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Abstract 

Multiple nucleic acid or amino acid sequences alignment is one of the most commonly used techniques 
in bioinformatics. It helps find out homology between new sequences and existing ones. In this paper, 
we propose a new approach for multiple sequence alignment using genetic algorithms. The aligning 
order of the sequences is represented by a spanning tree, and the optimum (or very close to it) 
alignment is yielded by interchanging information between fitter spanning trees. The experimental 
results manifest that the performance of the proposed method is better than those of existing methods. 
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1. Introduction 
Multiple sequence alignment (MSA) is a fundamental and challenging 

problem in computational molecular biology. It plays a key role in computing 
similarity and in finding highly conserved subsequences among a set of 
deoxyribonucleic acid (DNA) sequences. Similar subsequences often implicitly imply 
a significant functional or structural resemblance in biology. The DNA sequences are 
reordered and mutated during evolution, and thus show up pattern repeats either 
within a single genome or across the genomes of a variety of species. As a result, the 
MSA is one of the most commonly used methods for inferring biological structures 
and functions. More often, it is the first step of many tasks in computational biology 
involving fragment assembly, evolutionary tree reconstruction, and genome analysis. 
For a comprehensive review on the MSA, please refer to (Chan et al., 1992; Gusfield, 
1997; Waterman, 1995). 

 
Though the optimal alignment of two sequences could be found via the 

dynamic programming approach (Needleman and Wunsch, 1970; Waterman, 1995), 
the problem of computing the minimum cost for the MSA has been shown to be 
NP-hard (Wang and Jiang, 1994). Solutions thus rely on heuristics for practical 
consideration. Meanwhile many criteria were proposed to measure the goodness of 
the MSA result. One of the most popular criteria is the sum-of-pairs (Gusfield, 1993; 
Pevzner, 1992). It finds an alignment which minimizes the total sum of all distances 
between every pair of aligned sequences induced by this alignment.  
 

The heuristics proposed to approximate the MSA can be classified into two 
main categories: (1) iterative 2-way alignment, and (2) stochastic methods. Many 
approaches belonging to the first category were presented in the literature (Bains, 
1986; Feng and Doolittle, 1987; Corpet., 1988; Chan, et al., 1992; Higgins, et al., 
1996; Shyu, et al., 2001; Genetic Computer Group (GCG)). Some of them provide the 
theoretical analysis on performance guarantee (Gusfield, 1993; Bafna, Lawler and 
Pevzner, 1997). However, quite few in the literature for the latter category have shown 
their effectiveness (Ishikawa et al., 1993; Kim et al., 1994; Notredame and Higgins, 
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1996; Notredame et al., 1997). 
 
In this paper, we shall present an algorithm for the MSA based on the genetic 

algorithms. Also, experiments are conducted to test the effectiveness of the proposed 
approach. 
 
2. Iterative 2-way Alignment and Progressive Alignment 
2.1 Iterative 2-way Alignment 

Let S1and S2 be two sequences of length n and m, and s1i and s2j be the ith and 
jth character of the corresponding sequences, respectively. Let σ (s1i, s2j) denote the 
dissimilarity score between characters s1i and s2j. The dynamic programming 
algorithm for deriving the optimal alignment of the two sequences (2-way alignment) 
can be illustrated by the following formulas: 
 

A(0, 0) = 0            
A(i, 0) = A(i-1, 0)+σ (s1i, ~)         
A(0, j) = A(0, j-1)+σ (~, s2j)         
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where “~” denotes a gap within the aligned sequence and A(n, m) is the optimal 
alignment score. 
 

Now, suppose that k sequences S1, S2, …, Sk are considered simultaneously. A 
straightforward extension of the above algorithm can be easily performed to find an 
optimal alignment of the k sequences (Sankoff, 1975; Waterman et al., 1976). 

However, the computational time involved is proportional to 2k∏
=

k

i
iS

1

 where iS  

denotes the length of sequence Si, which is unbearable for practical usage. Therefore, 
many efficient heuristics are proposed based on applying the 2-way alignment 
iteratively (Gusfield, 1993; Shyu et al., 2001). 
 
2.2 Progressive Alignment 

When the result of a 2-way alignment is treated as a single entity, the idea of 
the progressive alignment arises (Hogeweg and Hesper, 1984; Feng and Doolittle, 
1987; Taylor, 1988; Corpet, 1988; Higgins and Sharp, 1989). The algorithm proceeds 
as follows. First, two of the k sequences are aligned optimally, and the resulting 
sequence of the commonly aligned characters replaces the two original sequences. 
This reduces the problem of aligning k sequences to a problem of aligning k-1 
sequences. The process is applied iteratively until only one aligned sequence remains. 
When dealing with the gaps, we follow the ‘once a gap, always a gap’ principle (Feng 
and Doolittle, 1987).  
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What makes the progressive alignment possible is that the dynamic 
programming algorithm for aligning two sequences can be well performed when one 
or both of the sequences are the alignments themselves of the original sequences. Let 
X and Y be the two alignments to be aligned. Let xi,j and yi,j denote the character at the 
jth position of the ith sequences in X and Y, respectively. We give the formulation of 
the dynamic programming for the progressive alignment as follows. 
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Note that all of the characters in each column of an alignment would be aligned with 
all of the characters in each column of another alignment.  
 

Once an aligning order of the sequences is given, the progressive alignment 
approach can deliver an approximate result for the local optimum. However, applying 
the progressive alignment approach for each of the possible aligning orders is not 
practical. In the next section, we propose to use a genetic algorithm to effectively 
explore the aligning order space and enable the progressive alignment approach to 
approximate the global optimum. 
 
3. The Proposed Algorithm: MSAGA 
 Here, we realize the MSA by another perspective. Consider a complete graph, 
if we annotate each node as a sequence and every two nodes are connected by an edge 
with a weight representing the alignment score between the corresponding sequences, 
the iterative 2-way alignment can be actually illustrated by a spanning tree. A 
spanning tree is a tree that spans all the nodes. We propose to explore the space of all 
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possible spanning trees using a genetic algorithm (GA). GAs are stochastic search 
algorithms which simulate the biology evolution (Goldberg, 1989). They perform 
parallel search by a population of randomly generated solutions, called chromosomes, 
to the solution space. The average fitness value of the population is improved by 
conducting reproduction that is consisting of two operators: crossover and mutation. 
Reproduction mimics the natural selection based on Darwinian survival of the fittest. 
These selected individuals interchange parts of their information by crossover and 
occasionally alter the gene allele by mutation. 
 
 Our idea proceeds as follows. Initially, a population of randomly generated 
spanning trees over the sequence nodes is established. A random spanning tree can be 
generated by adding a new edge to the tree one by one until the spanning tree is 
obtained in such a way that the insertion of the edge does not create a cycle. The 
fitness value of a spanning tree is defined as the inverse of the alignment score of the 
sequences according to the weight-ascending order on the edges using the progressive 
approach. Then, the spanning trees are selected to form a mating pool for reproduction 
with the probability proportional to their fitness values. There are two genetic 
operators, namely the crossover and the mutation, to fulfill the reproduction process. 
In particular, we design the genetic operators for spanning trees as follows. 
 
Crossover. Randomly choose two spanning trees T1 and T2 as parents from the 
mating pool as illustrated in Fig. 1(a). The common edges of T1 and T2 are firstly 
extracted to establish the initial form of their offsprings S1 and S2 which could be a 
single tree or a forest (see Fig. 1(b)). Then, S1 and S2 iteratively select the next edges 
from their parents until they become spanning trees. At each iteration, a random 
number q is drawn within (0, 1). If q < 0.5 then S1 chooses an edge from T1 and S2 
chooses an edge from T2. Otherwise, S1 chooses an edge from T2 and S2 chooses an 
edge from T1. However, the insertion of the chosen edge can not create a cycle in the 
offspring (see Figs. 1(c)-1(d)). As such, the offspring inherits mixed information from 
their parents in the hope that it will deliver a better alignment score. 
 
Mutation.  Every reproduced offspring has a very low probability of undergoing 
mutation. Let offspring S1 in the previous example is determined for mutation. First, 
arbitrarily remove an edge from S1 and yield two disjoint node sets denoted by V1 and 
V2 (see Fig. 2(a)). Second, create a new edge (i, j) with weight wi,j such that 1Vi ∈  
and 2Vj ∈  as shown in Fig. 2(b), that is, edge (i, j) will connect V1 and V2 and 
reproduce a spanning tree again. Mutation is a necessary evolution step which 
involves new information not attainable from the biological parents. 
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 The population of spanning trees is reproduced from generation to generation. 
After a given number of generations, the spanning tree with the best alignment score 
over the entire evolution is output as the final solution. We present the MSAGA 
approach in Table 1. 

 
 

Table 1 The multiple sequence alignment by genetic algorithms (MSAGA). 
Step 1: Construct a complete graph G(V, E) where V is a set of nodes and E is a set 

of edges. Each node represents a sequence and each edge is associated with a 
weight representing the alignment score of the corresponding sequences. 

Step 2: Generate a population of random spanning trees of G. 
Step 3: Select spanning trees from the current population to form a mating pool 

according to their fitness values. 
Step 4: Reproduce the next generation by applying crossovers and mutations. 
Step 5: Repeatedly performing Steps 3-4 until a given number of generations is 

reached. 
Step 6: Output the spanning tree with the best alignment score over the entire 

evolution. 
 
 

3. Results 
In this section, we will give the comparative performance of the proposed 

MSAGA approach with the Gusfield’s method and the GCG method. Several test 
cases of the MSA of DNA sequences are obtained from the public database 
(ftp://ftp.ebi.ac.uk/pub/databases/embl/align). The number of sequences in the test 
case ranges from 12 to 44, and the maximum length of the sequences is 714. Table 2 
lists the obtained alignment scores by using the competing approaches. Remind that 
the smaller the score, the better the alignment. It is seen that the GCG method 
produces the worst results, the Gusfield’s solutions are moderate, and the proposed 
MSAGA yields the best alignment scores for almost all the test cases. To visualize the 
relative quality of the delivered alignment score, we set the GCG result as a base line 
and compute the ratio to the others. Fig. 3 illustrates that the proposed MSAGA 
method provides a substantial improvement over the existing methods. 
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Table 2 The alignment scores by using GCG method, Gusfield’s 
method, and the proposed MSAGA approach. 

Test cases GCG method Gusfield’s method MSAGA 

1 12238 12559 12068 

2 140624 105935 102754 

3 16719 10393 9970 

4 6754 6182 5920 

5 17283 16021 14943 

6 13345 14345 13347 

7 3817 3817 3817 
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