39] pose

this problem in terms of unsupervised manifold alignment,

where the manifolds on which the source and target domain

lie are aligned by preserving a notion of the ‘neighborhood

structure’ of the data points. All these methods primarily

focus on natural language processing. However in visual

object recognition, where we have still have relatively less



consensus on the basic representation to use for X and X̃ , it

is unclear how reasonable it is to make subsequent assump-

tions on the relevance of features extracted from X and X̃
[10] and the transformations induced on them [39].

3. Proposed Method

3.1. Motivation

Unlike existing methods that work with the informa-

tion conveyed by the source and target domains alone, our

methodology of addressing domain shift is inspired from

incremental learning (that illustrates the benefits of adapt-

ing between extremes by gradually following the ‘path’ be-

tween them), and we attempt to identify ‘potential’ interme-

diate domains between the source and target and learn the

information they convey about domain changes. In search

of these novel domains, (i) we assume that we are given

a N -dimensional representation of data from X and X̃ ,

which depends on the user/ application, rather than rely-

ing on the existence of pivot features across domains [10],

and (ii) we learn the ‘path’ between these two domains by

exploiting the geometry of their underlying space, without

making any assumptions on the domain shifting transfor-

mation (as in [39]). A formal problem statement is given

below.

3.2. Problem Description

Let X = {xi}
N1

i=1 ∈ R
N denote data from the source

domain pertaining to M categories or classes. Let yi ∈
{1, 2, 3, ...M} denote the label of xi. We assume that the

source domain is mostly labeled, i.e. X = Xl ∪ Xu

where Xl = {xli}
Nl1

i=1 has labels, say {yli}
Nl1

i=1, and Xu =

{xui}
Nu1

i=1 are unlabeled (Nl1 + Nu1 = N1). We further

assume that all categories have some labeled data. Let

X̃ = {x̃i}
N2

i=1 ∈ R
N denote unlabeled data from the target

domain corresponding to the same M categories. Since sub-

space models are highly prevalent in modeling data charac-

teristics (e.g. [38]), we work with generative subspaces1

corresponding to the source and target domain. Let S1 and

S2 denote generative subspaces of dimension2 N × d ob-

tained by performing principal component analysis (PCA)

[38] on X and X̃ respectively, where d < N . We now ad-

dress two issues: (i) How to obtain the N × d intermediate

subspaces St, t ∈ R, 1 < t < 2, and (ii) How to utilize

the information conveyed by these subspaces on the labeled

data Xl to estimate the identity of unlabeled X̃?

1Since we do not have labeled data from the target domain, our starting

point will be generative subspaces that characterize the global nature of the

domains, rather than the discriminative ones.
2d refers to the number of eigenvectors of the PCA covariance matrix

that have non-zero eigenvalues. We choose the value of d to be minimum

of that of S1 and S2, and restrict its maximum value to be less than N

to enable use of methods that’ll be discussed soon. It is interesting to

determine a better approach for doing this.

• Given two points S1 and S2 on the Grassmann manifold.

• Compute the N × N orthogonal completion Q of S1.

• Compute the thin CS decomposition of QT S2 given by

QT S2 =

(

XC

YC

)

=

(

V1 0

0 Ṽ2

) (

Γ(1)
−Σ(1)

)

V T

• Compute {θi} which are given by the arccos and arcsine

of the diagonal elements of Γ and Σ respectively, i.e.

γi = cos(θi), σi = sin(θi). Form the diagonal matrix Θ
containing θ’s as diagonal elements.

• Compute A = Ṽ2ΘV T
1 .

Algorithm 1: Numerical computation of the velocity ma-

trix: The inverse exponential map [20].

3.3. Generating Intermediate Subspaces

To obtain meaningful intermediate subspaces between

S1 and S2, we require a set of tools that is consistent with

the geometry of the space spanned by these N × d sub-

spaces. The space of d-dimensional subspaces in R
N (con-

taining the origin) can be identified with the Grassmann

manifold GN,d. S1 and S2 are points on GN,d. Understand-

ing the geometric properties of the Grassmann manifold has

been the focus of works like [41, 19, 1], and these have been

utilized in some vision problems with subspace constraints,

e.g. [37, 21, 28, 22]. A compilation of statistical analysis

methods on this manifold can be found in [13]. Since a full-

fledged explanation of these methods is beyond the scope

of this paper, we refer the interested readers to the papers

mentioned above.

We now use some of these results pertaining to the

geodesic paths, which are constant velocity curves on a

manifold, to obtain intermediate subspaces. By viewing

GN,d as a quotient space of SO(N), the geodesic path

in GN,d starting from S1 is given by a one-parameter ex-

ponential flow [20]: Ψ(t′) = Q exp(t′B)J , where exp
refers to the matrix exponential, and Q ∈ SO(N) such that

QT S1 = J and J =

[

Id

0N−d,d

]

. Id is a d × d identity

matrix, and B is a skew-symmetric, block-diagonal matrix

of the form B =

(

0 AT

−A 0

)

, A ∈ R
(N−d)×d, where

the superscript T denotes matrix transpose, and the sub-

matrix A specifies the direction and the speed of geodesic

flow. Now to obtain the geodesic flow between S1 and S2,

we compute the direction matrix A such that the geodesic

along that direction, while starting from S1, reaches S2 in

unit time. A is generally computed using inverse exponen-

tial mapping (Algorithm 1). Once we have A, we can use

the expression for Ψ(t′) to obtain intermediate subspaces

between S1 and S2 by varying the value of t′ between 0 and

1. This is generally performed using the exponential map

(Algorithm 2). Let S′ refer to the collection of subspaces



• Given a point on the Grassmann manifold S1 and a

tangent vector B =

(

0 AT

−A 0

)

.

• Compute the N × N orthogonal completion Q of S1.

• Compute the compact SVD of the direction matrix

A = Ṽ2ΘV1.

• Compute the diagonal matrices Γ(t′) and Σ(t′) such that

γi(t
′) = cos(t′θi) and σi(t

′) = sin(t′θi), where θ’s are

the diagonal elements of Θ.

• Compute Ψ(t′) = Q

(

V1Γ(t′)

−Ṽ2Σ(t′)

)

, for various

values of t′ ∈ [0, 1].

Algorithm 2: Algorithm for computing the exponential

map, and sampling along the geodesic [20].

St, t ∈ R, 1 ≤ t ≤ 2, which includes S1, S2 and all inter-

mediate subspaces. Let N ′ denote the total number of such

subspaces.

3.4. Performing Recognition Under Domain Shift

We now model the information conveyed by S′ on X
and X̃ to perform recognition across domain change. We

basically approach this stage by projecting X and X̃ onto

S′, and looking for correlations between them (by using the

labels available from X). Let x′
li denote the dN ′ × 1 vec-

tor formed by concatenating the projection of xli onto all

subspaces contained in S′. We now train a discriminative

classifier D(X ′
l , Y

′
l ), where X ′

l is the dN ′ × Nl1 data ma-

trix (with x′
li, i = 1 to Nl1 forming the columns), and Y ′

l is

the corresponding Nl1 × 1 label vector (whose ith row cor-

responds to yli), and infer identity of dN ′×1 vectors corre-

sponding to projected target data x̃′
i. We use the method of

partial least squares3 (PLS) [40] to construct D since dN ′

is generally several magnitudes higher than Nl1, in which

case PLS provides flexibility in choosing the dimension of

the final subspace unlike other discriminant analysis meth-

ods such as LDA [3]. We outline the operating principle

behind PLS in the Appendix.

3.5. Extensions

3.5.1 Semi-supervised Domain Adaptation

We now consider cases where there are some labels in the

target domain. Let X̃ = X̃l ∪ X̃u where X̃l = {x̃li}
Nl2

i=1

has labels, say {ỹli}
Nl2

i=1, and X̃u = {x̃ui}
Nu2

i=1 is unlabeled

(Nl2 + Nu2 = N2). We now use a dN ′ × (Nl1 + Nl2)
data matrix (whose columns correspond to the projections

of labeled data from both domains onto S′) and the corre-

sponding (Nl1 +Nl2)×1 label vector to build the classifier

D, and infer the labels of x̃ui, i = 1 to Nu2.

3Alternately, one can choose any other method for the steps involving

PCA, and PLS.

1. Given a set of k points {qi} on the manifold.

2. Let µ0 be an initial estimate of the Karcher mean,

usually obtained by picking one element of {qi} at

random. Set j = 0.

3. For each i = 1, .., k, compute the inverse exponential

map νi of qi about the current estimate of the mean i.e.

νi = exp−1

µj
(qi).

4. Compute the average tangent vector ν̄ = 1

k

k
∑

i=1

νi.

5. If ‖ν̄‖ is small, then stop. Else, move µj in the average

tangent direction using µj+1 = expµj
(εν̄), where ε > 0

is small step size, typically 0.5.

6. Set j = j + 1 and return to Step 3. Continue till µj does

not change anymore or till maximum iterations are

exceeded.

Algorithm 3: Algorithm to compute the sample Karcher

mean [13].

3.5.2 Adaptation Across Multiple Domains

There can also be scenarios where we have multiple do-

mains in source and target [30, 17]. One way of dealing

with k1 source domains and k2 target domains is to create

generative subspaces S11, S12, .., S1k1
corresponding to the

source, and S21, S22, ..., S2k2
for the target. From this we

can compute the mean of source subspaces, say S̄1, and the

mean for target S̄2. A popular method for defining the mean

of points on a manifold was proposed by Karcher [24]. A

technique to obtain the Karcher mean is given in Algorithm

3. We then create intermediate subspaces between S̄1 and

S̄2, and learn the classifier D to infer target labels as before.

4. Experiments

We first compare our method with existing approaches

for 2D object recognition [33, 7], and empirically demon-

strate the benefits of creating intermediate domains. In

this process, we also test the performance of the semi-

supervised extension of our algorithm, and for cases with

more than one source or target domains. Finally, we provide

comparisons with unsupervised DA approaches on natural

language processing tasks.

4.1. Comparison with Metric Learning Approach
[33]

We used the dataset of [33] that has 31 different object

categories collected under three domain settings: images

from amazon, dslr camera, and webcam. There are 4652

images in total, with the object types belonging to back-

pack, bike, notebook, stapler etc. The amazon domain has

a average of 90 instances for each category, whereas DSLR
and webcam have roughly around 30 instances for a cate-



(a)

Domain Metric learning [33] Ours

(semi-supervised)

Classification (%) Classification (%)

(mean) (mean±std. deviation)

Source Target asymm symm Un- Semi-

supervised supervised

webcam dslr 25 27 19±1.2 37±2.3

dslr webcam 30 31 26±0.8 36±1.1

amazon webcam 48 44 39±2.0 57±3.5

(b)

Domain Metric learning [33] Ours

(semi-supervised)

Classification % Classification (%)

(mean) (mean±std. deviation)

Source Target asymm symm Un- Semi-

supervised supervised

webcam dslr 53 49 42±0.6 59±3.1

Table 1. Comparison of classification performance with [33]. (a) with labels for all target domain categories. (b) with labels only for partial

target categories. asymm and symm are two variants proposed by [33].

Figure 2. Sample retrieval results from our unsupervised method on the dataset of [33]. Left column: query image from the target domain.

Columns 2 to 6: Top 5 closest matches from the source domain. Source/ target combination for rows 1 to 5 are as follows: dslr/amazon,

webcam/dslr, dslr/webcam, webcam/amazon, amazon/webcam.

gory. The domain shift is caused by several factors includ-

ing change in resolution, pose, lighting etc.

We followed the protocol of [33] in extracting image

features to represent the objects. We resized all images to

300 × 300 and converted them into grayscale. SURF fea-

tures [2] were then extracted, with the blob response thresh-

old set at 1000. The 64-dimensional SURF features were

then collected from the images, and a codebook of size 800

was generated by k-means clustering on a random subset

of amazon database (after vector quantization). Then the

images from all domains are represented by a 800 bin his-

togram corresponding to the codebook. This forms our data

representation for X and X̃ , with N = 800. From this we

learnt the subspaces corresponding to source and target, and

chose the subspace dimension d to be the lower of the two

(and less than N ). The value of d was set between 185 and

200 for different experiments on this dataset. We experi-

mentally fixed the number of intermediate subspaces to 8

(i.e. N ′ = 10), and the PLS dimensions p to 30 (please

refer to the Appendix on how we obtain p-dimensional vec-

tors using PLS).

We report results on two experimental settings, (i) with

labeled data available in both source and target domains -

3 labels per category in target for amazon/webcam/dslr,

and 8 per category in source domain for webcam/dslr, and

20 for amazon; and (ii) labeled data is available in both do-

mains only for the first half of categories, whereas the last

16 categories has labels only in the source domain. For the

first setting, we determine the identity of all unlabeled data

from the target domain, whereas for the second setting we

determine the labels of unlabeled target data from the last

16 categories. For both experiments, we report the results



of our method in unsupervised setting (where we do not use

labels from target, even if available) and semi-supervised

setting (where the target labels are used) in Tables 1(a) and

1(b) respectively. The performance accuracy (number of

correctly classified instances over total test data from target)

is reported over 20 different trials corresponding to differ-

ent labeled data across source and target domains. It can be

seen that although our unsupervised adaptation results are

slightly lower than that of [33] (which is reasonable since

we throw away all correspondence information, while [33]

uses them), our semi-supervised extension offers better per-

formance improvement. Also note that the result in Table

1(b) is better than the corresponding category of Table 1(a)

since the former is a 16 way classification, while the later is

a 31-way classification. Some retrieval results from our un-

supervised approach, corresponding to different source and

target domain combinations, are presented in Figure 2.

4.2. Comparison with Semi­supervised SVM’s [7]

We then used the data of [7] that has two domains: the

target domain with images from Caltech256 that has 256

object categories, and the source domain corresponding to

the weakly labeled results of those categories obtained from

Bing image search. We used the classeme features to rep-

resent the images. Each image was represented by a 2625-

dimensional binary vector, which models several semantic

attributes of the image [7]. We followed the protocol of [7]

and present results on classifying the unlabelled target data

under two experimental settings, (i) by fixing the number

of labeled samples from the source domain and varying the

labeled samples from target (starting from one), and (ii) do-

ing the reverse by fixing the number of labeled target data,

and varying the labeled samples from source. We also con-

sider another operating point of no labeled data from the tar-

get and source domains respectively (corresponding to the

above two settings) to perform unsupervised DA. It can be

seen from Figures 3(a) and 3(b) that our method gives better

performance overall, with the gain in accuracy increasing

with the number of labeled data. The performance is mea-

sured using the percentage of correctly classified unlabeled

samples from the target, averaged across several trials on

choosing different labeled samples.

4.3. Studying the information conveyed by interme­
diate subspaces, and multi­domain adaptation

We now empirically study the information we gain by

creating the intermediate domains. We use the data of

[33, 7] where we evaluate the performance of our algorithm

(unsupervised case) across different values4 of N ′ ranging

from 2 to 15. The same experimental setup of Sec 4.1 and

4All these runs correspond to p = 30, which was empirically found to

give the best performance.

Domain Ours

Classification (%)

(mean±std. deviation)

Source Target Un- Semi-

supervised supervised

amazon, dslr webcam 31±1.6 52±2.5

amazon, webcam dslr 25±0.4 39±1.1

dslr, webcam amazon 15±0.4 28±0.8

webcam amazon, dslr 28±1.9 42±2.8

dslr amazon, webcam 35±1.7 46±2.3

amazon dslr, webcam 22±0.2 32±0.9

Table 2. Performance comparison across multiple domains in

source or target, using the data from [33].

Domain Method

Classification (%)

Target Source [10] [9] Ours

B D,E,K 76.8,75.4,66.1 79.7,75.4,68.6 78.2,76.3,74.2

D B,E,K 74.0,74.3,75.4 75.8,76.2,76.9 76.1,75.8,79.1

E B,D,K 77.5,74.1,83.7 75.9,74.1,86.8 81.2,76.2,87.6

K B,D,E 78.7,79.4,84.4 78.9,81.4,85.9 78.1,82.0,89.7

Table 3. Performance comparison with some unsupervised DA ap-

proaches on language processing tasks [9]. Key: B-books, D-

DVD, E-electronics, and K-kitchen appliances. Each row corre-

sponds to a target domain, and three separate source domains.

4.2 was followed. N ′ = 2 denotes no intermediate sub-

space, and we use the information conveyed by S1 and S2

alone. This provides a baseline for our method. As seen in

Figure 3(c), all values of N ′ > 2 offers better performance

than N ′ = 2. Although this result is data-dependent, we see

that we gain some information from these new domains.

We then experimented with the data of [33] when there

are multiple domains in source or target. We created six dif-

ferent possibilities, three cases with two source domain and

one target domain, and the other three with two target do-

mains and one source domain. The experimental setup out-

lined in Sec 4.1 was followed, where we consider the case

with labels for all target categories. We provide the classi-

fication accuracy of our unsupervised and semi-supervised

variants in Table 2. Although we do not have a baseline to

compare with, one possible relation with the results in Ta-

ble 1(a) is for the case where the target domain is webcam
and the source domains contain dslr and amazon. It can be

seen that the joint source adaptation results lie somewhere

in between single source domain cases.

4.4. Comparison with unsupervised approaches on
non­visual domain data

We now compare our approach with other unsupervised

DA approaches that have been proposed for natural lan-

guage processing tasks. We used the dataset of [9] that per-

forms adaptation for sentiment classification. The dataset

has product reviews from amazon.com for four different

domains: books, DVD, electronics and kitchen appliances.

Each review has a rating from 0 to 5, a reviewer name and
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Figure 3. (a), (b): Performance comparison with [7]. (a) Number of labeled source data = 300. (b) Number of labeled target data = 10.

Semi-supervised SVM refers to the top performing SVM variant proposed in [7]. Please note that our method also has an unsupervised

working point (at position 0 on the horizontal axis). (c) Empirically studying the effect of N ′ on data from [33, 7]. Naming pattern refers

to source/ target domain. Accuracy for N ′ > 2 is more than that for N ′ = 2, which says that the intermediate subspaces do provide some

useful information. However, since larger values of N ′ need not always translate into better classification (e.g. Bing/Caltech curve), it is

interesting to formally study the optimal value of N ′.

location, review text, among others. Reviews with rating

more than 3 were classified as positive, and those less than

3 were classified negative. The goal here is to see whether

the process of learning positive/ negative reviews from one

domain, is applicable to another domain. We followed the

experimental setup of [9], where the data representation for

X and X̃ are unigram and bigram features extracted from

the reviews. Each domain had 1000 positive and nega-

tive examples each, and the data for each domain was split

into a training set (source domain) of 1600 instances and

a test set (target domain, with hidden labels) of 400 in-

stances. The classification accuracies with different settings

of source and target domain are given in Table 3. We see

that our method performs better overall, even though we

do not identify pivot features from the bigram/unigram data

features (as done by the other two methods). This exper-

iment also illustrates the utility of our method for domain

adaptation across general, non-visual domains.

5. Conclusion

We have proposed a data driven approach for unsuper-

vised domain adaptation, by drawing inspirations from in-

cremental learning. Differing from existing methods that

make assumptions on transformations or feature distribu-

tions across domains, we investigated the information con-

veyed by ‘potential’ intermediate domains on the unknown

domain shift. Although the tools used to create these novel

domains are consistent with the underlying geometry of

data, the absence of labeled target data does not allow us

to guarantee that these domains would ‘physically’ corre-

spond to the ‘actual’ domain transformation. Therefore to

enable a better understanding of unsupervised domain adap-

tation, the following broad problems are of interest: (i) uti-

lizing generic priors on possible domain shifts to create

and traverse physically meaningful intermediate domains,

and (ii) exploring data representations beyond linear sub-

spaces, with some desirable domain invariant properties that

could accommodate potentially different data dimensional-

ity across domains.

Appendix: PLS

Let X ∈ Rm denote an m-dimensional space of feature

vectors and similarly let Y ∈ R be a 1-dimensional space

representing the class labels. Let the number of samples

(training patches) be n. PLS decomposes the zero-mean

matrix X (n × m) and zero-mean vector y (n × 1) into

X = TPT + E (1)

y = UqT + f (2)

where T and U are (n × p) matrices containing p extracted

latent vectors, the (m × p) matrix P and the (1 × p) vec-

tor q represent the loadings and the (n × m) matrix E and

the (n × 1) vector f are the residuals. The PLS method,

using the nonlinear iterative partial least squares (NIPALS)

algorithm, constructs a set of weight vectors (or projection

vectors) W = {w1, w2, ..., wp} such that

[cov(ti, ui)]
2 = max

|wi|=1
[cov(Xwi, y)]2 (3)

where ti is the ith column of matrix T ,ui the ith column

of matrix U and cov(ti, ui) is the sample covariance be-

tween latent vectors ti and ui. After the extraction of the

latent vectors ti and ui, the matrix X and vector y are de-

flated by subtracting their rank-one approximations based

on ti and ui. This process is repeated until the desired num-

ber of latent vectors had been extracted. The dimensional-

ity reduction is performed by projecting the feature vector

vi, extracted from a ith detection window, onto the weight



vectors W = {w1, w2, .., wp}, obtaining the latent vector

zi (1 × p) as a result. Such vectors obtained from the un-

labeled target domain are compared with vectors from the

labeled source domain to perform classification. We used

the nearest neighbor classifier with l2 norm as the distance

measure for this purpose, although any other classifier such

as an SVM can be used. The same approach can also be

used to infer the labels of unlabeled data from the source

domain.
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