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Abstract

In this paper, we propose a methodology to use the communication network infras-

tructure, in particular WiFi traces, to detect the sequence of activity episodes visited

by pedestrians. Due to the poor quality of WiFi localization, a probabilistic method

is proposed that infers activity-episode locations based on WiFi traces and calculates

the likelihood of observing these traces in the pedestrian network, taking into account

prior knowledge. The output of the method consists of candidates of activity-episodes

sequences associated with the likelihood to be the true one. The methodology is val-

idated on traces generated by a known sequence of activities, while the performance

being evaluated on a set of anonymous users. Results show that it is possible to predict

the number of episodes and the activity-episodes locations and durations, by merging

information about the activity locations on the map, WiFi measurements and prior infor-

mation about schedules and the attractivity in pedestrian infrastructure. The ambiguity
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of each activity episode in the sequence is explicitly measured.

Keywords: Network traces, activity choice modeling, pedestrians,

semantically-enriched routing graph (SERG), potential attractivity measure,

activity-episode sequence

1. Introduction

In recent years, interest in crowd dynamics and pedestrian modeling is reviving due

to urban growth and its pressure on urban infrastructure (Bierlaire and Robin, 2009;

Duives et al., 2013; Kasemsuppakorn and Karimi, 2013; Kneidl et al., 2013; Weidmann

et al., 2014). Management of congestion is the main issue for pedestrian infrastructure.

Crowd and pedestrian simulation is emerging as a tool for designing new infrastructures

and optimizing the use of current infrastructures. Innovative data collection techniques

and realistic experiments are vital in estimating the demand for these infrastructures.

In order to predict the total demand within a given area, activity choice models need

to be developed at the scale of pedestrian infrastructure. Pedestrian demand is driven

by a need to perform activities in di�erent locations. The existence of time-space con-

straints in pedestrian infrastructures on the one hand and the spontaneous choice of

en route destinations on the other hand ask for explicit modeling of activity scheduling

decisions. Such models are traditionally used for car trips as an important source of

information for strategic planning, and management or optimization of transportation

networks (Ben-Akiva et al., 1996; Bowman and Ben-Akiva, 2001; Arentze and Timmer-

mans, 2004; Balmer et al., 2006; Roorda et al., 2008, among others). For pedestrians,

they will be useful in describing the congestion, for the e�cient design of new facilities,

and travel guidance and information systems.

Individual mobility traces are becoming available from pervasive systems, such as

cellular networks (Gonz�alez et al., 2008) or WiFi hotspots (Section 2.1). In many cases,

cost and privacy issues prohibit from installing high precision sensors such as cameras

covering an entire pedestrian infrastructure. The large size of an airport or a railway

station implies either precise sensors with incomplete coverage (e.g., cameras or blue-

tooth sensors in intersections), or full coverage with imprecise long range sensors (e.g.,

cellular network data, traces from WiFi infrastructures). As a result, localization data

are either scarce, fuzzy, or both. We propose a methodology exploiting scarce data with

an explicit modeling of the imprecision in the measure, and using prior knowledge of the

infrastructure.

Section 2 reviews existing works about traces from communication infrastructure,

pedestrian maps and activity-based modeling. Section 3 describes the necessary data

for detecting pedestrians, while Section 4 describes the methodology to merge these

data. A case study on the Ecole Polytechnique F�ed�erale de Lausanne (EPFL) campus

is described in Section 5, with results of this case study, together with validation and

sensitivity analysis. Finally, we conclude and discuss future work in Sections 6.
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2. Literature review

This paper focuses on using existing localization data for modeling macroscopic be-

havior such as destination or activity choice. The following literature review is divided

in three parts, corresponding to the three challenges we meet in pedestrian demand mod-

eling: data collection (Section 2.1), representation of space (Section 2.2) and modeling

(Section 2.3).

2.1. Collecting data from digital footprints

The recent developments in detection technologies open doors to new researches about

pedestrian behavior. In the �eld of trajectory detection, Taniguchi et al. (2013) are using

Bayesian estimation on binary sensors located at the border of a cell, while Alahi (2011)

and Alahi et al. (2014) use networks of cameras to track and analyze pedestrian trajec-

tories. Alahi's main motivation is the number of already installed cameras generating

large datasets. Smartphones are sharing this characteristic: a majority of people are

carrying a mobile device such as a smartphone, and they generate data. Several data

collection techniques about smartphones are device-centric. We focus here on data from

communication network infrastructure (\network traces").

Using traces from communication network infrastructure has several advantages on

data from the smartphone. First, full coverage of the facility is usually cheap and allows

for an estimation of the overall demand. The communication infrastructure sometimes

already exists, and increasing its density has a positive side e�ect. Smartphone users do

not need to install anything on their device, and so the access to sensitive information

such as emails or address book is limited for the analyst, which ensure privacy for the

users. Finally, traces from communication network infrastructure are related to the

infrastructure and not to the individual: we are tracking all individual smartphones

going through a facility and not all places visited by the same individuals. It allows the

analyst to focus on the pedestrian facility covered by the communication network.

There are few drawbacks to network traces as well. Socio-economic and demographic

attributes are di�cult to collect due to both privacy concerns (if the data already exist)

and to the di�culty to survey the tracked person from the infrastructure side (if the

data does not exist). Additionally, smartphone users are not necessarily representative

of the full population.

Several applications using data from communication infrastructure, both with WiFi

and GSM traces (Bekhor et al., 2013; Calabrese et al., 2011), have been developed to

study mobility behavior. These new data collections are motivated by the needs for

calibrated agent-based models. Post-processing methods are needed to transform these

raw observations into data adapted for modeling purpose to overcome imprecision and

missing observations in the data: detection of stops points, activity purpose detection

through land-use information and spatial matching (Rieser-Sch�ussler, 2012). With GSM

traces, Bekhor et al. (2013) mention the elimination of \unreasonable movements per-

formed in short time periods between antennas located far apart" without more details.

Calabrese et al. (2011) does not consider the underlying transportation network to correct

for anisotropy.
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A large literature exists about WiFi traces from a computer communication point

of view. A complete review can be found in Aschenbruck et al. (2011). All references

in this paper de�ne mobility trace-based models as a tool to improve the quality of

the WiFi. Field studies have been done (Tang and Baker, 2000; Balachandran et al.,

2002; Balazinska and Castro, 2003; Yoon et al., 2006; Sevtsuk et al., 2009; Zola and

Barcelo-Arroyo, 2011; Wanalertlak et al., 2011; Meneses and Moreira, 2012). The main

results are the prediction of changes in access points (APs). The main problem reported

in these articles is the ping pong e�ect, when the device has similar signal strengths

from di�erent APs and changes regularly from one to another. This is a problem from

a network viewpoint, and also for modeling pedestrian origins and destinations. Yoon

et al. (2006) propose to use a moving average weighted by time spent at destination to

remove the extra AP logs. A general solution presented in Aschenbruck et al. (2011)

consists in aggregation of data over di�erent APs. Most studies about WiFi are focusing

on network performance and management and not on human mobility. In Yoon et al.

(2006), contrarily to all other papers cited here, an ODmatrix is estimated at the building

level in Dartmouth college. Variations in time/day are not considered, as Aschenbruck

et al. (2011) noticed.

In the literature about mobility models for WiFi infrastructure from a computer com-

munication point of view, the most common model, Random Waypoint model (RWP),

is often criticized as not representing real human mobility (Conti and Giordano, 2007).

One of the problems with RWP consists in using straight lines between two signals in

di�erent APs, even if this path is not physically possible. This is the main reason why

trace-based mobility models were developed in this domain of research. A key challenge

in building a realistic model is to de�ne a pedestrian network and the corresponding pos-

sible paths that the user with a device can follow. This process of constructing and using

the pedestrian network in order to improve the mobility model is not explicitly presented

in Aschenbruck et al. (2011) in their large review of trace-based mobility models. The

need for a more complex approach is emphasized in Rojas et al. (2005).

2.2. Pedestrian network

The pedestrian network depends on the scale of the study area and on the de�nition

of destinations: buildings (Yoon et al., 2006), APs (Wanalertlak et al., 2011; Tuduce

and Gross, 2005), rooms (Sevtsuk et al., 2009), or, at an urban scale, subzones of the

motorized regional zone system as nonmotorized destinations (Eash, 1999).

The walking distance between the destinations is usually not available (Kasemsup-

pakorn and Karimi, 2013). Yoon et al. (2006) converted a map to a graph between

buildings and limited themselves to major roads. In the extension of a Chicago model

for nonmotorized trips, the Manhattan distance is motivated by the grid plan and the

absence of a pedestrian network (Eash, 1999).

Kasemsuppakorn and Karimi (2013) propose to build it from GPS traces, which does

not work indoor. Kang et al. (2004) are using WiFi to cluster places of interest and label

them, but APs serve di�erent kind of locations surrounding them (Calabrese et al., 2010).
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Without a model based on a pedestrian network, changes in the pedestrian facilities such

as pedestrian bridges or underpasses cannot be tested.

Indoor networks of pedestrian facilities allowing for computation of the shortest path

between two destinations are increasingly available for airports, museums, campuses,

hospitals and malls due to the complexity of path �nding (Goetz and Zipf, 2011). Crowd-

sourced geodata such as OpenStreetMap are extending to indoor spaces (Goetz, 2012).

2.3. Activity-based modeling: from driving to walking

The premise of activity-based approach involves considering activity as a choice and

trips as a way to complete the chosen activity. In other words, modeling the daily activity

patterns allows the development of behavioral travel demand models that are sensitive

to changes in policy. Complete and general reviews not related to pedestrians can be

found in Roorda (2005), Habib (2007) and Feil (2010).

With respect to pedestrians, Borgers and Timmermans (1986) develop a destination

choice model as part of a system of models to predict the total demand for retail facilities

within inner-city shopping areas. Timmermans et al. (1992) provide a review of models

existing in 1992 and of a few applications to urban and transportation planning in The

Netherlands. Zhu and Timmermans (2005) focus on shopping decision processes, using

bio-inspired heuristics to mimic the decision process. Eash (1999) developed an extension

of a regional travel model of Chicago for nonmotorized trips (bicycle and pedestrian

modes), including destination and mode choice.

In
uenced by traditional practice in travel demand analysis, several models are de-

rived from origin-destination matrices (Nagel and Barrett, 1997; Antonini et al., 2006),

where the set of potential origins and destinations is prede�ned, and 
ows between origins

and destinations is estimated. In a disaggregate context, the choice of the destination

can be modeled conditional to a given activity, or as a joint choice of an activity and a

destination. In both cases, the choice set is typically large and di�cult to characterize

(Bierlaire and Robin, 2009).

In some circumstances, it is possible that no destination is explicitly chosen by a

pedestrian. It is typical when walking is the activity as such, or in shopping and touristic

activities. In these cases, an itinerary is undertaken without a known target, trying to

maximize the chances to reach attractive places along the way (Borst et al., 2008). This

type of behavior is clearly di�cult to formalize, but relates to behavior that highly

characterizes pedestrian movements.

The current state of the literature on the one hand comprises very detailed con-

ventional activity-based models for multimodal urban areas and on the other end few

speci�c models related to pedestrians. This big gap between these two di�erent contexts

is explained by the lack of data. A pedestrian facility such as a transportation hub

shares some characteristics with a city, but surveying and counting pedestrians is more

challenging.

There are three problems with surveying tools, such as MAGIC (Ettema et al., 1994).

First, the data is collected at one point in time for a single person. Second, there could be

a di�erence between what people plan and answer to the survey and their real behavior.
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Finally, the vast amount of information needed to understand the pattern of a day could

create response burden.

In multimodal urban systems, solutions include using localization-aware technologies

for longitudinal surveys. A typical example is GPS-based prompted recall activity-travel

survey as in Frignani et al. (2010), where respondent carried GPS devices for 14 days.

CHASE (Computerized Household Activity Scheduling Elicitor) has been implemented

on mobile devices (Rindf�user et al., 2003) and is similar to some extent to MAGIC.

Asking people to con�rm their GPS traces on the internet or answer questions directly

on their mobile device is a way to reduce the cognitive incongruence with actual behavior

and to avoid response burden. Etter et al. (2012) also show that it is possible to predict

up to 60% of next visited places from passive smartphone data.

For pedestrian infrastructure, GPS devices cannot precisely detect users indoor and

do not speci�cally focus in infrastructure users. Cui et al. (2012) propose a paper-and-

pencil survey to determine usage patterns, with the same problems as in a larger scale.

We propose to use network traces and land use data. Network traces allow to track the

real location of several pedestrians for several days, without response burden. Land use

data, existing at the pedestrian scale as shown in Section 2.2, allows for a better spatial

resolution of activity-based models (Goulias et al., 2013).

3. Data requirement

To apply our methodology, we assume two kinds of data sources: network traces and

semantically-enriched routing graph to which we can associate the network traces.

3.1. Network traces

An input of this probabilistic method consists of timestamps and localization data

coming from network traces: WiFi traces, GSM traces, Bluetooth tracking or RFID

localization. We de�ne a measurement as m̂ = (x̂, t̂), where x̂ ∈ R×R×R is the position

of the measurement (x-y coordinates in a coordinate system, and 
oor or altitude in

a multi-
oor environment) and t̂ the measurement timestamp. In data from access

points (APs) (WiFi APs, cell towers, ...), x̂ is the position of an AP and is discrete;

in multilateration data, the measurement x̂ is continuous in space, and not only at

AP locations. For a given individual i, we assume a chronologically ordered sequence

(m̂1,i, , ..., m̂ji,i..., m̂Ji,i), which is abbreviated as m̂1:Ji,i, where Ji is the total number

of measurements. The measurement timestamp t̂ is continuous.

Accuracy ξ is also needed for each measurement x̂. It is de�ned as the distribution

of the Euclidean distance between the location estimate x̂ and the actual location �x,

x̂ =�x + ξ. It can either be constructed by the information provided by the localization

tool (e.g. level of con�dence, attenuation rate, etc.) or by the analyst itself. In the

second case, one has to design experiments and calibrate the error distribution based on

already known locations in the WiFi coverage area.

6



Di�erent levels of anonymity are possible with these data. Originally, the MAC ad-

dress is collected which uniquely identify the device. This MAC address may be processed

in two di�erent ways. First, it may be associated with a username through identi�cation

in the system and thus to the identity or socioeconomic information if available, such

as gender, age or income. Second, it may be anonymized to guarantee anonymity. The

anonymization can be total or keeping some socioeconomic information. This way, i can

correspond to a unique ID; or associated with some socioeconomic characteristics; or i

can correspond to the device or personal identi�er.

3.2. Pedestrian semantically-enriched routing graph

The following methodology needs a semantically-enriched routing graph (SERG).

We de�ne SERG as a set of nodes N and a set of edges E. SERG allows for routing pedes-

trians from origins to destinations through an optimal path, and contains information

such as the name of the room, or the type of the room. In order to link localization

measurements x̂ to the graph, each node n ∈ N must be associated with a coordinate

system.

In a centerline approach as de�ned in Goetz and Zipf (2011) for a corridor, some

nodes correspond to intersections and not to possible pedestrian destinations. Nodes are

de�ned as destinations if they correspond to a room, a shop or a restaurant, i.e. if they

are points of interest (POI) in the pedestrian infrastructure. POI is a subset of N .

Formally, SERG := (N ,E,L, f, g, POI), where L is a set of relevant labels for rooms,

restaurants, shops, etc., f : N → L is the labeling function, and g : N → R × R × R a

function associating nodes with coordinates in a coordinate system. POI ⊂ N .

More information can be added to SERG. The path realism (both physically and be-

haviorally) can be improved by adding information to the graph and using a generalized

cost for the shortest path algorithm. A solution to balance between the shortest path

and the simplest path is to give each edge of the pedestrian network a weight. It repre-

sents the aversion to 
oor changes and less important walkways. Goetz and Zipf (2011)

propose a weighted indoor routing graph, which is an enriched version of SERG. Adding

information to edges E allows for a more realistic shortest path algorithm. Adding in-

formation to nodes N gives the opportunity to associate other data, such as schedules,

opening hours, or door access.

4. Methodology

We are proposing a modeling approach to extract the possible activity-episode se-

quences performed by pedestrians from digital traces in a communication networks. This

Bayesian approach merges measured network traces (continuous in space) (Section 3.1)

and pedestrian semantically-enriched routing graph (Section 3.2) to compute the likeli-

hood that a given sequence of activity episodes (discrete in space) has actually generated

the observed traces.

We de�ne an activity episode a = (x, t−, t+) as a POI where the user is spending

time, where x is the episode location, t− the episode start time, and t+ the episode end
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time. The episode location x is a POI in SERG, x ∈ POI, and is labeled, f(x) ∈ L. t− and

t+ are continuous random variables and de�ne the time spent at destination, t+ − t−.

We impose that t+ − t− > Tmin, a minimum threshold (typically 5 min in a pedestrian

context, similar to Bekhor et al. (2013), where a stop is assumed when data are collected

20 min in the same antenna location). The output of the probabilistic method consists of

a set of L candidate activity-episode sequences (a1, ..., aki
, ..., aKi

), which is abbreviated

as a1:Ki
, where Ki is the total number of episodes. Ki is individual speci�c and unknown

to the analyst. In the following developments, both the number of measurements in the

sequence Ji and the number of episodes Ki are individual speci�c, but the i subscript

is omitted to make the notation light. Each candidate activity-episode sequence a1:K is

associated with the probability of being the actual one.

In the next section, we propose a probabilistic measurement model associated with an

activity-episode sequence. Then, in Section 4.2, it is described how to generate candidate

activity-episode sequences. Figure 1 shows the plate model (see Koller and Friedman

(2009), Section 6.4.1) of the link between the activity episodes and the measurements.

x̂k
j

t̂k
j

xk−1 t+
k−1

t−
k

xk t+
k

Measurement mk
j

Activity episode ak K

J

Figure 1: Plate model for the probabilistic measurement model. It represents the generation process
of network traces. While being in point of interest xk between times t−

k
and t+

k
, users generate mea-

surements x̂k
j
at time t̂k

j
. Dark shaded nodes represent the observed variables. The arrows represent

the dependencies between the variables. Boxes express the multiple iterations of the conceptual object:
there are K activity episodes ak, and J measurements m

k
j
in total.

4.1. Probabilistic measurement model: a Bayesian approach

A probability is associated with each activity-episode sequence. It takes into account

the inaccuracy in the network traces based on the measurements and some prior knowl-

edge about the potential activity-episode locations. The activity probability P(a1:K|m̂1:J)

that a1:K is the actual activity-episode sequence given the measurement m̂1:J is decom-

posed as:

P(a1:K|m̂1:J) ∝ P(m̂1:J|a1:K) · P(a1:K) (1)
8



where P(m̂1:J|a1:K) is the measurement likelihood and P(a1:K) is a prior knowledge about

the activity episodes.

4.1.1. Measurement likelihood

For each activity-episode sequence, our goal is to compute the probability that the

performed episodes generated the observed measurement sequence:

P(m̂1:J|a1:K). (2)

We assume that a measurement m̂j always corresponds to an activity episode ak.

We denote m̂k
j
= (x̂k

j
, t̂k
j
) the measurement in m̂1:J corresponding to ak = (xk, t

−
k
, t+
k
),

i.e. when t−
k

6 t̂k 6 t+
k
. As a result, m̂1:J = ∪km̂

k
1:J. If a measurement is generated

while walking, the model will consider it as a very short activity episode (that can be

eliminated later).

If the device's owner is performing activity episode a, the probability that it will

generate a measurement m̂ is a function of the location of the episode location x and the

measurement location x̂ (e.g., the distance). Thus we can decompose Equation 2 as:

P(m̂1:J|a1:K) =

K∏
k=1

P(m̂k1:J|ak) (3)

=

K∏
k=1

J∏
j=1

P(m̂kj |ak) (4)

=

K∏
k=1

J∏
j=1

P(x̂kj |xk) (5)

Equality in Equation 3 assumes measurement independence between activities, i.e.

measurement error in the sequence is only related to the corresponding activity episode

in time. Equality in Equation 4 assumes independence between measurements, i.e. error

is the same for di�erent measurements while in the same location xk and time interval

t−
k
, t+
k
. Equality in Equation 5 assumes no measurement error in time, e.g. measurement

error is only a localization error.

4.1.2. Prior: potential attractivity measure

Introducing prior knowledge may be needed when localization is weak and pedestrian

map is dense. Moreover, the prior gives the possibility to add information from available

data. In this section, we propose the �rst formal de�nition of attractivity for pedestrian

infrastructures to our knowledge. It is built on existing literature for urban context and

allows to coherently merge di�erent data sources.

Space-time accessibility is a very common concept in land use planning (Miller, 2010).

It measures availability of activities for individuals given temporal and spatial con-

straints. Several de�nitions have been proposed. Hansen (1959) de�nes accessibility
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as a \potential of opportunities for interaction":

Ai =
∑
j

Sj

ttα
ij

where Ai is the accessibility of place i, Sj is a measure of the \size of the activity" at j,

such as the number of jobs, the annual retail sales or the population in a residential area,

and ttij represents the travel time between i and j. The α parameter, de�ning the weight

of travel time in accessibility measure, is evaluated based on the urban growth, assuming

it is directly proportional to accessibility. Weibull (1980) developed a rigorous axiomatic

framework de�ning attraction-accessibility measure based on distance and attractivity

(also called supply capacity). No clear de�nition of what exactly is attractivity is given

but in an example about labor market, attractivity is de�ned as a function of the number

of jobs and a demand potential for each zone (Weibull, 1976). He mentions that attrac-

tivity may be described as \o�er", and gives the examples of places at day-nurseries and

hospital beds.

A de�nition of accessibility merging the attractivity-accessibility measures (Weibull,

1980) and the contraints-oriented approach (see Section 2.3 and H�agerstraand (1970))

is proposed by Miller (2010). He emphasizes that a pure constraints-oriented approach

gives each opportunity an equal weight, and, conversely, an attractivity-accessibility

approach does not take into account temporal constraints. We propose to similarly

de�ne a potential attractivity measure by merging attractivity and time constraints for

the pedestrian context.

Formally, we de�ne the potential attractivity measure as a model of aggregated oc-

cupation per point of interest (POI). The unit of attractivity is the number of persons.

The potential attractivity measure Sx,i(t
−, t+) between a start time t− and an end time

t+ for x ∈ POI and individual i is time dependent and may di�er across individuals. It

depends on the instantaneous potential attractivity measure Sx,i(t) at a given time t:

Sx,i(t
−, t+) =

∫t+
t=t−

Sx,i(t)dt (6)

The instantaneous potential attractivity measure depends on time-constraints and

attractivity:

Sx,i(t) = δx,i(t) · Ai(x, t)

where δx,i(t) is a dummy variable for time-constraints such as schedules or opening

hours, with value 1 if the POI is open or scheduled and 0 otherwise: opening hours

of shops and restaurants, or timetables in the case of conferences, campuses, or public

transport infrastructures. Timetable are individual-speci�c. Their availability depends

on the level of anonymity for localization data (see Section 3.1).

Attractivity Ai(x, t) is context-speci�c, as seen in the land use literature: number of

jobs, annual retail sale, population per zone, places at day-nurseries, hospital beds. In

the pedestrian facility context, data sources could be checkouts in supermarkets, metro

card swapping data, concert tickets data, number of seats in a restaurant, number of
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employees per o�ce, number of students in class, capacity of di�erent zones in a stadium

or a public transport infrastructure.

As a general guideline, the potential attractivity measure depends on the available

information:

� If the attractivity is stable in time for a given POI x (e.g., an o�ce on campus

with a given number of employees and no explicit o�ce hours), δx,i(t) = 1 ∀t and

Sx,i(t) = A(x);

� If the POI has opening hours (e.g. a shop on campus), δx,i(t) = 1 for t in the open-

ing hours and 0 otherwise, and consequently Sx,i(t) = A(x) for t in the opening

hours and 0 otherwise;

� If the POI has varying attractivity in time, Sx,i(t) = A(x, t) with A(x, t) being a

step function (e.g. for classrooms with di�erent numbers of students at di�erent

periods of the day) or any function representing the number of people in the POI

per time (e.g., point-of-sale data for restaurants);

� If the attractivity varies for di�erent people or categories of people, Sx,i(t) =

Ai(x, t) with di�erent attractivity functionsAi(x, t) for di�erent individuals i (e.g.,

a classroom has di�erent attractivities for employees and students on a campus).

The prior P(a1:K) is derived assuming that, for each k, activity episode ak−1 is

independent from activity episode ak.

P(a1:K) =

K∏
k=1

P(ak) (7)

=

K∏
k=1

P(xk, t
−
k
, t+
k
) (8)

=

K∏
k=1

Sxk,i(t
−
k
, t+
k
)∑

x∈POI Sx,i(t
−
k
, t+
k
)

(9)

The prior probability is proportional to the attractivity. As an extension, attrac-

tivity measure can be replaced by a probability model such as a logit model predicting

the number of persons in a given POI at a given time. The proposed model assumes

independence between consecutive activity episodes. An activity choice model could be

included as a prior.

We de�ne four speci�cations of the prior based on di�erent assumptions on the avail-

able data: uniform, aggregate, disaggregate and diary. If no information about the

attractivity is available, a default assumption has to be used, and attractivity is �xed for

all POI. The corresponding prior is called \uniform". If information about attractivity

and schedule is available, the quality of the prior depends on the level of anonimity of

the network traces. Without personal information, a single aggregate prior is de�ned
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using the same time constraints for all individuals to de�ne the potential attractivity

measure for each location. Disaggregate information about schedules may be available

without knowing the identity of the individual: travelers (with trip schedules) and non-

travelers in a transport hub, employees (with working hours) and visitors in a shop, etc.

These information de�ne one \disaggregate" prior per group. They come either directly

from the network traces (see Section 3.1) or from pattern recognition (e.g., in a railway

station, individuals directly arriving on a platform are automatically travelers coming

from a train). Finally, individual schedules can be used to de�ne a \diary" prior. Due to

respondent burden, individual schedules from activity schedule surveys are particularly

di�cult to collect (see, e.g., Chen et al. (2010)). This prior is important for establishing

the consistency of our approach.

4.2. Generation of activity-episode sequences

The probabilistic measurement model computes the likelihood of a given activity-

episode sequence a1:K. This section focuses on the generation of candidate activity-

episode sequences. An algorithm is proposed to generate candidates from localization

data and pedestrian semantically-enriched routing graph. At each new measurement of

m̂1:J, we build a list of candidates to be the true location x and for each of them start

and end times t− and t+.

4.2.1. Generating episode location

Inspired by the methodology developed by Bierlaire et al. (2010) for smartphone GPS

data, we generate candidate episode locations for each measurement using the concept

of domain of data relevance (DDR) originally introduced by Bierlaire and Frejinger

(2008).

We de�ne the DDR as a physical area in space where a measurement location is

relevant. The de�nition of the area can be di�erent depending on the precision of the

measurement, i.e., the DDR depends on the type of data. In the pedestrian context,

this area could even be in 3D, covering several 
oors. A point of interest x ∈ POI is

considered to be in the DDR of measurement location x̂ if the probability P(x̂|x) > θ,

with θ a given threshold. This probability is a function of the location x of the POI and

the measurement location x̂, similar to the one in Equation 5.

Using the domain of data relevance DDRj for each measurement m̂j, we generate all

possible activity sequences for each individual. Each element of the sequence represents

a possible episode location. It is connected with all possible next episode locations

contained in the domain of data relevance DDRj+1 of the following measurement in

time, m̂j+1 (a simple example with two DDRs containing respectively 3 and 2 points of

interest is presented in Figure 2). For a list m̂1, m̂2, ..., m̂J of measurements associated

with a given individual, the result of this process is a network structure with path in

this network with length J. Each path in the network corresponds to a sequence x1:J
of potential episode locations. This network is built recursively. For each measurement

m̂j, j = 1, ..., J for a particular individual in chronological order, we consider all possible

episode locations, i.e., all POI in SERG, in the domain of data relevance DDRj. At each
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new measurement m̂j, the network structure of activity episodes is extended with all

locations associated with m̂j (Figure B.20 in Appendix B).

b
x̂j

b
x̂j+1

bx1
j

bx2
j

bx3
j

b x2
j+1

b x1
j+1

Figure 2: The symbolic representation of two domains of data relevance DDRj and DDRj+1 correspond-
ing to measurements m̂j and m̂j+1 following each other chronologically. In this simple example, we
assume DDRj contains 3 possible episode locations x1

j
, x2
j
, x3
j
, and DDRj+1 contains 2 possible episode

locations x1
j+1

, x2
j+1

(x1
j
, x2
j
, x3
j
, x1
j+1

, x2
j+1
∈ POI).

If a measurement is imprecise and the corresponding DDR is huge (e.g., in an area

with lowWiFi coverage the size of the con�dence interval can be of the order of magnitude

of the whole pedestrian infrastructure), all points of interest have a high measurement

likelihood. Here, the prior is de�ning alone the location as the point of interest with

the highest attractivity in the pedestrian infrastructure. An upper bound for the size

of the DDR is needed in these cases. The activity episodes corresponding to these

measurements containing no information will then be eliminated (see Section 4.3).

4.2.2. Generating episode start and end times

Once a sequence x1:J of potential episode locations is de�ned, the episode start and

end times t− and t+ at these locations need to be generated.

Given two consecutive measurements m̂j and m̂j+1 and their corresponding times-

tamps t̂j and t̂j+1, a trip between the two generated positions xj and xj+1 of the con-

secutive activity episodes aj and aj+1 is assumed to take place. This trip de�nes both

the end time t+
j
from episode aj and the start time t−

j+1
of episode aj+1. The departure

of the trip occurs after measurement m̂j and before the latest possible departure time,

i.e., the time that allows to reach the next episode location through the shortest path.

Similarly, the arrival occurs before the next measurement m̂j+1 and after the trip from

the episode location of the previous measurement (Figure 3).

The travel time used by a pedestrian to walk from xj to xj+1 is approximated by

the ratio between the shortest path distance between xj and xj+1, and the speed of

1.34 m/s (see Buchm�uller and Weidmann (2006)). In this way, the episode end time
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Figure 3: Time-space representation of two consecutive activity episodes j and j+ 1.

t+
j
∈ [t̂j,max(t̂j, t̂j+1 − ttxj,xj+1

)] and the next episode start time t−
j+1
∈ [min(t+

j
+

ttxj,xj+1
, t̂j+1), t̂j+1]. The maximum and the minimum in the bounds of the intervals

manage the situation when t̂j > t̂j+1−ttxj,xj+1
or t+

j
+ttxj,xj+1

> t̂j+1. This may happen

when the pedestrian was much faster than what we assume, or when a measurement was

generated while walking (no stop, thus no time spent at this location).

No information is available about the exact time when the trip actually happens

between the bounds for start and end times, and so a uniform distribution is used. The

end time t+
j
is uniformly distributed, t+

j
∼ U (̂tj , t̂j+1 − ttxj ,xj+1

), with density function

f(x) =
1

t̂j+1 − ttxj,xj+1
− t̂j

.

The start time t−
j+1

is uniformly distributed between t+
j
+ ttxj,xj+1

and t̂j+1. Since t
+
j

is itself normally distributed, the density function of t−
j+1

is

f(t−
j+1

) =
1

t̂j+1 − ttxj,xj+1
− t̂j

ln
t̂j+1 − ttxj,xj+1

− t̂j

t̂j+1 − t
−
k+1

(and expected value is E(t−
j+1

) =
t̂j+ttxj,xj+1

+3·t̂j+1

4
) (see Appendix A for a derivation).

In the cases when t̂j > t̂j+1 − ttxj,xj+1
or t+

j
+ ttxj,xj+1

> t̂j+1, t
+
j
and t−

j+1
are �xed

with value t̂j and t̂j+1 respectively.

4.3. Intermediary measurements

The duration of activity is assumed to have a lower bound Tmin. Any episode with

an expected duration lower than Tmin is rejected. It is assumed that the corresponding

measurement has been generated while the pedestrian was walking, and therefore does

not correspond to an activity.
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In the case of very imprecise measurements, the DDR is bounded (see Section 4.2.1).

It avoids accumulated activity probability on a location with a strong prior based on

no geographical evidence (very weak measurement). It creates false activity episodes,

arti�cially close to the measurement location. Then, if there is no con�rmation from

another measurement in this area, the time spent at this activity episode will be very

short and thus this activity episode will be eliminated.

4.4. Sequence elimination procedure

The number of path in the network grows exponentially with the number of measure-

ment. For each measurement m̂j, j = 1, ..., J, all the elements of the corresponding DDR,

|DDRj|, have to be connected with all the previous candidates, resulting in
∏J
j=1 |DDRj|

candidates. In practice, it is not possible to consider all possible combinations. There-

fore, the proposed implementation of the procedure imposes an upper bound L on the

number of candidates. Whenever the number of candidates exceeds L, the least likely

candidates (according to Eq(1)) are eliminated to enforce the maximum number of paths

in the network (Figure B.21 in Appendix B). This procedure performs better determinis-

tically (keeping the L most likely candidates) than stochastically (drawing L candidates

based on the activity probability). Indeed, accumulation over several measurements gen-

erates an activity episode. When randomly picking a candidate, there is a risk to have

several activity episodes with a small duration. They will be considered as intermediary

measurements and eliminated.

The processes described in Section 4.1, 4.2, 4.3 and 4.4 de�ne Algorithm 1. It is

illustrated in Figure C.22 in Appendix C. The algorithm runs in O(J · |DDR| · L · |E| · |N | ·

log(|N |)). Computational burden mainly comes from the shortest path algorithm. The

number of shortest paths computations depends on the size of the DDR (controlled by

the modeler) and on the size of the list a1:k (L, also in control of the modeler).

The network traces bring the dynamics in the process by allowing to track a pedes-

trian during all the journey in the pedestrian infrastructure. The prior is a way to add

information about time constraints and attractivity. Finally, the pedestrian semantically-

enriched routing graph (SERG) has two roles in the process. First, it allows to link the

network traces (coordinates in a continuous space) to time constraints and attractivity

of POI in the prior (places and landmarks in discrete space). Second, shortest path in

SERG being bigger than Euclidean distance between two POI, it corrects for anisotropy

in the pedestrian infrastructure. It impacts the elimination procedure through the com-

putation of shortest paths.

The proposed probabilistic measurement model computes the probability of perform-

ing an activity-episode sequence while generating measurements. It assumes that each

measurement corresponds to an activity episode. In reality, some measurements are gen-

erated while walking. While it makes sense in order to simplify the model and handle a

lot of measurements in a reasonable time, an extension of the proposed model consists

in applying a probabilistic map matching approach such as Bierlaire et al. (2013) for

measurements not related to an activity episode.
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Algorithm 1: Generation of activity-episodes sequences.

for each ID do
for measurement m̂j = (x̂j, t̂j), j = 1, ..., J O(J) do

De�ne the corresponding Domain of Data Relevance, DDRj O(|DDR| log(|N |));
for each x ∈ DDRj O(|DDR|) do

Compute the measurement likelihood ;
if T empty then

Initialize the network structure for activity-episodes sequences T with x1 = x,
t−
1
= t+

1
= t̂1 ;

Update the activity probability with the measurement likelihood and the prior ;

else
for each a1:k of T O(L) do

if xk = x then

Update the de�nition of the episode end time: t+
k
= t̂j ;

Update the prior for ak ;
Update the activity probability of a1:k with the measurement
likelihood and the prior ;

else
Compute the shortest path between xk and x, and the travel time
ttxk,x O((|E|+ |N |)log(|N |));

De�ne the last episode end time: t+
k
∼ U (̂tj−1 , t̂j − ttxk ,x ) ;

De�ne the new episode start time: t−
k+1

∼ U (̂tj−1 + ttxk ,x , t̂j ) ;

ak+1 = (x, t−
k+1

, t̂j) ;

if ak is an intermediary measurement then
Connect ak−1 with ak+1 in T ;
Compute the prior for ak+1 ;
Update the activity probability of a1:k+1 with the new
measurement likelihood and prior, but without the prior for ak ;

else
Connect ak with ak+1 in T ;
Update the prior for ak and compute it for ak+1 ;
Update the activity probability of a1:k+1 with the new
measurement likelihood and priors ;

Sequence elimination procedure: keep the L most likely paths of the network T
O(L|DDR| log(L|DDR|))

5. A case study on EPFL campus

We conduct an experiment on the EPFL campus. We assume here that the only mode

on campus is walking, even if some people outside of the campus could be detected, either

within a car on the road or within public transportation.

In Section 5.1 and 5.2, localization data and a pedestrian semantically-enriched rout-

ing graph of the campus are presented. We show how they comply with the data require-

ment de�ned in Section 3. Then, in Section 5.3, the potential attractivity measure used

to generate the prior distribution is described. Finally, in Section 5.5, sensitivity analysis

is performed on the di�erent parameters, in particular the ones de�ning the DDR, the

prior and the density of measurements.
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Figure 4: 95% con�dence square for localization tool by Cisco

5.1. EPFL WiFi data

The data used for this case study have been collected with the Cisco Context Aware

Mobility API with the Cisco Mobility Services Engine (MSE) (Cisco, 2011). It uses

triangulation based on signal strength from the access points to generate a measurement

m̂ = (x̂, t̂). Therefore, in this case study, the location of the device x̂ is continuous in

space. A con�dence factor cF de�nes a square around each x-y coordinates (see Figure 4).

The device is estimated to be inside this con�dence square centered at the measurement

x̂ with sides 2 · cF with 95% probability. cF is calculated assuming that the device is

located on the correct 
oor (Cisco, 2011). These data correspond to the localization data

requirement de�ned in Section 3.1.

For the measurement equation as de�ned in Section 4.1.1, we assume that the errors in

latitude and longitude are independently and normally distributed. We decompose both

the measurement x̂ and the activity location x in latitude and longitude x̂lat, x̂long, xlat
and xlong. Assuming the errors in latitude and longitude are independent, P(x̂|x) =

P(x̂lat|xlat) · P(x̂long|xlong) with:

P(x̂lat|xlat) =
1

σ
√
2π

exp

 − (x̂lat − xlat)
2

2σ2

 (10)

P(x̂long|xlong) =
1

σ
√
2π

exp

 − (x̂long − xlong)
2

2σ2

 (11)

where σ = cF
2
. This is equivalent to assume a Rayleigh distribution for the distance

between the measurement x̂ and the activity location x (Chen, 2013).

The domain of data relevance used for the generation of episode location (Sec-

tion 4.2.1) is computed for each measurement based on the con�dence square.

5.2. EPFL pedestrian network

The EPFL website proposes an orientation tool for the campus, http://map.epfl.

ch. It provides locations of o�ces and points of interest (such as restaurants and class-

rooms) on campus. It also generates itineraries between two such locations. It consists of
17
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a semantically-enriched graph (SERG) as de�ned in Section 3.2, containing |N | = 50131

nodes, |E| = 56655 edges, and |POI| = 5387 points of interest.

The network as described above corresponds to the minimum data requirement as

de�ned in Section 3.2. However, more information is provided. Similarly to road net-

works for car driving, each edge is associated with a hierarchical status. Based on this

hierarchical status, weights are de�ned in the routing tool of EPFL website as shown in

Algorithm 2 in Appendix D. The higher the weight is, the less likely the link is to be

selected for the shortest path.

5.3. Potential attractivity measure on campus

On campus, each point of interest, x ∈ POI, belongs to one of six categories: o�ces,

classrooms, restaurants, shops, library, and other points of interest. For each POI, we

de�ne attractivity A(x, t) depending on the category it belongs to.

For each o�ce, attractivity is equal to the aggregate work rates of employees provided

by the human resources management software. For classrooms, attractivity equals the

number of students who subscribed for a course at the beginning of the semester. This

number varies with the time of the day. For restaurants and the library, we use the

number of seats as a proxy. For shops on campus, no information is available and we

arbitrarily assume that attractivity corresponds to a capacity of 20 people. Finally, for

all other points of interest, we arbitrarily assume an attractivity of one, since we have

no information about it.

Time constraints δx,i(t) as de�ned in Section 4.1.2 are based on class schedules for

classrooms, and opening hours for restaurants, the library and shops. For o�ces, we

assume no time constraint, and thus δx,i(t) = 1 ∀t.

5.4. Results

5.4.1. One of the authors knowing the real activity-episode sequence

The methodology presented in Section 4 is tested with traces from one of the authors.

76 measurements were generated on Monday May 14, 2012 (Figure 5).

With EPFL WiFi data, a con�dence square is de�ned assuming that the device is

located on the correct 
oor. In order to account for 
oor error, we also consider the

below and top 
oors, using a square with side 2 · r on these 
oors. We de�ne F as the

probability of being in the detected 
oor, and 1−F
2

the probability of being on the below

or top 
oor. Both r and F are not provided and must be �xed by the modeler.

With this de�nition and given the high density of potential episode locations in the

pedestrian network (in particular for o�ces), the number of locations in DDR is large (a

mean of 712.0 with r = 25m). The most distant episode locations of the DDR have a very

low measurement likelihood. Decreasing the size of the DDR decreases the computation

time. Moreover, very weak measurements generate huge DDRs and create a risk of giving

too much importance to the prior. We de�ne a maximum distance R in meters for taking

potential episode locations in consideration, cFtrunc = min(cF, R).

The sequence of activity episodes has been recorded manually by the tracked author

and is shown in Table 1 and Figure 6. He �rst went in a classroom from 8.32 to 10.30 am
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Figure 5: WiFi traces generated by one of the authors on Monday May 14, 2012 (violet) and the
pedestrian network (blue).

for a course, then in his o�ce until 11.47 am. For lunch break, he arrived in a restaurant

on campus at 11.55 am. He came back to his o�ce around 1 pm and went for a co�ee

around 2 pm. Finally he came back in his o�ce until the end of his working day, around

7.45 pm.

Activity log
Time spent Floor Location
8.32am-10.30am 1 Classroom

Until 11.47am 3 Author's o�ce

From 11.55 am 1 Restaurant

Around 1pm 3 Author's o�ce

Around 2pm 2 Cafeteria

Until around 7.45pm 3 Author's o�ce

Table 1: Sequence of activity episodes as reported by one author. It contains 6 activity episodes.

The results are presented in Table 2, with R = 80m, r = 25m and F = 0.6. At each

iteration, only the best candidate is kept (L = 1). The potential attractivity measure

is using the individual disaggregate class schedules. ∆x is the shortest walking path

between the episode location from the model and the one from the activity log in the

semantically-enriched routing graph.

Compared to the mean con�dence factor cF = 124.2m, the spatial error (∆x) is
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Figure 6: Sequence of activity episodes as reported by one author. The dots represent activity episodes.
The black thick lines represent the weighted shortest paths presented in Section 5.2. They use the
pedestrian network and connect the activity episodes.

Model with disaggregate prior Activity log ∆x
Arrival time Departure time Floor Location Time spent Floor Location (in m.)
8:35-8:35 10:38-10:38 1 Classroom 8.32am-10.30am 1 Classroom 0

10:40-10:40 11:51-11:51 3 O�ce Until 11.47am 3 Author's o�ce 9

11:54-11:54 12:47-12:53 1 Restaurant From 11.55 am 1 Restaurant 0

12:51-12:58 13:03-13:44 3 O�ce Around 1pm 3 Author's o�ce 9

13:06-13:47 13:53-14:02 2 Cafeteria Around 2pm 2 Cafeteria 0

13:55-14:04 19:40-19:44 3 O�ce Until around 7.45pm 3 Author's o�ce 9

Table 2: Comparison between the most likely output of the model and the activity log as reported by
one author.

low. The last activity episode, the metro stop, is not covered by WiFi. It is at the

border of the campus. Thus, the error is big in this case. 3 out of 7 activity episodes

are perfectly detected, and 3 more have a correct category. The number of episodes is

correctly detected, as well as the 
oor of each activity episode. The temporal precision

seems coherent with the diary. Results are presented on a map in Figure 7.

As the precision of the WiFi data is low and attractivity measure does not perfectly

correct for this imprecision, the number of candidates L in the sequence elimination

procedure (Section 4.4) can be increased to represent this uncertainty. L must be de�ned

by the analyst to balance between algorithm speed and representation of uncertainty in
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Figure 7: Activity-episode sequence of the most likely output of the model with disaggregate prior on
EPFL Campus pedestrian network. Episode locations are connected with the weighted shortest path
presented in Section 5.2. Destinations are represented in green if in the correct category of POI and red
otherwise. Only the last destination, the metro stop, not covered by WiFi, does not have the correct
category.

the data. Figure 8 shows results with L = 100 candidates. Some activity episodes are

present in each of the 100 candidates, expressing the absence of ambiguity at this time of

the day (episodes 3 and 5, restaurants and cafeteria). In other cases, a strong ambiguity,

both in horizontal error and activity-episode category, is present (episode 1, classroom).

Measuring this uncertainty allows for corrections in further analysis.

5.4.2. Individual and aggregate results for anonymous members of campus

The same methodology was applied to 3490 employees and 767 students of campus

(with L = 20 and F = 0.99). Data were collected for 5 weekdays, between May 17 and

May 23, 2012. Campus users authenticate themselves on the WiFi network through

WPA (WiFi Protected Access) using a Radius server. Accounting is one of the process

on the Radius server. It allows to associate a MAC address with a username (Koo et al.,

2003). The username was associated with employee or class attribute through LDAP

(Lightweight Directory Access Protocol) requests. Then, both the MAC address and the

username were deleted to guarantee privacy. This process generates anonymized network

traces with known category of users on campus.
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Figure 8: Activity-episode sequence of the L = 100 most likely output of the model with disaggregate
prior on EPFL Campus pedestrian network. Destinations are represented in green if in the correct
category of POI and red otherwise. The surface of each point represents the normalized probability of
this destination being the correct one (Eq. 1). The two restaurants are detected in all 100 activity-
episode sequences. The author's o�ce is not always perfectly detected and variations can be observed,
but the category is always correct. The classroom, in the beginning of the day, is not correctly detected,
and the destination category is wrong in some cases. The actual classroom is detected in a minority of
cases. In some of the 100 sequences, there is a seventh episode, but their likelihood is too small to be
seen on the picture.

Figures 9, 10 and 11 show the activity patterns of two employees and one student.

The POIs are aggregated per category in these �gures. Figure 9 shows an arrival on

campus between 8h05 and 8h10. The employee visits two o�ces �rst, then a restaurant,

then an o�ce and a lab in the morning. During lunch break, the employee visits two

di�erent restaurants. Then the employee visits a lab again, a restaurant, and �nally the

last episode is a lab with probability around 80% and an o�ce with probability around

20%. Between 13h36 and 14h01, there is no destination where the measurements are

stable for more than 5 min. This output seems realistic.

Figure 10 shows that WiFi devices are not necessarily mobile. Here, the device is

accessing the WiFi all day long and not moving from one o�ce. It is likely to be a �xed

equipment.

A student's device activity pattern is shown on Figure 11. The student's device

was in a restaurant during lunch break and following courses in the afternoon. The
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Figure 9: Activity pattern for one employee's device on May 23, 2012. The x-axis represents the time
of the day. The colors/patterns represent the di�erent categories of the points of interest. The y-axis is
the probability to be the correct point of interest based on Eq. 1.

\other" activity type in the morning represents here the campus bike service. It is very

likely to be a measurement error since there is a class two 
oors up and 10 m away.

Our measurement equation does not take into account more than one 
oor error, so the

actual classroom is not in the domain of data relevance. The limitation of the size of the

domain of data relevance increases the speed of the algorithm but also excludes some

points of interest that could be realistic.

At a more aggregate level, we can observe from the output of Algorithm 1 that people

on campus are performing 3 activity episodes on average. At an average they spend 1 h

and 37 min on each activity. Focusing on the restaurants, Figure 12 shows the number

of devices detected in restaurants per quarter of an hour during the 5 weekdays. We

observe a peak of transactions around noon, which is expected.

There are no data about the real behavior of people for validating the number of

episodes, their duration or the proportion of people going to restaurants.
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Figure 10: Activity pattern for one employee's device on May 23, 2012. The x-axis represents the time
of the day. The colors/patterns represent the di�erent categories of the points of interest. The y-axis is
the probability to be the correct point of interest based on Eq. 1.

5.5. Sensitivity analysis

Based on results from one of the authors (Section 5.4.1), the sensitivity of the results

to the parameters, the prior and the density of measurements are measured in terms of

spatial and temporal precisions of each activity episode and more globally at the sequence

level, quantitatively and qualitatively. Four criteria of stability are de�ned to evaluate

the impact of the changes: the number of episodes that are detected by the algorithm

(\Nb episodes"), the walking distance between the episode location from the model and

the activity log one (\Delta dist.", in meters), the mean absolute di�erence between

the activity log schedule and the schedule de�ned by the model (\Delta duration", in

minutes), and the number of correct destinations categories (\Nb OK"). The reported

walking distance, \Delta dist.", is the shortest path between the episode location from

the model and the activity log one in the semantically-enriched routing graph. This

criteria is more relevant than Euclidean distance since a small di�erence in localization

may have a big impact on the actual distance in the pedestrian graph for the tracked

individual. The reported episode start and end times are not very precise, in particular in

the afternoon, and thus we only consider here the 5 start and end times with a su�cient
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Figure 11: Activity pattern for one computer science master student's device on May 23, 2012. The
x-axis represents the time of the day. The colors/patterns represent the di�erent categories of the points
of interest. The y-axis is the probability to be the correct point of interest based on Eq. 1.

precision in the activity log schedule: t−
1
, t+
1
, t+
2
, t−
3
, t+
6
. The number of correct categories

is important, since the detection of the exact o�ce is not necessary for understanding

mobility patterns, while knowing the kind of destination is crucial.

In the next sections, the impact of the changes in di�erent parameters (Section 5.5.1),

the impact of the prior (Section 5.5.2) and the impact of the density of measurements

(Section 5.5.3) are shown.

5.5.1. Sensitivity to the parameters

There are mainly four parameters that need to be de�ned in the model. First, the

maximum radius R of the DDR, allowing to limit the computational burden related to

some very imprecise measurements; second, the probability F of being in the detected


oor. Since the precision is expressed in the horizontal plan, a vertical precision needs

to be set up; third, we also de�ne the minimum time spent at destination to Tmin
in minutes; and �nally the number L of candidates that are kept during the sequence

elimination procedure.

We use as a base case R = 80m, F = 1.0 and Tmin = 5min, as in the previous results,
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Figure 12: The x-axis represents the time of the day (quarters of hour). The y-axis represents the
cumulated number of people detected in the restaurants of the campus over 5 days from the WiFi traces
(devices/quarter). Since 20 activity-episode sequences are generated per individual, each one is weighted
by its probability to be the correct one based on Eq. 1.

and we �x L = 40. The expected values for the criteria of stability are used based on the

normalized activity probability from Eq 1.

Figure C.22 showed the impact of L on a small illustration, with L = 1 and 2. With

real data, the same e�ect is appearing for the last episode. It shows than L = 1 should

be avoided (Figure 13). By �xing the number L of candidates to 1 at each iteration, only

the most likely last activity episode is kept at each measurement. This does not allow

for explicit management of ambiguity of the measurement and does not provide memory

to the process. With L > 1, results are stable.

Varying Tmin de�nes the time length of intermediary measurements. For some large

values of Tmin (9, 10, 11, 12 min), it is possible that performing several activity episodes

of less than Tmin is more likely than performing the actual activity episode. It explains

the low values for \Nb episodes" and \Nb OK" in Figure 14. Reasonable values for Tmin
represent the expected error in the travel time between two episodes, because of slower

walking speed or longer distance than the shortest path (see Figure 15, i.e., less than

9 min. In these cases, results are stable. Tmin should also be bigger than 1. In this
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Figure 13: Sensitivity to the number L of candidates kept between each measurement, L =

1, 2, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.

case, very short and unrealistic activity episodes on the way between two actual activity

episodes are more likely than the actual ones.

In our particular example, if R is small (R = 30, 40), the ambiguity for the �rst episode

(see Figure 8) disappeared. It is case speci�c. In general, with small R, destinations are

missed by the algorithm. For large values (R = 90, 100) or no limitation (R = ∞), the

geographical information provided by the WiFi measurement is almost 
at. In this case,

the activity probability depends on prior only and the prior is bigger for less activity

episodes. It explains the low number of activity episodes in Figure 16. The output is

stable for R = 60, 70 and 80 m.

In our example, 10 of the 76 measurement are not on the correct 
oor (13%). Only

one of them corresponds to an activity episode (the 9 others are measurements related

to the metro stop, not covered). Figure 17 shows that the inter
oor probability F has

a very small impact in this speci�c example, if F is in the order of magnitude of the

error (0.9). Still, the vertical imprecision in a multi
oor environment must be taken into

account. In particular, when the device is next to windows, stairwells or mezzanines, the
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Figure 14: Sensitivity to the minimum time spent at destination Tmin, Tmin =

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 minutes.

signal could cross the 
oor separation.

As an extra example, one of the authors had a class on March 27, 2012. 2 of the 14

measurements corresponding to this activity episode are detected on the 
oor below the

actual episode location. These two consecutive measurements happened in more than

5 min di�erence and thus are not considered as intermediary measurements. Moreover,

they happen after the beginning of the activity episode. With F = 1, three activity

episodes are detected: on the correct 
oor, then downstairs, then on the correct 
oor

again. With F = 0.9, only one activity episode is detected.

5.5.2. E�ect of prior

In Figure 18, we present results with the di�erent priors de�ned in Section 4.1.2 to

show their e�ects: (1) uniform; (2) aggregate for all campus members, using the same

class attractivity for all students; (3) disaggregate for a class, meaning that we know

the exact class schedule for the tracked pedestrian; and (4) diary, based on the recorded

sequence presented in Table 1.

We observe �rst that the total number of episodes in the day is estimated correctly
28



t
+

k−1

xk+1

b

bt
−

k

b

t
−

k+1

b t
+

k

xk−1

Time

Position

xk

6 2 ′

Figure 15: Time-space representation of one activity episode k with short time spent at it, t+
k
− t−

k
6 2

minutes. The purple dashed line represents the assumed trip, with mean speed and shortest path. The
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from the 76 measurements with each di�erent prior (Figure 18). Using a threshold of

5 min spent at episode locations, we reach the same number of episodes as the activity

log. It means that without extra information, with a uniform prior, the WiFi data are

already providing information about the number of episodes in the day. On the other

hand, with a uniform prior, only 4 out of 7 activity episodes have correct category. This

information is crucial for understanding and modeling activity choice.

We can observe that the aggregate prior is not precise enough (Figure 18). The

number of episodes is stable, as well as the number of correct categories (\Nb OK")

compared to a uniform prior, and spatial precision is worse. The aggregate prior does not

improve the results. A deeper analysis of the results shows that including class schedules

for all pedestrians, even those to whom these schedules are not relevant, is giving too

much importance to classrooms compared to o�ces and other points of interest. It

creates a bias towards classes by applying the same time constraints to everyone, even

when these schedules are wrong for a particular individual.

Applying the correct time constraints needs class schedules, and thus lower anonymity

level of the WiFi data. The disaggregate prior does not require the student identity but

to which class the student belongs to. It detects almost all destinations perfectly, with

correct categories. The individual anonymity is kept, while the attractivity and time

constraints allow to correctly detect the category of the episode. Spatial error (\Delta

dist.") is almost as good as the diary prior.

The diary prior allows to correctly detect only 6 out of the 7 activity episodes since the

metro stop is not covered by WiFi and out of the con�dence square. It is interesting to

notice that exactly same results are reached with an attractivity of 3 for the visited points

of interest for the diary prior and 1 for the non-visited POI. It shows the needed order of

magnitude of the prior to overcome WiFi data imprecision in a pedestrian infrastructure

with dense points of interest and detect correct categories.
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Figure 16: Sensitivity to the maximum radius R of the DDR, R = 30, 40, 50, 60, 70, 80, 90, 100 meters and
R = ∞.

A prior with more information does not necessarily improve the results. Individual

attractivity and time constraints allow to detect the correct categories of activity episodes

and to reach a better spatial precision, while maintaining anonymity of the tracked

pedestrians.

5.5.3. Sensitivity to the density of measurements

To evaluate the sensitivity of the model to the density of measurements, some data

were arti�cially removed. 5%, 10%, 15%, 20%, 25% and 30% of the data were randomly

removed. The model ran 100 times for each case. Results are shown in Figure 19.

We observe that the model is very stable until -15% and then start to have variations,

particularly in the di�erence of walking distance between the activity log and the model.

This variation more frequently improves the di�erence of distance, which is good since

the precision is better, but is less stable. Results with -25% and -30% of the full dataset

show less stability, with variations in distances between the activity log and the models

and also in the number of episodes and the number of correct destination categories.

As a general recommendation, 76 measurements cover properly an almost 12-h jour-
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Figure 17: Sensitivity to the probability of being in the detected 
oor F, and not in the upper or lower

oor, F = 0.8, 0.9, 0.95, 0.99, 1.0. F=1.0 means that only the detected 
oor is considered.

ney on a campus. Results are still stable and trustworthy with -15% of measurements,

i.e. 65 measurements, which corresponds to a mean of 5.4 measurements per hour.

6. Conclusion

We propose a methodology detecting the di�erent activity locations visited by a

device using its network traces supported by knowledge of the underlying pedestrian

map and attractivity, in particular time constraints. We present an empirical study on

a campus.

Our approach accounts for the fact that pedestrian networks are traditionally denser

than other mobility networks and localization is often sparse, in particular indoor. The

methodology presented here is 
exible and tunable. It allows for introducing a priori

knowledge on the activities and information on the pedestrian map structure. In par-

ticular, time constraints (such as schedules for trains in a railway station, for planes in

an airport, or for classes on a campus, or opening hours for shops or restaurants) can be

added in the model. Moreover, the usage of a pedestrian network corrects for anisotropy
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Figure 18: Sensitivity to the prior, with uniform, aggregate, disaggregate and diary prior.

in the facility. This methodology also uses the concept of domain of data relevance and

avoids the traditional pingpong e�ect observed in other studies. Here, if access points

are changing very often from one to another while the device is in fact static, the true ac-

tivity location is contained in both domains of data relevance and does not change. This

methodology is robust for low density measurements. Finally, ambiguity is explicitly

stated through the likelihood of each activity-episode sequence.

This approach has limitations. First, it works in pedestrian facilities and does not

account for mode detection. Also, we emphasize the importance of a good knowledge

of the map behind the technical infrastructure. As results show, more data in the prior

does not necessarily mean better results, and a careful de�nition of attractivity and time

constraints is needed. Finally, R, the bound for the size of the DDR, must be �xed by

the analyst and may cause a wrong number of detected episodes.

Future works involve applying this methodology with di�erent sensors and in di�er-

ent contexts. It can be used with other network traces, such as Bluetooth tracking. In

other contexts, such as train stations, hospitals, festivals or airports, attractivity mea-

sures and time constraints are di�erent. Also, more data can be included in the model,
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Figure 19: Sensitivity to datasets with less data, with the full dataset as a base case.

regarding the measurement equation, the prior, the shortest path, the �rst and last activ-

ity episodes, and the estimation of the parameters. The measurement equation may be

improved by determining the source of propagation errors such as obstacles or walls. The

prior could be further extended with models on activity choice or with more precise data

about attractivity. The shortest path algorithm may describe big obstacles to increase

length-optimality of the shortest path algorithm, or consider one-way paths similarly to

street networks. The �rst and last episodes in the studied area are particular in the

sense that they represent the access to the area. In our experiment, access to campus

can be detected using prior knowledge, like studies about mode choice to access campus.

The methodology can be improved by using the probabilistic map matching method

developed by Bierlaire et al. (2013) for intermediary measurements. If exact activity-

episode sequences are available for a large sample, e.g., from surveying pedestrians or

from cameras, they can be used for Bayesian estimation of parameters such as F and r.

Merging di�erent sources of data with our Bayesian approach can be used to estimate

a destination choice model, e.g., by modeling activity pattern (Bowman and Ben-Akiva,

2001) or by using a dynamic discrete continuous choice model (e.g., Habib, 2011), tak-
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ing into account the ambiguity in type, location and duration in the activity-episode

sequence. Such models lead up to decision-aid tools for the evaluation and planning of

pedestrian facilities.
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Appendix A. Derivation of the distribution of t−
i+1

Let's �rst assume t̂i 6 t̂i+1 − ttxi,xi+1
and t+

i
+ ttxi,xi+1

6 t̂i+1 to get rid of the

maximum and the minimum in the bounds of the intervals, and thus simplify the notation

(if these two conditions are not met, the two random variables t+
i
and t−

i+1
are �xed and

the derivation is obvious).

The end time t+
i
is uniformly distributed, t+

i
∼ U (̂ti , t̂i+1 − ttxi ,xi+1

), with density

function ft+
i
(x) = 1

t̂i+1−ttxi,xi+1
−t̂i

for x ∈ [t̂i, t̂i+1 − ttxi,xi+1
] and 0 otherwise. The

start time t−
i+1

is uniformly distributed between t+
i
+ ttxi,xi+1

and t̂i+1. Its density for

a given value of t+
i
is ft−

i+1
|t+

i
=x(y) =

1
t̂i+1−t

+
i
−ttxi,xi+1

for y ∈ [x + ttxi,xi+1
, t̂i+1] and

0 otherwise. Now, the density of t−
i+1

is:

ft−
i+1

(y) =

∫ t̂i+1−ttxi,xi+1

x=t̂i

ft−
i+1

|t+
i
=x(y) · ft+

i
(x)dx (A.1)

=

∫y−ttxi,xi+1

x=t̂i

ft−
i+1

|t+
i
=x(y) · ft+

i
(x)dx (A.2)

=

∫y−ttxi,xi+1

x=t̂i

1

t̂i+1 − x− ttxi,xi+1

·
1

t̂i+1 − ttxi,xi+1
− t̂i

dx (A.3)

=
1

t̂i+1 − ttxi,xi+1
− t̂i

ln
( t̂i+1 − ttxi,xi+1

− t̂i

t̂i+1 − t
−
i+1

)
(A.4)

The modi�cation of the upper bound of the integral between Eq. A.1 and Eq. A.2 is

explained by the support of y: y ∈ [x+ ttxi,xi+1
, t̂i+1], i.e., x+ ttxi,xi+1

6 y. Note that
x 6 y− ttxi,xi+1

6 t̂i+1 − ttxi,xi+1
.

Expected value is E(t−
i+1

) =
t̂i+ttxi,xi+1

+3·t̂i+1

4
.
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Appendix B. Tree representation of the generation of activity-episode se-

quences and of the sequence elimination procedure
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Figure B.20: A tree representation of the network corresponding to the two measurements in Figure 2.
Each path from the root to a leaf of the tree represents a possible activity-episode sequence.
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Figure B.21: The tree of Figure B.20 with the probability for each leaf to be the correct one. If L = 5,
we eliminate the candidate represented by the dotted line, as it is associated with the lowest probability.
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Appendix C. Illustration of the methodology
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b
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Figure C.22: The �rst measurement ŝ1 = (x̂1, t̂1) takes place at t̂1 = 19:45. Its DDR contains only
one POI, x1. It is connected with the two elements xA

2
and xB

2
of the DDR of measurement ŝ2 =

(x̂2, t̂2 = 19:47). At 19:47, there are two candidates, (a1, a
A
2
) and (a1, a

B
2
). Let's assume aA

2
is twice

more attractive than aB
2
, and xA

2
and xB

2
are in the same distance of the measurement location x̂2. Thus,

(a1, a
A
2
) is twice more likely than (a1, a

B
2
). If L = 1, only (a1, a

A
2
) is kept, and then associated with x3.

With travel times from the picture, start and end times for aA
2
are generated: t−

2
∼ U (19:45+ 1', 19:47),

t+
2

∼ U (19:47, 19:59 − 2'). Estimated time spent at aA
2
is 5'30. If L = 2, both (a1, a

A
2
) and (a1, a

B
2
) are

kept and associated with x3. Then, start and end times for aB
2
are generated: t−

2
∼ U (19:45+ 2', 19:47),

t+
2

∼ U (19:47, 19:59 − 4'), for an expected time spent at aB
2
of 4'. As it is less than 5', aB

2
is eliminated

and the two candidates are now (a1, a
A
2
, a3) and (a1, a3). (a1, a3) is the most likely sequence since the

measurement likelihoods are the same but the priors are P(a1, a3) > P(a1, a
A
2
, a3).
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Appendix D. Weighted shortest path algorithm

Algorithm 2: Weight de�nition procedure for each edge in the pedestrian network

if door = closed then

weight = ∞;
else

if Major Route then

hierarchical factor = 1;
else if Inter-building Route then

hierarchical factor = 1.2;
else if Intra-building Route then

hierarchical factor = 1.5;
else if Access to O�ces then

hierarchical factor = 2.0;


oor factor = 1;
if Up then

if Ramp then

oor factor = 3;

if Stairs then

oor factor = 15;

if Down then

if Ramp then

oor factor = 2;

if Stairs then


oor factor = 12;

lift factor = 0;
if Elevator then

elevator factor = 40;

weight = length · hierarchical factor · 
oor factor + elevator factor;

The length between 
oors is de�ned as being 0.5 meters in our pedestrian network.

It explains why the 
oor factor is quite high compared to the hierarchical factor. In the

case of elevators, the length is 0 and this is why we add 40 in the �nal weight formula.
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