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On the Degrees of Freedom of the Three-User

MIMO Interference Channel with Delayed CSIT

Alexey Buzuverov, Hussein Al-Shatri, and Anja Klein

Abstract—The three-user multiple-input multiple-output in-
terference channel under i.i.d. fading is studied, where the
transmitters have the delayed channel state information. The
case where all transmitters and all receivers are equipped with
M and N antennas, respectively, is considered. For this case,
a new transmission scheme is proposed that achieves a number
of degrees of freedom higher than previously reported for the
range of 3/4 < M/N < 1, where the parameters of the scheme
are determined as functions of the ratio M/N . The degrees of
freedom gains compared to the previous approaches are due to
the more effective use of transmit and receive antennas.

I. INTRODUCTION

The number of degrees of freedom (DoF) is a performance

measure which characterizes the capacity behaviour of a

communication system in high signal-to-noise ratio (SNR)

regime. For the single-input single-output (SISO) interference

channel (IC), the number of DoF has been achieved using

a technique named interference alignment (IA) [1]. However,

IA requires perfect channel state information at transmitters

(CSIT) for current and future time slots, which is an unrealistic

assumption.

In absence of instantaneous CSIT and under i.i.d. fading, the

number of DoF of the SISO IC as well as of the multiple-input

single-output (MISO) broadcast channel (BC) is one for any

network size [2]. However, [3] has shown that for the MISO

BC the number of DoF is greater than one if the transmitters

obtain the delayed CSIT through feedback from the receivers.

The DoF gains are achieved by splitting the transmission into

multiple phases, where in each phase the delayed CSIT of the

previous phase is employed for transmission. The approach

proposed in [3] has been shown to be also applicable to SISO

IC in [4] and [5], where achievable numbers of DoF greater

than one have been reported. For the three-user SISO IC, [4]

has shown that the number of DoF of 9/8 is achievable. This

result has been later improved to 36/31 DoF in [5].

Employing multiple antennas at transmitters and receivers is

known to increase the number of DoF of the IC as compared

to the SISO case when the instantaneous CSIT is available

[6]. A similar DoF analysis has been performed for the

case when the CSIT is delayed in [7]. In [7], the three-

user multiple-input multiple-output (MIMO) IC scenario is
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considered, where the transmitters and receivers are equipped

with M and N antennas, respectively. [7] shows that in

such a network, different transmission schemes provide higher

number of DoF for different antenna setups characterized by

the ratio M/N . For the regions of 1/2 < M/N ≤ 31/32
and 31/32 < M/N ≤ 18/13, Torrellas et al. [7] propose

two MIMO transmission schemes, which are based on the

transmission schemes for the three-user SISO IC described in

[4] and [5], respectively. For the scheme based on the scheme

described in [5], a limitation for the transmitters and receivers

to use only min {M,N} antennas is used.

In this paper, we consider the three-user MIMO IC scenario,

which is identical to the one considered in [7]. We propose a

new transmission scheme which achieves the number of DoF

greater than reported in [7] in the region of 3/4 < M/N < 1.

The proposed transmission scheme is based on the SISO

transmission scheme described in [5]. However, in contrast

to [7], we omit the assumption of using only min {M,N}

antennas at the transmitters and receivers and derive the

parameters of the transmission scheme as functions of the ratio

M/N , which allows to achieve higher number of DoF.

The the rest of the paper is organized as follows. Section II

describes the system model. Section III describes the proposed

transmission scheme and gives performance results.

II. SYSTEM MODEL

We consider a three-user MIMO IC scenario as depicted in

Fig. 1. Each transmitter Txi has M antennas and each receiver

Rxi has N antennas, i ∈ {1, 2, 3}. The communication period

spans T time slots, during which each transmitter Txi intends

to communicate a data vector comprised of b1 symbols ui ∈

Cb1×1 to its corresponding receiver Rxi.

Let Hji (t) ∈ CN×M be the channel matrix between Txi
and Rxj , in time slot t, 1 ≤ t ≤ T , ∀i, j ∈ {1, 2, 3}.

All channel entries are randomly drawn from a continuous

complex distribution and are identically and independent dis-

tributed (i.i.d.) across antennas and time, as well as across

different transmitter and receiver pairs. It is supposed that each

receiver has the instantaneous global channel knowledge, i.e.

in time slot t, 1 ≤ t ≤ T , each receiver has access to the

set of channel matrices {Hji (τ)}
t
τ=1, ∀i, j ∈ {1, 2, 3}. Each

transmitter obtains the global channel knowledge with a single

time slot delay, i.e. in time slot t, 2 ≤ t ≤ T it has access

to the set of channel matrices {Hji (τ)}
t−1
τ=1, ∀i, j ∈ {1, 2, 3}.

We further refer to these assumptions as delayed CSIT.

The transmission is split into three phases, where two types

of processing are applied for the transmission. Firsly, the
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Fig. 1. The three-user MIMO IC

signals to be transmitted are generated recursively using the

delayed CSIT of the previous phases. Secondly, additional lin-

ear precoding is applied, which does not depend on CSIT and

is done randomly. The random precoding is performed jointly

over multiple time slots, where a jointly encoded transmission

is called a transmission block. Each phase is comprised of

multiple transmission blocks, which have identical transmis-

sion parameters, but correspond to different transmitted data.

In each transmission block of phase i, i ∈ {1, 2, 3}, a

subset of the transmitters is scheduled for transmission, where

according to the methodology of [5], in phases 1 and 3 all

transmitters transmit simultaneously and in phase 2 only two

transmitters are scheduled for transmission. Per transmission

block, each of the scheduled transmitters transmits b′i symbols

in T ′
i time slots, where in total b′iΣ symbols are transmitted

by all transmitters. After transmission in phase i, i ∈ {1, 2},

terms to be transmitted in phase i + 1 are generated using

the delayed CSIT of phase i, where in total q′iΣ terms are

generated per transmission block at all transmitters.

The number kj of the transmission blocks of phase j, j ∈

{1, 2, 3}, is to be chosen such that the total number kiq
′
iΣ of

the terms generated after phase i is equal to the total number

ki+1b
′
i+1Σ of the terms transmitted phase (i+ 1), i ∈ {1, 2},

i.e. the values ki are to be chosen, such that the equalities

kiq
′
iΣ = ki+1b

′
i+1Σ, i ∈ {1, 2} (1)

hold. In such a case, each transmitter transmits bi = kib
′
iΣ/3

terms in the i-th phase, i ∈ {1, 2, 3}. The overall duration of

the i-th phase is Ti = kiT
′
i time slots, with the total duration

of the transmission T =
∑3

i=1 Ti time slots. We describe each

phase by only specifying the structure of a single transmission

block and the number of the transmission blocks.

Let us consider the k-th transmission block of phase 1, 1 ≤

k ≤ k1. The transmission of the block spans the T ′
1 time slots

(k − 1)T ′
1 + 1 ≤ t ≤ kT ′

1. Let u
(k)
[i] ∈ Cb′

1
×1 be the data

vector to be transmitted during the k-th transmission block of

phase 1 by Txi, i ∈ {1, 2, 3}. Let xi (t) ∈ CM×1 be the signal

transmitted by Txi from its M antennas in time slot t. The

precoding of the signal u
(k)
[i] in time slot t is described by the

matrix multiplication xi (t) = C[i] (t)u
(k)
[i] , where C[i] (t) ∈

CM×b′
1 is the precoding matrix in time slot t. The elements

of the precoding matrix are randomly taken from a continuous

distribution and are mutually independent.

Let us denote the overall precoding matrix used by Txi for

the k-th transmission block of phase 1 as

C
(k)
[i] =

[

C[i] ((k − 1)T ′
1 + 1)

T
, ...,C[i] (kT

′
1)

T
]T

∈ C
MT ′

1
×b′

1 .

(2)

Here, for decodability of the transmitted data the inequality

b′i ≤ MT ′
i (3)

is to be fulfilled. Let us denote by x
(l,κ)
i the concatenation

of the signal vectors transmitted by Txi during the κ-th

transmission block of phase l, 1 ≤ κ ≤ kl, l ∈ {1, 2, 3}.

For the k-th transmission block of phase 1, the concatenation

is described as

x
(1,k)
i =

[

xi ((k − 1)T ′
1 + 1)

T
, ...,xi (kT

′
1)

T
]T

∈ C
MT ′

1
×1,

(4)

which is calculated as

x
(1,k)
i = C

(k)
[i] u

(k)
[i] . (5)

The transmitted vector x
(1,k)
i is subject to the average power

constraint 1
T ′

1

E
[

x
(1,k)H

i x
(1,k)
i

]

≤ P , where P is the maximum

transmit power.

Let y
(l,κ)
j be the concatenation of the signal vectors received

in the κ-th transmission block of phase l by Rxj , 1 ≤ κ ≤

kl, j, l ∈ {1, 2, 3}. We define the concatenation of the signal

vectors received in the k-th transmission block of phase 1 as

y
(1,k)
j =

[

yj ((k − 1)T ′
1 + 1)

T
, ...,yj (kT

′
1)

T
]T

∈ C
NT ′

1
×1,

(6)

where yj (t) corresponds to the signal received in time slot t.

Let H
(l,κ)
ji ∈ CNT ′

1
×MT ′

1 be the channel matrix between Txi
and Rxj in the κ-th transmission block of phase l, 1 ≤ κ ≤ kl,
i, j, l ∈ {1, 2, 3}. The channel matrix corresponding to the k-th

transmission block of phase 1 has the following block diagonal

structure:

H
(1,k)
ji =







Hji ((k − 1)T ′
1 + 1) 0

. . .

0 Hji (kT
′
1)






. (7)

Let n
(l,κ)
j ∼ CN

(

0, INT ′

1

)

be the additive white Gaussian

noise vector at Rxj in the κ-th transmission block of phase

l, 1 ≤ κ ≤ kl, l ∈ {1, 2, 3}. The channel input-output

relationship for the k-th transmission block of phase 1 is

y
(1,k)
j =

3
∑

i=1

H
(1,k)
ji C

(k)
[i] u

(k)
[i] + n

(1,k)
j . (8)

Due to the focus of the paper on the DoF analysis, the noise

term will be further omitted throughout the paper. Precoding

and transmission of the transmission blocks of phases 2 and

3 are similar to the ones described by (5) and (8).

We say that the number of DoF d = 3b1/T is achievable

in the interference channel if b1 symbols transmitted by each

transmitter Txi to its corresponding receiver Rxi, i ∈ {1, 2, 3},

during the overall communication period of T time slots are

decodable with probability one.
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III. PROPOSED TRANSMISSION SCHEME

In this section, the proposed transmission scheme is de-

scribed. In the first three subsections, we describe the trans-

mission blocks for each phase of the scheme. In the last

subsection, we determine the numbers of the transmission

blocks and calculate the achieved number of DoF.

A. First Phase

In phase 1, the original data symbols are transmitted. All

transmitters are scheduled to transmit simultaneously, where

each transmitter transmits a data vector of b′1 symbols per

single transmission block in T ′
1 time slots.

Let us consider the signal received by Rx1 during the k-th

transmission block, 1 ≤ k ≤ k1, which is calculated as

y
(1,k)
1 =

3
∑

i=1

H
(1,k)
1i C

(k)
[i] u

(k)
[i] . (9)

Let us consider the interference term H
(1,k)
12 C

(k)
[2] u

(k)
[2] of

Tx2. The channel matrix H
(1,k)
12 and the precoding matrix

C
(k)
[2] are distributed independently, thereby the T ′

1N × b′1

matrix H
(1,k)
12 C

(k)
[2] is almost surely full rank with (T ′

1N − b′1)-
dimensional left null space. It means that almost surely, there

exists a full rank matrix W
(1,k)
12 ∈ CT ′

1
N×T ′

1
N−b′

1 , for which

W
(1,k)H
12 H

(1,k)
12 C

(k)
[2] = 0T ′

1
N−b′

1
×b′

1
(10)

holds. In (10), the columns of the matrix W
(1,k)
12 are linearly

independent vectors lying in the left null space of H
(1,k)
12 C

(k)
[2] .

Let us denote by w
(1,k)
12,ξ the ξ-th column of the matrix

W
(1,k)
12 , 1 ≤ ξ ≤ T ′

1N − b′1. By projecting the received vector

y
(1,k)
1 onto w

(1,k)
12,ξ , Rx1 will cancel the signal of the interferer

Tx2 and will obtain

w
(1,k)H

12,ξ y
(1,k)
1 = w

(1,k)H

12,ξ H
(1,k)
11 C

(k)
[1] u

(k)
[1] +

w
(1,k)H

12,ξ H
(1,k)
13 C

(k)
[3] u

(k)
[3] . (11)

The sum of (11) is comprised of a linear combination of u
(k)
[1] ,

which is a signal useful for Rx1, and a linear combination

of u
(k)
[3] , which is an interference term remaining at Rx1. The

remaining interference term w
(1,k)H

12,ξ H
(1,k)
13 C

(k)
[3] u

(k)
[3] is useful

for both Rx1 and Rx3 as follows:

• it can be subtracted from w
(1,k)H

12,ξ y
(1,k)
1 to recover

w
(1,k)H

12,ξ H
(1,k)
11 C

(k)
[1] u

(k)
[1] , which is a term useful for Rx1;

• it is a term useful for Rx3.

We further use the notation of order-2 symbols described in

[3], where the order-2 symbol is a term which is useful for two

receivers simultaneously. We denote by u
(k)
[l|i,j],ξ the order-2

symbol, which is desired by both Rxi and Rxj , and is available

at Txl, i 6= j, l ∈ {i, j}, 1 ≤ ξ ≤ T ′
1N − b′1. From (11), the

following order-2 symbol is generated:

u
(k)
[3|1,3],ξ = w

(1,k)H

12,ξ H
(1,k)
13 C

(k)
[3] u

(k)
[3] . (12)

Similarly, Rx1 can cancel the signal of the interferer Tx3

and obtain the order 2-symbol

u
(k)
[2|1,2],ξ = w

(1,k)H

13,ξ H
(1,k)
12 C

(k)
[2] u

(k)
[2] , (13)

where w
(1,k)
13,ξ is the ξ-th column of the matrix W

(1,k)
13 , for

which the equality W
(1,k)H
13 H

(1,k)
13 C

(k)
[3] = 0T ′

1
N−b′

1
×b′

1
holds.

By projecting the received signal vector onto all available

vectors w
(1,k)
12,ξ and w

(1,k)
13,ξ , 1 ≤ ξ ≤ T ′

1N − b′1, the sets

of order-2 symbols {u
(k)
[3|1,3],ξ}

T ′

1
N−b′

1

ξ=1 and {u
(k)
[2|1,2],ξ}

T ′

1
N−b′

1

ξ=1

will be generated, respectively. We further assume
b′
1

T ′

1
N

≥ 1
2 ,

which ensures all generated order-2 symbols are non-zero

values almost surely. By applying similar processing, the sets

of order-2 symbols {u
(k)
[1|1,2],ξ}

T ′

1
N−b′

1

ξ=1 and {u
(k)
[3|2,3],ξ}

T ′

1
N−b′

1

ξ=1

will be generated from the remaining interference terms at

Rx2, and the sets {u
(k)
[1|1,3],ξ}

T ′

1
N−b′

1

ξ=1 and {u
(k)
[2|2,3],ξ}

T ′

1
N−b′

1

ξ=1

will be generated from the remaining interference terms at

Rx3. This results in overall q′1Σ = 6(T ′
1N − b′1) order-2

symbols generated per transmission block.

Let us consider the decodability requirement of the data

vector u
(k)
[1] at Rx1. Out of the available six order-2 symbol

sets, there are four sets which can provide Rx1 with linear

combinations of u
(k)
[1] , resulting in 4 (T ′

1N − b′1) terms in total.

It is possible for Rx1 to decode u
(k)
[1] only if the number of

the obtained linear combinations is greater than or equal to

the number of the desired unknowns, i.e. 4 (T ′
1N − b′1) ≥ b′1,

which can be rewritten as

b′1
T ′
1N

≤
4

5
. (14)

Due to the transmission symmetry among Tx1, Tx2 and Tx3,

identical decodability requirements hold for Rx2 and Rx3.

Further, depending on the ratio M/N , we consider two

cases, which differ in the way the transmission blocks are

designed. In each case, the decodability requirements of (3)

and (14) override each other, thus only one of them has

to be satisfied. The first case corresponds to the region of

M/N > 4/5, where only (14) has to be fulfilled. In such a

case, in order to maximize the amount of the transmitted data,

the transmitters adjust b′1 and T ′
1 such that

b′
1

T ′

1
N

= 4
5 holds. The

second case corresponds to the region of M/N < 4/5, where

only (3) has to be fulfilled. Here, in order to maximize the

amount of the transmitted data, the transmitters set b′1 = MT ′
1.

In this case, the number of linear combinations obtained

by each receiver exceeds the number of desired unknowns,

thereby only b′1/4 = MT ′
1/4 order-2 symbols are necessary

to be retransmitted from each order-2 symbol set to ensure

decodability. The aforementioned two cases will be treated by

two transmission schemes denoted as Scheme 1 and Scheme

2, respectively, which will be introduced next. For the case of

M/N = 4/5, Scheme 2 will be applied. Due to the results on

the achievable DoF already available in the literature [7], we

will focus on the region of

3/4 < M/N < 1. (15)
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Scheme 1: (4/5 < M/N < 1)

We choose b′1 = 4N and T ′
1 = 5 which ensures

b′
1

T ′

1
N

= 4
5 .

This results in overall b′1Σ = 12N symbols transmitted and

q′1Σ = 6N order-2 symbols generated per transmission block.

The linear independence of the useful linear combinations

obtained by each receiver can be shown using the proof similar

to the one described in [5], however due to the lack of space

it is omitted in the paper.

Scheme 2: (3/4 < M/N ≤ 4/5)

We choose T ′
1 = 4 and b′1 = 4M and take the first

MT ′
1/4 = M elements from each order-2 symbol set for

retransmission in phase 2. This results in overall b′1Σ = 12M
symbols transmitted and q′1Σ = 6M order-2 symbols generated

per transmission block. Similarly, the proof of the linear

independence is omitted here due to space limitation.

B. Second Phase

In phase 2, the order-2 symbols generated in phase 1 are

transmitted. The transmitters are scheduled to transmit simul-

taneously in pairs, where each of the scheduled transmitters

transmits b′2 order-2 symbols per single transmission block

in T ′
2 time slots. Both of the scheduled transmitters transmit

order-2 symbols useful for the same pair of receivers, i.e. Txi

and Txj transmit order-2 symbols useful for both Rxi and Rxj ,

1 ≤ i, j ≤ 3, i 6= j.

Let us consider the k-th transmission block, 1 ≤ k ≤ k2,

where Tx1 and Tx2 are scheduled for the transmission. Both

transmitters transmit the order-2 symbols that are simultane-

ously useful for both Rx1 and Rx2. The order-2 symbols to be

transmitted by Tx1 and Tx2 constitute two b′2-element vectors

u
(k)
[1|1,2] and u

(k)
[2|1,2], for which the random precoding matrices

C
(k)
[1|1,2],C

(k)
[2|1,2] ∈ T ′

2M × b′2 are used, respectively. After the

transmission, both Rx1 and Rx2 obtain T ′
2N linear combi-

nations of u
(k)
[1|1,2] and u

(k)
[2|1,2]. To decode both u

(k)
[1|1,2] and

u
(k)
[2|1,2], Rx1 and Rx2 miss yet 2b′2−T ′

2N linear combinations.

Let us consider the signal received at Rx3,

y
(2,k)
3 = H

(2,k)
31 C

(k)
[1|1,2]u

(k)
[1|1,2] +H

(2,k)
32 C

(k)
[2|1,2]u

(k)
[2|1,2], (16)

which is a sum of two interference terms. Similarly to phase

1, we define the matrices W
(2,k)
31 and W

(2,k)
32 , for which

W
(2,k)H

31 H
(2,k)
31 C

(k)
[1|1,2] = 0T ′

2
N−b′

2
×b′

2
,

W
(2,k)H
32 H

(2,k)
32 C

(k)
[2|1,2] = 0T ′

2
N−b′

2
×b′

2
(17)

hold. Let us denote by w
(2,k)
31,ξ and w

(2,k)
32,ξ , 1 ≤ ξ ≤ T ′

2N − b′2,

the ξ-th columns of the matrices W
(2,k)
31 and W

(2,k)
32 , re-

spectively. By projecting the received signal onto w
(2,k)
31,ξ and

w
(2,k)
32,ξ , Rx3 will get the linear combinations which contain

order-2 symbols transmitted by only a single transmitter:

w
(2,k)H

31,ξ y
(2,k)
3 = w

(2,k)H

31,ξ H
(2,k)
32 C

(k)
[2|1,2]u

(k)
[2|1,2],

w
(2,k)H

32,ξ y
(2,k)
3 = w

(2,k)H

32,ξ H
(2,k)
31 C

(k)
[1|1,2]u

(k)
[1|1,2].

(18)

We further use the notation of order-(2,1) symbols used in

[5], where the order-(2,1) symbol is a term which is desired by

two receivers and overheard at a single unintended receiver.

We denote by u
(k)
[l|i1,i2;j],ξ

the order-(2,1) symbol, which is

desired by Rxi1 and Rxi2 , available at Txl, and is known at

Rxj , 1 ≤ i1, i2, l, j ≤ 3, i1 6= i2 6= j, l ∈ {i1, i2}. From (18),

the following order-(2,1) symbols are generated:

u
(k)
[2|1,2;3],ξ = w

(2,k)H

31,ξ H
(2,k)
32 C

(k)
[2|1,2]u

(k)
[2|1,2],

u
(k)
[1|1,2;3],ξ = w

(2,k)H

32,ξ H
(2,k)
31 C

(k)
[1|1,2]u

(k)
[1|1,2].

(19)

By projecting y
(2,k)
3 onto all available vectors w

(2,k)
31,ξ and

w
(2,k)
32,ξ , the sets of order-(2,1) symbols {u

(k)
[2|1,2;3],ξ}

T ′

2
N−b′

2

ξ=1

and {u
(k)
[1|1,2;3],ξ}

T ′

2
N−b′

2

ξ=1 will be generated, respectively. We

assume
b′
2

NT ′

2

≥ 1
2 holds, which ensures all generated order-

(2,1) symbols are non-zero values almost surely. Given the

sets delivered to both Rx1 and Rx2, each of the receivers

will obtain additional 2 (T ′
2N − b′2) linear combinations of

u
(k)
[1|1,2] and u

(k)
[2|1,2]. It is possible for Rx1 and Rx2 to decode

both u
(k)
[1|1,2] and u

(k)
[2|1,2], only if the number of the linear

combinations provided to Rx1 and Rx2 is greater than or

equal to the number of the missing linear combinations, i.e.

2 (T ′
2N − b′2) ≥ 2b′2 − T ′

2N , which can be rewritten as

b′2
T ′
2N

≤
3

4
. (20)

Due to the limitation of (15), the requirement of (20)

overrides the requirement of (3). To maximize the amount of

the transmitted data, we choose b′2 = 3N and T ′
2 = 4, which

ensures
b′
2

T ′

2
N

= 3
4 . This results in overall b′2Σ = 6N order-

2 symbols transmitted and q′2Σ = 2N order-(2,1) symbols

generated per transmission block. Similarly to phase 1, the

proof of the linear independence of the linear combinations

of the order-2 symbols obtained by Rx1 and Rx2 is omitted.

All transmitter pairs use transmission blocks with identical

parameters b′2 and T ′
2. The transmission blocks of Scheme 1

and Scheme 2 use identical values of b′2 and T ′
2.

C. Third Phase

In phase 3, the order-(2,1) symbols generated in phase

2 are transmitted, where all transmitters are scheduled to

transmit simultaneously. Each transmitter transmits b′3 order-

(2,1) symbols comprised of two b′3/2-element vectors per

single transmission block in T ′
3 time slots. Let us consider

the k-th transmission block, 1 ≤ k ≤ k3. The order-(2,1)

symbols transmitted by Tx1, Tx2 and Tx3 constitute six

vectors u
(k)
[1|1,2;3], u

(k)
[1|1,3;2], u

(k)
[2|1,2;3], u

(k)
[2|2,3;1], u

(k)
[3|1,3;2] and

u
(k)
[3|2,3;1], precoded using random matrices C

(k)
[1|1,2;3], C

(k)
[1|1,3;2],

C
(k)
[2|1,2;3], C

(k)
[2|2,3;1], C

(k)
[3|1,3;2] and C

(k)
[3|2,3;1], respectively.

Let us consider the signal received by Rx1, which is

y
(3,k)
1 = H

(3,k)
11

(

C
(k)
[1|1,2;3]u

(k)
[1|1,2;3] +C

(k)
[1|1,3;2]u

(k)
[1|1,3;2]

)

+

+H
(3,k)
12

(

C
(k)
[2|1,2;3]u

(k)
[2|1,2;3] +C

(k)
[2|2,3;1]u

(k)
[2|2,3;1]

)

+

+H
(3,k)
13

(

C
(k)
[3|1,3;2]u

(k)
[3|1,3;2] +C

(k)
[3|2,3;1]u

(k)
[3|2,3;1]

)

.

(21)
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TABLE I
SUMMARY OF SCHEME 1 AND SCHEME 2

Phase 1 Phase 2 Phase 3

M/N b′
1

T ′

1
b′
1Σ

q′
1Σ

k1 b′
2

T ′

2
b′
2Σ

q′
2Σ

k2 b′
3

T ′

3
b′
3Σ

k3 d

4/5 < M

N
< 1 4N 5 12N 6N 3 3N 4 6N 2N 3 2N 4 6N 1 36N/31

3/4 < M

N
≤ 4/5 4M 4 12M 6M 3N 3N 4 6N 2N 3M 2N 4 6N M 9MN

3N+4M

Since Rx1 possess the knowledge about the vectors u
(k)
[2|2,3;1]

and u
(k)
[3|2,3;1], it can subtract them from y

(3,k)
1 . The remaining

vectors u
(k)
[1|1,2;3], u

(k)
[2|1,2;3], u

(k)
[1|1,3;2] and u

(k)
[3|1,3;2] contain the

terms desired by Rx1, comprising in total 2b′3 unknowns.

The number of the useful linear combinations available to

Rx1 is equal to the size of the vector y
(3,k)
1 , which equals T ′

3N .

It is possible for Rx1 to decode all desired unknowns only

if the number of the available linear combinations is greater

than or equal to the number of the desired unknowns, i.e.

T ′
3N ≥ 2b′3, which can be rewritten as

b′3
T ′
3N

≤
1

2
. (22)

Due to the symmetry of the transmission among Tx1, Tx2 and

Tx3, identical decodability requirements hold for the receivers

Rx2 and Rx3. Similarly to phase 2, the requirement of (22)

overrides the requirement of (3) due to the limitation of (15).

To maximize the amount of the transmitted data, we choose

b′3 = 2N and T ′
3 = 4, which ensures

b′
3

T ′

3
N

= 1
2 . This

results in overall b′3Σ = 6N order-(2,1) symbols transmitted

per transmission block. Transmission blocks of Scheme 1 and

Scheme 2 use identical values of b′3 and T ′
3.

D. Achieved Number of DoF

The numbers of the transmission blocks of the i-th phase

ki, i ∈ {1, 2, 3}, are chosen according to (1). Each receiver

will recover useful order-(2,1) symbols and will use them to

decode useful order-2 symbols, which in turn will be used

to decode the original data symbols. The achieved number of

DoF can then be calculated as d = 3b1
T1+T2+T3

. The parameters

of Scheme 1 and Scheme 2 and the achieved number of DoF

are summarized in Table I.

The achieved number of DoF is compared to the one of [7]

in Fig. 2, where the normalized number of DoF d
3N is plotted

as a function of M/N . Additionally, we plot an outer bound

douter

3N
=







3
7 , if 3

4 ≤ M
N

≤ 1,

M
M+N

, if 1
2 ≤ M

N
< 3

4 ,
(23)

which can be obtained similarly to the outer bound for the

3-user SISO IC of [8] using the results of [9]. For M/N < 1,

the proposed transmission scheme utilizes all receive antennas,

which leads to the larger number of transmitted data symbols

as compared to the transmission scheme proposed for the

region of 31/32 < M/N ≤ 18/13 in [7]. For M/N < 4/5,

the performance of the proposed scheme decreases with M/N
due to the requirement of (3), which limits the number of data

symbols transmitted in phase 1.

0.5 0.6 0.7 0.8 0.9 1
0.32

0.34

0.36

0.38

0.4

0.42

0.44

M/N
d
3
N

[7]: Scheme based on 9/8 DOF scheme [4]

[7]: Scheme based on 36/31 DOF scheme [5]

Proposed scheme

Outer bound (23)

Fig. 2. Number of DoF for 3-user MIMO IC with delayed CSIT

IV. CONCLUSIONS

For the three-user MIMO IC under the delayed CSIT setting

where each transmitter has M antennas and each receiver has

N antennas, new results on the achievable number of DoF in

the region of 3/4 < M/N < 1 were obtained. The results are

based on a three-phase transmission scheme, which compared

to the previous approaches uses available transmit and receive

antennas in a more effective way.
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