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ABSTRACT

Cluster-based storage systems are popular for data-intensive ap-
plications and it is desirable yet challenging to provide incremen-
tal expansion and high availability while achieving scalability and
strong consistency. This paper presents the design and implemen-
tation of a self-organizing storage cluster called Sorrento, which
targets data-intensive workload with highly parallel requests and
low write-sharing patterns. Sorrento automatically adapts to stor-
age node joins and departures, and the system can be configured
and maintained incrementally without interrupting its normal oper-
ation. Data location information is distributed across storage nodes
using consistent hashing and the location protocol differentiates
small and large data objects for access efficiency. It adopts ver-
sioning to achieve single-file serializability and replication consis-
tency. In this paper, we present experimental results to demonstrate
features and performance of Sorrento using microbenchmarks, ap-
plication benchmarks, and application trace replay.

1. INTRODUCTION

Large-scale cluster-based storage systems [3, 16, 33, 21] are widely
used in high performance data-intensive applications [2, 6, 17, 42,
51]. When being deployed in a production environment with con-
tinuous workload, a storage cluster should not only deliver high I/O
performance, but also be available in a 24 X7 manner. Additionally,
certain applications desire a consistency model stronger than com-
mon NFS session semantics.

Achieving high performance, incremental expansion, and high avail-
ability with strong consistency for general applications is challeng-
ing and typically requires compromise in at least one area [19]. Pre-
vious research on cluster-based storage systems relaxes either the
constraint on system availability during failure (such as PVFS [16]),
or the feature of incremental expandability (such as Petal [33] and
GPFS [41]). Other systems exploit application-storage co-design
by weakening the consistency requirement of application data [39,
53, 42]. In this research, our compromise is to target a specific
set of parallel applications with low write-sharing patterns. We
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then take advantage of these application characteristics to provide a
storage clustering solution that offers single-file serializability, in-
cremental expandability, and high availability.

Our proposed solution self-organizes available storage resources in
the following two aspects: (1) Adaptivity to node addition and de-
parture. The system automatically detects node joins and depar-
tures and quickly adapts to these changes. (2) Replication healing.
The system masks component failures through replication and con-
ducts replica repairing to restore replication degree. We want to
emphasize that the adaptation and failure recovery is carried out
without interrupting the normal operation of the storage service,
and do not require human intervention. The latter property is very
important because human errors have been identified as a signif-
icant source of unmasked system failures [36]. The key design
points of our system, called Sorrento, are summarized as follows:
(1) Sorrento aggregates storage resources as a single object-based
storage device [9]. (2) Logical files are divided into segments and
can be placed on any storage node. The data location table is par-
titioned among storage nodes through consistent hashing [30]. Our
scheme can be considered a variation of the Chord [44] protocol
with improvements specific for a local area network. (3) Sorrento
adopts version semantics to keep data consistent and manage con-
current accesses. The overhead of versioning is relatively small for
targeted applications with a large amount of I/O parallelism.

The contribution of this work is to develop a storage clustering so-
lution to achieve the aforementioned goals by exploiting the charac-
teristics of targeted applications. The rest of the paper is organized
as follows: Section 2 outlines our design assumptions and provides
an overview of the system and Section 3 describes the details. Sec-
tion 4 presents the implementation and evaluation results using mi-
crobenchmarks, trace-reply and applications. Section 5 describes
related work. Section 6 summarizes the conclusions.

2. ASSUMPTIONS AND OVERVIEW

While our system works for general applications, our targeted ap-
plications have the following characteristics: (1) A large number of
parallel processes issuing concurrent data-intensive I/O requests.
(2) Distributed processes that typically work on disjoint data sets.
Write conflicts occur infrequently and if any sharing occurs, it is
primarily in the form of read-sharing. Our design exploits the above
characteristics and seeks to reduce the overhead of data updates and
replica management for single-file serializability, while exploiting
I/O concurrency among application processes as much as possi-
ble. We have seen many such applications at Ask Jeeves for docu-
ment processing, data mining, and information searching, and also
at Google, Yahoo, MSN, and several other Internet service compa-
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Figure 1: Sorrento system architecture.

nies that use hundreds of machines for fast processing of large-scale
data. For example, we studied the twelve distributed applications
that crawl and index web documents at Ask Jeeves. Among them,
four only read; seven partition the data with no write sharing; and
only one incurs infrequent write sharing. Other applications ex-
hibiting these characteristics include: collaborative caching, movie
scene rendering, satellite or biomedical image processing, and on-
line e-commerce services.

Our targeted applications often demand a consistency model which
allows multiple read and write operations on a single file to be
grouped as an atomic transaction, and the outcome of a set of con-
current transactions must be equivalent to some sequential execu-
tion of these transactions on the same file. The updates of any un-
committed transaction (most likely due to process failure) can be
rolled back. We refer to this type of consistency model as sin-
gle file serializability. Examples of operations that need single
file serializability include the atomic append operation proposed in
GoogleFS [21], and the updates of files with embedded checksums.
We discuss our design choice for data consistency in Section 3.5,
which works for general applications and can deliver high I/O per-
formance for applications with low write-sharing patterns.

Figure 1 shows the general system architecture of Sorrento. The
basic building blocks of Sorrento are two types of cluster nodes:
storage providers and namespace servers. Storage providers are
responsible for managing locally attached disks through the native
file system interface. They also collaborate on virtualizing the dis-
tributed storage into expandable volumes to users. Data stored in
each volume are organized in a hierarchical directory tree, which
is maintained by namespace servers. Namespace management will
be discussed in Section 3.1.

Applications can access data stored in Sorrento from any cluster
node, either through Sorrento’s client stub library or through a ker-
nel interface. Note that storage providers or namespace servers are
software entities (daemons) and do not have to run on dedicated
machines. In a typical deployment, they may co-locate with Sor-
rento client applications.

A Sorrento deployment can be configured and maintained incre-
mentally without interrupting the normal operation of the whole

system. To add storage resources, we simply attach more disks to
a storage provider, and configure this provider to join a designated
volume. To repair a failed node or to recycle rack space, we can
directly take the machine offline. When a machine is repaired, it
can be directly connected to the network without the need to re-
format the partitions, and the system automatically determines the
freshness of the locally stored data.

The core Sorrento API layer exports an NFS-style interface, in
which operations are based on opaque file and directory handles [7].
Upon this layer, we have implemented a library interface similar to
the UNIX file-system calls, and a kernel module based on FUSE [4]
allowing applications to access a Sorrento volume transparently
without recompilation once this volume is mounted to a local file
system.

3. SYSTEM DESIGN

We break the core Sorrento system into seven interconnected com-
ponents and this section describes these components in details. Their
dependences are illustrated in Figure 2 and an arc A— B represents
that B relies on the functionality of A.

3.1 Namespace Management

Sorrento separates namespace and storage management. Such a
separation is not a new concept and has been adopted in other work
such as Zebra [25], NASD [22], PVFS [16] and GoogleFS [21].
The underlying motivation is that namespace operations are very
different from application I/O operations. Namespace operations
typically involve small read/write requests and may require atom-
icity for requests that access multiple data objects. While, for ap-
plication I/O, it is more important to serve large I/O requests as
quickly as possible. Typically operations on different files are in-
dependent. Separating these two types of workload allows making
optimizations targeted to each specific type.

The namespace servers are only responsible for operations such as
creating/removing a directory, creating/removing a file entry' under
a directory, directory listing, and pathname lookup. Each file entry
contains a 128-bit file identification number and we call it FileID

'A file entry on the namespace server can be considered as the
inode equivalent in Sorrento.
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Figure 2: Sorrento components and their interdependencies.

in the rest of this paper. Each file entry also contains the file’s latest
version, time stamp, and other control information.

Similar to the metadata servers in Lustre [3], but different from

most other research such as PVFES [16] or GoogleFS [21], the names-
pace servers do not keep the physical locations of data segments.

FilelDs are persistent across the lifespan of files, and are location

independent. Such a design is desired to allow data blocks to mi-

grate among providers to balance storage usage or I/O workload, or

to exploit data locality. Requiring the namespace servers to track

the locations of mobile data blocks would make them vulnerable to

become a performance bottleneck.

The design of the namespace server is independent of other system
components, so we only present the sketches of our design here
to avoid overwhelming readers with details: The directory tree is
stored in a Berkeley DB [35] database. To tolerate process failures,
we employ a master-slave replication scheme. Namely, we pair
each namespace server (the master) with a hot-standby (the slave).
All client requests are served by the master. The master also passes
the database updates to the slave. The slave takes over as the master
server when the master fails. Both the master and slave employ a
combination of write-ahead logging and checkpointing to ensure
the database integrity.

3.2 File Data Organization

Sorrento adopts the conventional representation of a file as a linear
array of bytes. The actual file is divided into variable-length data
segments and stored on different providers. Each data segment is
kept on one storage provider in its entirety. The exact organization
of data segments is specified in an index segment. All data seg-
ments and index segments are addressed through 128-bit SegIDs,
which can be generated locally with little chance of collision by
combining a machine’s MAC address, its internal high-resolution
timer, and random seeds. In our implementation, a FileID is the
same as the SeglD of the index segment.

Sorrento currently has three data organization schemes: linear, striped,

and hybrid. The hybrid scheme is illustrated in Figure 3. The data
segments are sequentially grouped into several stripe groups; while
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Figure 3: Illustration of the Hybrid data organization scheme in
Sorrento. Si,S2, ... are segments. Each segment is further divided
into fixed-size blocks (32KB).

within each group, data are striped across multiple segments.

Sorrento automatically determines the segment sizes for different
files so that small files are stored in small segments, while larger
files are mostly stored in large segments. For small files, to avoid
the inefficiency of two data transfers (first reading the index seg-
ment, then accessing the data segment), we attach the file data
within the index segment [20].

3.3 Membership and Load Monitoring

Previous systems, such as xFS [12] or PVES [16], keep a table of
I/O servers as hard states, which are either updated synchronously
among all servers or maintained at a central location. For a large-
scale cluster, cluster nodes may join or leave the network frequently,
updating the membership information synchronously is costly and
may lead to scalability problems. On the other hand, the mem-
bership information is needed for most of the other components in
Sorrento (see Figure 2), relying on a central server to supply the
membership information would easily saturate that server and thus
limit the system’s scalability.

In Sorrento, the membership manager (which runs on all cluster
nodes) maintains the set of live storage providers as soft states
in a way similar to the one used in Neptune [42] and all storage
providers periodically multicast heartbeat packets. In our current
implementation, all storage nodes subscribe to the same multicast
group. Our measurement showed that multicast consumes less than
1% of the CPU time (measurement done on dual 1.4GHz P3) and
around 1MB/s bandwidth for a 1000-node cluster. For clusters
whose scales go beyond that, we plan to adopt a hierarchical ap-
proach.

3.4 Data Location

One of the major design challenges of Sorrento is the data loca-
tion scheme because a segment may be placed on any provider (or
providers in the case of replication) in Sorrento. Given a SegID, the
location scheme needs to quickly locate which provider (providers)
stores the segment [46].



3.4.1 Partitioning using Consistent Hashing
Sorrento’s data location scheme has been influenced by data loca-
tion protocols proposed in peer-to-peer networking research, and
the base scheme is similar to Chord [44] in various ways. The data
location information is partitioned among all the storage nodes. For
each SegID, we designate a home host that is responsible for track-
ing the hosts that store the segment, which are called the owners
of the segment. Currently, we use consistent hashing [30] to de-
termine the home host of a SegID. Unlike Chord, where each host
maintains a finger table and performs lookup in log N (V is the
number of providers) steps, a Sorrento client has the complete view
of all the storage providers (Section 3.3) and can directly determine
the home host of a certain SegID without involving other servers or
clients in the process.

Each storage provider maintains a location table that maps the SegIDs

it is responsible for (as the home to these SegIDs) to segment own-
ers. The location tables are also managed as soft states, which is re-
constructed every time a storage provider starts up and is refreshed
periodically during its life span. There are four types of events that
trigger the update of the location table:

(1) Periodic content refreshing. Each owner periodically updates
the location tables on other providers by sending the SegIDs of lo-
cally stored segments to their corresponding home hosts. In our
test, these tables are refreshed every 15 minutes. The complexity
of calculating the list of SegIDs for a remote home host is propor-
tional to the size of the list, which is asymptotically optimal. The
network overhead of periodic refreshing is typically negligible. For
instance, for a very large storage cluster with one billion segments
and one thousand storage nodes, the update traffic would consume
18KB/s incoming and 18KB/s outgoing bandwidth on the link be-
tween a node and the network switch.

An entry in a provider’s location table could become garbage when
the provider is no longer the home host of a SegID. This may hap-
pen when a newly joined provider takes over the provider as the
new home of that SegID. The garbage entries can be detected based
on the last refreshing time because garbage entries will never be re-
freshed.

(2) Node-join netification. This event happens when the mem-
bership manager adds a new provider (provider A) to the set of
live providers. Note that this event could imply two possible sit-
uations: (i) an existing provider (B) learns about a newly joined
provider (A), or (ii) a newly joined provider (B) discovers an ex-
isting provider (A). In response to this event, provider B schedules
a refreshing event for provider A. To avoid a newly joined provider
from being overwhelmed by simultaneous refreshing requests from
existing providers, the refreshing event is scheduled after a random
delay (within 20 seconds in our test environment).

(3) Node-departure notification. This event happens when the
membership manager removes a provider (provider A) from its
membership set. In response to this event, a data segment owner
(provider B) will cancel the pending refreshing events for home
host A, and remove from the location table the SegIDs that are
stored on provider A. Finally, provider B will compose a list of lo-
cally stored segments whose original home was A, and send those
SeglDs to their new home hosts.

(4) Segment creation and deletion. Between periodic refreshing,
a provider will also update other providers’ location table in re-

sponse to the creation or deletion of a local segment. Specifically,
the provider will instruct the home host of the segment to add or
remove an entry in its location table. Note that this event allows
for fast updating and happens between periodic content refreshing
described above.

The location table is kept in memory for access efficiency. The
space overhead of the location table is around 20MB for a 1000-
node cluster with one billion segments. It is insignificant consid-
ering that desktops nowadays typically are equipped with one GB
memory.

3.4.2  Optimizing Small File Accesses

One problem of the aforementioned data location scheme is that
each data access requires at least two network operations: first con-
tacting the home host, and then interacting with the owner. For
large segments, such an overhead will be amortized by the data
transfer cost; however, it is very inefficient for small segments,
whose cost is dominated by network latencies. (A particular case
is accessing index segments.) We solve this problem by collabo-
rating with the data placement design so that small segments will
be placed directly on home hosts (unless the home hosts run out of
space). In this way, a client will always request a segment from the
segment’s home host. If the home host has a copy of the segment, it
will return data directly; otherwise, it will reply with a redirection
response, and instruct the client to contact a different provider. The
actual data location algorithm is integrated as part of the data access
routines. Figure 4 illustrates the algorithm for the read operation.

As we can see in Figure 4, a read request starts with a location
cache lookup (step 1), which allows read requests for the same seg-
ment to be served directly without invoking the whole data location
protocol. If the location of the desired segment is not found in the
cache, we contact the home host of the segment. The home host
will either return the data immediately or return a redirection re-
sponse (step 2). Typically, it is sufficient to retrieve the data after
one indirection. However, in rare occasions when segments are mi-
grating or when the set of storage providers is changing, we may
need to follow redirections for multiple times. We limit the max-
imum number of redirections to avoid being trapped in transient
redirection loops.

We may fail to locate the desired segment in the first two steps
either because we contacted the wrong home host due to an incon-
sistent view of the live providers or because the location informa-
tion has not been propagated to the home host yet. In those cases,
we will fall back to a backup scheme which simply queries all the
providers by issuing the request through a multicast channel. The
probability of resorting to the multicast-based query depends on the
actual application workload and how often nodes join or leave the
system. Our experimental study shows that the backup scheme has
been used very infrequently, less than 0.001%.

3.5 Consistency and Concurrency Control

Conventionally, there are two ways to achieve single file serializ-
ability: we can either pessimistically use locks to avoid conflict-
ing operations before a transaction starts; or optimistically let a
transaction proceed normally and rollback its effect if conflicts are
detected during commitment. Following the characteristics of our
targeted applications and workload, we find that it is more efficient
and simpler to use a version-based consistency model. Conflicting
transactions will result in conflicting version advances, and rolling
back a transaction simply means discarding an uncommitted ver-



int read_segment (Segment b, ...)

{
// Step 1: check the local location cache.
Provider h = location_cache.lookup (b);

if (h.valid) { // cache hit

RetVal rval=remote_read(h, b, ...);

if (rval.status==0KAY)

return rval.length;

}
// Step 2: cache miss,
// Contact home host and follow redirections.
int max_redir=10; // up to ten redirections.
h = CH_hash(providers, b.sid); // find home.

while (max_redir—--) {
RetVal rval=remote_read(h, b, ...);
switch (rval.status) {
case OKAY: location_cache.insert (b, h);
return rval.length;
case REDIR: h = rval.redir_host;
break; // redirection
max_redir = 0;
break; // failed.

default:

}
}
// Step 3: fall back to multicast lookup.
h = mcast_lookup(b.sid);
if (h.valid) {

RetVal rval=remote_read(h, b, ...);
if (rval.status == OKAY) {
location_cache.insert (b, h);

return rval.length;
}
}
return -1; // read failure.

}

Figure 4: Illustration of the data location protocol with the
read-segment operation. read-segment reads a portion of a seg-
ment starting from a certain offset. The parameters of data buffer,
starting offset and read length are not shown for read-segment
and remote_read functions.

sion. This section describes the semantics and implementation of
such a model in Sorrento, and provides justifications of such a de-
sign choice in our context.

Semantics. From a user’s point of view, a file evolves over a series
of versions. Modifications to a file can only be applied to the lat-
est version. To make changes to a file, an application first creates
a shadow copy of the latest version, which is only visible to that
application. Once the application makes some modifications that
transform the shadow copy to a new consistent state, it can commit
the shadow copy and make it the latest version of the file. A com-
mitted version is immutable and further modifications to the file
will advance the version again. Versioning is implicitly tied with
conventional file system primitives: a commit operation is invoked
when we make a close () or sync () call. A shadow copy is cre-
ated when we open () a file for write or after we finish a sync ()
call. The latest version of a file is maintained on the namespace
server.

Implementation. Behind the scene, all index segments and data
segments are also versioned. The versions of data segments for a
specific file version are stored in the corresponding index segment.
In fact, a file’s version is just the version of the index segment. If
part of a file is changed, only the modified segments and the index
segment will have their version numbers advanced. To avoid the
overhead of making complete copy of shadow segments, we em-

ploy an optimization based on the idea of copy-on-write. To create
a shadow copy of a segment (the base segment), we simply create
a blank segment and truncate it to the same size as the base seg-
ment. Unmodified regions of the shadow copy will be found in the
base segment or its ancestor versions, and modified regions will al-
ways be found in the newly created segment. We use an index table
to maintain the mapping from region ranges to physical segments
where the valid data for the shadow copy can be located. The in-
dex tables are kept in memory, and will be flushed to disk when
the shadow copy is committed and becomes immutable. Figure 5
shows an example of how a shadow segment is created and modi-
fied. In this example, a segment with 100 sectors is updated twice.
First the region from sector 40 to 60 is updated, and then the region
from sector 50 to 70 is updated.

Logical representations:
0
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Figure 5: An illustration of the copy-on-write process. Initially,
the logical data layout and physical layout of version 1 is the same.
When a shadow copy is created, it consists of a blank segment.
When the shadow segment is updated, we update the correspond-
ing index table. The index table allows us to directly determine
which physical version of the segment we should resort to for a
read request.

To cope with failures of client applications, which may leave un-
committed shadow segments as garbage, all shadow copies are given
an expiration time. Applications must either commit a shadow seg-
ment before its expiration, or renew its expiration time.

When two processes attempt to modify the same file, each will
work on its own shadow copy of the file. However, a conflict
will occur when both of them attempt to commit their changes.
Update conflicts can be avoided among cooperative processes by
write-leases through the namespace servers. Otherwise, they will
always be detected during the commit phase: when a process at-
tempts to commit a new version of a file to the namespace server,
it will also specify the base version of the file. If the version stored
on the namespace server is higher than the base version, then it
means that another process has made some changes to the same
file and successfully committed the changes. The former process
may attempt to resolve the conflict by reapplying the changes to the
new version and recommit (as OceanStore’s predicate-based update
primitives [32] or Bayou’s merge procedures [47]), or it may just
notify end-users about the conflict.

Committing a new version of a file may require the commitment
of multiple segments on distributed providers. We use the standard
two-phase commitment (2PC) [49] to ensure the atomicity , whose
details are left out for simplicity.



Over time, a segment may have many versions, which could lead
to space waste and data fragmentation. Sorrento consolidates ver-
sions after they have not been accessed for a certain amount of
time. Version consolidation frequency can also be controlled by
system-wide parameters. By default, we start consolidation before
the version chain length grows beyond three. In the future, we plan
to allow users to specify or the system to automatically detect mile-
stone versions that will never be consolidated, a feature similar to
the Elephant file system [40].

Justification The choice of a version-based data consistency model
is motivated by the following three reasons: (1) Since in our tar-
geted workload, update conflicts seldom occur, an optimistic con-
currency control scheme such as versioning is preferred comparing
to distributed locking. (2) Storage overhead is not an issue by us-
ing the optimizations of copy-on-write and version consolidation?.
(3) Finally, versioning greatly simplifies the management of replica
consistency (Section 3.6).

We also want to emphasize that in our design, update conflict res-
olution mechanisms are not included in the core system. Instead,
applications can choose to implement their own conflict resolution
protocol based on the application semantics. For instance, we have
written an atomic append operation [21], which is illustrated in Fig-
ure 6.

// append a record r to file f.

void atomic_append(string &f, Record &r)

{

while (1) {

// Open a shadow copy of f.
FileHandle *fh = open(f, "w");
fh->append(r); // Append r to f.
// Try to commit the file.

if (fh->commit () == true) {
// Succeed: return.
return;
}
else {
// Conflict: delete the shadow copy and retry.
fh->drop();

provider will react as if the segments stored on the failed disk are
deleted and notify the home hosts correspondingly.

The replication degree can be customized on the file basis to fit the
reliability requirement of different applications. Sorrento’s version-
based data consistency also simplifies the management of replica
consistency. We can identify whether two replicas of a segment
are the same by comparing their versions. This allows Sorrento
to adopt the idea of asynchronous replication [23] (and maintain
single file serializability): Updates to a segment will first be ap-
plied to the shadow copy of one replica. When the shadow copy is
successfully committed, the provider will notify the home host of
the version upgrade. This event would cause the home host to dis-
cover that there is a version discrepancy among different replicas,
so the home host will notify those with older versions to synchro-
nize with the latest version owner. Note that we still guarantee
that an open () call always finds the latest committed copy of a
file even when asynchronous replication is adopted by keeping the
latest version information at the namespace server.

Asynchronous replication is enabled by default, and it allows writes
to be executed as fast as if there were no replication. Updates are
propagated in background (after a segment is committed) and is
not in an application’s execution path. However, for applications
that do expect updates to be synchronously applied to all replicas,
they can override the default policy when committing the file. In
a synchronous replication, the application will be blocked until the
host determines that all replicas receive the update and notifies the
application. Typically, an application may allow minor changes to
be propagated lazily, and use synchronous commitment to commit
a milestone version.

Figure 6: Implementation of atomic append.

For applications (such as DBMS) that prefer to manage their own
data consistency and concurrency control, Sorrento also provides
an option to disable data versioning completely. Since concurrency
control and replica consistency management are tightly coupled,
disabling versioning also disables replication.

3.6 Fault Tolerance and Data Replication

Sorrento tolerates two types of component failures through repli-
cation: (1) Node failure. This implies the total lose of a cluster
node, detected by other nodes based on heartbeat packets; (2) Disk
failure. This implies a locally attached disk fails while the node
is still alive. Disk failures can be detected through periodic prob-
ing performed by storage providers. Upon the detection of a node
failure, other nodes (acting as home hosts) will assume that all seg-
ments stored in the failed node are lost and update their location
table accordingly. Upon the detection of a disk failure, the storage

%In fact, one cannot consider that a lock-based scheme has no space
overhead because a lock-based scheme still requires detailed log-
ging to support failure rollback.
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Figure 7: The initial setting of an example that demonstrates the
interaction of Sorrento entities during a file session. File /foo is
represented by an index segment S; and a data segment S4. Both
segments are replicated twice. The home hosts of S; and Sy are h1
and ho respectively. h,, is the namespace server, and h. is the node
where client application is launched.

Replication degree is also maintained by home hosts: A home host
maintains a list of locations for each segment it is responsible for.
The length of the list represents the replication degree of the seg-
ment. When a home host finds an under-replicated segment, it will
choose new replica sites (different from existing owners) and no-
tify them to retrieve a copy from existing owners. It is also possible



that a segment has more replicas than specified, for instance, when
a failed node rejoins the system carrying data stored on it before its
failure. In that case, the home host will choose one replica site and
inform it to remove the excess replica.

Putting It All Together. We demonstrate how different entities in
Sorrento work together through an artificial example. This exam-
ple involves four storage providers (hi, h2, h3, ha), and one file
/foo. File /foo is physically represented by an index segment S
and a data segment Sy. Both segments are replicated twice: S; is
replicated on h; and hs, and S4 on h3 and h4. The home hosts for
S; and Sg are hi and ha respectively. A client application, which
runs on host h., opens the file /foo, performs a write operation,
and closes the file.

The initial arrangement of this example is shown in Figure 7, where
hy,, is the namespace server. The timeline of the execution is il-
lustrated in Figure 8. The activities carried out in each step are
explained in Figure 9.

| |
open() : write() close() } Background propagation
| |
|

Steps
© O ®)

|
O @160 @ 6 © |19 an @2

Figure 8: The timeline of a file session, in which an application
opens a file, writes to it, and closes it. Time flows from left to
right. Arcs between different timelines stand for communications.
We also illustrate the steps corresponding to open (), write (),
close (), and the background propagation process.

Although the whole process seems lengthy, the actual I/O transfer
goes directly between the client and the storage providers (steps
(4)-(6)) with little overhead. Typically, an application will issue
many read write requests during a file session, and the cost of the
open and close operations will be amortized. Additionally, up-
date propagation are performed in the background and will not slow
down the client application.

3.7 Data Placement and Migration

Our aforementioned data location scheme offers the flexibility of
placing a segment on any provider without restriction. In Sorrento,
a segment is not confined to the location where it is initially cre-
ated, and the system dynamically adjusts its location to balance I/O
load and storage usage, or to exploit data access locality by placing
data locally to processes that access them. Due to space constraint,
we only briefly describe the data placement and migration policies
below. Interested readers are referred to the extended version of
this paper for more details [45].

The default placement policy is to evenly distribute actively ac-
cessed segments (hot segments) across storage nodes to balance
I/0 workload, and to use infrequently accessed segments (cold seg-
ments) as fillers to balance storage usage. The initial placement of
a segment is mainly based on I/O workload, assuming a newly cre-
ated segment will be accessed soon. Sorrento then automatically

Step | Activity |
D The client retrieves file /foo’s FileID from the
namespace server h,.

2) The client contacts h1, the home host of the index seg-
ment S;, to retrieve the data of S;. Since hq happens
to have .5;, it sends back the data immediately.

3) The client contacts ho, the home host of Sy, to retrieve
the data of Sg. ha sends back a redirection response to
hg with the two owners of Sy (hs and hy).

(@] The client contacts one owner h3 and creates a shadow
copy of Sg (called SY).

(®)] The client issues the write request to hs.

(6) The client closes the file, so it creates a shadow copy
of the index segment on h; (called S}).

@) The client contacts the namespace server for the ap-
proval of commit. The namespace server finds that the
latest version of the file matches the base version spec-
ified in the client request, so it approves the commit
request.

®) The client performs the two-phase commit to make
sure the commitment of S; and D} are carried out
atomically.

©) The client contacts the namespace server and com-
pletes the version commit operation (After (7) and be-
fore (9), other processes will be blocked from commit-
ting changes to /foo.)

(10) | hi1 updates the local location table (not shown), and h3
updates the location table on hs to reflect the version
advances of S; and Sy.

(11) | h1 and ho instruct ho and h4 to sync with hq and hs
for S; and S}, respectively.

(12) | h2 and h4 retrieve the updates from hy and hs respec-
tively.

Figure 9: Activities carried out in the steps of Figure 8.

classifies whether a segment is hot or cold based on its recent access
history. Migration decisions are triggered when there is a signifi-
cant I/0 load or space usage imbalance. The migration destinations
are chosen by individual storage providers without contacting other
providers. To avoid a newly added provider, which is idle with high
free space, being suddenly swamped by other providers, the algo-
rithm selects migration destination probabilistically, and employs
randomized back-off. Finally, to prevent the data movement traffic
from interfering with normal operation, we control the number of
active data transfers per storage provider.

We also support a special locality-driven data placement policy.
This is again based on our observation that for many data-intensive
applications, the data set is partitioned and different processes ac-
cess disjoint datasets most of the time, exhibiting good locality.
Thus, it is desirable to take advantage of this locality by co-locating
segments with the process that accesses them, so that data transfers
do not need to go through network. A segment will migrate to a re-
mote provider if the traffic it receives is from that provider exceeds
a pre-defined threshold.

4. IMPLEMENTATION AND EVALUATION
4.1 Prototype Implementation

A prototype of Sorrento has been developed, which implements all
the components discussed in Section 3. The whole system is writ-
ten mostly in C/C++ plus a few hundred lines of assembly code.



Although various components in Sorrento are based on ideas from
previous research, we choose to implement the whole system com-
pletely from scratch due to either source code unavailability or ef-
ficiency considerations. The core components, such as client li-
braries and server daemons, consist of 50K lines. System monitor-
ing, diagnosis and maintenance utilities took another 10K lines. As
of this writing, our effort mainly focuses on the system’s function-
ality and reliability. Much room is available for further optimiza-
tion and feature addition.

The Sorrento file system kernel module is based on FUSE [4], a
user-space file system module. We made two changes to FUSE
to improve its performance: First, we modified the kernel module
to use a bigger buffer size than 4KB size of demanding paging,
thus reducing the number of up-calls and corresponding Sorrento
calls. Second, writes to a file are first cached in memory, and are
issued to storage providers asynchronously. The kernel module also
intercepts the sync () or close () calls and flushes all pending
writes upon these calls.

4.2 Evaluation Objectives and Settings

Our experimental study seeks to answer the following four ques-
tions: (1) How effective are the self-organizing features of Sor-
rento in handling storage node joins and departures with replica-
tion healing (Section 4.3 and 4.4). (2) What is the data-intensive
I/0O performance of Sorrento in comparison with NFS and parallel
file systems such as PVES (Section 4.5). (3) What are the effective-
ness and overhead of design choices such as versioning, replication
and asynchronous propagation (Section 4.6 and 4.7). (4) How does
Sorrento handle small file I/O operations (Section 4.8).

The evaluations are conducted on three clusters A, B, and C. The
hardware and software configuration of these clusters are summa-
rized in Figure 10. It should be noted that each experiment may
not use all the available storage nodes of a cluster. In the remaining
sections, we use the notation Sorrento-(n, r) to denote a Sorrento
deployment with n storage providers and all files are replicated r
times. Similarly, we use PVFS-n to specify a PVFS deployment
with n I/0 nodes. By default, Sorrento uses asynchronous propa-
gation for replica updates. Additionally, unless otherwise specified,
the benchmark programs or application processes run on a separate
set of machines from the storage nodes. To realize the best pos-
sible performance of PVFS experiments, we modify the programs
to directly use PVFS library functions instead of calling UNIX file
system calls.

We use a combination of microbenchmarks, real applications, and
application trace replay as our evaluation methodology. For the
purpose of trace replay, we have implemented two trace collection
utilities: one intercepts file system calls through glibc modification
and the other intercepts PVFS calls by changing the PVFS library.
The traces being collected all have accurate timing information for
the starting and ending time of each I/O request. The overhead of
trace collection ranges from 3% to 14% depending on the granular-
ity and frequency of requests.

4.3 Handling Node Failures and Additions

We first evaluate how the system handles node failures and addi-
tions using a microbenchmark: We employ 10 nodes from Cluster
A as storage providers, and populate the system with 200 512MB
files, each has three replicas (totally 300GB data). The workload
is driven by five client processes. Two processes repeatedly issue
large write requests of 4MB each; three of them issue large read re-

quests of 4MB each. We report the aggregated data transfer rates.
We deliberately kill one storage provider at time 30 (seconds); and
then launch a new storage provider on a different machine at time
45 to compensate the reduced total storage capacity and system
processing power.
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Figure 11: Handling node failures and additions. A storage
provider fails at time 30, and a new node joins at time 45.

As shown in Figure 11, transfer rate drops sharply right after the
node failure, because the requests issued to the failed node will be
blocked until they are timed out. After that, the system quickly ad-
justs the location table and the transfer rates recover to about 94%
of the initial setting. However, even after we add a new node to the
system, the transfer rate is only 85% of the level before the fail-
ure because at time 60, the system starts to make new copies of
under-replicated data, which generates an extra workload. Even-
tually, all lost replicas are restored after 20 minutes (not shown in
Figure 11). The aggregate bandwidth used by the recovery pro-
cess is 33MB/s. Because a typical MTTR for a single node takes
about one day for hard faults, Sorrento’s automatic replica regen-
eration effectively shortens the MTTR by a factor of 72. Given
a replication degree of three, this translates to an improvement of
overall system availability by five 9’s. This experiment confirms
that Sorrento is able to handle node failure gracefully, and only ex-
hibit minor performance degradation during recovery. The idea of
distributed volume rebuild for improved reliability was also used in
[52].

4.4 Replica Healing

We further demonstrate how quickly and effectively the replicas are
repaired or healed using a microbenchmark: We employ five nodes
from Cluster A as storage providers to form a storage cluster with
replication degree 3 and without any initial data. The workload
is driven by two clients that continuously issue random writes of
4MB each. The metric used to evaluate the effectiveness of replica
healing is the average replication degree of all segments. The repli-
cation degree statistics are kept in individual home hosts’ logs, and
the system-wide average replication degree are then calculated of-
fline. We kill one storage provider at time 200 to observe the effec-
tiveness of the replica healing process.

The results are shown in Figure 12, where z-axis is the elapsed
time and y-axis the average replication degree. Since initially the
file system is empty, the line starts with an average replication de-
gree of one for newly created segments. After that, the replication
degree grows steadily to around 2.1. The average replication degree
does not climb to three because new segments are generated con-
tinuously during the experiment. At time 200, one storage provider
is killed, which causes the replication degree to drop to 1.7 because



Cluster A |

Cluster B

Cluster C |

CPU 30 dual P-1I 400MHz nodes 30 dual P-IIT 1.4GHz nodes 8 dual P-1II 1.4GHz nodes
Memory 512MB per node 4GB per node 4GB per node

OS RedHat Linux (kernel 2.4.18) | RedHat Linux (kernel 2.4.25) | RedHat Linux (kernel 2.4.25)
Disks 10 disks, 210 GB 90 disks, 3.6 TB 24 disks, 9.6 TB
Connectivity || Fast Ethernet Fast Ethernet Gigabit Ethernet

Figure 10: Hardware and OS settings of three test clusters.
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Figure 12: Replication healing after a provider is killed.

around 20% of the replicas suddenly become inaccessible®. After
this time, the system starts to make new replicas for the under-
replicated segments with the remaining four servers. Due to the
drop in the number of servers, the load on the remaining servers in-
creases which decreases the rate at which new replicas are created.

4.5 Data-intensive I/O Performance
Microbenchmarks. In this experiment, benchmark bulkread re-
peatedly opens a file, reads 4MB data at random offsets (aligned at
4KB boundary), and closes it. Similarly, benchmark bulkwrite
repeatedly opens a file, writes 4MB data at random offsets, and
closes it. Each file is 512MB large. We run the experiment on
cluster B and vary the number of client processes. We compare
the aggregated data transfer rate for NFS, PVFS-8, Sorrento-(8,1),
and Sorrento-(8,2). In this experiment, different client processes
access disjoint data sets. For Sorrento and PVFS, a total of 160
files (80GB) are pre-populated. For NFS, a total of 30 files (15GB)
are pre-populated. For bulkwrite, we also show the performance
of Sorrento using eager propagation (Sorrento-(8,2), eager). The
results are shown in Figure 13.
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Figure 13: I/O performance comparison.

3Precisely speaking, the dropping happens at time 210 in Figure 12
because there is a 10-second delay before other nodes discover the
node failure.

NES performs the worst and the read or write rates saturate at
10MB/s, likely due to the saturation of the network connection.
Both PVFS and Sorrento are able to scale up the transfer rates with
the number of clients. For read rates, both versions of Sorrento and
PVES perform similarly. For write rates, PVES performs similarly
with Sorrento-(8,1), but outperforms Sorrento-(8,2) by a factor of
two. This is because Sorrento-(8,2) needs to commit each write
to two replicas. For both systems, the transfer rates are saturated
when the network links connecting to the storage nodes are satu-
rated. Finally, for Sorrento-(8,2), the peak transfer rates under syn-
chronous replication (eager) and asynchronous replication (lazy)
are close. However, asynchronous replication is able to deliver a
higher transfer rate when the number of clients is small and the
system is underloaded. This is because under asynchronous repli-
cation, a client does not have to wait until all replicas are updated
before it can issue the next request.

Parallel Application Trace Replay. Next, we assess the perfor-
mance of Sorrento through trace-replay of two real applications.
The first is the BTIO benchmark from NAS Parallel Benchmark
Suite (NPB) [50]. BTIO solves the Block-Tridiagonal problem and
issues read/write requests through MPI-IO interface. The second
application is a parallel Protein Sequence Matching service based
on NCBTI’s Blast package [8] (PSM). In PSM, a set of backend ser-
vice processes access a partitioned protein database to serve user
submitted search queries.

We conduct our experiments on Cluster A. For BTIO, four trace
replayers wrote 2.7GB data and read 1.7GB data. BTIO has five
different classes, and we use class B setting. For PSM, eight trace
replayers read a total of 3.1GB data (there is no write operation for
PSM). BTIO uses PVFS’s 1ist-write primitive, which is emu-
lated in Sorrento through asynchronous I/O calls. Additionally, in
BTIO, distributed processes access a shared file, thus, we disable
replication and version-based concurrency control. We plan to in-
vestigate using byte-range locking to control concurrency for such
applications in the future. In both settings, the trace replayers are
launched simultaneously, and they issue requests sequentially with
zero thinking time. For both applications, we compare Sorrento-
(8,1) with PVFS-8 and NFS. We show the results (Figure 14) in
terms of the maximum, minimum and average execution time of
client processes, and the aggregated data transfer rates.

Execution time (sec) Aggregated trans-
fer rates (MB/s)
Min [ Max [ Average | Read [ Write
NFS 1426.1 | 1509.7 1472.8 1.84 1.15
BTIO PVFS-8 140.2 141.5 140.9 19.3 12.0
Sorrento-(8,1) 156.3 158.1 157.2 17.3 10.7
NFS 1196.0 | 1274.7 1235.7 2.51 (N/A)
PSM PVFS-8 213.8 2334 226.3 13.7 (N/A)
Sorrento-(8,1) 200.7 222.5 214.8 14.5 (N/A)

Figure 14: Performance of BTIO and protein benchmarks.



As we can see, for both applications, the workload is distributed
to clients in a balanced way, and thus the execution time for all
the client processes is very close for all three types of file systems.
Second, NFS again performs the worst while Sorrento and PVFS
perform comparably. PVFES holds an 11% edge over Sorrento for
BTIO. This is mainly because the prototype version of Sorrento
used in this experiment has not been carefully optimized yet. We
are currently working on a number of optimizations and some pre-
liminary results indicate that these optimizations can improve Sor-
rento performance by 10% or more.

Document Repository Performance. We now further validate the
performance of Sorrento through a document repository service,
which is based on an application-level service from Ask Jeeves [1].
This service maintains a repository of crawled documents from the
Internet. Given a URL, it will return the corresponding page source.
The data for the service are updated in batch mode: first a new
batch of pages are added to the document repository servers during
off-peak time, then the servers simultaneously switch to the new
dataset. Thus, the I/O workload of this service consists of mostly
reads for normal query operations, and periodic intensive writes be-
fore data switches. The page data are compressed and distributed
in a number of archive partitions based on URL hash. Each com-
pressed page in the document repository is on average 4KB.

The service employs Sorrento as the storage back-end and runs the
service front-end on a separate set of nodes. Each front-end node
is responsible for a disjoint set of data partitions. In this experi-
ment, five storage providers and five application front-end nodes
from Cluster B are employed while 20 machines are used to launch
client requests concurrently. There are totally 30 partitions, each of
which is around 2.4GB, so each front-end node owns six partitions.
The workload is generated by a varying number of clients, each of
which sequentially generates read or write requests with zero think-
ing time, and sends requests to the proper front-end node based on
URL hashing.

System throughput of Web document repository service.
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Figure 15: Document repository using Sorrento.

We report the system throughput in terms of the number of query
or update requests being served per second. We vary the number
of clients from 40 to 320, and the results are shown in Figure 15.
As we can see, the service can deliver scalable throughput for both
query and update requests. Since the amount of data transfer in
serving each client request is relatively small, neither the network
or storage bandwidth is saturated.

4.6 Effectiveness of Asynchronous Update

In this section, we evaluate the effectiveness of our asynchronous
replication policy using a microbenchmark in which a client pro-
cess issues 800 random writes of 32KB in 100 file sessions, each
session consists of eight writes. We compare among three schemes:
(1) Sync-write. Each write operation is synchronously applied to
all replicas; (2) Sync-session. The process is blocked at the session
close time until all replicas are updated; (3) Async-session. The
updates are carried out in the background.
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Figure 16: Effectiveness of asynchronous update propagation.

We run the experiment on Cluster A with five storage providers
and the replication degree of each file is set to two. We vary the
number of client processes from one to eight, and report the ag-
gregated write rate. The results are shown in Figure 16. Async-
session is one order of magnitude better than Sync-session, which
is in turn much better than than Sync-write. Note that the reported
results represent the performance of random small writes with zero
thinking time. A write throughput of 8.8MB/s (as realized by the
asynchronous scheme) using five servers with a replication degree
of two is fairly reasonable. We have conducted offline measure-
ment using the same benchmark on local disks, and a single disk
can deliver a 4.3MB/s write throughput. This leads us to an ideal-
case upper bound of 10.8MB/s for five providers and a replication
degree of two.

4.7 Overhead of Data Replication

We also evaluate the overhead of data replication using a microbench-
mark in which a client process repeatedly opens a 512MB file,
writes 4MB data with different write sizes, and commits the change.
‘We run the experiment with six storage providers and two clients on
Cluster C'. We report the aggregate throughput for different replica-
tion degrees in Figure 17. Two trends are evident: first, when write
block size increases, the overall throughput also increases; second,
increasing the replication degree from one (no replication) to two
would lead to 10-23% drop of write rate, and further increasing
the replication degree from two to three would cause 2-19% drop
of write rate. This experiment indicates that asynchronous update
with copy-on-write allows us to efficiently implement versioning
and replication.

We further study overhead of replication on cluster B for Sorrento-
(12,2) with 4MB block size. The overhead of replication in terms of
write throughput difference between Sorrento-(12,1) and Sorrento-
(12,2) is shown in Figure 18 using benchmark bulkwrite. The
replication overhead increases as the number of concurrent client
writes increases. That is because as more clients involved in par-
allel writes, these writes trigger more asynchronous updates across
machines and create more contention. The overhead is less than
14% when the number of clients is less than 12 and 29% for 16
client machines. This number shows that asynchronous update ef-
fectively hides the overhead of replication for a reasonable size of
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Figure 17: Replication overhead with varying block size.

client machines. If overall I/O bandwidth of the storage servers is
saturated, the overhead ratio could be 50% with replication degree
two.

w
S

n
@

n
=]

Overhead percentage (%)
> &

(4]

o

0 15

10
Number of clients

Figure 18: Replication overhead for Sorrento-(12,2) with varying
client numbers.

4.8 Small File I/O Operations

Although interactive I/O workload is not the focus of Sorrento, we
still wish to verify whether Sorrento performs reasonably under
those kind of workload, which primarily consists of small file I/O
operations [13, 48].

Interactive Responses. In this experiment, one client issues re-
quests sequentially to an otherwise idle file system and measures
the response time. Four types of workload are used: create re-
peatedly creates a new file then closes it immediately. write re-
peatedly opens the files created by create, writes 12KB data into
it, then closes it. read repeatedly opens the files written by write,
reads 12KB data from it, then closes it. unlink unlinks all the files
created by create. Note that all the measurements below include
the cost of open and close calls. We run these benchmarks on
Cluster A and compare Sorrento with NFS and PVFS. For NFS,
after each run, we unmount the file system and remount it to get rid
of caching. For PVFS, two variations (PVFS-4 and PVFS-8) are
used. For Sorrento, four variations are used (Sorrento-(4 or 8, 1 or
2)). The results are shown in Figure 19.

[ [[ create [ write [ read [ unlink |

NFS 0.67 2.42 2.93 0.71

PVFS-4 50.3 60.1 60.1 194
PVFS-8 60.1 60.3 70.2 22.9
Sorrento-(4, 1) 314 435 335 324
Sorrento-(4, 2) 313 440 337 443
Sorrento-(8, 1) 32.6 454 344 322
Sorrento-(8, 2) 332 46.7 348 422

Figure 19: Small file I/O request response time (in ms).

As we can see, the overhead of Sorrento and PVFS is significant
compared to NFS for small I/O requests, because NFS does not
need to provide cluster management and self-organizing features
as Sorrento, nor does it provide parallel file system semantics as
PVFS. Additionally, Sorrento takes two TCP roundtrips to open
a file and three TCP roundtrips to close the file. PVFS would
also require multiple TCP roundtrips because metadata and data
are stored on metadata server and I/O nodes respectively. Thirdly,
NEFS is highly optimized for small I/O operations and is tightly in-
tegrated with the OS kernel, while both PVFS and Sorrento’s stor-
age servers are running at user-level and the file data and meta-data
must traverse through kernel-user boundary a few times before they
are written to the underlying file system.

We can also see that Sorrento outperforms PVFS by 25-53% for
file creation and read/write requests but is slower than PVFS for
unlink operations. We explain the reasons as follows. Sorrento’s
namespace server is more efficient than PVFS’s metadata server
by storing the whole directory tree in a Berkeley-DB instead of
representing each inode using a small file. We can also see that a
higher replication degree in Sorrento does not have much impact
on the response time even for writes because of our asynchronous
update propagation scheme. However, Sorrento eagerly removes
all replicas when a file is unlinked, so the response time of unlink
increases when replication is employed.

Sustained small I/O throughput.
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Figure 20: Small file I/O throughput.

Sustained Small File I/O Throughput. Figure 20 shows the sus-
tained throughput of small file operations on Cluster A comparing
Sorrento-(8,2) with PVFS-8 and NFS. We launch multiple client
processes simultaneously, each of which repeatedly creates a file,
writes 12KB into it, then closes it. We calculate the aggregated sys-
tem throughput in terms of the number of completed file sessions
(open/write/close) completed per second. A single NFS server can
deliver higher small I/O throughput than both Sorrento and PVFS
(it saturates at about 700 sessions/second). This is again attributed
to the optimizations incorporated into the NFS server implemen-
tation as a result of many years of feedback driven development.
Comparing Sorrento with PVFS, we can see that the throughput of
Sorrento scales up almost linearly with the number of clients, and
we are not able to saturate the system with 16 clients. PVFS sat-
urates at a low throughput (64 sessions/second) and this is largely
due to the bottleneck caused by their metadata server. In Sorrento,
the services provided by namespace servers is simple (mapping
pathnames to FileIDs, and maintaining the versioning information)
and thus can be implemented efficiently. Our offline performance
tests show that a single namespace server in our current setting can
handle 1300 namespace operations per second, which would pro-



vide a theoretical upper bound of 400-500 sessions/second. This
namespace throughput number still may not be very fast compared
to other name servers which can reach 10,000 [5], and we will study
if we can use others’ work to enhance performance.

Summary of findings: Our evaluation demonstrates the follow-
ing points. (1) Sorrento is able to gracefully handle node fail-
ures through replication and automatically recovering lost data seg-
ments. (2) Asynchronous update and copy-on-write improve sys-
tem performance for replication and versioning. Note that the main
reason for Sorrento to employ asynchronous updating and sup-
port strong replica consistency at the same time is because of the
version-based concurrency control model. (3) For data-intensive
benchmarks, Sorrento delivers good parallel I/O performance and
is competitive to PVFS while Sorrento provides extra features for
self-organizing. (4) Sorrento is also competitive to PVFS for inter-
active I/O performance. It incurs overhead higher than NFS, which
has been optimized for such kind of workload and does not have
the overhead of distributed storage management.

5. RELATED WORK

Our work is motivated by previous work on parallel/distributed
file systems and cluster-based storage systems such as AFS [29],
GPFS [41], Petal [33], PVFS [16], Slice [10], Swift [15], xFS [12],
and others [25, 31, 34, 24]. Our work complements those systems
with a specific focus on self-organization. Petal and xFS organize
storage in RAID volumes, which are difficult to expand incremen-
tally. PVES focuses on parallel I/O and but not on incremental
expansion and fault tolerance. Objectives of GoogleFS [21] are the
closest to ours. However, GoogleFS has a narrow focus on appli-
cations arising from Web search, and some of its design choices
may not be suitable for other applications. For instance, using the
centralized server to manage data locations works fine when most
of the data objects are large, but further evaluation is needed using
applications with a mixture of small and large blocks. Additionally,
the design of atomic appending in GoogleFS may not be general-
ized to support other types of atomic operations.

Peer-to-peer systems such as CFS [18] and OceanStore [32] incor-
porate some kind of self-organizing design. These systems target
the wide area network environment which has a different set of as-
sumptions and constraints. Particularly, they do not export the tra-
ditional file system semantics as Sorrento does (CFS is read-only,
and OceanStore uses predicated-updates to modify data). Sorrento
can be considered as a middle ground between traditional tightly
coupled storage systems and loosely coupled peer-to-peer systems.
Dynamic distributed data location has been studied in CAN [37],
Chord [44], and Tapestry [26]. Because our system only operates
in a LAN environment, our solution is simplified and uses consis-
tent hashing [30] to map SegIDs to home hosts.

A version-based data consistency model and immutable files were
first proposed in Swallow [38]. Other version-based standalone
file systems include Amoeba [34], Elephant [40], and CVFS [43].
Their goals are to protect data loss or to provide information for
intrusion analysis, and differ from our base objectives. In Sor-
rento, we only need to maintain the most recent several versions,
and the granularity of versioning is controllable by applications
through standard UNIX file system calls. Asynchronous replica-
tion has been extensively studied in distributed database research
such as the analysis by Gray et. al [23], a simulation study by An-
derson et. al [11], and the Bayou project [47]. Sorrento incorporates
asynchronous update propagation in the design of a distributed file

system where a transaction is implicitly tied with file system opera-
tions. Asynchronous replication has also been used in Neptune [42]
and Conit [53] to improve system efficiency with relaxed consis-
tency requirement. On the contrary, Sorrento maintains a strong
single file serializability.

Online data placement to balance storage usage and system work-
load have also been studied in CFS [18], in RUSH [27, 28], and by
Brinkmann et. al [14]. Unlike these systems, which seek to place
data proportional to statically determined weights, Sorrento places
data based on both workload and storage usage.

Finally, Lustre [3] also uses Object-based Storage Device (OSD)
Model [9]. Sorrento differs from Lustre in that all segments are
addressed in a single SegID address space, and segments can be
freely migrated among physical storage devices without restriction.

6. CONCLUDING REMARKS

The design of Sorrento exploits the low write-sharing characteris-
tics of targeted parallel applications. We choose the version-based
consistency model to provide single file serializability, which offers
better concurrency compared to a lock-based approach, and signif-
icantly simplifies replica consistency management and failure roll-
back. The self-organizing features of Sorrento improve availability
and also enhance parallel performance by integrating an adaptive
data placement and location scheme. Our experiments show that
Sorrento can achieve high availability while delivering good paral-
lel I/O performance.

Acknowledgment. This work was supported in part by NSF ACIR-
0086061/0082666, CCF-0234346, and EIA-0080134, and by Ask
Jeeves. We would like to thank our shepherd Ethan Miller and the
anonymous referees for their valuable comments and help.

7. REFERENCES

[1] Ask Jeeves, Inc. http://www.ask.com/.

[2] CERN (Conseil Européen pour la Recherche Nucléaire) .
http://www.cern.ch/.

[3] Lustre. http://www.lustre.org/.

[4] Project: AVFS: A Virtual Filesystem.
http://sourceforge.net/projects/avi/.

[5] SPEC SFS97_R1 Results. http://www.spec.org/
osg/sfs97rl/results/sfs97rl.html.

[6] The Wellcome Trust Sanger Institute.
http://www.sanger.ac.uk/.

[7] NFS: Network File System version 3 protocol specification.

Technical Report SUN Microsystems, 1994.

[8] S.F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic Local Alignment Search Tool. Journal of
Molecular Biology, 215, 1990.

D. Anderson. Object based storage devices: A command set
proposal. Technical report, National Storage Industry
Consortium, October 1999.

[10] D. Anderson, J. Chase, and A. Vahdat. Interposed request
routing for scalable network storage. In OSDI, 2000.

[11] T. Anderson, Y. Breitbart, H. Korth, and A. Wool.
Replication, consistency, and practicality: Are these
mutually exclusive? In SIGMOD, 1998.

[12] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang. Serverless network file systems. In SOSP,
1995.

[9

—



[13] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and
J. Ousterhout. Measurements of a distributed file system. In
SOSP, 1991.

[14] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact,
adaptive placement schemes for non-uniform requirements.
In SPAA, 2002.

[15] L.-F. Cabrera and D. Long. Swift: Using distributed disk
striping to provide high I/O data rates. Technical Report
UCSC-CRL-91-46, 1991.

[16] P. Carns, W. Ligon III, R. Ross, and R. Thakur. PVES: A
parallel file system for linux clusters. In Proc. of the 4th
Annual Linux Showcase and Conf., 2000.

[17] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and
J. Saltz. Titan: a high-performance remote-sensing database.
In ICDE, 1997.

[18] F. Dabek, F. Kaashoek, D. Karger, R. Morris, and 1. Stoica.
Wide-area cooperative storage with CFS. In SOSP, 2001.

[19] A. Fox and E. A. Brewer. Harvest, Yield, and Scalable
Tolerant Systems. In HotOS-VII, 1999.

[20] G.R. Ganger and M. F. Kaashoek. Embedded Inodes and
Explicit Grouping: Exploiting Disk Bandwidth for Small
Files. In USENIX Annual Technical Conference, 1997.

[21] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file
system. In SOSP, 2003.

[22] G. A. Gibson and R. Van Meter. Network attached storage
architecture. Communications of ACM, 43(11), 2000.

[23] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of
replication and a solution. In SIGMOD, 1996.

[24] J. Hartman, I. Murdock, and T. Spalink. The Swarm scalable
storage system. In Proc. of Intl. Conf. on Distributed
Computing Systems, 1999.

[25] J. Hartman and J. Ousterhout. The Zebra striped network file
system. TOCS, 13(3), 1995.

[26] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Distributed
object location in a dynamic network. In SPAA, 2002.

[27] R.J. Honicky and E. L. Miller. A fast algorithm for online
placement and reorganization of replicated data. In I[EEE
International Parallel and Distributed Processing
Symposium, 2003.

[28] R.J. Honicky and E. L. Miller. Replication under scalable
hashing: A family of algorithms for scalable decentralized
data distribution. In IEEE International Parallel and
Distributed Processing Symposium, 2004.

[29] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale
and performance in a distributed file system. TOCS, 6(1),
1988.

[30] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Levin, and
R. Panigraphy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In STOC, 1997.

[31] J. Kistler and M. Satyanarayanan. Disconnected operation in
the Coda file system. 10(1), 1992.

[32] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. OceanStore: An architecture for
global-scale persistent storage. In ASPLOS, 2000.

[33] E. Lee and C. Thekkath. Petal: Distributed virtual disks. In
ASPLOS, 1996.

[34] S. Mullender and A. Tanenbaum. A distributed file service
based on optimistic concurrency control. In SOSP, 1985.

[35] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In Proc.
of USENIX Tech. Conf., FREENIX Track, 1999.

[36] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do
internet services fail, and what can be done about it? In
USITS, 2003.

[37] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
SIGCOMM, 2001.

[38] D. P.Reed and L. Svobodova. SWALLOW: a distributed data
storage system for a local network. In Local Networks for
Computer Communications, pages 355-373, North-Holland,
Amsterdam, 1981.

[39] Y. Saito, B. N. Bershad, and H. M. Levy. Manageability,
Auvailability and Performance in Porcupine: A Highly
Scalable, Cluster-based Mail Service. In Proc. of the 17th
SOSP, pages 1-15, 1999.

[40] D.S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding when to forget in the
Elephant file system. In SOSP, 1999.

[41] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In FAST, 2002.

[42] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,
and H. Zhu. Neptune: Scalable replication management and
programming support for cluster-based network services. In
USITS, 2001.

[43] C. A. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger.
Metadata efficiency in versioning file systems. In FAST,
2003.

[44] 1. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In SIGCOMM, 2001.

[45] H. Tang, A. Gulbeden, J. Zhou, L. Chu, and T. Yang.
Sorrento: a self-organizing storage cluster for parallel
data-intensive applications. Technical Report 2003-30,
UCSB, September 2003.

[46] H. Tang and T. Yang. An efficient data location protocol for
self-organizing storage clusters. In Proc. of ACM/IEEE
SC’03,2003.

[47] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer,
and C. Hauser. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In SOSP, 1995.

[48] W. Vogels. File system usage in Windows NT 4.0. In SOSP,
1999.

[49] G. Weikum and G. Vossen. Transactional information
systems - theory, algorithms, and the practice of concurrency
control and recovery. Morgan Kaufmann, 2002.

[50] R.F. V.D. Wijngaart and P. Wong. NAS Parallel
Benchmarks I/0 Version 2.4. Technical report, NASA
Advanced Supercomputing (NAS), 2003.

[51] J. Wilkes. Data services — from data to containers. FAST
Keynote Speech, 2003.

[52] Q. Xin, E. L. Miller, T. Schwarz, S. A. Brandt, and D. D. E.
Long. Reliability mechanisms for very large storage systems.
In MSST, 2003.

[53] H. Yu and A. Vahdat. Design and Evaluation of a Continuous
Consistency Model for Replicated Services. In Proc. of the
4th OSDI, Oct. 2000.



