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1 ABSTRACT

Automated human face recognition is required in numerous applications. While con-
siderable progress has been made in color/two dimensional (2D) face recognition, three
dimensional (3D) face recognition technology is much less developed. 3D face recognition
approaches based on the appearance of range images and geometric properties of the fa-
cial surface have been proposed. Methods that combine 2D and 3D modalities also exist.
These innovations have advanced the field and have created novel areas of investigation.
The purpose of this chapter is to provide a summary and critical analysis of the progress in
3D and 2D+3D face recognition. The chapter also identifies open problems and directions
for future work in the area.

2 INTRODUCTION

Robust and accurate identification of humans is required for numerous tasks. Over
the years, a number of scientific approaches have been investigated to identify individuals.
A widely explored approach is biometrics, the measurement of anatomical, physiological,
and behavioral characteristics believed to be unique to individuals. The measurement of
anatomical attributes of human beings is also called anthropometry. Phillips et al. outlined
the characteristics of an ideal biometric based identification system: a) all members of the
population should posses the biometric; b) the biometric signature of each individual should
differ from that of other individuals in a controlled population; c) the biometric signature
of each individual should not vary under the conditions in which it is recorded; and d) the
system should resist countermeasures [87].

The first truly scientific approach to establish an individual’s identity based on anthro-
pometry was the Bertillon system introduced in France in the nineteenth century [95]. In
this system, anthropometric measurements, e.g., the skull width, foot length, cubit, trunk,
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along with hair color, eye color, and front and side view photographs were recorded.
Bertillonage, as it was called, remained in vogue in police departments around the world
for a number of years during the latter part of the nineteenth century. It was eventually
abandoned due to questions regarding its infallibility as an accurate identification system,
and was replaced by more reliable systems based on fingerprints. Fingerprint matching was
considered the most reliable method for person identification for a large part of the twenti-
eth century, and was later augmented with DNA matching.

With the availability of computers, a natural step forward has been to automate the
task of human identification. In the recent years, due to the availability of computers with
greater speeds and memory, automated biometric systems have become a topic of consider-
able interest. They have numerous applications including secured access to ATM machines
and buildings, automatic surveillance, forensic analysis, retrieval of images from mugshot
databases in police departments, automatic identification of patients in hospitals, checking
for fraud or identity theft, and human computer interaction. Automated biometric systems
expedite processing of large volumes of data, and in some cases can work in realtime. Cur-
rently, personal identification numbers, access codes/cards, bar codes, and radio frequency
ID tags are popularly employed for identification. However, these are susceptible to loss or
theft. Identification numbers and access codes/cards also require substantial user involve-
ment. Hence, they are of limited utility for identifying very young children and seriously
ill persons.

Many biometric techniques have been explored for automated human identification in-
cluding face, iris, retina, fingerprint, palmprint, hand, gait, voice, and handwriting recog-
nition. Of these, iris and fingerprint systems are reported to be highly accurate [93], but
they require substantial subject cooperation. They are difficult to deploy in realtime screen-
ing and surveillance applications, where minimal user cooperation is desired, or where the
system is to be operated covertly. Face recognition as a biometric modality requires less
subject cooperation, is amenable to surveillance applications, and can be developed using
relatively low cost components.

Although human beings are highly skilled at recognizing faces, there are also deficien-
cies in the face recognition abilities of humans. For example, a study of DNA exonerations
reported that 84% of wrongful convictions were due in part to false recognition by eyewit-
nesses or victims [99]. Researchers believe that the face cognition abilities of humans are
influenced by cross-racial effects [68] and other biases. Furthermore, many psychological
aspects of human face processing and cognition are not well understood.

As another example in the criminal justice domain, consider the construction of a lineup,
in which eyewitnesses or victims are presented with six face images to inspect. One of these
is of the suspect. It is recommended that besides the suspect’s facial image, the other im-
ages be of individuals close in appearance to the suspect [116]. In order to automatically
construct effective lineups, it is necessary to define quantitative measures of similarity of
facial appearance. Such measures can also be useful for content-based image retrieval from
facial databases. Researchers in the cognitive sciences emphasize the need to define ob-
jective, quantitative measures of similarity of human faces [92]. They believe that insights
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gained from the field of computer vision could aid in enhancing the understanding of the
mechanisms driving human face processing and cognition.

Considerable research attention has been directed, over the past two decades, towards
developing reliable automatic face recognition systems. For the most part, research efforts
have concentrated primarily on intensity/color/two dimensional (2D) images, and commer-
cial systems are now available for this task [115].

Two dimensional face recognition systems are easy to construct with relatively cheap
off-the-shelf components, but they are inadequate for robust face recognition. The Face
Recognition Vendors Test was conducted in the year 2002 (FRVT 2002) to establish per-
formance metrics for fully automatic 2D face recognition algorithms [91]. It was reported
that the performance of the three best algorithms dropped nearly in half for facial images
captured under varying ambient illumination conditions, or varying facial poses. Synthetic
2D frontal face images generated by employing three dimensional (3D) morphable mod-
els [13], greatly improved recognition results for faces with large pose variations. Hence
at the FRVT 2002, using 3D face models for pose correction was identified as a potential
solution to the pose problem in face recognition.

Three dimensional face recognition technology has emerged in the recent years, in part,
due to the availability of improved 3D image acquisition devices and processing algorithms.
For 3D face recognition algorithms, 3D facial models are employed either by themselves
(3D algorithms) or in conjunction with 2D facial images (2D+3D algorithms).

In this chapter, we present a comprehensive, up-to-date literature review of the existing
3D and 3D+2D face recognition techniques. We focus primarily on recognition techniques
developed for facial models captured in realtime using 3D acquisition devices. While, tech-
niques for 3D and 2D+3D face recognition have also been reviewed previously [3,15,100],
we present a more comprehensive and up-to-date literature survey.

We first outline the broad categories of tasks that are performed by automatic recog-
nition systems and quantitative measures to assess their performance. We then discuss
the main 2D face recognition algorithms that have influenced the development of analo-
gous techniques for 3D face recognition, and have been employed in numerous 2D+3D
approaches. A detailed discussion of existing approaches for 3D and 2D+3D face recogni-
tion follows. We conclude by enumerating open problems in area and identifying potential
directions for future work.

3 FACE RECOGNITION TASKS

The two main tasks performed by any automatic human recognition system are verifi-
cation/authentication and identification [88]. These are discussed in the following sections.

3.0.1 Verification

Verification/authentication is a one-to-one matching task wherein a person claims to be
a specific entity known to the system (Figure 1). The database of people known to the sys-



4 Shalini Gupta, Mia K. Markey, Alan C. Bovik

Figure 1: A schematic diagram of an automatic biometric verification system

tem is referred to as the ‘gallery’. The individual whose identity is verified/authenticated by
the system is referred to as the ‘probe’. The facial representation of the probe is compared
against the gallery representation of the claimed entity. If the similarity score between the
two is greater than a predefined threshold, the individual is identified as the claimed entity;
otherwise, he or she is rejected as an imposter. An example of a verification scenario is
automated secure access to a building.

The performance of verification systems is reported in terms of a receiver operating
characteristic (ROC) curve [94]. A ROC curve is a plot of the relationship between the
false acceptance rate (FAR) and the false rejection rate (FRR). The verification scenario
really can be thought of as a two class problem where match scores are either classified as
intra-intity scores or inter-entity scores. FAR is defined as the proportion of comparisons
between two different individuals that are falsely accepted by the system [101]. FRR is the
proportion of comparisons between two instances of the same individual that are falsely
rejected by the system [101]. Both FAR and FRR vary as the system’s decision threshold
is varied [33]. A single performance metric typically reported for verification systems is
the equal error rate (EER), where FAR = FRR. For an ideal system EER=0%. The area
under the ROC curve is also sometimes reported as a measure of performance. This area
ranges from zero for an ideal system to 0.5 for a system with chance performance. Figure
2 presents a typical ROC curve. Note that different, but equivalent, formulations of ROC
curves are used in evaluating classifications systems in other disciplines (e.g., in medical
imaging [71]).

ROC curves are also closely related to precision-recall curves frequently employed for
evaluating the performance of general information retrieval systems [31]. Recall is equal
to the true positive fraction, which measures the fraction of intra-entity scores that are
correctly labeled by the system. Precision on the other hand measures the fraction of match
scores that are labeled by the system as intra-entity scores and are truly so. Precision-recall
curves are generally regarded superior than ROC curves for evaluating the performance of
two-class decision systems with highly skewed data sets. Data sets employed to evaluate
face verification systems are also highly skewed, as the number of intra-entity match scores
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Figure 2: A Receiver Operating Characteristic Curve

is usually much less than the number of inter-entity match scores. Yet, currently only ROC
curves are employed to evaluate their performance. Hence, investigations into the utility of
precision-recall curves for the task are warranted.

3.0.2 Identification

Identification is a one-to-many matching task wherein an unknown individual’s iden-
tity is established by comparing his/her biometric against a database of known individuals.
The closest matches in the gallery are found. For example a person may be identified by
comparing against a database of mugshots in a police department. A generalization of the
identification task is the watchlist task. In a watchlist task, each probe is compared against
signatures of all entities known to the system and entities resulting in the highest n similar-
ity scores that are also above a predefined threshold value are considered matches. Setting
a predefined threshold value seems to be is an arbitrary protection against selecting gallery
individuals among the top n matches that are not close in appearance to the probe.

The performance of an identification system can be evaluated in terms of a cumulative
match characteristic (CMC) curve [88, 89]. This formulation assumes a ‘closed universe’
model where all individuals that query the system are present in the gallery. The CMC
curve is a plot of the recognition rate (RR) versus the top n database matches considered.
It is the ratio of the number of probes for which the correct gallery match is present among
the top n matches to the total number of probes that query the system. If the closed uni-
verse assumption is false, i.e., a probe is not present in the gallery, then the maximum RR
achieved is less than 100%.

Verification, identification, and watchlist tasks present different design challenges. For
example, imposters attempting to fool a verification access control system would disguise
themselves as someone known to the system. Thus, it is important that a high security ac-
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Figure 3: A schematic diagram of an automatic biometric identification system

cess control system have a low FAR so as not to falsely allow access to an imposter. By
comparison, persons attempting to evade identification merely need to disguise themselves
as anyone other than themselves. Hence, the FRR of, e.g., airport screening systems should
be low, so that individuals with disguises are correctly identified. Hence, while designing
biometric systems it is necessary to keep in mind the final intended application. A system
optimized for one application may not perform acceptably for another.

4 2D FACE RECOGNITION ALGORITHMS

2D face recognition technology has developed considerably over the past two decades.
Broadly speaking, the two main approaches employed for 2D face recognition are: (a)
based on the appearance of the whole face or (b) based on local facial features/geometric
templates. Comprehensive survey papers detailing the progress of 2D face recognition al-
gorithms have been written [26, 124].

Over the last decade, a number of independent tests have also been administered to
compare the performance of 2D face recognition algorithms. These include a series of Fa-
cial Recognition Technology (FERET) tests [89, 90], and the Face Recognition Vendors
Tests [118]. In such evaluations, a few 2D face recognition algorithms have consistently
demonstrated superior performance. These include algorithms based on principal compo-
nent analysis (PCA), linear discriminant analysis (LDA), local feature analysis (LFA), and
elastic bunch graph matching (EBGM).

Commercials systems based on mature 2D face recognition algorithms include those by
Cognitec Systems GmbH, Dresden, Germany; Identix R©, Minnetonka, MN; and Eyematic
Interfaces Inc., Inglewood, California now called Neven Vision, Santa Monica, California.
These systems were among the top three performers at the FRVT 2002. The system by
Identix R© was based on LFA, and that by Eyematic Interfaces Inc./Neven Vision was based
on EBGM. All these systems performed well for frontal or nearly frontal 2D face images
captured indoors, but their performance decreased with variable illumination conditions and
head rotations.
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These top ranking 2D face recognition algorithms have also inspired similar algorithms
for 3D face recognition. Furthermore, many of these 2D techniques have also been com-
bined with 3D techniques to form 2D+3D face recognition algorithms. While, the focus of
this paper is not 2D face recognition, the significant ones are discussed here since they form
the basis for many 3D and 2D+3D strategies.

4.1 Holistic Appearance Based Techniques

Among the holistic 2D face recognition techniques, based on the appearance of facial
grayscale/color images, are a number of subspace projection methods. These include algo-
rithms that employ principal component analysis (PCA), and linear discriminant analysis
(LDA). In these methods, a facial image is regarded as an instance in N dimensional feature
space, where N is the number of pixels in the image. All human face images are modeled
to lie on a linear/non-linear subspace of the N dimensional feature space. Statistical tech-
niques are employed to learn the subspace using an ensemble of facial images. All facial
images are projected onto the subspace before classification.

Holistic appearance based methods generally use information from the entire image.
They do not employ high level knowledge about human faces to segment parts of the face.
Hence, they tend to be less robust to outliers, cluttered backgrounds, and occlusions. Fur-
thermore in order to reliably learn the facial subspace, they require a large number of train-
ing images of many subjects under diverse imaging conditions. Two of the important holis-
tic 2D face recognition techniques, PCA and LDA, are discussed here.

4.1.1 Principal Component Analysis

PCA or eigenfaces was one of the first successful techniques developed for 2D face
recognition [51, 110]. In this technique, a set of orthogonal basis vectors, that maximize
the variance of facial image data, are obtained by eigen decomposition of the scatter ma-
trix of facial images [32]. The eigenvectors are referred to as eigenfaces. PCA results in
compact representations of high dimensional data, which are optimal in the mean squared
sense. That is, PCA minimizes the mean squared error between the original image, and the
corresponding image reconstructed from the eigen directions. If an image is reconstructed
from all the eigen directions, the mean squared error between the original image and its
reconstructed version is zero.

For face recognition, the top M (M ≤ N ) eigen vectors, which account for most of the
variation of the data, are retained. All gallery and probe facial images are projected onto the
M directions. Faces in the transformed space are compared by means of a suitable distance
metric. PCA is advantageous in that it possesses a closed form solution. It has resulted
in effective 2D face recognition algorithms and is regarded as a benchmark, against which
many others are compared [89]. Despite its success with 2D face recognition, it is not in-
tuitively obvious as to what discriminatory information about human faces is encoded in
the different eigen directions. Furthermore, its performance degrades with facial variations
including expression, pose and illumination changes.
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4.1.2 Linear Discriminant Analysis

Another successful approach for 2D face recognition is based on Fisher’s linear
discriminant analysis [5, 123]. This technique is also called fisherfaces. In this technique,
high dimensional data are linearly projected onto C − 1 LDA directions, where C is the
number of classes, such that the ratio of the between class scatter to the within class scatter
is maximized. LDA can successfully discriminate between linearly separable classes [34].
For face recognition, the dimensionality of the data is first reduced via PCA or some
other technique, before applying LDA. This is done to ensure that the within class scatter
matrix, which is involved in the LDA calculations, is non-singular. Better results for 2D
face recognition have been reported with LDA than PCA [5]. This could be explained
by the fact while LDA projects data onto novel directions, such that the classes are most
separated, PCA is not specifically tailored towards classification problems.

4.2 Local Feature Based Techniques

Two dimensional face recognition techniques based on local facial features/geometric
templates, employ characteristics of localized regions of the face as features for recognition.
Such techniques require an additional step of automatically locating specific parts of the
face using flexible geometric templates or intensity/texture characteristics of specific facial
features. The performance of feature based approaches depends on the accurate localization
of facial landmarks. Segmentation of facial features is a non-trivial task. Segmentation
techniques need to be specific enough to locate only the desired facial features, yet general
enough to do so for a diverse variety of facial images. These are contrasting goals and thus
it is difficult to achieve both.

If facial features can be reliably segmented, effective face recognition techniques based
on local facial features can be developed. They are likely to be more robust to changes in
facial pose, expressions and illumination, holes, occlusions, and the presence of noise than
holistic appearance based approaches. This is because some facial features derived from
localized facial regions would remain unchanged on varying other conditions. Furthermore,
the information encoded in face recognition techniques based on local facial features is
easier to interpret. For example, the discrimination ability of various sub-parts of the face
can be evaluated independently of others.

In this section we discuss two successful 2D face recognition techniques that are based
on local facial properties, namely LFA and EBGM.

4.2.1 Local Feature Analysis

It is argued that PCA does not exploit the inherent correlations and redundancies be-
tween neighboring pixels of an image. Eigen directions are also not topographical in that
it is not understood how the various eigenfaces relate to each other. In order to overcome
some of these deficiencies of PCA, the local feature analysis approach to face recognition,
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was developed [84]. Being a proprietary software of Identix R©, Minnetonka, MN, the exact
details of how this technique is applied to face recognition are not available. It is known
however, that LFA is local in the sense that LFA kernels capture variations in sub-regions of
the face. However, like PCA and LDA, it is applied directly to whole face regions without
first segmenting different parts of the face. LFA kernels are statistically derived local and
topographical sparse representations of the face. Such representations can provide informa-
tion about the discrimination ability of the different parts of the face. LFA is reported to
perform well with 2D frontal faces captured with constant illumination [91].

4.2.2 Elastic Bunch Graph Matching

Wiskott et al. developed another successful technique for 2D face recognition called
elastic bunch graph matching [117]. EBGM is based on Gabor filter coefficients [14] ex-
tracted from specific facial fiducial points. In this technique, fiducial points are manually
located on gallery images. From each point, a ‘jet’, comprising of forty coefficients for
Gabor filters at 5 spatial frequencies and 8 orientations, is extracted. Jets from all gallery
images are concatenated to form a data structure called a ‘bunch’. A flexible ‘face graph’
is also constructed by connecting fiducial points by straight lines. The face graph and the
bunch together form a data structure called an ‘elastic bunch graph’ (EBG). EBGs are em-
ployed for both automatic localization of fiducial points on probe faces, as well as for facial
recognition. It is reported that EBGM works well for varying facial expressions and illumi-
nation conditions. However, it performs poorly for faces with large pose variations.

5 3D FACIAL MODELS

In this section we describe the techniques used to acquire 3D facial models in realtime
and also data structures employed to represent them for face 3D face recognition algorithms.

5.1 3D Facial Model Acquisition

3D facial models are acquired using both active and passive techniques. Besl provides a
summary of the different 3D imaging techniques [7]. The most widely employed active 3D
acquisition technique is based on laser range finders [23,37,44,59,60,65,72,73,85,96,102].
A range finder projects light from a laser source onto a scene and records its reflection. The
depth of the surface closest to the camera is determined by triangulation. Laser range find-
ers produce dense and accurate 3D models, but require longer acquisition times than passive
techniques. Furthermore, they require that the human subject be perfectly still during image
capture [69]. Thus, laser range finders are unsuitable for high throughput screening appli-
cations. Another concern is the intrusive nature of laser light for human eyes.

Passive techniques employed for 3D facial image acquisition include stereo imag-
ing [41–43, 55, 55, 70, 81, 122], and approaches based on structured light [2, 6, 10, 16, 36,
67, 78, 107, 119]. In stereo imaging systems, multiple cameras simultaneously capture a
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face from different view points. Depth information is resolved using camera calibration
parameters and disparity information which is obtained from the different view points. To
register points in the different images, a random light pattern is sometimes projected onto
the scene [81].

In the structured light approach, a standard light pattern, e.g., a light stripe pattern,
is projected onto the scene [10]. Deformation of the light pattern and camera calibration
parameters are employed to resolve the depth at each point in the scene by a process of tri-
angulation. While passive techniques are faster, safer, and cheaper than laser range finders,
they are typically less accurate and contain more missing data.

Attempts have also been made to recover the 3D shape of faces from one or more 2D
images by morphing generic 3D facial models [13, 53, 57, 74, 75, 121]. Many such tech-
niques involve variants of the ‘shape from X’ algorithms, but the recovery of 3D shape
from a single texture image is an ill-posed problem. Such techniques can be useful for gen-
erating 3D facial models of subjects whose 2D images are available but their 3D images
cannot be captured in realtime.

5.2 Facial Surface Representation

Point clouds, triangulated surface meshes, or range images are employed to represent
facial surfaces. The point cloud representation contains the (x, y, z) coordinates of a set of
points on the facial surface (Figure 4(a)). These points can be connected to their nearest
neighbors via straight lines resulting in a triangulated mesh representation (Figure 4(b)).
Compact point cloud or surface mesh representations can be obtained by sampling surfaces
densely in regions containing detailed information, and sparsely in relatively smooth re-
gions. The 3D points in these representations are usually unstructured and thus they require
relatively involved algorithms for processing.

A range image, also referred to as a 2.5D surface or depth map, consists of (x, y) points
on a regular rectangular grid. Each (x, y) point is associated with a z value of the point
on the surface closest to the acquisition device (Figure 4(c)). Range images can be pro-
duced by orthographic projection of surface meshes or 3D point clouds. Three dimensional
acquisition devices that capture range images directly are also available. As points in a
range image are placed along a regular rectangular grid, they can be processed via rela-
tively straightforward image processing algorithms.

6 3D FACE RECOGNITION ALGORITHMS

In recent years, numerous 3D face recognition techniques have been developed. In some
respects, 3D face recognition techniques are advantageous relative to 2D techniques. The
pose of 3D face models can be relatively easily corrected by rigid rotation and translation.
This substantially alleviates the pose problem. Three dimensional models are normally in
real-world dimensions and hence do not need to be rescaled prior to processing. Theo-
retically speaking, the shape of a face is independent of external factors such as ambient



Advances and Challenges in 3D and 2D+3D Human Face Recognition 11

(a) Point Cloud (b) Triangular Mesh (c) Range Image

Figure 4: This figure shows the different 3D representations of a facial surface. In Fig 4(a),
the face is represented as a 3D point cloud. In Fig. 4(b) the 3D points are joined to form
a triangular mesh representation. In Fig 4(c) the 3D face is represented as a range image
where each value in the matrix corresponds to the depth at that point.

lighting during image acquisition. Knowledge of the shape of a face, and the direction and
intensity of ambient illumination during capture, enables the calculation of facial surface
reflectance properties. Surface reflectance is an intrinsic property of the facial surface. It
can be employed to synthetically generate images of the face under different illumination
conditions, which also helps to alleviate the facial illumination problem.

Concerns have been raised with regards to the illumination invariant nature of 3D face
recognition algorithms [15]. It is argued that since intensity images are employed to con-
struct 3D models in passive 3D image acquisition techniques, variations in illumination can
alter the shape of the model constructed. However, in a recent study it was reported that the
performance of 3D face recognition algorithms did not change significantly when 3D mod-
els were acquired under varying illumination conditions using a stereo imaging device [54].
It has also been observed that while the performance of 2D face recognition algorithms
improves significantly when images are compensated for illumination variations, no sig-
nificant improvement in performance of 2D+3D algorithms is observed [67, 107]. This
evidence suggests that 3D face recognition algorithms may be effected less by changes in
illumination conditions than 2D algorithms.

The two main categories of 3D face recognition techniques are: (a) based on the appear-
ance of facial range images (‘appearance based’), and (b) based on the geometric properties
of ‘free form’ facial surfaces (“free form’ based’). Campbell et al. provide an excellent
overview of computer vision techniques for 3D object representation and recognition in
general [18]. In the following sections, appearance (statistical learning) based and ‘free
form’ based 3D face recognition approaches are discussed.

Although a number of 3D and 2D+3D face recognition algorithms have been pro-
posed, most have been evaluated on small private data sets not accessible to other re-
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searchers. This makes it impossible to directly compare their performances. A few stud-
ies report the performance of multiple 3D face recognition algorithms on a common data
set [6,10,12,36,41,43,45,49,50,80,83,102,119]. However, for most such studies, hypoth-
esis testing procedures have not been conducted to confirm the statistical significance of the
observed differences.

Three dimensional and 2D+3D face recognition studies also vary considerably with
regards to certain aspects of their experimental design and evaluation protocol. For exam-
ple, different research groups have employed different sized data sets. Hence, their results
should be interpreted, bearing in mind that the performance of face recognition algorithms
decreases on increasing the number of subjects in the database [91]. Furthermore, in differ-
ent studies, different number of images of each person have been included in the gallery. It
should be noted that increasing the number of images of each person in the database gener-
ally improves the performance of recognition algorithms [23].

There are also inconsistencies in the manner in which results have been reported by
different researchers. For example, for the recognition performance, many research groups
report only the rank n RR value instead of the rank 1 RR value. Similarly, for the verifica-
tion performance, instead of reporting both the FAR and the FRR for a particular operating
point, in many studies only one out of the two values has been reported. Hence, in order
to assess and compare the performance of sate-of-the-art 3D and 2D+3D face recognition
algorithms, it is necessary to test them on a large common data set using a fixed evaluation
protocol. Results of statistical comparisons between the different algorithms should also be
reported.

The Face Recognition Grand Challenge organized in the year 2005 (FRGC 2005) was
a move in this direction [85]. As a part of the challenge, the performance of a few 3D
and 2D+3D face recognition algorithms was evaluated using a standardized protocol on
the two large data sets called FRGC v0.1 and FRGC v0.2 (Table 10). The performance of
the 3D PCA algorithms was considered as the baseline [85, 86]. All other algorithms were
compared against it. Some limitations of the FRGC data sets have also been noted. These
include motion artifacts in range images, inconsistent expressions in the 2D and 3D images
because of time delay between their capture, and occlusion problems due to facial hair [69].

6.1 3D Appearance Based Techniques

Three dimensional face recognition techniques based on the appearance of facial range
images are similar to 2D holistic appearance based techniques. The only difference being
that they employ range images instead of intensity images. For the most part, they are
straight forward extensions of techniques that have been successful with 2D facial images.

A number of preprocessing and normalization steps are usually required in these algo-
rithms. Their purpose is to localize and segment the human head; remove spike noise and
holes (regions of missing data); align heads to a canonical position; and to generate range
images in that position. Three or more points on the face are manually or automatically lo-
cated to determine the head pose. For most algorithms, the canonical position is the frontal
pose with the tip of the nose located at the center of the image.
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The appearance based methods that have been investigated for 3D face recognition in-
clude PCA, LDA, LFA, independent component analysis (ICA), hidden Markov models
(HMM), and optimal component analysis (OCA) (Tables 1, 2, and 3). These are discussed
in detail in the following sections.

6.1.1 Principal Component Analysis

PCA is the most widely explored appearance based technique for 3D face recognition
(Tables 1, 2, and 10). The PCA algorithm is regarded as a baseline for evaluating the
performance of other 3D face recognition algorithms [86]. It has also been applied to 3D
facial detection to distinguish between face and non-face regions in range images [30]. For
face recognition via 3D PCA, eigensurfaces, similar to 2D eigenfaces, are computed. The
optimal spatial resolutions for 3D PCA are reported to be up to 0.98 mm per pixel along
the x and y directions, and resolutions ranging from 0.5 to 3 mm per pixel along the z
direction [20]. This implies that higher resolutions may not be required for 3D PCA.

Overall, rank one recognition rates ranging from 100% to 68% have been reported
for 3D PCA for databases of varying sizes and complexity (Tables 1 and 2). Although
earlier experiments with smaller databases resulted in high performance for 3D PCA,
more realistic performance estimates can be had from recent studies with larger and more
complex databases.

Numerous algorithms have been proposed in which PCA is applied to depth values
of range images [2, 20, 21, 23, 24, 35, 44, 45, 108], to (x, y, z) values of 3D facial point
clouds [13], to geometry preserving isometric sphere representations of facial surfaces [77],
to horizontal gradients, vertical gradients and depth curvature representations [42]. It is
not clear as to which of these representations is most effective for use with PCA. Heseltine
et al. reported that PCA on horizontal gradients of range images was more effective than
PCA applied to depth or curvature representations [42]. However, the authors did not
report whether these differences were statistically significant. Pan et al. also reported
improved results for the case when PCA was applied to isometric spherical representations
of facial surfaces instead of applying it directly to range images [77]. They evaluated both
algorithms on the FRGC 2005 v0.1 data set.

Furthermore, 3D PCA has been applied either to entire range images [2, 108] or only
to regions of range images that contain the main facial features [13, 20, 21, 23, 24, 35, 44].
It is likely that eliminating regions of the range image other than the main facial features
may be advantageous as it would remove undesirable noise from hairstyles, clothing, and
cluttered backgrounds.

The performances of 2D grayscale PCA and 3D PCA have been compared in a
number of studies [20, 21, 23, 24, 35, 108] (Table 2). However, it has not been conclusively
established as to which of the two modalities results in superior performance. In [21] 2D
PCA and 3D PCA were not observed to be significantly different. Three dimensional PCA
was observed to be significantly superior to 2D PCA in [20]. However, employing color
images instead of grayscale images for 2D PCA has been reported to perform better than
3D PCA [35, 108].



14 Shalini Gupta, Mia K. Markey, Alan C. Bovik

In all these studies it was observed that combinations of the 2D and 3D modalities
resulted in significantly superior performance relative to either of them. Chang et al. argue
that this increase may be merely due to the availability of multiple images of a subject
in the gallery for multi-modality approaches [23]. They did, however, observe that the
performance for a multi-modality single image 2D+3D PCA approach was superior to a
single modality multiple images 2D+2D PCA approach.

6.1.2 Independent Component Analysis

One study has been reported where independent component analysis was applied to
facial range images for recognition [45]. ICA considers not only the linear relationships be-
tween pixels in a facial image, but also higher order relationships. It projects data linearly
onto a set of new basis vectors that are as statistically independent as possible [48]. Anal-
ogous to the results reported for 2D face recognition [4], the performance of 3D ICA has
been reported to be superior to 3D PCA [45]. Hence, it is worthwhile to further investigate
the potential of ICA for 3D face recognition.

6.1.3 Linear Discriminant Analysis

Linear discriminant analysis techniques have also been investigated for 3D face recog-
nition (Tables 1 and 3). LDA has been applied to various 3D representations including
range images, and horizontal and vertical gradients of range images. In all studies, the
gradient representations are reported to yield the best recognition performance [6, 41, 43].
However, it is unclear as to which of horizontal or vertical gradient representations, is bet-
ter for 3D LDA. In one analysis the horizontal gradient representation was found to be
optimal [41, 43], while in another the vertical gradient representation was reported as the
superior of the two [6].

Consistent with results reported for 2D face recognition [5], 3D LDA has also been re-
ported to be better than 3D PCA [36,41,43]. Results also suggest 3D LDA as being superior
to 2D LDA, and 2D+3D LDA as being superior to either of the individual modalities [6].

6.1.4 Local Feature Analysis

A single study has been reported that investigates the utility of the LFA technique for
3D face recognition [6]. In this study, the authors employed the 2D LFA FaceIt R© package
available from Identix R©, Minnetonka, MN for 3D face recognition. They observed that
the vertical gradient representation was optimal for LFA. They further observed that the 2D
LFA algorithm was significantly superior to 3D LFA, and that the 2D+3D LFA algorithm
was superior to either of them.
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6.1.5 Optimal Component Analysis

Srivastava et al. explored a technique called optimal component analysis for 3D face
recognition [102]. They derived optimal linear projections of data in a lower dimensional
space such that the performance of the nearest neighbor classifier was maximized. The
technique involved a computationally expensive iterative procedure to learn the basis vec-
tors. The authors reported that the method was superior to PCA, LDA, or ICA for 3D face
recognition and was capable of handling variable facial expressions. However, they also did
not report results of hypothesis testing for comparing the performances of these algorithms.

6.1.6 Hidden Markov Models

Two dimensional face recognition techniques based on hidden Markov models (HMM)
[98] have also been applied to range images for 3D face recognition [2]. These techniques
exploit the fact that facial features naturally occur in a fixed order from top to bottom and
from left to right, irrespective of changes in illumination, pose, and facial expression. Dif-
ferent facial components are modeled as states in Markov models that are learnt from an
ensemble of facial images. Achermann et al. observed the 3D HMM technique to be su-
perior to 3D PCA [2], but statistical analyses were not conducted to confirm whether this
difference was significant. Since a small database was employed in the study (Table 1), the
difference is less likely to be statistically significant.

Methods based on embedded hidden Markov models (EHMM) [76] have also been
studied for face recognition using color, grayscale intensity, and range images, and for
combinations of these modalities [66, 67, 105–107] (Table 3). The 3D EHMM technique
was reported to perform poorly relative to the grayscale EHMM and color EHMM tech-
niques [105–107]. Like other appearance based techniques, the combined grayscale+3D
EHMM and color+3D EHMM approaches are reported to perform better than the individ-
ual modalities.

Results of the studies based on EHMM also suggest that while changes in facial pose
significantly alter the performance of both the 2D and 3D modalities, 3D algorithms may
be effected less than 2D algorithms, by changes in illumination conditions during image ac-
quisition. This can be concluded from the fact that when 2D+3D EHMM techniques were
compensated for varying facial pose, by either augmenting the gallery with synthetic fa-
cial images with varying facial poses, [105–107], or by transforming all images to a frontal
canonical pose before recognition [66, 67], significant improvement in their performances
was observed. On the other hand, when pose compensated images were also compensated
for varying facial illumination by either augmenting the database with images lit synthet-
ically from various directions [105–107], or by re-lighting all images to frontal illumina-
tion [66, 67], the performance of 2D+3D EHMM algorithms did not change substantially.

The pose and illumination compensation technique where all faces were rotated to
frontal pose and re-illuminated to frontal lighting [66, 67], was observed to be better than
the database enrichment technique [105–107]. For the database enrichment technique it is
difficult to ascertain a priori the optimal number and types of images of each individual that
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should be added to the gallery.

6.2 ‘Free form’ 3D Face Recognition Algorithms

A 3D object that cannot be recognized as either a planar or a naturally quadric surface
is referred to as a ‘free form’ object [18]. The human face is an example of a ‘free form’
object. Numerous 3D face recognition techniques based on ‘free form’ object descriptions
have been proposed. These descriptions may be associated with individual points on a sur-
face, one dimensional surface curves, or two dimensional surface patches. The ‘free form’
3D object recognition techniques that have been investigated for human face recognition
are discussed in the following sections.

6.2.1 Facial Surface Matching

A number of techniques for 3D face recognition have been developed where the shapes
of two facial surfaces are compared directly (Tables 3, 4, 8, 9, and 10). The general phi-
losophy of these approaches is to register two facial surfaces as closely as possible in 3D
space and to compare them by means of a suitable metric. Different versions of this basic
technique have been investigated by varying the registration procedure employed and/or the
metric employed for calculating the distance between the two surfaces.

Coarse normalization, and coarse normalization followed by fine normalization are the
two main approaches that have been employed for registering facial surfaces. In course
normalization [1, 37, 55, 59, 60], the gross pose and position of each facial surface in 3D
space is computed and they are transformed to canonical frontal positions. The two sur-
faces, in this orientation, are compared by means of either the mean squared error (MSE)
metric [37,55,59], or the Hausdorff distance (HD) metric [1,60] proposed by Huttenlocher
et al. [47]. This normalization technique however is not adequate as the accuracy of these
distance metrics is dependent on precise alignment of the two surfaces.

For most 3D face recognition algorithms that employ matching of facial surfaces, coarse
normalization is followed by fine normalization [22, 49, 52, 61, 62, 64, 65, 69, 70, 79–81, 96,
97]. The most frequently used algorithm for fine normalization is the Iterative Closest Point
(ICP) algorithm [9]. In ICP, one 3D surface is iteratively transformed rigidly in 3D space
to place it as close as possible to the other surface. Coarse normalization, in this case, helps
the fine normalization iterative optimization procedure to converge correctly and prevents
it from being trapped in a local minima.

Mean squared error, between pairs of closest points on the two surfaces, has been often
employed as the objective criterion to be minimized in the iterative procedure [22,49,69,70].
In other studies the HD or the partial HD metric [62, 79, 80, 96], a combination of the MSE
and HD metrics [52, 97], or a combination of the MSE between the pairs of closest 3D
points and the MSE between closest points and surfaces [62, 64, 65] , as proposed by Chen
and Medioni [27], have also been employed as the objective function. The partial HD
metric is known to be more robust than the MSE metric to small mis-alignmemts between
surfaces, and to the presence of holes, noise, and occlusions. It is also known that employ-
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ing MSE based on point-to-surface distances [27] instead of MSE based on point-to-point
distances [9] in the ICP algorithm, makes it less likely to be trapped in a local minimum.
Russ et al. incorporated a multi-resolution approach with the ICP surface matching algo-
rithm and reported high recognition rates with images from the FRGC v0.1 data set [97].
Slightly lower performance was reported on the same set of images when only a random set
of points from the nasal region were employed for facial surface matching [52].

The ICP algorithm and its variants have yielded fairly successful algorithms for 3D and
2D+3D face recognition (Tables 3, 4, 8, 9, and 10). Face recognition algorithms based on
ICP have been reported to be robust to changes in facial poses [65], and varying illumina-
tion conditions during 3D image acquisition [54]. They have also been reported to perform
better than 3D PCA [49, 80], color LFA [70], and to 2D LDA [65] approaches.

It is not clear whether the addition of 2D grayscale/color information to the 3D ICP al-
gorithm results in an increase in its performance. Lu et al. reported better performance for
a combined 2D LDA+3D ICP algorithm relative to either of the individual modalities [65].
Similarly, Maurer et al. noted that the performance of the 3D ICP algorithm improved
when it was combined with the 2D EBGM algorithm [69]. On the other hand, significant
improvement in performance was not reported for the case when grayscale information and
(x, y, z) co-ordinate values were employed for 4D ICP relative to when only the spatial
co-oridnates were employed [81].

One major limitation of iterative surface matching based 3D face recognition algorithms
is that they are computationally very expensive. For example, it has been reported that a
single comparison between a pair of 3D facial surfaces required 20 seconds on an aver-
age Pentium 42.8 Ghz CPU [65]. This expense can become prohibitive for searching large
databases. This computational expense stems from the two factors. First, the calculation of
MSE between pairs of closest points on the two surfaces, or the HD metric, requires com-
putations of the order O(MN), where M is the number of 3D points on one surface and the
N is the number of points on the other surface. Second, each matching procedure addition-
ally requires a slow iterative optimization procedure to align a pair of facial surfaces. The
iteration can also sometimes undesirably terminate in a local minimum. Recently 3D face
recognition algorithms based on facial surface matching have been developed that employ
the complex-wavelet structural similarity metric (CW-SSIM) [40]. This metric is known to
be robust to small translational and rotational mis-alignments [114]. Matching facial sur-
faces using the CW-SSIM metric was shown to be more accurate, robust and efficient than
employing the MSE or the HD metric.

Another limitation of 3D face recognition algorithms that employ ICP is that they are
not robust to changes in facial expression [64, 65, 69, 81]. Employing only regions of the
face that are relatively rigid and are not altered significantly by changes in facial expression,
has been investigated as a solution to this problem [22].

6.2.2 Surface Normal Orientation Statistics

Attempts have also been made to match facial surfaces using the statistics of the ori-
entation of facial surface normals (Table 5). Specifically, the extended Gaussian image
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approach [56, 103, 104] and the phase Fourier transforms [25, 82] have been investigated.
The underlying idea of these techniques is to obtain a unique signature of each facial sur-
face in terms of the distribution of the orientation of the surface normals. Facial surfaces
are then matched by comparing their corresponding signatures.

Such techniques for facial surface matching are advantageous relative to the iterative
surface matching techniques in some respects. They do not require an iterative procedure
for aligning surfaces. Furthermore they are independent of the scale of 3D models [25],
and have been shown to be robust to small rotations [25]. Yet, such techniques have not
been explored extensively or rigorously. The few studies that exist, have employed small
data sets, and none of them report face recognition performance estimates including the RR
and EER values (Table 5). Hence, further investigation into such techniques is warranted in
order to establish their true utility for 3D face recognition.

6.2.3 Profile Matching

One dimensional profile curves are can be easily obtained from 3D facial models by
intersecting them with planes along various orientations, relative to 2D facial images. A
number of studies have been reported where the shapes of the different facial profile curves
have been compared in order to recognize faces (Tables 3, 6, and 8).

Interestingly, many studies have reported the central vertical facial profile curve to be
the most discriminatory of all profile curves for 3D face recognition. Nagamine et al. [73]
found vertical profiles located in the central region of the face to be the most discrimina-
tory, followed by annular shaped curves centered at a point 40 mm above the tip of the nose.
They also found horizontal facial profiles to be the least discriminatory of the three. Beu-
mier et al. reported similar results. They observed a marginal decrease in performance of
face recognition algorithms when 15 vertical profiles that spanned the entire facial surface
were replaced by only 3 central profiles [10,12]. Zhang et al. found that between the central
vertical profile and two horizontal facial profiles (one passing through the forehead and the
other through cheeks), the central vertical profile was the most discriminatory [122].

Consequently, a number of techniques have also been investigated to automatically lo-
cate the central vertical profile or the natural axis of bilateral symmetry on the human facial
surface. Cartoux et al. automatically detected the axis of bilateral symmetry by iteratively
minimizing the difference between principal curvatures on opposite sides of the facial sur-
face [19]. Others have proposed a method of locating the axis of bilateral symmetry by
iteratively aligning a facial surface to its mirror image [78–80, 122].

Consistent with other face recognition algorithms, Beumier et al. found that fusion of
grayscale and shape information of the central and lateral vertical profiles results in im-
proved performance, relative to either of the two individual modalities [11].

Three dimensional face recognition algorithms based on facial profiles are advantageous
in that, they can provide information about the discriminatory information contained in the
different sub-regions of the facial surface. However, they require an additional step of reli-
ably locating the profiles. Furthermore, the overall accuracy of the recognition algorithms
depends on accurate localization of profiles. The performance of profile based approaches
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for 3D face recognition lowers with the presence of variable facial expressions [122].

6.2.4 3D Local Geometric Features

Studies that have considered local geometric features of 3D facial surfaces for recog-
nition are fewer in number, relative to holistic techniques that do not require automatic
segmentation of facial landmarks (Tables 7, 8, 9, and 10).

A number of methods for automatically locating facial landmarks that are purely based
on facial surface characteristics have been proposed. The most widely used method
is to locate facial landmarks is to exploit either their unique curvature characteristics
[22, 28–30, 37, 38, 46, 65] using the H-K segmentation algorithm [8], or to employ the cur-
vature properties of facial profile curves [58, 122]. Another approach is to align 3D faces
rigidly [119] or non-rigidly [49] to generic face templates for which the locations of fidu-
cial points/facial features are known a priori. The tip of the nose has been detected as the
most prominent point of 3D facial models in a canonical frontal position [59,73]. However,
this heuristic method is not successful for arbitrary facial poses. Yacoob and Davis labeled
components of the facial surface based on contextual reasoning [120]. When color/texture
information is also available along with the 3D shape information, it has also been em-
ployed to automatically locate facial landmarks [46, 55, 109, 111–113].

The local geometric features of facial surfaces that have been employed as features
for face recognition include position, surface area and curvatures properties of facial land-
marks/fiducial points, and 3D Euclidean distances, ratios of distances, geodesic distances
and angles between them. The local shape of facial landmarks/regions about fiducial points
have been quantified by means of Gaussian curvature values [38, 72], Guassian-Hermite
moments [119], ‘point signatures’ [28, 113], and by 2D and 3D Gabor filter coefficients
of facial range images [46, 111]. In order to quantify the relationships between the facial
landmarks, 3D Euclidean distances [38,46], angles and 3D Euclidean distances [58,72], or
geodesic and 3D Euclidean distances have been employed [39].

The method based on ‘point signatures’ [28] has also been reported to be superior to
methods based on PCA applied to the 3D point clouds, profile matching, and PCA applied
to range images [49]. Its performance was equivalent to an approach where the positions
of only 10 fiducial points were compared after iteratively aligning a pair of facial models.
Another approach based on the shape characteristics of local facial features, and surface
matching has also been reported to perform better than profile matching [119].

A technique, where the facial sub-regions of the eyes, nose and mouth by fitting with
subdivisional surfaces, and are matched separately, has been evaluated on the FRGC v0.1
and the FRGC v0.2 data sets [50, 83]. It performed better than the baseline 3D PCA algo-
rithm. Another 2D+3D face recognition technique based on EGBM applied to range and
grayscale images performed on par with this technique on the FRGC v0.2 data set [52]. In
this study, the 2D EBGM algorithm performed better than the 3D EBGM algorithm. This
could be explained by the fact that Gabor filter coefficients that are employed to quantify
texture in grayscale images, might not encode discriminatory information for facial range
images that do not contain as much texture variations (Figure 4(c)).
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Face recognition techniques based on local facial features present several advantages
relative to holistic techniques. First, instead of an ad hoc set of local facial features,
their selection can be based on domain knowledge about the structural diversity of human
faces. Such an approach has been demonstrated to result in effective 3D face recogni-
tion algorithms [39]. Second, techniques based on local facial features are less affected
by global changes in the appearance of facial images including changes facial expres-
sions [28, 39, 113].

Nonetheless, techniques for 3D face recognition based on local facial features have re-
ceived little attention relative to holistic techniques. This may be due to the fact that such
techniques require an additional step of reliably locating facial landmarks, which may effect
their overall performance. Nonetheless, if facial landmarks can be reliably located, evidence
from the literature on both 2D and 3D face recognition suggests that powerful techniques
for 3D face recognition can be developed. Hence, there is a need to further explore the
potential of 3D face recognition algorithms that employ features from facial sub-regions,
and to find ways to combine them with techniques for robust facial feature detection.

6.3 Ensemble Approaches

A number of modular and ensemble methods consisting of combinations of multiple
‘free form’ 3D face recognition techniques have also been investigated (Table 8). For a ma-
jority of such algorithms, it has been observed that the combined approach results in supe-
rior performance, relative to the individual constituent approaches. Gökberk et al. observed
this for the case when scores of 3D face recognition algorithms based on LDA, surface nor-
mals, and profiles were combined in parallel using a nonlinear rank-sum method [36]. Sig-
nificant improvement in performance was also reported for hierarchical combinations of a
surface matching classifier with 3D LDA [36], or 2D LDA [65]. A combination of features
from the whole face for surface matching, and features from the mouth, nose and orbital re-
gions also resulted in superior performance, relative to the individual sets of features [119].
Pan et al. observed superior performance when they combined outputs of a facial surface
matching algorithm and a central profile matching classifier using the MAX rule [78, 79].

7 EXPRESSION INVARIANT APPROACHES

Achieving invariance to changes in facial expressions is one of the major open prob-
lems of automatic 2D and 3D facial recognition. While the pose of 3D facial models can be
easily corrected, changes in facial expression, which are non-rigid transformations of the
facial surface are not as trivial to eliminate. Numerous studied have demonstrated that the
performance of 2D, 3D and 2D+3D techniques is considerably reduced when facial images
with arbitrary expressions are employed [50, 65, 69, 81, 83, 111, 122]. Gallery enrichment
has been the most common approach employed in 2D face recognition to introducing some
degree of invariance to facial expressions. The idea, is to include multiple images of an
individual in the gallery with different facial expressions. There are two problems with
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this technique. First, it increases computational costs. Second, there is no reliable way to
decide on the number and type of facial expressions to add to the gallery, which would, in
principle, encompass all facial expressions of an individual.

With the introduction of 3D face recognition techniques, a few other methods for
achieving expression invariance have also been explored (Table 9). For 3D expression in-
variant face recognition, one approach has been to obtain an invariant representation of the
face. The other has been to employ regions of the face that are known to remain relatively
rigid under facial expression changes. These techniques are discussed in detail in this sec-
tion.

A number of expression invariant representations of the human facial surface have been
proposed. Bronstein et al. modeled changes in facial expressions as isometric deformations
of the facial surface [16, 17]. For such deformations, the intrinsic properties of surfaces
including geodesic distances between all pairs of points remain unchanged. The authors’
approach was to isometrically embed facial surfaces into expression invariant canonical
forms before recognition using multidimensional scaling. Similarly, invariance to facial
expression changes was also observed for a algorithm that employed geodesic and 3D Eu-
clidean distances between anthropometric facial fiducial points as features [39].

Wang and Chua employed 2D/3D Gabor coefficients calculated from range images at
specific facial fiducial points to generate expression invariant representations of human
face [111]. Their technique met with moderate success. Lu and Jain proposed a tech-
nique where 3D models were matched rigidly using ICP then non-rigidly deformed using
thin-plate spline deformation to generate a displacement vector image [63]. Each point in
the displacement vector image contained a vector connecting a point on the original face
before deformation to its location after deformation. These vector images were classified
as intra-personal and inter-personal deformations.

The other approach of employing regions of the face that are relatively rigid to changes
in facial expressions has not been investigated as extensively. Chang et al. investigated
matching local regions of the facial surfaces including the nose and the nose bridge using
ICP [22]. In another study ‘point signatures’ were employed to quantify the local surface
curvature of fiducial points located at relatively rigid regions of the face [28,113]. However,
it is not clear whether this technique achieved expression invariance due to favorable prop-
erties of the ‘point signature’ representation or due the fact that facial features were derived
from relatively rigid regions of the face.

8 CONCLUSION

The field of 3D face recognition has grown rapidly since FRVT 2002. Both appearance
based and ‘free form’ based 3D face recognition algorithms have been proposed. Numer-
ous approaches to combine 3D and 2D modalities have also been investigated. While it
still remains a matter of debate as to which of 2D or 3D modalities is superior, it has been
conclusively established that combing the two modalities holds promise for improving face
recognition performance. The availability of 3D data has considerably alleviated the pose
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problem, but achieving expression invariance still remains to be solved. Debate also exists
about the ‘illumination invariant’ nature of 3D data, but cues from existing studies point
towards the fact that 3D techniques may be less sensitive to changes in illumination during
image capture than 2D techniques.

Considerable attention is now also being directed towards robust testing and evaluation
of 3D face recognition algorithms on a common database. This will help to objectively
evaluate the current sate-of-the-art in the area. A number of areas, however, still remain
unexplored. Research efforts need to be directed towards developing 3D feature and profile
detection algorithms. A better understanding of facial image statistics and surface geo-
metric properties is required to understand the workings of the holistic appearance based
statistical approaches for 3D face recognition. Assessing the relationship between multiple
modalities and improving methods of combining them are also likely to advance the field
further.
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