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ABSTRACT

The fundamental dichotomy in evolutionary algorithms is
that between exploration and exploitation. Recently, sev-
eral algorithms [8, 9, 14, 16, 17, 20] have been introduced
that guard against premature convergence by allowing both
exploration and exploitation to occur simultaneously. How-
ever, continuous exploration greatly increases search time.
To reduce the cost of continuous exploration we combine
one of these methods (the age-layered population structure
(ALPS) algorithm [8, 9]) with an early stopping (ES) method
[2] that greatly accelerates the time needed to evaluate a can-
didate solution during search. We show that this combined
method outperforms an equivalent algorithm with neither
ALPS nor ES, as well as regimes in which only one of these
methods is used, on an evolutionary robotics task.
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1. INTRODUCTION

Two of the most frequently-cited criticisms of evolutionary
algorithms are that they become trapped in local optima,
and that they are computationally inefficient in the sense
that the majority of computation is spent on solutions that
do not contribute to the final solution. This paper presents
a method that incorporates and successfully combines two
mechanisms for guarding against premature converge and
minimizing the amount of time spent evaluating solutions
destined never to produce offspring.
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The first mechanism is an expanded version of the Age-
Layered Population Structure (ALPS) algorithm, which par-
titions a population into several independent layers, and
only allows an evolved solution to compete for breeding
rights with other solutions in its layer. As ALPS proceeds,
older and/or more fit solutions bubble into higher layers,
and periodically the lowest layer is re-seeded with random
genomes. ALPS is in this sense a diversity-maintenance
method, many of which have been introduced into the liter-
ature, including preselection [4], crowding [5], deterministic
crowding [15], sharing functions [7], and novelty emphasis
[14, 16, 17, 20].

Where ALPS differs is that unlike other age-dependent
algorithms [10, 11, 12, 13], the age of a genome is defined
as the age since its original ancestor was created: an orig-
inal ancestor is one that was created at the outset of the
run, or during one of the periodic re-seedings of the lowest
layer. This creates fairer competition between age groups,
and allows for descendents of young ancestors to sometimes
challenge, compete with and eventually unseat solutions de-
rived from older ancestors which are mired on local optima.

The second mechanism is an early stopping method (not
to be confused with the same term used in artificial neu-
ral networks) which terminates the evaluation of a solution
early if it is guaranteed to not produce offspring even if it is
evaluated fully. Early stopping has been used in the evolu-
tionary robotics domain [18] in which solution evaluation is
expensive, but these methods have been specific to the type
of robot and task employed [22, 19, 3]; the early stopping
method introduced here however is domain-independent.

The next sectcion introduces both the early stopping and
ALPS methods used here, and how to combine them. Sec-
tion 3 presents results demonstrating the complementarity
of these two methods: both methods combined outperforms
equivalent algorithms in which one or both methods are dis-
abled. Section 4 provides discussion and some concluding
remarks.

2. METHODS

This paper introduces a method that combines early stop-
ping (Sect. 2.1), which minimizes the time required to eval-
uate sub-optimal solutions, and the Age-Layered Population
Structure method (Sect. 2.2), which guards against prema-
ture convergence by simultaneously improving fit solutions
and searching for novel, promising solutions. This combined
method (Sect. 2.3) is used to evolve directed locomotion for
a simulated legged robot (Sect. 2.4).



2.1 Early Stopping (ES)

Most evolutionary algorithms rapidly discover good solu-
tions while the remainder of a run is spent incrementally
improving them. However, random mutation and crossover
events dictate that the vast majority of new solutions are
less fit than their parents, and often do not reproduce: thus,
a large fraction of time during an evolutionary run is wasted.

With a typical fitness function, fitness of a new solution
i starts at zero and is added to during each time step of its
evaluation
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(where f(¢) is the fitness of solution 4, ¢ is the current time
step of the evaluation period, tg and ¢; are the first and last
time step, respectively, and F(i,t) is a function that returns
the fitness increment for solution ¢ at time step t). Conse-
quently, all steps of a fitness evaluation must be performed
to determine whether or not this individual is worth keeping.
In constrast, early stopping evaluates solutions by initially
assigning each solution a maximum fitness value ( fmax) and
then gradually decrementing that value:
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In this way, once the fitness is reduced too low for the indi-
vidual to be viable, evaluation can be halted.

In the applications reported here, multi-objective opti-
mization is employed:
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where j fitness components f(i,1),... f(i,7) are calculated

for each solution. If during the evaluation of a new solution i
it becomes dominated by an existing non-dominated solution
kE((f(,1) < flk,1)& ... &(f(i,7) < f(k,7))), evaluation is
terminated early. If it is evaluated fully, it assumes a posi-
tion on the non-dominated front and any solutions displaced
from the front are deleted. By ensuring that F(i,7,t) >=0
for all 4, j and ¢, as solution ¢ is evaluated it is ensured
that f(¢,7) will monotonically decrease. Therefore, once a
solution becomes dominated during evaluation it is ensured
that it will never regain non-dominated status during the
remaining time steps of its evaluation.

2.2 Age-Layered Population Structure (ALPS)

The age-layered population structure (ALPS) metaheuris-
tic is an attempt to simultaneously improve existing good so-
lution as well as continuous introduce less fit but promising
solutions into the population. This is accomplished by divid-
ing the total population into several layers (here, L = 20).
In this work the steady-state version of ALPS is employed
[9]. At each iteration a layer is chosen at random (Fig. 1,
ALPS_ES(Q), line 2), and a non-dominated solution on that
layer is chosen (line 10) for reproduction (line 11). The new
solution j is evaluated using either ES (Sect. 2.1) or not.

The new solution j then attempts to displace a genome
from its home layer 7 (TryMoveUp(7,5)) into the next highest
age layer. A victim k is sought (FindVictim(s,j)) by first
seeking a successful genome on layer i (lines 1-2); failing
that, a genome that is too old for its layer is sought (lines 3-
4); failing that, a solution is chosen that is dominated by the
new solution (lines 5-6); failing that, no victim is returned.

In the application studied here, each robot is evaluated in
several training environments (Fig. 2). A successful solution
i is defined as one that achieves F'(3, j, k) = 0 for each fitness

component j at each time step k, so that fi(j ) = fr(r]i)ax for
all j. For the directed locomotion task (Sect. 2.4, Fig. 2),
this equates to the robot approaching the target object in
its environment with a sufficiently high mean velocity.

Each solution has an age, and each layer has a maximum
age associated with it. In steady-state ALPS, the age of a
solution 7 is set to a; = (sc — s;)/p, where s; indicates the
number of solutions already evaluated at the time that its
most senior ancestor® was created, s. indicates the current
number of solutions evaluated, and p indicates the popula-
tion size (in this work, p = 400). The 20 layers used here
were assigned maximum ages according to the Fibonacci se-
ries 1,2,3,5,..., fr = fr—1 + fr—2 (following [8, 9]).

Once a victim is found, the algorithm attempts to move
it in turn up into the next highest age layer (Fig. 1, Try-
MoveUp(%,7), lines 3,6). If during an attempted move the
victim was successfully moved up a layer, the current so-
lution takes its slot (TryMoveUp(i,j), lines 8,9). If a victim
could not displace a solution in the layer above it, if it is
dominated by the current solution it is deleted and replaced
by the current solution (lines 13-15); if it instead dominates
the current solution, the current solution is discarded (lines
11,12).

At the outset of each independent trial, for both tasks, one
of 12 training environments is chosen at random. Robots
are evaluated in this training environment until a successful
genome is discovered (Fig. 1, Move(4,5,k), line 3). Once this
occurs, the layer to which the successful genome belongs is
expanded (line 4): a new training environment is selected
at random; it is added to that layer’s training set; all the
genomes on that layer (including the successful genome) are
evaluated against the new environment; new genomes arriv-
ing on this layer are evaluated against the original and new
environment; and genomes arriving from younger layers that
were only evaluated against the original environment (line
5) are evaluated against the new environment (line 6). This
continues until a genome is discovered that succeeds in all
12 training environments, or the maximum allotted time ex-
pires.

As optimization proceeds, genomes migrate up from younger
to older layers. In some cases their migration triggers expan-
sion on the layer where they arrive, and sometimes they are
themselves expanded. This eventually causes the layers to
self-organize such that older layers host larger training sets
than younger layers (see Fig. 4c). However, the successful
solutions that originally triggered a layer expansion often
migrate into higher layers. This means that younger and
less experiened solutions are left to be evaluated against too
many training environments, wasting computation time. To

LA solution’s most senior ancestor is defined as its ancestor
which was either created in the initial random population,
or created during one of the re-seeding of the youngest layer
(Fig. 1, ALPS_ES(), line 4 or 8).



combat this, compression is employed (CompressLayers()).
After each solution is evaluated, the layers are scanned and if

a layer is found to be compressible, it is compressed (Compress-

Layers(), lines 2-4). A layer hosting k training environments
is considered compressible if there is no solution in the layer
that is successful on all of the first kK — 1 training environ-
ments. In such a case, the most-recently added training
environment can be removed from the layer and new solu-
tions on that layer are evaluated against the remaining k£ — 1
training environments.

2.3 Combining ALPS and ES

In the two robot tasks investigated here, incremental shap-
ing [23, 6, 21, 19] is employed to enable the evolving robots
to perform successfully in an increasing number of training
environments.

With multiple environments, the fitness function for each
robot is
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where f(i,7) is the jth fitness component of robot i, e is
the eth environment in which the robot was evaluated, ey, is
the number of environments for which robots on layer L are
evaluated against, and f(i, e, 7) is the jth fitness component
of robot ¢ evaluated in environment e.

When early stopping is employed, even if a new robot is to
be evaluated against more than one environment, it may be
terminated early if it performs poorly in some of the training
environments. After a new robot has been evaluated in the
first training environment, its fitness is estimated assuming
that it will perform successfully in the remaining environ-
ments: this is accomplished by setting F(i,e,j,t) = 0 for
all time steps t, fitness components j, and training environ-
ments e > 1, and then calculating all f(4,7). If the robot
becomes dominated by one of the robots on the Pareto front,
the robot is not evaluated in the remaining training environ-
ments. If it remains non-dominated, the robot is evaluated
in training environment e = 2; F(i,e, j,t) is set to zero for
all t, 7 and e > 2; f(4,7) is recalculated and the process is
continued until either the robot becomes dominated or it has
been evaluated in all the available training environments.

2.4 Legged Locomotion

The ability of ALPS and ES to improve the probability of
finding successful solutions in isolation and in combination
was tested on the simulated robot shown in Fig. 2. This
robot is composed of an upper and lower body and four
legs. Each body part is attached to its connecting body
part with an actuated, two degree-of-freedom (DOF) rota-
tional joint. The first DOF of each joint sweeps the con-

procedure ALPS_ES()

1: while !(SuccessfulOnAllObjs(j) | TimelsUp()) do
2: i<+ FindLayer()

3: if BottomLayer(i) & reinitializationMode then
4 j < CreateNewRandomGenome()

5: else

6: if BottomLayer(i) & TooOld(:) then
7 reinitializationMode < true

8 j < CreateNewRandomGenome()

9: else

10: parentIndex < FindNonDominated (7)
11: j < CreateChild(parentIndez)

12: EvaluateChild(j)

13: TryMoveUp(i,j)

14: end if

15:  end if

16:  CompressLayers()
17: end while

procedure TryMoveUp(i,j)
1: if TopLayer(i) then
k < FindVictim(s, j)
3:  TryMoveUp(i,k)
4: else
5.k« FindVictim(i + 1, j)
6:  TryMoveUp(i + 1,k)
7
8

: end if
: if Empty(k) then
9:  Move(i,j,k)

10: else

11:  if Dominates(k,j) then
12: Discard(5)

13:  else

14: Discard(k)

15: Move(i,j,k)

16:  end if

17: end if

procedure FindVictim(s, 7)
if SuccessfulOnLayer(i) then
return SuccessfulOnLayer ()
else if TooOldOnLayer(i) then
return TooOldOnLayer(7)
else
return DominatedOnLayerBySolution(¢,7)
end if

procedure Move(i,j,k)

1: genomes[k] < genomes]j]

J <k

: if Successful(j) then

ExpandLayer(i);

: else if TooLittleExperienceForLayer(i,j) then
ExpandGenome();

7: end if

SR w

procedure CompressLayers()

1: for L =1 to maxLayers do
2: if Compressible(L) then

3: CompressLayer (L)
4:  end if
5: end for

Figure 1: Pseudocode for combining ALPS and ES.
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Figure 2: A sample evolved locomoting robot. A
typical robot that has evolved to successfully ap-
proach objects placed at 12 different locations in an
arc in front of it. The left and right columns show its
behavior when the object is placed at the extreme
left- and righthand endpoints of that arc, respec-
tively.

necting parts through the robot’s horizontal (sagittal) plane
with a joint range of [—50°,50°]; the second DOF of each
joint sweeps the connecting parts through the robot’s verti-
cal (transverse) plane with a joint range of [—20°,20°]. The
robot contains four touch sensors, one in each leg. It also
contains three distance sensors: one at the robot’s midsec-
tion and two at its shoulders. The distance sensors return
a value of 0 when the sensor overlaps the target object’s
center (an impossibility); a value of 1 when the sensor is at
(or beyond) a defined maximum distance?, and return an
intermediate value between these distances.

The robot is controlled by a continuous time recurrent
neural network (CTRNN; [1]). The robot contains 10 motor
neurons, one for each DOF, and each is updated as follows:

sqt+st
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where 7; is the time constant associated with neuron i, y;
is the value of neuron ¢, wj; is the weight of the synapse
connecting neuron j to neuron ¢, o(z) = 1/(1 4+ e~ %) is an
activation function that brings the value of neuron i back
into [0, 1], 6; is the bias of neuron j, sq = 3 is the number of
distance sensors, s; = 4 is the number of touch sensors, n;;
is the weight of the synapse connecting sensor j to neuron 4,
and r; is the value of sensor j. In this formulation, each sen-
sor may have a direct effect on every motor neuron. However

2Here defined as the distance from the robot’s midsection at
the outset of an evaluation and the target object: 1 meter.

this effect may be minimized or eliminated by low values for
r, or by behaviors that cause a motor neuron to saturate to
extremal values. 7; can range between [0.0001,1.0], wj; in
[—16,16], 6; in [—4,4], and n;; in [—16, 16].

At the outset of each time step of an evaluation, the sensor
values are retrieved from the physical simulator®, one up-
date of the CTRNN is made, and the resulting values of the
motor neurons are calculated. The values are scaled to the
minimum and maximum rotation angles of the correspond-
ing joint, forming the desired angle for that joint. Torque is
then applied to the joint commensurate with the difference
between the joint’s current angle and the desired angle. The
positions and velocities of the objects in the simulation are
then updated using a step size of 0.003.

This locomoting robot may be exposed to 12 different en-
vironments®*, in which the target object is placed at a differ-
ent position on an arc in front of the robot: the left column
in Fig. 2 illustrates the behavior of an evolved robot when
the object is placed at the leftmost position on the arc (en-
vironment #1, defined in polar coordinates as r = 1 meter,
0 = —45°), and the right column in Fig. 2 illustrates the
behavior of the same robot when the object is placed at the
rightmost position of the arc (environment #12, r = 1m,
6 = 4+45°). The remaining 10 environments position the ob-
ject at 0 = (—454+1%(90/11))°,...,0 = (—45+10%(90/11))°.

The fitness of a robot is defined as the rapidity with which
it can approach the target object in each of the training
environments to which it is exposed. This is achieved by
selecting for CTRNNs that cause the robot to minimize the
distance between its three distance sensors and the target
object. Thus, for robot i, at each time step ¢ of an evaluation
in environment e, each of the j fitness components f(i,7) is
computed using

U = 10, (13)
F(iye,,t) = 1/t (14)

where rj(t) is the value of the jth distance sensor at time step

t, and ty = 1000 is the number of time steps per evaluation.
This ensures that if the robot remains still, at the end of
an evaluation F'(i,e, j,t) = 0 for all fitness components j. A
robot is considered successful in an environment if at the end
of its evaluation all three fitness components f(3,j) >= 0.5.

3. RESULTS

One hundred independent trials of the combined ALPS-ES
algorithm (Fig. 1) were conducted for the legged locomotion
task (Sect. 2.4). Each trial was stopped if a robot was
found that could successfully walk to each of the 12 object
placements, or 24 CPU hours elapsed. In each trial 20 age
layers were used®, with 20 genomes per layer. Of the 100
trials, 32 finished successfully before the allotted time.

Fig. 3 shows the evolutionary progression of a typical run
from among those that finished successfully. Fig. 3a in-
dicates that over time the older layers (darker lines) tend
to accumulate genomes with higher fitness than those on

3www.ode. org

4The robot may be evaluated in less than 12 environments
if early stopping is employed.

5The number of layers was chosen arbitrarily; the impact of
this parameter setting on the running of the algorithm was
not investigated here.



younger layers (lighter lines). Fig. 3b reports the number of
non-dominated solutions on each layer. As the membership
size of the Pareto front is often a good indicator of a popu-
lation’s variation, it can be seen that there seems to be little
difference in the genetic variation on the various layers. Fig.
3c reports the mean number of objects in the training set
for each layer. As indicated, older layers tend to host larger
training set sizes than younger layers.

Layer 13 eventually discovers a successful robot; however,
for several CPU hours previously this layer (and several oth-
ers) host robots only capable of successfully approaching
nine objects (denoted by the plateau at y = 10 in Fig. 3c¢).
During this period layer 13 undergoes a large increase in ge-
netic diversity, as indicated by the spike in non-dominated
solutions around the seventh CPU hour (thick line in Fig.
3b). Despite this variation, during this period the fitness
of the best genome on layer 13 is lower than those of older
layers which also host training set sizes of 10 (the thick line
is lower than the dark lines during CPU hours 6 to 8 in Fig.
3a).

This pattern exemplifies the power of the ALPS algorithm:
layer 13 exports highly fit solutions to upper layers and is
thus able to breed genetic variation, as well as inherit nov-
elty from lower layers. This allows this layer to eventually
discover a global optima. However, this advantage comes
at a price: a significant portion of the population (layers
15-20) produce genomes that take a long time to evaluate,
because the robots must be evaluated against up to 10 dif-
ferent environments; this search does not contribute to the
final discovery of a local optima because genetic material is
never passed down to younger layers. Early stopping helps
to minimize this lost time by terminating the evaluation of
most robots before they have been evaluated in all the train-
ing environments.

Fig. 4 reports the average characteristics of the 20 age lay-
ers over all 100 trials. Fig. 4a indicates that over time, older
layers tend to inherit and breed genomes with higher fitness
than younger layers. Fig. 4b shows that although more
variable, older layers tend to host more non-dominated so-
lutions than younger layers: this indicates that older layers
tend to accumulate novelty from lower layers while preserv-
ing previously-discovered fit solutions. Fig. 4c indicates
that older layers tend to host larger training set sizes than
younger layers. This shows that the population tends to
self-organize into a learning gradient: as successful genomes
and their offspring migrate into older layers, they trigger
expansions in the training set sizes of those layers; younger
genomes then evolve against this learning gradient as they
in turn migrate to older layers.

However, genomes evaluated against many environments
can significantly slow down search. In order to determine
whether early stopping can accelerate search, four additional
experimental regimes were conducted: 100 independent tri-
als were performed with only early stopping disabled; 100
trials with only ALPS disabled; and 100 trials with ALPS
and ES disabled. In addition, a fourth regime was performed
in which both ALPS and ES was used, but compression was
disabled.

In the trials without ALPS, a single ‘layer’ with 400 indi-
viduals was evolved, and no new random genomes were ever
introduced. In the trials without ES, each genome was eval-
uated in all k£ environments hosted by its resident layer. All
other algorithmic details across the five regimes were kept
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Figure 3: Evolutionary change in a typical run. (a)
The fitness of the best genome on each of the 20 age
layers. Lighter lines indicate younger layers. The
thick line indicates the layer (13) which eventually
produces a robot that can successfully walk to all 12
object placements after ~9.5 CPU hours. (b) The
number of non-dominated solutions on each layer.
(¢) The number of objects in the training set for
each layer.

the same. Fig. 5 reports the mean performance of all of
the regimes. Clearly, early stopping provides a significant
performance improvement (dark gray lines higher than light
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gray lines). Moreover, ALPS provides a performance bene-
fit regardless of whether ES is disabled (thick light gray line
is higher than thin light gray line) or enabled (thick dark
gray line is higher than thin dark gray line). When ES is
enabled (dark gray lines), the regime with ALPS enabled
initially lags behind the regime with ALPS disabled: this is
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Figure 5: Relative rates of improvement using ALPS
and Early Stopping. The vertical axis indicates the
mean number of objects that have been successfully
reached by a robot after that many CPU hours have
elapsed. Thin lines indicate one unit of standard
error of the mean.

because with ALPS disabled, all search focusses on evalu-
ating genomes against a growing number of environments.
Just before the third hour however, the combined ALPS-
ES regime surpasses this regime as genomes in older layers
trapped in local optima are replaced by genomes migrating
up from younger layers.

Fig. 6 further illustrates the performance advantage of
combinining ALPS and ES: Fig. 6a reports the fraction
of successful runs that each experimental regime achieves.
Fig. 6b reports the mean number of generations performed
before a successful genome was found, averaged over all the
successful runs for each regime. Finally, Fig. 6¢ reports the
mean CPU time required for each regime to find a successful
genome, averaged over all the successful runs. As can be
seen, only when both ALPS and ES are employed do most
of the runs finish successfully before the allotted time expires
(Fig. 6a).

However, when either ALPS or ES is not employed, the
few runs that do finish successfully finish on average earlier
than when both ALPS and ES are employed (lower three
lefthand bars in Fig. 6b). This can be explained as follows:
if any run is fortunate to be seeded with a solution that is
near a global optimum in terms of the mutations required to
reach it, relatively little time is required to discover a descen-
dent of this solution that occupies this optimum. However,
if ALPS is not employed, those runs that do not initially
contain such a solution become mired on local optima and
do not finish on time. If Early Stopping is not employed
but ALPS is, the longer time required to discover a random
solution near a global optimum, percolate its descendants
up through the layers to unseat non-optimal converged so-
lutions and breed an eventual solution is longer than the
allotted time, and the run terminates unsuccessfully.

Fig. 6¢ indicates that employing compression significantly
improves the performance of runs that employ both ALPS
and ES: although ALPS+ES runs with or without compres-
sion evaluate approximately the same number of solutions
before finding a globally successful one (two rightmost bars
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in Fig. 6b), compression ensures that solutions on each layer
are not evaluated against too many training environments,
and therefore speeds up search.

The acceleration of search conferred by early stopping is
shown in Fig. 3. Although steady-state ALPS [9] was em-
ployed here, the mean time to evaluate 400 genomes (the
length of a ‘generation’) is reported as a function of the

ALPS=1, ES=0
y=0.2927 +3.94z +-3.68, r* =0.98
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Figure 7: Time to evaluate a single generation when
ES is disabled (gray dots) compared to when ES is
enabled (black dots). Models of each growth rate
were produced using nonlinear regression.

mean number of training set sizes across the layers. As ex-
pected, regardless of whether ES is employed or not, the
time to evaluate one generation increases as the layers host
increasing numbers of environments. However, this rate of
increase is considerably curtailed when ES is employed: in-
deed the rate of increase is reduced from polynomial time
to sub-linear time: regression produced a model with a pos-
itive nonlinear term when ES was disabled, but a negative
nonlinear term when ES is employed. This indicates that
as the number of training environments to which the robots
are exposed increases, the time savings incurred using ES
increases, compared to not using ES. This reduction in run-
ning time has previously been observed [2], but not when
using ALPS.

4. CONCLUSIONS

The crossing of the dark gray lines around the third CPU
hour in Fig. 5 provides an example of the fundamental trade-
off between exploration and exploitation in evolutionary al-
gorithms. Without a mechanism to ensure continued explo-
ration (ALPS = 0, thin dark gray line), there is rapid early
improvement in the population as search focuses on improv-
ing the best solutions found so far. However, this often leads
to a population becoming mired in local optima as individu-
als become more genetically homogeneous to one another. If
a mechanism is employed to continuously introduce novelty
into a population (ALPS = 1, thick dark gray line), the rate
of improvement slows: search focuses not just on highly fit
individuals but also on newer individuals who show promise.
This investment in exploration may pay off after time how-
ever, as older genomes mired on local optima are displaced
by the more-fit descendants of younger genomes who are still
climbing gradients elsewhere in the search space.

This investment comes at a price however: evolutionary
runs that balance exploration and exploitation must be con-
tinued for longer time periods to match and exceed the early
performance of exploitation-heavy runs. For the locomo-
tion task investigated here, the payoff in the exploration
investment only began to yield dividends after the third
CPU hour. As evolutionary algorithms mature and are em-



ployed to solve more complex problems that require long
running times (such as evolutionary robotics [18]), they will
require additional mechanisms to speed evolutionary search.
This was accomplished here by integrating the exploration-
exploitation mechanism of ALPS with a method that can
quickly terminate evaluation of those new genomes that will
not produce offspring, even if fully evaluated. It was shown
that the combinations of these methods outperforms either
method alone, or in equivalent regimes in which neither
method was used.

This combined method has proven to work well on the
computationally-intensive task of evolving behaviors for sim-

ulated robots in a three-dimensional physical simulator. How-

ever, it is anticipated that additional mechanisms will be
required to handle deceptive tasks in which initial fitness
improvement does not correlate with the eventual discovery
of near-optimal solutions. Recently, a promising technique
has been formulated [14, 16, 17, 20] that has proven to work
well on deceptive tasks. In future work we plan to incor-
porate this mechanism into the method presented here, and
demonstrate that the expanded method performs well on
both complex and deceptive tasks, thereby further improv-
ing the scalability of evolutionary search.
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