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Abstract

This paper introduces two virtual decision making units (DMUs) called ideal DMU

(IDMU) and anti-ideal DMU (ADMU) into the data envelopment analysis (DEA). The

resultant DEA models are, respectively, referred to as the data envelopment analysis

with ideal and anti-ideal decision making units. One evaluates DMUs from the view-

point of the best possible relative efficiency, while the other evaluates them from the per-

spective of the worst possible relative efficiency. The two distinctive efficiencies are

combined to form a comprehensive index called the relative closeness (RC) to the

IDMU just like the well-known TOPSIS approach in multiple attribute decision making

(MADM). The RC index is then used as the evidence of overall assessment of each

DMU, based on which an overall ranking for all the DMUs can be obtained. Two

numerical examples are provided to illustrate the applications of the proposed DEA

models and the RC index.
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1. Introduction

Data envelopment analysis (DEA), developed by Charnes et al. [1], usually

evaluates decision making units (DMUs) from the angle of the best possible

relative efficiency. If a DMU is evaluated to have the best possible relative effi-

ciency of unity, then it is said to be DEA efficient; otherwise it is said to be

DEA inefficient. DEA efficient DMUs are always thought to perform better

than DEA inefficient DMUs. If a DEA efficient DMU, however, also has a

poorer relative efficiency than a DEA inefficient DMU when they are both
evaluated from the angle of the worst possible relative efficiency, can we still

say that the DEA efficient DMU performs better than the DEA inefficient

DMU? In this situation, the conclusion is obviously uncertain. So, there is a

clear need to combine the best and the worst possible relative efficiencies to give

an overall assessment of each DMU.

Entani et al. [2] considered DEA efficiencies from both the optimistic and

the pessimistic viewpoints. In their DEA models, the worst and the best possi-

ble relative efficiencies were utilized to constitute an interval. Their model for
the computation of the worst possible relative efficiency, however, has a deadly

drawback that it lost some information on inputs and outputs because only one

input and one output data of the DMU under evaluation were effectively uti-

lized and all the other input and output data did not work.

Wang et al. [3] proposed a bounded DEA model for precise data. The

bounded DEA model makes the most of all input and output information to

measure both the best and the worst possible relative efficiencies of each

DMU by introducing a virtual anti-ideal DMU (ADMU), which consumes
the most inputs only to produce the least outputs. It can therefore identify both

the efficiency and inefficiency frontiers.

In this paper, DEA efficiency evaluation problems will be handled in a dif-

ferent way. A virtual ideal DMU (IDMU) will be further introduced into DEA

model. The two virtual DMUs, IDMU and ADMU, are used to construct two

DEA models for the calculation of the best possible and the worst possible rel-

ative efficiencies, respectively. The two distinctive efficiencies are integrated

using the well-known TOPSIS approach in multiple attribute decision making
(MADM) to generate a composite index called the relative closeness (RC) to

the IDMU. The RC index will be used as the evidence of overall assessment

of each DMU, based on which an overall ranking for all the DMUs can be gen-

erated very easily.

The paper is organized as follows. In Section 2, we develop two DEA mod-

els with a virtual IDMU or ADMU to capture the best and the worst possible
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relative efficiencies, respectively. Section 3 defines the relative closeness index to

combine the best and the worst possible relative efficiencies of each DMU. Two

numerical examples are provided in Section 4 to illustrate the applications

of the proposed DEA models and the RC index. The paper is concluded in

Section 5.
2. DEA models with IDMU or ADMU

Assume that there are n DMUs to be evaluated, each DMU with m inputs

and s outputs. We denote by xij (i = 1, . . .,m) and yrj (r = 1, . . ., s) the values of
inputs and outputs of DMUj (j = 1, . . .,n), which are all known and positive.

An IDMU and an ADMU can be defined as follows:

Definition 1. An IDMU is a virtual DMU, which can use the least inputs to

generate the most outputs. While an ADMU is a DMU, which consumes the

most inputs only to produce the least outputs.

Note that a virtual IDMU may not exist in practical production activity at
least at current technical level, while a virtual ADMU may exist in practical

production activity because the waste of resources is always allowed in the the-

ory of production possibility set.

According to the above definition, we denote by xmin
i (i = 1, . . .,m) and ymax

r

(r = 1, . . ., s) the inputs and outputs of the IDMU, and by xmax
i (i = 1, . . .,m) and

ymin
r (r = 1, . . ., s) the inputs and outputs of the ADMU, respectively, where xmin

i

and xmax
i are the minimum and the maximum of the ith input, ymin

r and ymax
r are

the minimum and the maximum of the rth output. They are determined by the
following formulae:

xmin
i ¼ min

j
fxijg and xmax

i ¼ max
j

fxijg; i ¼ 1; . . . ;m;

ymin
r ¼ min

j
fyrjg and ymax

r ¼ max
j

fyrjg; r ¼ 1; . . . ; s.

Although the IDMU is a virtual DMU, its production behavior should be-

come the goal of each DMU�s pursuing. According to the implication of effi-

ciency, the efficiency of the IDMU can be defined as

hIDMU ¼
Ps

r¼1ury
max
rPm

i¼1vix
min
i

;

where ur and vi are the factor weights assigned to the rth output and the ith in-

put. It is obvious that the IDMU should be able to achieve the highest/best

possible relative efficiency. Therefore, we may construct the following frac-
tional programming model:



Y.-M. Wang, Y. Luo / Appl. Math. Comput. 173 (2006) 902–915 905
Maximize hIDMU ¼
Ps

r¼1ury
max
rPm

i¼1vix
min
i

ð1Þ

subject to hj ¼
Ps

r¼1uryrjPm
i¼1vixij

6 1; j ¼ 1; . . . ; n;

ur; vi P e; 8r; i;

where ur and vi are decision variables and e is the non-Archimedean infinitesimal.

Using Charnes and Cooper transformation, the above fractional program-

ming model can be solved through the following linear programming model:

Maximize hIDMU ¼
Xs

r¼1

urymax
r ð2Þ

subject to
Xm

i¼1

vixmin
i ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

vixij 6 0; j ¼ 1; . . . ; n;

ur; vi P e; 8r; i.

Let h�IDMU be the optimum efficiency of the IDMU. Since there exists such a

possibility that the above LP model (2) may have multiple optima, we utilize

the following fractional programming model to determine the best possible rel-

ative efficiency of DMU0 under the condition that the best possible relative effi-

ciency of the IDMU remains unchanged:

Maximize hj0 ¼
Ps

r¼1uryrj0Pm
i¼1vixij0

ð3Þ

subject to h�IDMU ¼
Ps

r¼1ury
max
rPm

i¼1vix
min
i

;

hj ¼
Ps

r¼1uryrjPm
i¼1vixij

6 1; j ¼ 1; . . . ; n;

ur; vi P e; r ¼ 1; . . . ; s; i ¼ 1; . . . ;m;

where j0 is the DMU under evaluation (usually denoted by DMU0) and h�IDMU is

the best possible relative efficiency of the IDMU. The fractional programming

problem (3) can be solved through the following linear programming model:

Maximize hj0 ¼
Xs

r¼1

uryrj0 ð4Þ

subject to
Xm

i¼1

vixij0 ¼ 1;
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Xs

r¼1

urymax
j �

Xm

i¼1

viðh�IDMUx
min
i Þ ¼ 0;

Xs

r¼1

uryrj �
Xm

i¼1

vixij 6 0; j ¼ 1; . . . ; n;

ur; vi P e; 8r; i.

As such, the efficiency of the ADMU can be defined as

uADMU ¼
Ps

r¼1ury
min
rPm

i¼1vix
max
i

.

As an ADMU, its efficiency is evidently worse than any other DMUs. The

following fractional programming model is thus constructed:

Minimize uADMU ¼
Ps

r¼1ury
min
rPm

i¼1vix
max
i

ð5Þ

subject to uj ¼
Ps

r¼1uryrjPm
i¼1vixij

P 1; j ¼ 1; . . . ; n;

ur; vi P e; 8r; i;

which can be solved through the following linear programming model:

Minimize uADMU ¼
Xs

r¼1

urymin
r ð6Þ

subject to
Xm

i¼1

vixmax
i ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

vixij P 0; j ¼ 1; . . . ; n;

ur; vi P e; 8r; i.

Let u�
ADMU be the worst efficiency of the ADMU. Then the following frac-

tional programming model can be used to determine the worst possible relative

efficiency of DMU0 under the condition that the worst possible relative effi-

ciency of the ADMU keeps unchanged:

Minimize uj0
¼

Ps
r¼1uryrj0Pm
i¼1 vixij0

ð7Þ

subject to u�
IDMU ¼

Ps
r¼1ury

min
rPm

i¼1vix
max
i

;
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uj ¼
Ps

r¼1uryrjPm
i¼1vixij

P 1; j ¼ 1; . . . ; n;

ur; vi P e; r ¼ 1; . . . ; s; i ¼ 1; . . . ;m.

The above fractional programming model (7) can be solved through the fol-

lowing linear programming model:

Minimize uj0
¼

Xs

r¼1

uryrj0 ð8Þ

subject to
Xm

i¼1

vixij0 ¼ 1;

Xs

r¼1

urymin
j �

Xm

i¼1

viðu�
IDMUx

max
i Þ ¼ 0;

Xs

r¼1

uryrj �
Xm

i¼1

vixij P 0; j ¼ 1; . . . ; n;

ur; vi P e; 8r; i.

Let h�j0 and u�
j0

be the best and the worst possible relative efficiencies of

DMU0, respectively, which are the optimal objective function values of the

models (4) and (8), then we have the following definitions.

Definition 2. DMU0 is said to be DEA efficient if and only if h�j0 ¼ 1, otherwise
it is said to be non-DEA efficient.
Definition 3. DMU0 is said to be DEA inefficient if and only if u�
j0
¼ 1, other-

wise it is said to be non-DEA inefficient.

Note that the conventional DEA approach does not strictly distinguish be-

tween non-DEA efficient and DEA inefficient units and uses them interchange-

ably. In the above definitions, however, non-DEA efficient, DEA inefficient
and non-DEA inefficient units are all strictly distinguished because each of

them represents different meanings. Non-DEA efficient units do not necessarily

mean they are DEA inefficient. As such, non-DEA inefficient units do not nec-

essarily mean they are DEA efficient.

It also must be pointed out that the efficiencies in DEA models (5) and (8)

based on ADMU are defined to be greater than or equal to one, which is quite

different from the traditional DEA efficiency or inefficiency that is defined to be

less than or equal to unity. As a matter of fact, the traditional DEA efficiency
has the ability to differentiate those DMUs that perform poorly, but has no

ability to identify which DMU to perform best among those DEA effi-

cient DMUs, while the efficiencies defined in the models (5) and (8) have the
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capability of identifying which DMU to perform best, but have no capability

of discerning which DMU to perform worst. So, the two definitions of effi-

ciency complement each other.
3. The RC index for combining the best and the worst possible relative efficiencies

From the last section it is known that DEA models (1)–(4) based on IDMU

measure the best possible relative efficiencies of IDMU and the n real DMUs,

while DEA models (5)–(8) based on ADMU measure the worst possible rela-

tive efficiencies of ADMU and the n real DMUs. These two distinctive effi-

ciency assessments may lead to quite different conclusions. Therefore, there

is a need to consider them together to give an overall assessment of each

DMU. In order to do so, we introduce the concept of relative closeness, which
is widely used in the TOPSIS approach, a well-known MADM methodology

[4].

Definition 4. Let h�IDMU and h�j0 be the best possible relative efficiencies of

IDMU and DMU0, respectively, determined by DEA models (1)–(4), and

u�
IDMU and u�

j0
be the worst possible relative efficiencies of ADMU and DMU0,

respectively, determined by DEA models (5)–(8), the relative closeness index of

DMU0 to IDMU is defined as

RCj0 ¼
u�

j0
� u�

ADMU

ðu�
j0
� u�

ADMUÞ þ ðh�IDMU � h�j0Þ
. ð9Þ

It is obvious that the bigger difference between u�
j0
and u�

ADMU and the smal-

ler difference between h�IDMU and h�j0 mean the better performance of DMU0.

So, the bigger the RCj0 value, the better the performance of DMU0.

Note that the TOPSIS approach employs the distances of utility to define

the relative closeness, while the RC index in this paper is defined using the dis-

tances of efficiency.

Since the RC index integrates both the best and the worst possible relative

efficiencies of each DMU, it thus provides an overall assessment for each
DMU, based on which an overall ranking for the n real DMUs can be easily

obtained.
4. Numerical examples

We now illustrate the applications of the proposed DEA models and the RC

index using two numerical examples. One is a simple DEA efficiency-rating
problem, in which the overall ranking for the DMUs can be achieved intui-
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tively. The other is a complicated performance-rating problem, where the

overall ranking for the DMUs cannot be achieved intuitively and can only

be determined by the proposed RC index. All the models were implemented

in MS-Excel worksheets and were solved using the Excel Solver. The non-

Archimedean infinitesimal was set as e = 10�10.

Example 1. Consider a DEA efficiency evaluation problem with five DMUs,

each DMU with two inputs and one output. The data set is taken from

Andersen and Petersen [5] and is shown in Table 1. The CCR efficiency of each

DMU is presented in the last column of Table 1.

As can be seen from the rating results of Table 1 that the conventional CCR

model identifies DMU1 through DMU4 as DEA efficient units, which means

they perform equally well. But in fact, DMU2 obviously outperforms DMU1

because DMU2 consumes less resource of input 2 to generate the same output
as DMU1. In order to rank the four DEA efficient units, Andersen and

Petersen [5] suggested a ranking approach that compares the DMU under

evaluation with a linear combination of all the other DMUs, i.e., the DMU

itself is excluded. Based on their approach, the following ranking order was

obtained: DMU2 � DMU4 � DMU3 � DMU1 � DMU5, where the symbol

‘‘�’’ means ‘‘performs better than’’ or ‘‘is superior to’’. Such a ranking order

considers obviously only the best possible relative efficiency of each DMU.

Therefore, it is somewhat one-sided.
Now, we use the proposed DEA models with IDMU and ADMU to

reevaluate these five DMUs. The virtual IDMU and ADMU are defined in the

last two rows of Table 1. The resulting efficiency ratings and the RC values are

presented in Table 2.

It is clear from Table 2 that the DEA models based on IDMU and ADMU

both evaluate the original four DEA efficient units DMU1 through DMU4 to be

not completely the same. The DEA model based on IDMU assesses both

DMU2 and DMU3 to be DEA efficient, but DMU1 and DMU4 to be no longer
DEA efficient although they are rated to be equally well. The DEA model based

on ADMU evaluates DMU3 to be the best DMU, which is followed by DMU2
Table 1

Data for five DMUs with two inputs and one output

DMU x1j x2j y1j CCR efficiency

1 2 12 1 1

2 2 8 1 1

3 5 5 1 1

4 10 4 1 1

5 10 6 1 0.75

IDMU 2 4 1 –

ADMU 10 12 1 –



Table 2

Efficiency ratings and the RC values for the five DMUs

DMU CCR/IDMU efficiency CCR/ADMU efficiency RC Ranking

1 0.714 1 0.244 4

2 1 1.421 0.522 2

3 1 1.543 0.561 1

4 0.714 1.174 0.336 3

5 0.625 1 0.228 5

IDMU 1.667 – – –

ADMU – 0.692 – –
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and DMU4, and both DMU1 and DMU5 to be the worst DMUs. Observing the
rating results in Table 2, we may find that the DEA model based on IDMU

identifies DEA efficient units, but cannot differentiate them, while the DEA

model based on ADMU is quite the contrary, it identifies those DEA inefficient

units, but fails to distinguish them further. When the rating results obtained by

the two different DEA models are considered together, a fully ranking order

may be achieved intuitively for this simple example. The final overall ranking

order should be DMU3 � DMU2 � DMU4 � DMU1 � DMU5. Such a rank-

ing can be consistently achieved by using the systematic RC index, whose values
for the five DMUs are presented in the fourth column of Table 2.

It is obvious that the overall ranking is different from the ranking obtained

by Andersen and Petersen. This is because the overall ranking considers both

the best and the worst possible relative efficiencies of each DMU. It is therefore

more convincing.
Example 2. Consider a complicated performance rating case with 48 DMUs,

each DMU with eight inputs and one output. The data set is presented in

Table 3.

The traditional CCR model evaluates 13 of 48 DMUs to be DEA efficient

and cannot differentiate them further. The decision maker (DM) is not very
happy with such a rating result with so many DMUs being rated as DEA

efficient. In order to obtain an improved performance assessment result and

generate a reliable overall ranking for the 48 DMUs, the DEA models with

IDMU and ADMU are chosen to re-evaluate the performances of the 48

DMUs. The two virtual IDMU and ADMU are defined in the last two column

of Table 3. The best possible relative efficiency of IDMU is 5.088169732 and

the worst possible relative efficiency of ADMU is 0.380911. Both the best and

the worst possible relative efficiencies and the RC value for each DMU are
shown in the third through the fifth columns of Table 4, respectively.

It is clear from Table 4 that the DEA model with IDMU evaluates only

DMU35 and DMU43 to be DEA efficient and all the other 46 DMUs to be



Table 3

Data set for 48 DMUs with eight inputs and one output

DMU x1j x2j x3j x4j x5j x6j x7j x8j y1j

1 2,660,822 971,204 43,448 459,434 258,221 625,167 277,250 259,917 4,884,491

2 2,774,620 1,033,617 48,215 185,103 258,221 525,167 277,250 259,917 4,723,829

3 2,773,076 973,773 35,620 190,553 258,221 625,167 277,250 259,917 4,820,005

4 2,662,835 891,078 111,162 371,477 258,221 625,167 277,250 259,917 7,334,145

5 2,710,895 952,892 89,375 410,834 258,254 556,417 323,083 635,333 6,539,885

6 2,814,342 1,056,791 91,785 560,577 258,216 611,417 286,417 335,000 5,682,479

7 2,694,134 951,085 19,650 669,802 258,216 611,417 286,417 335,000 6,277,111

8 2,703,563 958,898 182,601 469,104 258,216 611,417 286,417 335,000 5,926,099

9 2,662,888 967,651 26,203 445,510 258,216 611,417 286,417 335,000 5,718,147

10 2,722,038 1,046,131 134,546 431,736 258,216 611,417 286,417 335,000 6,147,416

11 2,627,079 958,100 68,976 891,432 258,216 611,417 286,417 335,000 5,252,912

12 2,603,678 968,610 151,717 467,505 166,056 612,517 286,417 335,000 6,382,501

13 3,590,599 1,183,646 35,816 693,357 265,488 763,083 1,004,750 322,833 12,230,868

14 3,746,409 1,239,481 169,941 793,554 265,488 763,083 1,004,750 322,833 7,557,249

15 3,722,455 1,169,433 95,663 618,490 265,488 763,083 1,004,750 322,833 8,423,893

16 3,556,553 1,046,161 150,299 1,322,993 265,488 763,083 1,004,750 322,833 10,463,901

17 3,825,155 1,140,802 206,573 1,527,287 356,065 1,058,917 1,110,583 493,250 8,300,902

18 3,748,541 1,160,788 143,555 620,031 283,603 822,250 1,025,917 356,917 9,806,308

19 3,741,728 1,169,037 161,516 1,939,978 283,603 822,250 1,025,917 356,917 10,153,383

20 3,805,723 1,157,862 426,305 1,066,707 283,603 822,250 1,025,917 356,917 8,827,252

21 3,778,409 1,167,120 96,013 1,432,726 283,603 822,250 1,025,917 356,917 8,182,909

22 3,726,112 1,183,541 173,885 1,106,348 283,603 822,250 1,025,917 356,917 10,201,794

23 3,778,060 1,184,726 209,389 772,914 283,603 822,250 1,025,917 356,917 7,331,807

24 3,667,016 1,177,481 470,110 1,450,891 283,603 823,550 1,025,917 356,917 9,250,741

25 2,511,517 928,030 81,930 155,258 296,448 576,667 264,917 264,917 5,362,253

26 2,370,750 911,107 145,754 152,872 296,448 576,667 264,917 264,917 6,038,145

27 2,493,884 911,350 184,321 97,189 296,448 576,667 264,917 264,917 5,756,788

28 2,608,280 919,261 163,187 128,175 296,448 563,750 309,083 309,083 5,974,819

29 2,536,797 921,268 159,789 284,472 296,448 563,750 309,083 309,083 5,974,819

(continued on next page)
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Table 3 (continued)

DMU x1j x2j x3j x4j x5j x6j x7j x8j y1j

30 2,568,108 921,494 123,910 102,268 296,448 574,083 273,750 273,750 6,010,925

31 2,482,813 911,157 34,742 172,243 296,448 574,083 273,750 273,750 6,219,717

32 2,514,367 912,589 259,143 194,135 296,448 574,083 273,750 273,750 6,221,237

33 2,488,061 918,867 77,373 114,083 296,448 574,083 273,750 273,750 5,517,886

34 2,374,287 882,950 152,342 131,287 296,448 574,083 273,750 273,750 6,712,105

35 2,397,961 872,903 107,454 30,049 296,448 574,083 273,750 273,750 6,281,112

36 2,670,327 964,782 367,450 765,893 296,448 574,983 273,750 273,750 6,687,954

37 3,697,678 1,266,102 33,966 350,386 511,774 768,583 396,250 339,167 7,522,988

38 3,259,807 1,349,119 72,199 244,636 511,774 768,583 396,250 339,167 9,210,630

39 3,578,978 1,256,740 43,394 262,109 511,774 768,583 396,250 339,167 8,103,308

40 3,379,848 1,139,177 45,053 229,030 511,774 768,583 396,250 339,167 8,695,839

41 3,480,194 1,205,935 38,111 181,698 511,806 626,917 437,917 259,584 8,238,774

42 3,531,172 1,310,750 27,932 440,126 511,769 740,250 404,583 323,250 8,485,877

43 3,528,843 1,266,230 19,973 158,691 511,769 740,250 404,583 323,250 8,990,070

44 3,585,412 1,227,974 76,672 382,891 511,769 740,250 404,583 323,250 9,081,558

45 3,640,698 1,223,032 60,770 994,747 511,769 740,250 404,583 323,250 9,392,471

46 3,809,906 1,319,310 157,755 552,095 511,769 740,250 404,583 323,250 10,054,721

47 3,710,539 1,287,333 64,258 1,837,216 511,769 740,250 404,583 323,250 9,098,902

48 3,575,403 1,227,284 181,347 854,932 511,769 741,550 404,583 323,250 9,524,008

IDMU 2,370,750 872,903 19,650 30,049 166,056 525,167 264,917 259,584 12,230,868

ADMU 3,825,155 1,349,119 470,110 1,939,978 511,806 1,058,917 1,110,583 635,333 4,723,829
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Table 4

Efficiency ratings and the RC values for the 48 DMUs

DMU CCR efficiency CCR/IDMU

efficiency

CCR/ADMU

efficiency

RC Rank

1 0.7880 0.1924 1.4534 0.1797 31

2 0.7937 0.4077 1.5923 0.2056 23

3 0.8226 0.4262 1.6791 0.2178 20

4 1 0.3070 1.9377 0.2456 11

5 0.9296 0.2623 1 0.1137 45

6 0.7988 0.17383 1.2634 0.1522 40

7 1 0.1789 1.5422 0.1913 27

8 0.8140 0.1850 1.1600 0.1371 42

9 0.9375 0.2391 1.5168 0.1898 28

10 0.8444 0.2196 1.3221 0.1620 37

11 0.7703 0.1081 1.0874 0.1242 43

12 1 0.2087 1.3437 0.1648 35

13 1 0.3305 2.9408 0.3498 2

14 0.6179 0.1573 1.3908 0.1700 33

15 0.7332 0.2352 1.8560 0.2331 15

16 0.9678 0.1410 1.7135 0.2122 22

17 0.7040 0.0953 1 0.1103 48

18 0.8414 0.2580 1.8786 0.2367 14

19 0.8404 0.0956 1.3617 0.1642 36

20 0.7377 0.1204 1.0662 0.1212 44

21 0.6784 0.1057 1.3394 0.1613 38

22 0.8341 0.1589 1.6345 0.2028 25

23 0.5989 0.1505 1.2200 0.1453 41

24 0.7602 0.0975 1 0.1104 47

25 0.8462 0.4643 1.6353 0.2134 21

26 0.9213 0.4238 1.5864 0.2054 24

27 0.9039 0.4393 1.4253 0.1834 29

28 0.8932 0.4344 1.4057 0.1805 30

29 0.8465 0.2768 1.3369 0.1658 34

30 0.9200 0.5619 1.6641 0.2209 19

31 1 0.6019 2.0866 0.2755 6

32 0.9137 0.2912 1.2742 0.1570 39

33 0.8701 0.5968 1.7012 0.2272 17

34 1 0.4996 1.7235 0.2264 18

35 1 1 1.8689 0.2669 10

36 0.9442 0.1208 1 0.1108 46

37 0.8377 0.3878 1.8852 0.2424 13

38 1 0.5872 2.2242 0.2905 5

39 0.8913 0.5294 2.0623 0.2694 9

40 1 0.6352 2.2352 0.2940 4

41 1 0.7513 2.6166 0.3402 3

42 0.9377 0.3578 2.1428 0.2714 7

43 1 1 2.6066 0.3525 1

44 0.9795 0.3958 2.1242 0.2709 8

45 1 0.1756 1.8379 0.2287 16

(continued on next page)
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Table 4 (continued)

DMU CCR efficiency CCR/IDMU

efficiency

CCR/ADMU

efficiency

RC Rank

46 1 0.2859 1.9270 0.2435 12

47 0.9662 0.0941 1.4060 0.1703 32

48 0.9837 0.1843 1.6163 0.2012 26

IDMU – 5.0882 – – –

ADMU – – 0.3809 – –
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non-DEA efficient. The number of DEA efficient units is significantly reduced.

The DEA model with ADMU evaluates DMU5, DMU17, DMU24 and DMU36

to be DEA inefficient and the other 44 DMUs to be non-DEA inefficient. The

RC index shows that DMU43 has the best overall performance, which is

followed by DMU13, DMU41, DMU40 and DMU38, while DMU17 has the

worst overall performance followed by DMU24, DMU36 and DMU5. The

overall ranking order for all the 48 DMUs is presented in the last column of

Table 4, from which it can be found that the 48 DMUs are all ranked and
distinguished according to their overall performances. This is a significant

advantage of the proposed DEA approach over the other DEA methodologies.
5. Conclusions

In this paper we have developed two DEA models, one is based on virtual

IDMU and the other is based on virtual ADMU. The former evaluates DMUs

using the best possible relative efficiency and can be used to identify DEA effi-

cient units; while the latter evaluates DMUs using the worst possible relative

efficiency and can be used to identify those DEA inefficient units. The two dis-
tinctive efficiencies are integrated using a relative closeness index, which pro-

vides the overall performance assessment of each DMU and can thus be

used as the basis of comparing and ranking the DMUs. Comparing with the

existing DEA methodologies, the proposed DEA approach has the capability

of distinguishing each DMU from the others according to their respective

overall performances. Two numerical examples have illustrated the advanta-

ges, potential and applications of the proposed DEA models and the RC index.
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