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Architecture and Algorithms for Scalable MobileQoSBahareh Sadeghi
AbstractSupporting Quality of Service is an important objective for future mobile systems,and requires resource reservation and admission control to achieve. In this thesis,we introduce a scalable scheme to admission control termed Virtual Bottleneck Cell.Our approach is designed to scale to many users and hand-o�s, while simultaneouslycontrolling \hot spots". The key technique is to hierarchically control the virtualsystem, ensuring QoS objectives are satis�ed without requiring accurate predictions ofthe users' future locations. We develop a simple analytical model to study the systemand illustrate several key components of the approach. We formulate the problem ofhow to group the cells to form the virtual system as an optimization problem andpropose a heuristic adaptive clustering algorithm as its solution. Finally, we performsimulations in a two-dimensional network to compare the performance obtained withVBC and adaptive clustering with alternate schemes, including the optimal o�inealgorithm.
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1
Chapter 1IntroductionNext generation wireless and mobile devices will support applications ranging fromtraditional cellular voice to web browsing and new multimedia applications. Concurrently,packet networks are evolving from the best e�ort model of the past to networks whichsupport multiple service classes. An important challenge is to incorporate user mo-bility into future network service models and resource management algorithms.To satisfy the performance demands of such future mobile users, the networkmust limit the severity, frequency, and duration of overload due to hand-o�s anduser mobility. Consequently, networks must employ admission control as the keymechanism for ensuring mobile Quality of Service (QoS) measures.In [JK99], the authors have devised a taxonomy of admission control algorithmswhich illustrates several key tradeo�s in terms of granularity of resource control,mathematical tractability, and e�cacy of accurately controlling the admissible regionwhile also provisioning the desired quality of service.At the �nest granularity, an algorithm dynamically reserves system capacity on aper-user basis [NS96b, RNT96, LAN97, CS98]. For example, capacity would be re-served for a particular user at future times in nearby cells as dictated by the mobile'scurrent location and velocity, past mobility behavior, and/or other model-based pre-diction techniques. While such �ne-grained control indeed has the potential to accu-rately manage QoS, there are fundamental limitations to such an approach in addition



2to communication and computational overheads [JK99], and therefore correspondinglimits on its scalability to many users and hand-o�s.At issue are the time scales of system control. As illustrated in Figure 1.1, qualityof service is assured only with the proper mechanisms at all time scales, rangingfrom channel access at the \bit" time scale, to admission control at the session timescale. A key di�culty encountered with location prediction is that it must bridge twofundamentally di�erent time scales: extending location estimations at the hand-o�time scale to session QoS measures at the session time scale. Moreover, this gap willlikely widen in the future as the former time scale is expected to be reduced in futurepico-cellular environments, while the latter time scale may remain the same. Finally,as we will show in Chapter 5, even if a user's future locations are precisely known apriori, admission control can still be conservative if the hand-o� times correspondingwith those locations are not also known.
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µ sec msec secs minsFigure 1.1 Time Scales of System ControlIn this thesis, we develop a new admission control algorithm which achieves scal-able control of mobile quality of service. Our key technique is to aggregate users anda cluster of cells into a Virtual Bottleneck Cell (VBC) in such a way that by control-ling parameters of the virtual cells we ensure that QoS is satis�ed in the underlyingsystem. We develop an approach to characterize and control VBCs and system QoSvia two parameters. The �rst, which we refer to simply as \overload", is the meanfraction of capacity that is over-booked: it reects the extent to which bandwidthdemand exceeds available capacity and consequently the severity and frequency that



3users must adapt to lower bandwidths. The second parameter is the \outage timescale": when a cell is overloaded, this refers to the mean time until the cell returnsto a non-overloaded state.Our approach is motivated by two key design objectives. First, by managingresources in an aggregated virtual system, we control system QoS without requiringaccurate predictions of the times and locations of each user's future hand-o�s. Inthis way, we ensure that our solution is scalable to a large number of users, evenin micro- and pico-cellular environments with a potentially large number of hand-o�s per user. Second, we ensure that when parameters of the aggregated VBC areproperly controlled, QoS levels in cells of the actual systems are also guaranteed to besatis�ed, even in environments with heterogeneous spatial demands. In other words,our coarse grained approach does not preclude management of \hot spots" and systembottlenecks.To analyze the performance of the VBC algorithm and illustrate several key designissues, we develop a simple analytical model to study this system. We illustrateour approach's ability to control system bottlenecks, and explore the implications ofheterogeneous user demands on system performance.While the aggregation ensures scalability of VBC approach, the clustering policyaddresses the question of its accuracy. The performance of VBC is dependent onhow the cells are grouped in the network, i.e. clusters con�guration. In order toanswer the key question of \How to cluster the cells?", we formulate the problem ofclustering the cells in the network as an optimization problem. However due to thefact that there is not any stochastic model available for the mobility model of theusers and also the high complexity of the problem there is not an analytical way to�nd the optimal clustering algorithm. Hence, we propose a heuristic approach as anadaptive clustering algorithm, which is both accurate and fast enough to capture the



4changes of users' mobility pattern in the network. The key point in developing thisalgorithm is its ability to discover the correlations among occupancies of neighboringcells, and form clusters based on these correlations. Where the traditional clusteringalgorithms [Spa80] may be used to �nd the optimal clustering con�guration for astationary system o�-line, because of their high computation overhead they can notbe applied to the network as an online algorithm.We then perform an extensive set of simulation and admission control experimentsusing a two-dimensional 64-cell network. We �rst study the performance and charac-teristics of the adaptive clustering algorithm. Then we utilize the Perfect KnowledgeAlgorithm (PKA), a globally optimal o�-line algorithm devised in [JK99], to assessthe performance of our approach in more realistic scenarios. We �nd that the VBCalgorithmwith the adaptive clustering policy, is able to successfully control the admis-sible region and can outperform an alternate scheme in which user hand-o� locationsare known a priori [JK99].Thus, we devise a VBC admission control algorithm as a novel way to characterizeand control system QoS via a scalable approach. In this way, our approach di�ersfrom previous work which focused on developing sophisticated mobility models andprediction techniques for allocating system resources [AZ99, CC97, CS98, LAN97,NS96a, Sin96, TBA99]. Consequently, our technique subsumes per-user mobilityvia aggregate control and is signi�cantly simpler in terms of communication andcomputational overhead.The remaining part of the thesis is organized as follows. In Chapter 2 we describethe system model and outline the VBC approach. Next, in Chapter 3, we develop ananalytical model to study the problem. In Chapter 4, we de�ne the clustering problemand introduce our adaptive clustering algorithm, and in Chapter 5 we provide theresults of our simulation experiments. Finally, in Chapter 6, we conclude.



5
Chapter 2Virtual Bottleneck Cell (VBC)In this chapter, we �rst describe the system model and role of admission control.Then we overview our design goals for coarse-grained system control and sketch theVirtual Bottleneck Cell (VBC) as our approach towards achieving these design goalsand sketch a particular algorithm as an example of controlling QoS in the VBC, andhence in the system itself. We describe the key QoS metrics that we use to managea cluster of cells and show how they can be empirically measured for an on-lineadmission control algorithm.2.1 System ModelThe system model that we consider is depicted in Figure 2.1. It consists of a collectionof base stations connected to routers or switches which are in turn inter-connectedover a backbone network. Multiple service classes are provided over the backbonenetwork via a mechanism such as [B+98] and extended to the wireless network viaa wireless/mobile QoS architecture (e.g., [Sin96, MS98]). We focus on tra�c classesrequiring higher priority than \best-e�ort" service, including not only users of inter-active multimedia applications, but also users of traditional applications such as webbrowsing that wish to subscribe to a premium service with bounded outage times.In such a mobile-QoS network, admission control is employed to ensure that eachtra�c class is allocated su�cient system resources to meet its quality of service de-mands. Moreover, for e�cient resource utilization, such reservations and hence all
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Mobile Unit Base StationFigure 2.1 System ModelQoS measures are statistical in nature; consequently, demanded bandwidth will attimes exceed the available capacity due to over-booking of system resources. Thegoal of the admission control algorithm is to limit the frequency, severity, and dura-tions of such overload periods to within pre-speci�ed limits de�ned by the service.Indeed, the extent to which demand overloads the system capacity and the time scalesof the overload will be the key quality of service metrics that we consider. In followingsection we formally de�ne these QoS metrics and develop an approach to provisionresources to meet these objectives in a coarse-grained manner.Finally, we note that during the overload periods, some established sessions willobtain a reduced service, and be forced to temporarily adapt to a lower bandwidth.Mechanisms and policies for adapting to such overload situations are developed in[GCM98, LB96, NWL97] for example, and are beyond the scope of this thesis.Throughout, we focus on a single QoS-controlled class, and denote the availablecapacity or bandwidth of cell j to the users in the QoS class by Cj. We assume that



7while individual users transmit tra�c at variable rate, their required capacity can besummarized by a single \e�ective bandwidth" using techniques such as in [KK99].We then denote the aggregate bandwidth demanded at time t by the users in cellj by 
j(t), which we also refer to as the occupancy of cell j at time t, as it is alsothe (scaled) number of users occupying the cell when users have identical e�ectivebandwidths.2.2 Coarse-Grained ControlOur goal is to control QoS in mobile networks via a coarse-grained and scalableapproach. Towards this end, we introduce a novel approach termed Virtual BottleneckCell. With VBC, we manage a network of virtual cells which subsume not only thebehavior of individual cells within a cluster, but also of individual users within thecells. We will show that we can e�ectively control the system's QoS by managingresources in the virtual system, rather than by allocating capacity on a per-user orper-cell basis.
VBC 1

VBC 2

Figure 2.2 VBC IllustrationAs illustrated in Figure 2.2, we aggregate the state of clusters of cells into VBCswith the following objectives:



8� Scalable, low overhead QoS control: For many mobile users with a potentiallylarge number of hand-o�s in micro/pico-cellular environments, our approachmanages QoS by controlling aggregated system parameters rather than trackingindividual users through the system. We provide a concise representation ofthe virtual system to signi�cantly reduce communication and computationaloverheads.� QoS assurance in \hot spots" and system bottlenecks: We ensure that by con-trolling parameters in the virtual system, we guarantee certain QoS levels incells of the actual systems, even in environments with heterogeneous spatialdemands.2.3 Sketch VBC AlgorithmHere, we outline a particular algorithm towards achieving the objectives above. Weconsider two quality of service measures: overload, and the time-scale of overload.Consider a set of cells C which form a cluster, and a group of K clusters C1; � � � CK,for which QoS is to be provisioned. We construct a Virtual Bottleneck Cell for eachcluster and characterize the overload of cluster Ck byk 4= maxj2Ck E(
j � Cj)+Cj (2.1)where (x)+ denotes max(x; 0). This measure reects the frequency and severity ofoverow, i.e., how often overload occurs, and the extent to which the system is over-loaded. Throughout this thesis, we will refer to  as simply \overload".Second, we de�ne the overow time scale of VBC k byTk 4= maxj2Ck fE�j : 
j(u) > Cj for u = [s; s+ � ]g (2.2)



9which denotes the maximum mean duration of overow of any cell in the VBC. (Seealso [CBN98] for a related measure of a user's \degradation period ratio".)Notice that aggregation of the cells' behavior into the virtual cells via the \max"in Equations (2.1) and (2.2) ensures that by controlling parameters of the VBC, theQoS condition is also satis�ed in each constituent cell of the cluster.Thus, k describes the severity of VBC k's overload, whereas Tk describes thedurations over which demand exceeds capacity. We provision resources according tothese QoS measures rather than the more traditional probability of hand-o� drop inorder to generalize our solution to systems in which users adapt to overow situationsrather than having their session dropped all together. For example, rather thandropping sessions upon overow, users may prefer to temporarily renegotiate to lowerreserved bandwidths [ZK97] or even incur temporary service outages.To maintain quality of service to within pre-speci�ed levels set by the class re-quirements, we employ admission control and resource reservation as follows. First,a new user is assigned a bandwidth 
new according to its tra�c characteristics andthe underlying medium access scheme (see [KK99] for example). Next, the routermanaging the cluster for which the new user is requesting access (see Figure 2.1) onlyadmits the user to the requested class if the predictions of the two aforementionedQoS measures are within the class' requirements. Hence, for a particular cluster k,the empirical overload of the VBC, after incorporating the impact of the new user, isadaptively computed using measurements at the base stations constituting the clusteras ̂k = 1W maxj2Ck 1Cj tXs=t�W max(
̂j(s) + 
new � Cj; 0) (2.3)where W denotes the measurement window and 
̂j(s) denotes the measured occu-pancy of cell j at time s.



10Similarly, denote Oj(s) = 1(
̂j(s) + 
new > Cj)as an indicator function of overload in cell j at time s, including resources that wouldbe demanded by the new user if it visits cell j. Then the VBC's mean outage timescale is given by T̂k = maxj2Ck Pts=t�W Oj(s)Pts=t�W 1(Oj(s) > Oj(s� 1)) : (2.4)Thus, when a new user requests a QoS-controlled session in a particular cell, thenetwork admits the session at the requested QoS level only if the predicted servicelevels as given by Equations (2.3) and (2.4) are satis�ed in the corresponding virtualcell. Consequently, the user will have limited durations and severity of outages whilemoving within the boundaries of the cluster.Notice that the admission test ensures that if the new user had been active for thepastW slots, the empirical QoS measures would have been satis�ed in every cell of theVBC for that duration. If in the future, users move in such a way that the empiricalQoS measures go above their target values, future sessions will be blocked based on theupdated measurements of the network conditions. Similarly, as users exit the system,the measured parameters of Equations (2.3) and (2.4) decrease over time allowingnew users to be admitted to the system. This adaptiveness of the admission controlalgorithm reveals the importance of the measurement window: proper setting of Wis required of any measurement-based algorithm, as it must strike a balance betweensystem responsiveness and stability. In this case, it should be set to be larger thanthe mean cell residence time but smaller than the mean session lifetime. Speci�cally,setting it smaller than the residence time will not incorporate the key system featurethat is being controlled, viz., outages due to hand-o�s; moreover, setting W larger



11than the session lifetime will skew the QoS predictions by including the e�ects ofsessions that no longer exist. Further guidelines for setting such windows in a relatedsystem can be found in [QK98].
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Chapter 3Analytical and Numerical InvestigationIn this chapter, we introduce a simple analytical model to study several aspectsof admission control using virtual bottleneck cells. Our model consists of a one-dimensional cellular array similar to one which might be used in modeling highways.

  ...

Cell 1 Cell N
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N

R21 ...

L
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ρ   ρ
 l rFigure 3.1 Network ModelAs shown in Figure 3.1, the array consists of N cells with the same length L,and cell j having capacity Cj, 1 � j � N . The arrival of users and their speed ofmovement is deterministic. We consider time to be slotted and denote the rate ofnew call arrivals by �. Further, let �r be the fraction of users that move to the rightand �l be the fraction of users that move to the left such that �r + �l = 1. Uponestablishing a new session, a user immediately begins moving with constant velocityv. Thus, each cell can be viewed as being divided into R = L=v regions. Moreover,new users arrive in a cell so that the number of new arrivals in any time slot is thesame in all regions of the cell. Finally, we assume that the duration of a session's



13lifetime is exponentially distributed with mean 1=�, so that � is the rate at whichusers depart from the system.3.1 OverloadTo calculate the overload  de�ned in Equation 2.1, we �rst compute the severityof the overload in each cell j by calculating the expected value of the amount ofresources demanded beyond the available capacity asE(
j � Cj)+ = 1Xi=1 i Pr(
j = i+ Cj): (3.1)Note that since Pr(
j = i+Cj) is the fraction of time that i+Cj users are active,E(
j�Cj)+ is the sum of occupancies beyond the available capacity weighted by thefraction of time spent in that occupancy. Thus, to calculate , we �rst compute theprobability that a cell is overloaded (i.e., its demanded capacity exceeds Cj) asPr(
j > Cj) = Pr(nhj + ngj > Cj)=max(Cj ;nmaxgj )Xi=0 Pr(ngj = i) Pr(nhj > Cj � i) (3.2)where nhj denotes the total number of hand-in calls, and ngj denotes the number ofcalls that originated in cell j. Note that there exists an nmaxgj which is the maximumpossible number of calls originated in cell j, and is obtained when all sessions thatoriginated in cell j have a call holding time long enough to leave the cell before beingterminated. We observe that only the calls that originated in the last (R � 1) timeunits may still be in the same cell (due to the users' constant velocity), and that ineach time unit, �=R users leave the cell, so thatnmaxgj = R + 12 �:



14Let Th denote the call holding time for a speci�c session so that its distribution isgiven by F (�) = Pr(Th � �) = 1� e��Then, to compute Equation (3.2), we de�ne the function�(x; y; �) = 0@ xy 1A (1� F (�))yF (�)x�y;and the vectors �j(n; l) = [nj0; :::; njl];and �j = [�j0; :::; �j(R�1)];where �jl = min i� l�1Xq=1 njq; �R(R� l)! ;and each element of �j(n;R � 1), njl, represents the number of active users inregion l of cell j. The probability that (nj0; :::; nj(R�1)) sessions are still active inthe R regions of cell j is calculated by multiplying the individual probabilities of njlusers being active in region l of cell j, for l = 0; :::; R� 1. The di�erent combinationsof the number of users in various regions such that the total number of users is lessthan or equal to i must then be considered. The summation over these di�erentcombinations yields Pr(ngj � i), which is the probability that the number of usersoriginally admitted in cell j is less than or equal to i, and is given byPr(ngj � i) = �jX�j(n;R�1)=0 RYr=1 ���(R� r)R ; nj(r�1); r�



150 � i � �(R + 1)2 : (3.3)Similarly, nhj is the sum of all active users that initiated their calls in cell i,j < i � N , in the last R(N � j) time units and are moving to the left, and also thosethat initiated their calls in the last R(j � 1) time units in cell k, 1 � k < j, and aremoving to the right. Therefore, de�ning the vectors�j = [�j0; :::; �j((j�1)R)]with elements �jl = min(j � l�1Xq=1 njq; �R�r);and 	j = [�j0; :::; �j((j�1)R)]with elements  jl = min(j � l�1Xq=1 mjq � (j�1)RXq=1 njq; �R�l);we can then express Pr(nhj � i) asPr(nhj � i) = �jX�j(n;(j�1)R)=0 	jX�j(m;(N�j)R)=0XjYj (3.4)where Xj and Yj are expressed as functions of � asXj = (j�1)RYr=1 �� �R�r; njr; r�and Yj = (N�j)RYv=1 �� �R�l; njv; v� :Thus, combining Equations (3.1){(3.4), we have an expression for k, cluster k'soverload measure.



163.2 Overow TimescaleWe next turn to the overow timescale of the virtual bottleneck cell de�ned inEquation 2.2. We begin by computing the distribution of the overow time in aconstituent cell under the same assumptions of the model above.Let h denote the call hand-o� rate. The probability that the overow time in cellj with capacity Cj is greater than s time units, Pr(�j > s), is the probability thatmore than Cj users remain in cell j for at least s time units given that the cell isoverloaded. Hence, Pr(�j > s) = 1Xm=1Pr(
j = Cj +m) mXn=1 Zjs;where Zjs is de�ned asZjs = 0@ Cj +mCj + n 1A (e�s(�+h))Cj+n(1� e�s(�+h))(m�n):Thus, the overow timescale of the VBC can be easily computed as the maximumE�j of all cells in the cluster.3.3 Numerical ExamplesWe now perform numerical investigations applying the analysis above. In Figure 3.2,we show the results for N = 5, R = 1, �r = 23 , �l = 13 , � = 9, and Cj = 10 for1 � j � 5. The �gure depicts the measure of overload for each of the �ve cells, i.e.,E(
j�Cj)+Cj for j = 1; : : : ; 5, for di�erent call departure rates and hence di�erent meancall holding times. The plot indicates that as 1=� increases, the overload measureincreases since users stay longer in the network and hence hand-o� a larger numberof times.Since the number of users who move to the right is twice the number of thosewho move to the left, we observe that the overload-measure and the probability of
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Figure 3.2 Overload Measure vs. Call Departure Rateoverload in various cells is di�erent. Across a wide range of call departure rates �,cells 5, 4, and 3 have the highest overload measure, whereas cell 1 has the lowest.It is clear that most of the users that originate their session in cell 1 will eventuallyend up in cells 3, 4 or 5, which form bottlenecks in this case. However, observe thatno single cell is the bottleneck in all cases, and thus performing admission controlaccording to overload in the VBC ensures that the underlying QoS requirement issatis�ed in all cells of the cluster even in the worst case.In Figure 3.3 we show the mean overow time (in time units) for the virtualbottleneck cell as well as all �ve cells of the underlying system. This overow time isplotted versus the utilization of the system with � set to 0.8 in all cases. We de�nethe VBC's mean overow time as the maximum mean overow times of all underlyingcells as given by Equation 2.2, whereas utilization is the successfully utilized systemcapacity averaged over all cells of the network.We observe that as the utilization increases, the mean overow time also increasesand hence, admission control must be employed to limit its value. The plot also shows
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Figure 3.3 Mean Overow Time vs. Utilizationthat there are not signi�cant di�erences among the mean overow times of the �vecells for a given utilization. In addition, the mean overow time of the VBC closelyfollows those of the underlying cells in the network, staying less than 0:5 time unitsabove the mean overow time of any cell. This illustrates that an admission decisionbased on the behavior of the VBC ensures that the QoS requirement is satis�ed in allunderlying cells without resulting in a signi�cant decrease in the system's utilization.In summary, we presented an analysis of a simple system in which user mobilitypatterns result in spatially heterogeneous resource demands. We showed that thequality-of-service parameters in the virtual bottleneck cell closely envelop those inthe underlying system, demonstrating VBC's potential to accurately control systembottlenecks in a coarse-grained way, with little cost in system utilization.



19
Chapter 4ClusteringIn the previous chapters we showed that given a cluster con�guration, VBC admissioncontrol is a scalable algorithm for resource provisioning based on the aggregatedinformation of the users in the network. But accuracy of such a method depends onthe clustering con�guration. In this chapter our goal is to �nd the answer to the keyquestion of \How to cluster the cells?".There are many parameters one should consider in clustering the network:Users Mobility Model: The most important parameter in clustering is mobilitymodel of the users. Users mobility model is partly dependent on the underlyingphysical structure, i.e., the pattern of highways and roads along which the movementsof the users happen, which enforces a speci�c mobility pattern as part of users mobilitymodel. The cell residence time and call holding time distributions are two otherfactors involved in users mobility model.Physical Architecture: Underlying physical architecture of the network is anotherparameter which a�ects the e�ciency of the clustering policy. Having cells which areconnected to di�erent sub-networks or routers in one cluster, adds communicationoverhead to the network. Hence we focus on the clustering problem within the set ofcells connected to the same router.Cluster Size: There is a trade-o� between gained utilization and probability ofcrossing clusters (inter-cluster Hand-o�) in choosing the size of the clusters. Sincethe admission is based on the aggregated information of a group of cells, choosing



20a very big cluster, results in an unnecessary decrease in the utilization. The cellsin a cluster should be chosen in a way that there exist some correlation among theiroccupancies. For example, if the probability that users of a cell in a given cluster moveto any congested cell in that cluster is very low, the users of this cell will su�er fromadmission decisions which are too conservative (which results in lower utilization)since the admission decision is based on the worst case measures.On the other hand, having very small clusters increases the probability of inter-cluster hand-o�s. When a user leaves a cluster and enters a cell in a new cluster,no matter how the hand-in call is treated by the new cluster, there is no more anyguarantee on the QoS metrics the network provides him. As an example, if enteringa new cluster, the users be treated as new calls and do not get admitted to thenew cluster, their calls will be dropped. In another policy, inter-cluster hand-o�s aretreated as intra-cluster hand-o� calls and totally admitted in the new cluster. In sucha scenario, not only the QoS requirements of hand-in user in the destination clusterhave not been taken into account, but also it may cause degradation in service forother users who are already in the destination cluster. In this thesis, regardless ofthe choice of the inter-cluster hand-o� treaty policy, we consider the probability ofinter-cluster hand-o� as a general measure of QoS in the network.In the remainder of this chapter we �rst de�ne the clustering problem in oursystem and then formulate it as an optimization problem. Then we will discuss theissues regarding its solvability. In section 4.2 of this chapter we will design a heuristicadaptive clustering algorithm to �nd the optimal clustering con�guration at each timein the network.



214.1 Problem De�nitionIn a traditional clustering problem the goal is to �nd similarities in a set of objects andgroup them such that the objects in a cluster are similar to one another and dissimilarfrom the objects of any other cluster. It is usually done based on a given distancemeasure, de�ned to measure the distance between the objects in a given space. Thenthe objects are grouped in di�erent clusters so that the distance between the objects ineach cluster is minimized [Mir96, Rom84]. While, the traditional clustering algorithms[Spa80] can be used to �nd the optimal solution to a stationary clustering policy o�-line, they are not appropriate for a dynamic system due to their high computationoverhead.The main motivation behind grouping the cells in the network, and making theadmission decision based on the aggregated information of the underlying cells ofthe cluster, is the fact that a congested cell may dominate a region around it. Itmeans that if a user requests admission to the network in a cell in vicinity of a highlyloaded cell, with high probability, that user may end up in the congested cell. Insuch a situation, it is preferred that the call be blocked rather than experience somedegradation in service, due to moving into the congested cell. Hence the key insight tothe clustering problem is capturing the similarities which arise because of a shared,varying parameter among the cells in the network, which is the ow of the user'smovements.Figure 4.1 shows the neighboring cells of a congested cell A. In order to make anaccurate decision regarding admission of new calls in this group of cells, we measurethe aggregated amount of hand-o�s between cell A and each of its neighbors. If forexample, there are too many hand-o�s from cell B to cell A, then admission of anynew call in cell B a�ects the QoS metrics in cell A, since the users of cell B hand-o�
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Figure 4.1 Clustering in Neighborhood of a hot spotto cell A with high probability. Hence, we need to annex these two cells to form acluster. On the other hand, if we annex cell F and cell A to form a cluster, wherethe aggregated amount of hand-o�s from cell F to cell A is too low, then in makingdecision on admission of any user in cell F we are considering the QoS metrics of cellA. But, given that cell A is overloaded and there are not many hand-o�s from cell Fto cell A, it results in an unnecessary high probability of call block in cell F, whichreduces the utilization of our system.We now de�ne our clustering problem as an optimization problem and show thata clustering algorithm based on the users' mobility pattern in the neighboring cellsof the network, groups the cells successfully into clusters, in a way that the objectiveof the de�ned optimization problem is maximized.Clustering Problem: Given a sub-network consisting of M cells, all connected tothe same router, along with the overload and time-scale measures, �nd the combi-nation of groups of cells (clusters) such that �rst, each cluster is connected, i.e. itconsists of neighboring cells, and second, applying the VBC admission control in thenetwork (which ensures overload and time-scale measures requirements are satis�ed),



23minimizes probability of inter-cluster hand-o� (which as de�ned below is a measureof the service certainty) and at the same time maximizes the network utilization.Note that in Chapter 2 we have already shown that given the assumption thatthe users do not leave the clusters, the VBC admission control policy satis�es QoSrequirements. In a real network, where the users leave the clusters, the goal is tomaximally utilize the network resources and at the same time to minimize the numberof calls experiencing degradation in service due to hand-o�s between di�erent clusters,so that the QoS requirements of the network are satis�ed.Let K denote any possible clustering policy of a sub-network of size M during theobservation period of T . Then, K can be written as a T by M matrix, where row t,t � T , is the cluster con�guration of the M cells at time t. Also let D denote the setof all possible clustering policies K. Consider a set of users S requesting admission tothe network. For each user x 2 S, let its mobility pattern be de�ned by the matrixAx of indicator functions [Jai99], such thatAxj;t = 1(L(x; t) = j) (4.1)where L(x; t) is the number of the cell in which user x is located at time t. Moreoverlet FK(x; t) denote the cluster number, L(x; t) belongs to at time t. Also Cj, j =1; � � � ;M and 
A(j; t) respectively denote the capacity of cell j, and the occupancyof cell j at time t for a set of admitted users A 2 S.For the observation period T , given a clustering policy K and a set of admittedusers A the system utilization can be expressed asUK;AT = PMj=1PTt=1 
A(j; t)TPMj=1Cj (4.2)with the empirical probability of inter-cluster hand-o� is given byP̂K;AHO (T ) = Px2APs�T 1(FK(x; s) 6= FK(x; s� 1)]Px2APs�T 1(L(x; s) 6= L(x; s� 1)) (4.3)



24which is the ratio of inter-cluster hand-o�s to the total hand-o�s attempts.Let PK(HO) denote the probability of inter-cluster hand-o� for clustering policyK, optimized in sense of minimizing the probability of inter-cluster hand-o� in thenetwork. An example of K for a stationary o�-line clustering is having all cells inthe sub-network in one cluster. Note that even in that case, the probability of inter-cluster hand-o� is greater than zero, since the users still can leave the sub-network.We also denote the probability of inter-cluster hand-o� for any given clustering algo-rithm K, by PK(HO). Then we de�ne Cluster Isolation Factor (CIF) as:CIF = 1� PK(HO)1� PK(HO) (4.4)Note that with no clustering (i.e. when each cell forms a cluster by itself) the proba-bility of inter cluster hand-o� in the network is 1 and hence CIF equals 0; on the otherhand, having the clustering con�guration which minimizes the inter-cluster hand-o�sin the network, we have the maximum possible isolation among the clusters and CIFequals 1.An optimal clustering policy K� is the one that applied to the network along withthe VBC admission control algorithm, maximizes utilizationU , de�ned in Equation 4.2,subject to the empirical QoS requirement P̂HO or equivalently[CIF . Note that A isa function of both admission control and clustering algorithms.To �nd an analytical solution to the optimization problem de�ned above requiresa model of the cell occupancies as in Equation 4.2, which is a function of behaviorof all users' mobility characteristics as in Equation 4.1. However due to the complexnature of a group of user's natural behaviors, there is not any suitable model availableof the user's mobility pattern and hence the cell occupancies.Moreover, even in the simple case of static clustering with �xed sized clusters,the complexity of the problem for a one-dimensional array of M cells is 2M�1. In



25general, the clusters can have di�erent sizes and shapes varying with time and theonly constraint on the shape of the clusters is connectivity, i.e. starting from any cellin the cluster, one should be able to go to all the other cells of the cluster withoutleaving the cluster. These factors increase the complexity of the problem beyond2M�1.Motivated by the intractability and dynamic nature of an ideal clustering algo-rithm, we next develop a heuristic adaptive clustering algorithm as an indirect solu-tion to the de�ned optimization problem. In designing this algorithm, we exploit themobility patterns of users' movements in order to form the clusters. In Chapter 5we show that such an approach successfully forms the clusters in the network in away that both the QoS metrics of the system are satis�ed and the utilization of thenetwork is close to the optimal solution.4.2 Adaptive Clustering AlgorithmIt is rather clear without exact stochastic models of system variables, it is not possibleto �nd the accurate solution of the optimization problem introduced in Section 4.1.Moreover due to its complexity, it is too complicated a numerical problem to besolved on the y. On the other hand the varying nature of users mobility, requiresthat clusters follow the changes in occupancy correlations among the cells, in orderfor the admission policy to be useful and e�ective.In this section we discuss a heuristic adaptive clustering policy which e�ectivelycaptures the variations of mobility patterns of the users and hence the occupancycorrelations among the neighboring cells and forms the clusters based on this infor-mation. The adaptive clustering algorithm is presented in pseudo-code in Figure 4.2.The design principles of this algorithm are:



26Initial state: The algorithm starts from the initial state where each individualcell in the sub-network forms a cluster of size one.Clusters annexation: Consider cell j in Figure 4.3 (a) which belongs to clusterB. Whenever the occupancy of cell j exceeds some multiple of the capacity of cell�Cj, � � 0, the handed-in bandwidth from the neighboring cells of cell j, cells i and kin Figure 4.3 (a), during the pastW time-slots is measured, whereW is a pre-speci�ed�xed window size. As soon as the measured value of handed-in bandwidth for any ofthe neighbors of cell j, cell i in our example, exceeds �hCj, � > 0, the original clusterof the neighboring cell will join the cluster of cell j to form a new cluster.Adaptive Clustering Algorithm1. Initial Clustering: M Clusters of Size 1;2. for (j = 1; � � � ;M ; t = 0; � � � ; T ) f3. if (
(j; t) � �Cj) f4. for (all-neighbors-of-cell j) f5. if ([PW BWin � �hCj] \ [neighbor-not-in-cluster])6. Add-Cluster-of-Neighbor-to-Cluster-of-Cell j;7. g8. g8. else if (
(j; t) < �Cj) f9. for (all-neighbors-of-cell j) f10. if ( [PW BWin < �lCj] \ [neighbor-in-cluster]) f11. if ( neighbor-not-connected-to-any-other-cell-in-cluster)12. Separate-Neighbor-of-Cluster-of-Cell j;13. else if (neighbor-connected-to-cluster)14. return;15. g16. g17. g18. g Figure 4.2 Adaptive Clustering AlgorithmCell separation: If the occupancy of cell j in Figure 4.3 (b) becomes lower than�Cj, then the handed-in bandwidth of those neighbors of cell j which are in the same



27cluster with cell j, cells i and k in Figure 4.3 (b), will be measured for the past Wtime-slots. If this value is less than �lCj, 0 � �l � �h, and the neighboring cell is notconnected to any other cells of the cluster, it will separate from the cluster to form acluster by itself. In the case that the neighboring cell is connected to some other cellin the cluster, it will remain a part of the cluster until the condition for separationholds for all its neighboring cells which belong to the same cluster. In Figure 4.3 (b)we see that in state (2), considering only cell i, cell j can leave the cluster, but sincecell k is in overload status, it does not let any of its neighboring cells separate fromthe cluster. In state (3), cell k is no more overloaded and hence cell j can leave thecluster and form a cluster by itself (state (4)).������������Cluster A
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(3)(4) (b) Cell SeparationFigure 4.3 Process of Clusters Annexation and Cell SeparationIf when one cell leaves its original cluster, it results in separation of two or moreparts of the original cluster, each separated part will form a new cluster as well asthe separated cell itself.By applying this algorithm to the network, the clusters will be formed around thehot spots and bottleneck cells in the network, and as the time passes and the congested



28areas change (e.g., from downtown in the morning to the suburb in the afternoon)then the clusters will also change the location and follow the area of congestion.The parameters involved in the clustering algorithm can be divided into two maincategories:Controlling the sensitivity to overload: The parameter � controls the levelof sensitivity to overload in the algorithm. The smaller � is, the sooner the clustersform. Hence, in average there will be larger clusters in the network which reducesutilization but increases CIF.Controlling the adaptivity: The parameters �h and �l control the adaptivityof the algorithm. For bigger values of �h it takes a longer time for two clusters toannex. For small values of �h the separation of a cell from its cluster happens slower.Hence, the bigger �h and �l, the smaller the clusters formed in the network. Smallclusters result in higher utilization at the cost of a low CIF.
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Figure 4.4 An Example of Adaptive Clustering



29In Figure 4.4 we show an example of the adaptive clustering. Considering thesub-network of 64 cells as shown in the picture, the system starts at time t = 0, fromthe initial state where each cell forms a cluster by itself. The users are introducedto the network with Downtown Mobility Model as discussed in Section 5.1, thereforethe four cells 1, 7, 56, and 63 are with high probability the destination of the users,assigned to each user upon origination of the call.Figure 4.4 (a) shows the con�guration of the clusters in the network at time t = 25.The cells with white color are clusters of size one, where the ones with the same shadewhich are connected to each other, form clusters of higher sizes. For example, thecells 6 and 7 form a cluster and cells 13, 14, and 15 form another cluster.As we see, the formation of clusters is concentrated around the hot spots (the cells1, 7, 56, and 63) of the system. The adaptive clustering algorithm implies that thosetwo neighboring cells join each other to form a cluster, that the moving average of theamount of handed bandwidth between them exceeds a pre-speci�ed value. As the timepasses and the users' mobility pattern changes, the value of moving average of thehanded bandwidth between the cells also varies. The adaptive clustering algorithmfollows these variations and reforms the clusters. Comparing Figure 4.4 (a) and (b),we see the changes in clusters at time t = 100 compared to time t = 25. The changesin clustering con�guration is due to the existing randomness in the movements ofthe users. For example consider cell number 49; the occupancy of this cell both att = 25 an t = 100 is less than 80% of its capacity, which is the threshold for startingclustering process in this example. But at t = 25 it forms a cluster by itself, whereasat t = 100 it has annexed to its neighbors to form a bigger cluster. The reason is thatthe aggregated handed-in bandwidth from cell 49 to cell 48 (which is a congestedcell), measured during the past 10 time-slots, exceeds the threshold of 30% of thecapacity of cell 48 (for this example). The �gures show that although the clusters



30adaptively change in shape and size, their concentration is around those cells thatare highly occupied and are considered the bottlenecks of the system. Hence theadaptive clustering algorithm is successful in �nding such cells and forming clustersaround them.In the next chapter we will study the characteristics and dependencies of theclustering parameters and will discuss the simulation results showing the performanceof the VBC admission control algorithm with adaptive clustering policy.



31
Chapter 5Experimental ResultsIn order to investigate the performance of the VBC admission control algorithm andthe adaptive clustering policy and study the characteristics of di�erent parametersinvolved, we use an extensive set of simulation experiments.In this chapter we �rst introduce the simulation environment and then presentthe results.5.1 Simulation EnvironmentThe simulation environment we use in our simulations is identical to the one intro-duced in [Jai99, JSK99], consisting of a two dimensional 64 cell network as shown inFigure 5.1. Hand-o�s occur between each cell and its four neighbors which share anedge with the cell. The network wraps around so that for example any user leavingthe bottom edge of cell number 63 will enter the upper edge of cell 7. The 64 cellarea represents a set of cells connected to the same router; so a hand-o� between cell63 and cell 7 will be considered an inter-router hand-o�.Users follow the Downtown Mobility Model, and the four cells 0, 7, 56, and 63 areconsidered as downtown areas; the users are highly likely to choose one of these cellsas their destination as they are initiated. The movement is through a random pathtoward the destination with a probability distribution in favor of the shortest path.The time is slotted to 1 minute intervals and both the call holding time and thecell residence time have geometric distribution with means 10 and 7, respectively, if
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Figure 5.1 Cellular topologynot mentioned otherwise. Simulation time for all the results presented is 6 hours;during which, a large number of users were introduced to the network. The capacityof each cell is 10 Bandwidth Unit (BU) and each user requires 1 BUs.The traces of the users' movements were mostly produced using the simulator of[Jai99], but to implement the adaptive clustering and the VBC admission controlalgorithms, C++ code was written.5.2 Design Issues of ClusteringIn Figure 5.2 network utilization and CIF have been plotted v.s. ratio of window sizeover average cell residence time for � = 0:8, �h = 0:4 and �l = 0:1.The CIF reference clustering policy K, for the simulation results shown in thischapter, has been chosen to be the adaptive clustering policy with the goal of min-imizing the number of inter-cluster hand-o�s in the network. Such clustering policyis achieved by setting the three parameters �, �h, and �l equal to zero, since � = 0
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=10(b) Cluster Isolation FactorFigure 5.2 Impact of Measurement WindowSize on Performance of the System.means that the network is continuously measuring the amount of transferred band-width among the cells looking for the new clusters to make; also �h = 0 results twoclusters to annex as soon as any hand-o� happens between them, and �nally �l = 0means that no cell in the network separates from any cluster.Choosing the clustering measurement window size to be large, results in the fastformation of the clusters since the system measures the amount of transferred band-width through the hand-o�s in a larger window of time in the past and the probabilitythat the measured value exceeds the threshold is higher. Fast formation of the clus-ters, in its turn, results in having bigger clusters in average in the network, andreduces utilization of the network. On the other hand the bigger the cluster, the lessthe probability of inter-cluster hand-o� and the more clusters will be isolated.As shown in Figure 5.2 (a), for di�erent values of average cell residence time,utilization decreases as window size over mean residence time increases. Also as onecan see in Figure 5.2 (b) CIF increases as window size increases. System, by itsmeasurements, tries to capture the mobility of the users among the cells; hence, it is



34clear that choosing the window size to be less than average cell residence time, themeasurement would not reveal the true amount of bandwidth transfered among thecells. The graphs suggest that a proper value for the window size is 1 to 2 timesbigger than average cell residence time.
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(b) Cell Separation ThresholdFigure 5.4 Impact of �h and �l on Performance of the System.do not cause any signi�cant changes in either utilization or CIF. The graph plottedin Figure 5.4 (b) is for � = 0:8 and �h = 0:4.Knowing the e�ect of changes in these parameters on the clustering process, onecan adjust them in a way to ful�ll network requirements. Higher gains at the costof lower QoS can be achieved by slowing down the process of clustering and settinghigher values for the parameters. If, on the other hand, a better QoS is required, afast and accurate clustering process will be needed which again can be easily achievedby making the network sensitive to the users' mobility by decreasing the values ofthe parameters. It is important to know that because of the variations in mobilitypatterns of the users in di�erent environments, and the high dependency between theperformance and e�ciency of the network and the algorithm on one hand and thenetwork structure and users' mobility and behavior patterns on the other hand, thereis not a general solution for setting the parameters; but after a short term observationof the network's performance it would be rather easy to control the clustering pacesuch that the expectations of the network providers are satis�ed. Regardless, basedon our experiments, suggested initial settings are � = 0:8, �h = 0:4, and �l = 0:1.



365.3 Performance of the VBCAdmission Control and AdaptiveClusteringIn Figure 5.5 we present the results of the simulation experiments showing the perfor-mance of the VBC admission control algorithm with adaptive clustering policy alongwith comparisons with two di�erent benchmarks as well as performance of the VBCadmission control with a semi-optimal clustering.
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Loc SpecFigure 5.5 Performance of the VBC Admission ControlThe �rst benchmark is Globally Optimal Perfect Knowledge Algorithm (GO-PKA)developed in [JK99]. GO-PKA is an optimal o�-line admission control algorithm:given a set of users' admission requests in which each user has an associated bandwidthdemand and mobility pattern (i.e., times and locations of hand-o�s over the durationof the session), selects the optimal subset of users which maximizes the system'sutilization while satisfying the required QoS (in this case, overload and overload timescale).To obtain the curve labeled \GO-PKA", we used the simulator of [Jai99]. The�gure depicts the average system utilization achieved for the optimal o�-line admissi-



37ble region for the case of no over-load, i.e.  = 0 (hence the curve is at). As shown,GO-PKA obtains a utilization of approximately 91:54%.As a second baseline case, we compare VBC admission control to a \locationspeci�cation" algorithm [Jai99] in which users pre-specify the set of cells that theywill visit during the duration of their session, and resources are reserved in each ofthe corresponding cells for the entire lifetime of the call. The network admits a newuser only if overload will not occur at any time in any cell. Note that this algorithmis considerably more conservative than GO-PKA as the times are not pre-speci�ed:hence the capacity in each cell is reserved for the entire session duration.The middle curve labeled VBC, represents the admissible region obtained by ourimplementation of the VBC algorithm with adaptive clustering policy for the sametra�c load. While no on-line algorithm can obtain utilization greater than GO-PKA,simultaneously satisfying the QoS constraints, we observe that the VBC algorithmperforms quite well. In particular, over the entire range of overload values, VBCadmission control is able to outperform the location speci�cation approach. Moreover,despite our use of coarse-grained system control and assurance that QoS is satis�edeven in bottleneck cells, the VBC algorithm along with adaptive clustering is able toe�ciently utilize system resources, obtaining average utilization in the range of 48%to 84% for the range of overload shown.Finally we compare the performance of our adaptive clustering algorithm withanother method, which we call optimal static clustering and its corresponding curveis labeled \Semi-Opt". For the particular simulation scenario discussed in Section 5.1,semi-optimal clustering policy (an intuitive optimal solution) would be forming �xedclusters around the hot spots (cells 1, 7, 56, and 63). To obtain the utilization ofthe network, for a given overload value, we found the optimal clustering size for thementioned policy, which maximizes the utilized bandwidth while satisfying the QoS



38requirements. As the �gure shows, the adaptive clustering outperforms the semi-optimal clustering even over a large range of overload and over the range that it'sutilization is less than semi-optimal clustering, the di�erence is not signi�cant.These results show that the VBC admission control algorithm with adaptive clus-tering algorithm is a scalable scheme for wireless networks and can e�ectively andaccurately control the system admissible region.
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Chapter 6Conclusions and Future WorkAs mobile and wireless communication becomes increasingly ubiquitous, techniquesfor quality of service provisioning will encounter fundamental challenges in scalingto many users and many hand-o�s. In this thesis, we proposed new techniques withthe ability of performing scalable and coarse-grained QoS control in future systems,and introduced Virtual Bottleneck Cell Admission Control as a particular algorithmbased on this design philosophy. We then developed a simple one-dimensional ana-lytical model to investigate the performance of the proposed admission control algo-rithm. Using the results of our analytical studies we showed that the characteristicsof the virtual system closely envelope the behavior of the underlying cells, enablinge�cient provisioning of system resources, even under heterogeneous spatial demandsand \hot spots". We then discussed the problem of clustering, which arises in anycoarse-grained approach towards maintaining QoS in the networks and formulated itas an optimization problem. De�ning the optimal clustering policy we then designeda heuristic adaptive clustering algorithm as a solution to the de�ned optimizationproblem. We showed that our clustering algorithm is successful in adaptively cap-turing the variations in users' mobility pattern in the network and hence formingthe clusters around the network bottlenecks. Finally we performed simulation ex-periments in a two-dimensional system. Here we �rst studied the characteristics ofthe parameters involved in adaptive clustering policy and then applying two di�er-ent optimal o�-line admission control algorithms as benchmarks, found out that the



40coarse-grained approach can e�ectively control the system's admissible region. We �-nally compared our adaptive clustering algorithm with an intuitive optimal clusteringpolicy and showed that our heuristic approach outperforms such a solution.We believe that using the proposed design philosophy we have a powerful tool tomaintain quality of service in multi-tier networks, where the users have the chanceto hand-o� not only to di�erent cells in the network they are connected to, but alsoto di�erent networks providing service in the area. In such a network scalability isan important issue in design of any algorithm. In addition to the issue of multi-tier networks, in our future work we will deal with expanding our admission controlalgorithm and the adaptive clustering for the more general cases of having more thanone QoS class in the network.
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