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ABSTRACT
Objective To identify genetic associations with severity
of radiographic damage in ankylosing spondylitis (AS).
Method We studied 1537 AS cases of European
descent; all fulfilled the modified New York Criteria.
Radiographic severity was assessed from digitised lateral
radiographs of the cervical and lumbar spine using the
modified Stoke Ankylosing Spondylitis Spinal Score
(mSASSS). A two-phase genotyping design was used.
In phase 1, 498 single nucleotide polymorphisms (SNPs)
were genotyped in 688 cases; these were selected to
capture >90% of the common haplotypic variation in
the exons, exon–intron boundaries, and 5 kb flanking
DNA in the 50 and 30 UTR of 74 genes involved in
anabolic or catabolic bone pathways. In phase 2, 15
SNPs exhibiting p<0.05 were genotyped in a further
cohort of 830 AS cases; results were analysed both
separately and in combination with the discovery phase
data. Association was tested by contingency tables after
separating the samples into ‘mild’ and ‘severe’ groups,
defined as the bottom and top 40% by mSASSS,
adjusted for gender and disease duration.
Results Experiment-wise association was observed with
the SNP rs8092336 (combined OR 0.32, p=1.2×10−5),
which lies within RANK (receptor activator of NFκB),
a gene involved in osteoclastogenesis, and in the
interaction between T cells and dendritic cells.
Association was also found with the SNP rs1236913
in PTGS1 ( prostaglandin-endoperoxide synthase 1,
cyclooxygenase 1), giving an OR of 0.53 (p=2.6×10−3).
There was no observed association between radiographic
severity and HLA-B*27.
Conclusions These findings support roles for bone
resorption and prostaglandins pathways in the
osteoproliferative changes in AS.

INTRODUCTION
Ankylosing spondylitis (AS) is a highly heritable,
polygenic disease; heritability estimates for suscepti-
bility to AS are more than 90%.1 2 Similarly there is
also a major genetic contribution to disease severity
in AS. The heritability of the commonly used
disease severity metrics—Bath AS Disease Activity
Index (BASDAI) and Bath AS Functional Index
(BASFI)—have been estimated at 51% and 68%,3

respectively, and that of the Bath AS Radiological
Index (BASRI) at 62%.4

To date, 34 loci have been identified that affect
disease susceptibility to AS using case–control studies
either with genome-wide genotyping microarrays5–7

or with the custom-designed Immunochip.8 There is
substantial interest in identifying whether any of
these genetic polymorphisms affect clinical or radio-
graphic severity in AS. Only polymorphisms in the
MHC and in ERAP1 have so far been reported in
more than one study to affect clinical or radiographic
severity.9–13 Several other studies have reported other
genetic polymorphisms that correlate with disease or
radiographic severity, but none have been replicated
to date.
In this study, we have tested whether variants in

genes involved in anabolic or catabolic bone path-
ways are associated with radiographic severity in
AS. To measure radiographic severity, we used the
modified Stoke Ankylosing Spondylitis Spinal Score
(mSASSS),14 which provides an objective quantita-
tive measure of radiographic change in patients
with AS. It scores radiographic changes (erosion,
sclerosis, squaring syndesmophytes) at 24 vertebral
corners equally distributed between the cervical
and lumbar spine. The mSASSS correlates moder-
ately well with other disease severity measurements
like the BASFI and can be used to predict BASFI.15

PATIENTS AND METHODS
Patients
All patients had definite AS according to the modified
New York criteria.16 For the discovery phase, patients
were recruited at one of seven clinics in Australia,
UK and USA, participating in the Australo-Anglo-
American Spondyloarthritis Consortium (TASC), and
for the replication phase patients were recruited from
two clinics in Canada and Australia, participating in
the TASC or Spondyloarthritis Research Consortium
of Canada (SPARCC). Written informed consent was
obtained from all cases with approval from the rele-
vant research ethics authorities at each participating
centre.

Radiographic scoring
The mSASSS was used to assess radiographic sever-
ity in AS.14 Each radiograph used in the discovery
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and the replication phase was scored by one expert reader
(MAB, TJL, MS, MMW, MHW, WPM and RDI). To assess the
inter-reader variability, we selected 22 radiographs, a cross-
sectional set from 10 patients and a longitudinal set of radio-
graphs (including two time points) from each of six patients. We
asked four of the readers (MAB, TJL, MMW and MHW) to
score each set of radiographs. Longitudinal radiographs were
scored blinded to time point. We estimated the inter-reader
agreement using Fleiss’ κ statistic and pairwise mSASSS correla-
tions. Inter-reader reliability was also assessed in two modified
versions of the mSASSS to investigate whether inter-reader
agreement improves with such modifications. These modifica-
tions removed squaring, sclerosis and erosion (score of 1) from
the mSASSS, as assessing these features, particularly in the cer-
vical spine, is unreliable and likely to contribute to variation in
mSASSS among readers.17 Further, while the transition from
non-bridging to bridging syndesmophytes is well established,
whether squaring, sclerosis or erosions are precursors of non-
bridging syndesmophytes is less well established. In version A,
which we designated mSASSS_012, we collapsed classical
mSASSS of 3 (denoting bridging syndesmophyte) to 2, scores of
2 (denoting presence of non-bridging syndesmophyte) to 1 and
scores of 1 (denoting squaring, sclerosis or erosion) to 0. In
version B, which we designated mSASSS_01, we collapsed clas-
sical mSASSS of 3 and 2 to 1 and scores of 1 to 0.

Genotyping
DNA was available from 688 cases who were scored using the
mSASSS. Single nucleotide polymorphism (SNP) marker sets
were designed to capture over 90% of the common haplotypic
variation in the exons, exon–intron boundaries and 5 kb of the
50 and 30 UTR flanking 74 genes involved in anabolic or cata-
bolic bone pathways. Genes were selected on the basis of their
being key components of known bone anabolic or bone resorp-
tive pathways, focusing on pathways identified in studies of AS
itself (including studies in humans and mouse models), and of
genes associated with variation in bone mineral density. Genes
demonstrated to be associated with susceptibility to AS were
also selected. This was based on the published literature
(February 2009). Pairwise tagSNP selection was performed
using HapMap Phase 218 and data analysed using Haploview,19

with a linkage disequilibrium threshold of 0.8. We selected 498
SNPs, which were genotyped using the Applied Biosystems
OpenArray platform (Foster City, California, USA). In a second
phase, 15 SNPs achieving p<0.05 were genotyped in a replica-
tion cohort comprising 830 patients from Canada and Australia,
also using the Applied Biosystems OpenArray platform.
Genotyping of HLA-B*27 was inferred from the tagSNP
rs116488202 in the Illumina Immunochip platform20 as part of
a case–control study described elsewhere.8 This SNP has >98%
sensitivity and specificity for typing HLA-B*27.

Association analysis
Association analysis was performed by identifying patients with
severe radiographic changes (cases) and comparing them with
those who had mild radiographic changes (controls). For each
patient, the most recent radiograph was analysed. In the event
that either the cervical or the lumbar radiograph showed fusion
in all vertebra (mSASSS of 36) the earlier radiograph without
the maximum score was used. Radiographic scores were cor-
rected for disease duration, gender and the interaction between
disease duration and gender by linear regression. Residual
values were computed from the fitted model, and subjects were
dichotomised as having mild radiographic changes (lowest 40%)

or severe radiographic changes (upmost 40%). This dichotomi-
sation permitted the analysis of the data as a case–control study
and the selection of patients with a more extreme phenotype
while maximising the power of the study (see power calculation
in ‘Methods’) and minimising the number of subjects excluded
from the study (20% of radiographs with residual values around
the median). Genotype associations were then performed with
the allelic test (d.f. 1) in PLINK.21

For the replication phase, genotype and phenotype data were
analysed as for the discovery phase. Results from both phases
were then combined using fixed-effects meta-analysis.

Power calculation
We determined the power of our association study to identify
genetic effects for radiographic changes by simulation. Power
was estimated for a range of minor allele frequencies and effect
sizes (assuming an additive effect), and from these simulations
the optimal cut-off for dichotomising the data into subjects with
severe and mild radiographic changes was determined.

For each simulation, we assumed a causal SNP with minor
allele frequency between 0.02 and 0.50 with an additive genetic
effect size ranging between 0.1 and 9.0 mSASSS units per
minor allele, and a dichotomising cut-off threshold assigning
the bottom or top 10, 20, 30 and 40% of the simulated films as
having mild or severe radiographic changes, respectively. In each
combination of allele frequency, effect size and dichotomising
threshold, we simulated 1222 radiographic entries, where we
independently sampled residuals, disease duration and gender
from the total set of radiographs. Genotypes for the simulations
were sampled from a Bernoulli random variable with allele fre-
quency fixed for each simulation. For each simulated entry, we
predicted the mSASSS with the regression model generated with
the complete set of radiographs and generated an mSASSS with
a genetic effect by adding the predicted score, the sampled
residual and the genetic effect given by the additive effect size
and the simulated genotyped for that entry. Simulated entries
where by chance the mSASSS with the genetic effect had values
below 0 or above 72 were removed from the simulations.
Simulated entries were then dichotomised into subjects with
severe radiographic changes and those with mild radiographic
changes based on the specified thresholds. A contingency table
was generated with the simulated genotypes and the dichoto-
mised mSASSS, and an association test was performed with
Fisher’s exact test. The simulation was repeated 10 000 times
for each combination of parameters, and power was determined
by the proportion of times the p value for the association test
was below significance (α=0.05).

RESULTS
Characteristics of the study patients
A total of 2144 patients were enrolled and scored either by five
different clinicians from the TASC (n=5) or by two investigators
from the SPARCC consortium (table 1). The mean disease dur-
ation at baseline for the combined cohort was 20.2 years, which
was greater in men than in women (20.6 vs 19.2 years; p=0.03,
two-sided t test).

Reliability analysis
Twenty-two radiographs were scored by four TASC readers, and
comparison was performed with different metrics. Assessment of
scores assigned to each vertebral corner demonstrated moderate
agreement (κ>0.41) for all but T1 upper, where only slight agree-
ment was observed (see online supplementary table S1). At this
corner, we also observed the lowest rate of complete agreement

Clinical and epidemiological research

1388 Cortes A, et al. Ann Rheum Dis 2015;74:1387–1393. doi:10.1136/annrheumdis-2013-204835

group.bmj.com on February 19, 2016 - Published by http://ard.bmj.com/Downloaded from 

http://ard.bmj.com/
http://group.bmj.com


between the four readers in the 22 radiographs and the largest pro-
portion of radiographs where there was no agreement whether the
site could be scored or not (in 8 out of 19 films at least one reader
assigned a ‘not visualised’ score while at least one reader scored
the site). Rates of complete agreement increased substantially from
an average of 69.7% to 81.4% when collapsing the scores to
mSASSS_012, but only marginally improved to an average of
83.5% when collapsing the scores to mSASSS_01.

Pairwise correlations between cervical, lumbar and total
mSASSS were all found to be high between readers (≥0.90, see
online supplementary table S2). Higher correlations were
obtained for the lumbar spine than for the cervical spine, con-
sistent with other reported comparisons. Collapsing the scores
did not result in higher correlations between readers (data not
shown).

The modified mSASSS were highly correlated with the
mSASSS (r2>0.96) and associated with disease duration and
with the disease severity measurement of spinal mobility Bath
Ankylosing Spondylitis Metrology Index (r=0.79 with
mSASSS_012 and mSASSS_01).

Radiographic severity is associated with clinical variables
Disease duration and gender, and its interaction, were found to
be strongly associated with radiographic severity in AS (table 2),
with radiographic damage progressing faster in men than in
women (table 2, figure 1). For total mSASSS, among men the
mean rise was 0.85 mSASSS units per year, while among
women the mean rise was 0.45 mSASSS units per year.

Association analysis
In total, 463 of 498 markers passed quality control filters
(<10% missingness, Hardy–Weinberg equilibrium p <5×10−3);
the mean call rate per SNP and sample was above 99%. As
shown in figure 2, the statistical power to detect an association
was maximal when score residuals were dichotomised into the

lower 40% (‘mild’ radiographic change) and upper 40%
(‘severe’ radiographic change). For markers with a minor allele
frequency of 0.2 and significance threshold of p=0.05, the
study had 80% power to detect a difference of 3.1 in mSASSS
between these two arms.

Of the 15 SNPs carried forward into phase 2, 11 were suc-
cessfully genotyped, 2 of which achieved replication of the dis-
covery phase findings. The SNP rs8092336 achieved
experiment-wide significance with the total mSASSS in phase 1
(p≤1×10−4; based on a Bonferroni correction for 463 inde-
pendent tests) and was replicated in phase 2 (total mSASSS,
preplication=0.02; pcombined 1.2×10−5, OR (95% CI)=0.31 (0.19
to 0.53)) (table 3; a complete list of results for all SNPs in the
discovery phase is presented in online supplementary table S3).
The minor allele of this SNP was found to have a moderate pro-
tective effect on radiographic severity in the cervical (pcombined-

=0.03) and lumbar (pcombined=0.02) mSASSS components. In
the discovery cohort, patients with at least one copy of the
minor allele had lower total mSASSS at baseline (p=0.05,
single-sided t test, median difference in mSASSS of 3) (figure 3).
This SNP represents a synonymous base change in the receptor
activator of nuclear factor κ B gene (RANK), also known as
tumour necrosis factor receptor superfamily, member 11a
(TNFRSF11A).

A further SNP, rs1236913, showed a protective association in
phase 1 (p=0.04), phase 2 (p=3×10−3) and combined (OR
(95% CI)=0.53 (0.35 to 0.80), p=2.6×10−3). This SNP lies in
PTGS1, encoding Prostaglandin-Endoperoxide Synthase 1, also
known as cyclooxygenase 1.

No association was observed between HLA-B*27 and cervical,
lumbar or total mSASSS (p>0.05).

DISCUSSION
Previous studies have shown that genetic variation is an import-
ant determinant of radiographic change in AS. Identifying the

Table 2 Disease duration and gender are two clinical variables associated with radiographic severity in ankylosing spondylitis

Disease duration Gender (female=0; male=1) Disease duration * gender

β p Value β p Value β p Value

(a) Cervical mSASSS
Combined cohorts 0.25 (0.16 to 0.34) 2.01×10−8 1.54 (−1.14 to 4.21) 0.26 0.22 (0.12 to 0.32) 3.1×10−5

(b) Lumbar mSASSS
Combined cohorts 0.20 (0.12 to 0.28) 7×10−7 2.26 (−0.16 to 4.67) 0.07 0.17 (0.08 to 0.27) 2.1×10−4

(c) Total mSASSS
Combined cohorts 0.45 (0.31 to 0.60) 1.7×10−9 3.9 (−0.57 to 8.38) 0.09 0.40 (0.22 to 0.57) 7.9×10−6

Regression coefficients computed by taking the latest radiograph per patient unless it has the maximum score, in that case the previous radiograph is taken.
mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score.

Table 1 Demographic features of study cohorts at baseline*

Variable
(% missing data)

Australia cohort
(n=144)

Canadian replication
cohort (n=571)

UK cohort
(n=428)

US cohort
(n=1001)

Combined cohort
(n=2144)

Age NA (100) NA (100) NA (100) 45.7±14.5 (10.6) 45.7±14.5 (58.3)
% female 17.4 (0) 24.9 (0) 23.8 (0.7) 29.1 (10.1) 26 (4.9)
Cervical mSASSS 9.3±12.8 (23.6) 9.8±12 (0) 9.1±12.1 (22.4) 10±13.3 (13.6) 9.8±12.7 (12.4)
Lumbar mSASSS 6.3±11.4 (16) 7.8±11.1 (0) 8.7±11.6 (6.5) 8.2±11.9 (5.1) 8±11.6 (4.8)
Total mSASSS 13.6±20.3 (31.2) 17.5±21 (0) 17.7±21.1 (27.3) 17.3±22.7 (16.8) 17.2±21.8 (15.4)
Disease duration, years 17.9±12.8 (1.4) 16.3±11.1 (0) 24.1±13.4 (5.1) 21.3±14.2 (8.4) 20.2±13.4 (5)

*Except where indicated otherwise, values are the mean±SD.
mSASSS, modified Stoke Ankylosing Spondylitis Spinal Score.
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relevant polymorphisms and the biological pathways they influ-
ence could improve our understanding of the mechanisms of
ankylosis in AS.

This is the first study systematically investigating genes
involved in catabolic and anabolic bone pathways and their
potential role in radiographic damage in AS. We observed
experiment-wide significant association with rs8092336 in

RANK, which encodes a TNF superfamily receptor, which regu-
lates osteoclast activation22 and also interactions between T cells
and dendritic cells.23 SNPs in RANK have previously been asso-
ciated with osteoporosis,24 25 Paget’s disease of bone26 and
familial expansile osteolysis.27 Further studies will be required
to determine whether the association observed here with
mSASSS replicates in other AS cohorts, what the key associated

Figure 1 Clinical features correlated with radiographic severity. Males are represented by filled triangles and females by filled circles. Lines depict
the projection of the gender axis (dashed for males; dotted for females). Greyed samples were determined to be outliers (residual >3 SD).

Figure 2 Power calculations for genetic association tests. (A) Effect on power for different inclusion criteria in the dichotomisation of modified
Stoke Ankylosing Spondylitis Spinal Score (mSASSS). A genetic variant with a minor allele frequency (MAF) of 20% is assumed and several effect
sizes (ES) are simulated, ranging from 2.5 to 5.5 mSASSS units per minor allele. (B) For an inclusion criteria of 40%, power is given for different
combination of minor allele frequencies and simulated effect sizes. Effect sizes are disease duration and gender corrected.
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variant(s) are and what functional relevance they have in AS.
Our finding suggests that factors linking inflammation and bone
resorption are important in the osteoproliferation in AS, with
obvious potential therapeutic implications. This is consistent
with previous in vitro data suggesting overactivity of
RANKL-mediated osteoclastogenesis in AS.28

Association was also replicated in both phases with the SNP
rs1236913, lying in PTGS1, a key enzyme in prostaglandin syn-
thesis. Although this gene has not been previously associated
with any common human disease, there is strong evidence for
the involvement of prostaglandins in AS inflammation and
osteoproliferative disease. The gene PTGER4, encoding the
prostaglandin E2EP4 receptor, is associated with AS.6 8

Inhibition of cyclooxygenase enzymes with non-steroidal anti-
inflammatory drugs is highly effective in treating pain in AS,
and there is some evidence from observational and controlled
trials suggesting that NSAID treatment may retard the progres-
sion of radiographic change in AS.29–32 These findings require
further replication, but they do lend some support to the
growing evidence of involvement of prostaglandin pathways in
AS-associated osteoproliferation.

We observed no association between HLA-B*27 and radio-
graphic severity in this study, confirming our previous reports.33

This is also consistent with studies demonstrating no difference
in disease activity or functional impairment measures in
HLA-B*27-positive and HLA-B*27-negative cases.34 Thus, while
HLA-B*27 is clearly associated with AS susceptibility, it is not
associated with the severity of ankylosis in the condition.
A recently published analysis of the OASIS cohort suggests that
HLA-B*27 and male gender may be associated with more rapid
radiographic progression in AS, but this was a small study of
only 186 cases.35 The subgroup analyses in this study were
based on only ∼32 HLA-B*27-negative and ∼56 female cases,
so these conclusions should be treated with caution. However,
we also noted that men had more severe disease than women.

All studies to date investigating the role of genetic poly-
morphisms in disease severity and radiographic change in AS
have been significantly underpowered (n<500) because of the
effort and cost required to gather large cohorts with the neces-
sary phenotypic data. This study, despite being the largest to
date performed in AS (in total 2144 AS cases), still does not
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Figure 3 Box plot of total modified Stoke Ankylosing Spondylitis
Spinal Score (mSASSS) according to genotype for single nucleotide
polymorphism (SNP) rs8092336, which shows association with total
mSASSS (p value=1.2×10−5).
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have adequate power to exclude small-medium genetic effects
on radiographic severity. Further, it was not truly systematic
since it did not tag all the variants in the genes studied and was
cross-sectional and not longitudinal. In cross-sectional studies,
adjustment for disease duration depends on case recall of the
age of symptom onset, whereas in longitudinal studies the inter-
val between observations is known precisely.

In this study, we have used mSASSS, a well-established metric
of disease severity in AS, as a quantitative measurement of
radiographic change. Our results demonstrate that with well-
trained personnel inter-reader correlation for mSASSS can be
high; this is important for the study of big cohorts with the
large quantities of phenotypic data required for genetic studies.
We also demonstrate that small modifications can be made to
scoring mSASSS to reduce the inter-reader variability; these
include collapsing the scores and removing the upper corner of
the T1 vertebra from the analysis as it is difficult to visualise
radiographically.

We have demonstrated that this type of study can be effective
at demonstrating genetic effects involved in aspects of disease
severity in AS, but more powerful and comprehensive studies
will be required to identify the full complement of genes
involved. This could in time provide very useful insights into
the osteoproliferative processes in AS, potentially assisting the
identification of drug targets to slow down radiographic pro-
gression not targeted by current treatments.
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