
Are Your Incoming Aliases Really Necessary?
Counting the Cost of Object Ownership

Alex Potanin, Monique Damitio, James Noble
Victoria University of Wellington, New Zealand

{alex|monique|kjx}@ecs.vuw.ac.nz

Abstract—Object ownership enforces encapsulation within
object-oriented programs by forbidding incoming aliases into
objects’ representations. Many common data structures, such
as collections with iterators, require incoming aliases, so there
has been much work on relaxing ownership’s encapsulation to
permit multiple incoming aliases. This research asks the opposite
question: Are your aliases really necessary?

In this paper, we count the cost of programming with strong
object encapsulation. We refactored the JDK 5.0 collection classes
so that they did not use incoming aliases, following either
the owner-as-dominator or the owner-as-accessor encapsulation
discipline. We measured the performance time overhead the
refactored collections impose on a set of microbenchmarks and
on the DaCapo, SPECjbb and SPECjvm benchmark suites.
While the microbenchmarks show that individual operations and
iterations can be significantly slower on encapsulated collection
(especially for owner-as-dominator), we found less than 3% slow-
down for owner-as-accessor across the large scale benchmarks.

As a result, we propose that well-known design patterns such
as Iterator commonly used by software engineers around the
world need to be adjusted to take ownership into account. As
most design patterns are used as a building block in constructing
larger pieces of software, a small adjustment to respect ownership
will not have any impact on the productivity of programmers but
will have a huge impact on the quality of the resulting code with
respect to aliasing.

I. INTRODUCTION

Encapsulation is a crucial attribute of object-oriented pro-
gramming and design. Object ownership [1] enforces encap-
sulation by explicitly identifying the internal representation
objects: an object owns its representation, and owned objects
are protected behind the object’s interface. An object should
act as a “single entry point” for its representation — consider-
ing the heap as a graph, an owner dominates the objects that it
owns [2] — in other words, there can be no incoming pointers
to an owned object that bypass the object’s owner. Figure 1
illustrates this graphically: the nodes making up a linked list
are owned by the list — while the element data in the list
can exist outside the list. The most restrictive form of object
ownership, enforced by the ownership types, is both strong
and deep: strong (or prescriptive) because external references
to owned objects cannot be used; and deep, because ownership
is transitive — an object that owns the list owns the list’s links
as well.

Strong, deep, ownership offers a number of benefits for
program design, generally because of the single entry point
property. For example, owned objects may be deleted as
soon as their owner becomes inaccessible, supporting real-time

List

LinkLink Link

Element Element Element

Fig. 1. Encapsulated Linked List

memory management [3]. Security checks carried out on the
owning object will always govern access to the owned objects
[4]. Class invariants can be affected only by the methods
defined in that class and its ancestor classes rather than by
method calls on unrelated objects [5].

Ownership is emerging as an important technique for de-
signing parallel and concurrent object-oriented systems to take
advantage of multicore processors. Many OO actor systems,
including Kilim [6], Thorn [7], and Scala Actors [8], impose
an ownership discipline to ensure that actors communicate
only via message passing and to prevent one actor accessing
another actor’s internal representation. The high-throughput
pipes-and-filters processing system StreamFlex uses ownership
to ensure isolation between filters executed in parallel [9].
Parallel languages such as DPJ [10] or AJ [11] use owner-
ship techniques to describe the data they access and detect
interfering computations.

The problem this paper addresses is that adopting an owner-
ship or encapsulation discipline may impose runtime costs on
programs. As with many other kinds of types, ownership types
can be checked statically or dynamically. Static checks, carried
out at compile time, do not impose any direct costs on program
execution, while dynamic checks will impose some overhead
directly. Ownership disciplines can also impose indirect costs,
by precluding designs that bypass objects’ interfaces and refer
directly to objects’ supposedly hidden internal representations.
Figure 2 shows how an iterator can rely on an incoming alias
into the nodes of a list — such an iterator can move directly
and efficiently from one link to the next, and can do so without
any reference to the list object within which the links should

List

Link

Iterator

Link Link

Element Element Element

Fig. 2. Linked List with Iterator

be encapsulated. Designs that respect encapsulation, and rely
on objects’ interfaces, may be less efficient than designs that
breach encapsulation with incoming aliases.

In this paper we address the question “Are your incom-
ing aliases really necessary?”. We study two varieties of
strong, deep ownership — owners-as-dominators and owners-
as-accessors — and for owners-as-accessors we consider both
static and dynamic checking. We then attempt to determine
the cost of following each discipline on programs’ design and
performance. The contributions of this paper are answers to
three questions about programming with ownership:

1) How must designs change to respect encapsulation?
2) What performance cost do these changes impose?
3) How does this impact programs’ performance?
The remainder of this paper is structured as follows. First,

Section II briefly reviews object ownership, and describes the
ownership disciplines we investigated for this study. Section III
presents a case study of the design of the core collection
classes and the refactorings required to adapt them to the
object ownership discipline. Section IV describes our bench-
marking methodology, and Section V presents the results of
both the micro- and macro- benchmarks. Finally Section VI
discusses the implications of the results in the context of
related work, and Section VII concludes the paper.

II. OWNERSHIP

The idea of ownership is to partition the objects accessible
from any point in the program according to the object to which
they belong [5], [12], [13]. We consider that objects relate to
each other in one of three modes: owned, peer, and external
objects. An ownership discipline requires programs to keep
these modes separate: type casts, assignments, or subsumption
must not allow an object in one mode to be accessed as if it
were in another mode.

Owned objects are fully private and encapsulated within
their owning objects. In Figure 3, object A owns objects B
and C, and object C owns D. This is deep ownership because
C and D are both owned transitively by A.

Peer objects are siblings with respect to their owning
objects, that is, all peers have the same owner. In Figure 3, B
and C are peers, and can refer to each other without incoming
aliases that would breach encapsulation.

External objects are — as the name implies — outside the
current object, but are still accessible without any incoming
aliases. In Figure 3, E is external to all the other objects, and
B is external to D. External objects are typically passed in
and out as parameters to objects, such as the elements of a
collection.

A

C

E

D

B

Fig. 3. Relationships between objects with ownership

In this study we investigate two realisations of the ba-
sic ownership scheme: owner-as-dominator, and owner-as-
accessor.

Owner-as-dominator interprets the “no incoming aliases”
constraint in the same way as Clarke et al.’s original ownership
types proposal [1]: neither static nor dynamic references are
permitted to cross an encapsulation boundary. In Figure 4, only
references shown by the solid, black lines are permitted: from
external objects to their peers; from an owner to the objects
it owns; and between internal peers with the same owner.
Aliases that cross encapsulation boundaries (e.g. the dashed
red line in Figure 4) are forbidden. Considering the heap as a
rooted graph, an owner is a graph-theoretic dominator of all
the objects it owns.

Owner-as-accessor takes a different interpretation of the
“no incoming aliases” rule, based on Müller et al.’s Universe
Types [14], and an experimental dynamically-checked owner-
ship scheme [15]. Owner-as-accessor permits incoming heap
references — such as the dashed red line in Figure 4 —
provided they are not used directly: and method requests that
cross an encapsulation boundary must do so via the boundary’s
owner object. The external object in Figure 4 cannot use
the dashed red incoming link directly, but it could call a
method on the Owner (dotted green line “1”). Being inside the
encapsulation boundary, just like with owners-as-dominator,
that method can then modify the internal object (dotted green
line “2” in Figure 4. What makes owner-as-accessor different,
is that the Owner object can both accept and return a direct

reference to the Internal object (dashed red line). However, that
reference can only be stored and passed around but cannot be
used to modify the Internal object unless the referrer is inside
the appropriate ownership boundary.

Owner

Internal

External1

2

Internal

Fig. 4. References and Method calls

For example, Figure 5 shows a simple example following
the one in Figure 4. The Internal object can have references to
it stored outside its Owner as shown in line 8, which would be
illegal under owners-as-dominator. However, the modification
is only allowed via an appropriate owner (line 9) and not via
external references (line 10).

1 class Internal { String s = ”abc”; }
2 class Owner { Internal i = new Internal ();
3 void modifyI() { i .s = ”def” ; }
4 }
5 class External {
6 Internal i ; Owner o = new Owner();
7 void doIt () {
8 this . i = o. i ; // OK. Stores external ref .
9 o.modifyI (); // OK. Modifies Internal .

10 // this . i .s = ”ghi ”; // WRONG. Not owner!
11 } }

Fig. 5. Owner-as-Accessor Code Example

Owner-as-accessor does not constrain the heap topology, but
it does constrain the control-flow graph: a method invocation
upon an owner must dominate all method invocations upon
all objects owned by that owner. This control-flow constraint
is implicit in owner-as-dominator encapsulation: any design
conforming to owner-as-dominator also satisfies owner-as-
accessor.

In this paper we are concerned with design changes, rather
than the annotations required to express the properties of a
design within an ownership type system, or the properties of
the type system itself. Using the JavaCop program constraint
system [16], we have implemented an ownership checker
based on the theory of Tribal Ownership [17]. Each type
used within a class is assigned to a single ownership mode.
All instances of inner classes are owned by their enclosing
objects, and additional classes can also be annotated as owned.
Method invocations (for both owner-as-dominator and owner-

as-accessor) and assignments (for owner-as-dominator) are
checked to ensure they maintain the ownership invariants.

III. COLLECTIONS AND OWNERSHIP CASE STUDY

The Java Collections Framework [18], [19] has formed an
important part of the Java platform ever since its first release
in JDK 1.2. Designed by Joshua Bloch, there are over 50
classes and interfaces in the framework as a whole. The core
of the framework, however, are a relatively small number of
interfaces to collection objects (Set, List, and Map), and a
similarly small set of implementations of those interfaces [20].
Our case study is based on the Java 5.0 version of Collections,
as this is the version required by the DaCapo benchmarks, see
section IV-B.

The eight classes: ArrayList, LinkedList, HashMap,
LinkedHashMap, TreeMap, HashSet, LinkedHashSet, TreeSet,
plus the legacy classes Hashtable and Vector, form the
backbone of the mainstream collections usage: our case study
analyses these ten implementation classes. We consider the
implementations of the two main abstractions — lists and
maps — in turn, explaining their design; describing how (and
how much) they encapsulate their representations; and if they
do not, outlining refactorings to restore encapsulation. Our
discussion focuses on lists and maps because HashSet and
TreeSet are wrappers that implement sets using HashMap and
TreeMap respectively. All our implementations are publicly
available1.

A. Lists
Although the collection objects’ interfaces are quite rich —

ArrayList, for example, defines around thirty methods — for
the purpose of this paper we need to consider only a few. Lists
(and Maps) define get(index) and set(index,element) methods
to read and write collection elements. List (and Sets) also
define add(element) and remove(element) methods to add and
remove elements. All collections support an iterator () method
that returns a dependent Iterator object. An iterator supports
at least next() and hasNext() methods that traverse through
the collection an element at a time. We say the iterators are
“dependent” on their underlying collection because they access
(and, in some versions, can update) the actual elements stored
in the collection.

1) ArrayList: An ArrayList is one of the simplest of the
collections. An ArrayList<E> stores elements of type E in a
primitive array, and copies and replaces that array as necessary
as the collection grows and shrinks.

Figure 6 shows the internal structure of an ArrayList and
its dependent Iterator . Elements in an ArrayList are accessed
by simply accessing the corresponding elements of the array,
after checking they are within the range of valid elements:

Crucial to the correct operation of an ArrayList is that each
underlying array is owned by the ArrayList whose elements
it holds, and so must never be accessible from the outside.
This is because if the list grows (or shrinks) the array will

1http://homepages.ecs.vuw.ac.nz/⇠alex/software/files/
ownershipcollections20120817.tgz

List

Iterator

Element Element Element

Array

Fig. 6. Encapsulated ArrayList and its Iterator

be replaced with a larger (or smaller) array, and the ArrayList
elements copied from the old array into its new replacement.

This encapsulation is respected even by ArrayList’s iter-
ators. Implemented as an inner class2, the iterator refers to
its ArrayList via Java’s implicit link between every inner
class instance and their enclosing “outer” class instance. An
ArrayList iterator maintains an integer cursor field that indexes
the next element to be returned. The iterator’s next() method
simply returns the element at the cursor position, and then
increments the cursor.

ArrayLists preserve encapsulation because their methods
and iterators access their list only via that lists’s public
methods size () and get() .

Even though it is implemented as an inner class, concep-
tually an ArrayList iterator is outside the ArrayList’s encap-
sulation boundary — the iterator has no privileged access to
its underlying ArrayList instance, and in particular does not
access any private representation owned by the ArrayList (e.g.
the underlying primitive array). An ArrayList object always
acts as the single entry point for the list abstraction that it
represents.

Because ArrayList encapsulates its representation, the im-
plementation does not need to change to satisfy owner-
as-dominator encapsulation, and so also satisfies owner-as-
accessor encapsulation. In this case at least, ownership does
not impose any additional performance cost on the design.

2) Vector: The design of the legacy Vector class is broadly
similar to ArrayList. The only issue is that the vector iterator
(an instance of the legacy Enumeration interface) directly ac-
cesses the underlying array owned by the vector. We refactored
this quite straightforwardly to use the public interface, as in
ArrayList.

3) LinkedList: LinkedList, the other standard List imple-
mentation, is a more difficult case than ArrayList or Vector.
As we discussed in the introduction, the LinkedList class

2Technically, an inner class of the AbstractList superclass of ArrayList,
although that does not affect the encapsulation of the ArrayList.

maintains a doubly-linked list of link nodes (instances of
the static inner class Entry<E>). The LinkedList’s iterator
maintains an incoming pointer (called next) that refers directly
to the current link Entry. The iterator’s next() method runs this
pointer along the list’s internal structure, returning the element
at the current position. This structure sharing means that a
LinkedList object is not a single entry point to its representation
— every outstanding iterator on the LinkedList accesses the list
entry nodes directly.

4) Naı̈ve Owner-as-Dominator LinkedList: Our first
(naı̈ve) refactoring was simply to adopt the ArrayList iterator
described above — the ArrayList iterator requires only a List
interface, and LinkedList, like ArrayList, implements List.
Unfortunately, we expected that this design would not perform
very well and our initial tests confirmed our expectations. The
problem is that the iterator calls get(index), and the get(index)
method on a linked list must start from the beginning (or
end) of the list and count along until it locates the list Entry
holding the indexed element: An individual call to get() on a
LinkedList will be O(N) and a whole iteration will be O(N2).
So: while adopting an ownership discipline can simplify the
design of the LinkedList class — suggesting the use of a
more abstract iterator — this naı̈ve design would impose a
substantial performance cost 3.

5) Single Place Cache: The JDK specification makes
clear that programmers should expect the performance of
LinkedLists will always be O(N) for individual random
accesses. The specification also makes clear that programmers
should expect O(N) for a full traversal via an iterator. The
original iterators with direct pointers into the list delivered
this performance. A slightly more complex design, however,
can restore O(N) traversals in most cases, while preserving
owner-as-dominator encapsulation — the LinkedList object
owns its list entries, and remains the single entry point of
access to those list entries. We add a cache to the linked list
that remembers the last accessed entry and its index. Then,
a call to get(index) can look into the cache, and update the
cache once it has found the requested element.

In this design, a single (forward or reverse) traversal via an
iterator, or even a traversal driven programmatically sometimes
forwards and sometimes backwards, should have O(1) perfor-
mance for a single call to next() and consequently O(N) for a
full traversal of the list. The overhead of the cache itself should
not be substantial. Random access to a LinkedList will still
have O(N) performance for each get() , but this is permitted
by the framework specification, since LinkedList is not a
random access structure. The specification also invalidates all
except one iterator whenever the list is modified. This forbids
modifications by more than one iterator, and so we expect
a single place cache should suffice for most LinkedList use
cases. Multiple simultaneous traversals that purely read data,

3While it may seem unreasonable to even attempt to replace an O(1)
operation with an O(N) one, we have examined a number of iterators per
each instance of a linked list in all of DaCapo benchmarks and it was very
low — 4 or 5 per list in the avrora and pmd cases and less than one per list
for most of the others [21].

however, would still revert back to O(N2) performance, but
we expect such uses of LinkedLists to be rare, as ArrayLists
are quicker to traverse than LinkedLists, and have around a
quarter of the storage overhead.

6) Owner-as-accessor via external proxy iterator: As
Figure 2 showed, the problem with the standard Java Iterator
is that it is outside the List but must directly manipulate
Links. So long as the standard Iterator is only ever used inside
the List, there are no encpasulaton breaches. Figure 7 shows
an alternative to this design that maintains owner-as-accessor
encapsulation, but not owner-as-dominator.

List

Link

ProxyIterator

Link Link

Iterator

2:itNext(iter
ator)

3:next()

1:next()

Fig. 7. List Iteration by Proxy

A proxy iterator is a peer of the List, and is thus accesible
outside. ProxyIterator maintains a reference to a standard
Iterator inside the List, but does not use that reference directly.
In response to a next() method invocation on the external
proxy iterator, the proxy invokes itNext (iterator) on the List,
passing the actual internal iterator as a parameter. At this
point, control flow passes into the List object (thus main-
taining owner-as-accessor) which then invokes next() on the
encapsulated Iterator. The cost of this refactoring is creating
the external Proxy, plus redirecting its calls via the owning
List. An important constraint of this design is that we must be
careful to pass the proxy iterator only into the list to which it
belongs. This can be checked statically by advanced ownership
type systems [22], or it can be checked dynamically [15].

7) Owner-as-accessor via indirection iterator: The proxy
iterator refactoring avoids changing the standard List Iterator,
but requires creating the external proxy. Figure 8 shows our
final List refactoring, using a single “indirection iterator”
object that plays both the roles of the external proxy and
internal iterator.

The indirection iterator presents the standard Iterator
interface (e.g. next()) and forwards those messages to its
List, just like the external Proxy. Whereas the external Proxy
passed the internal Iterator as an argument, here the indirection
iterator passes itself as an argument. The implementation of
itNext (itr) in List retrieves the current link (getLink) from the
iterator and directly gets the next link (getNext). The exter-
nal iterator keeps references directly into the List’s internal
Links (rather than to a Proxy) but never uses those Links

Link

IndirectionIterator

Link Link

2:itNext
(this)

4:getNext()

1:next()

3:getLink
()List

Fig. 8. List Indirection Iterator

directly, thus maintaining owner-as-accessor encapsulation but
not owner-as-dominator. We expect this refactoring to be more
efficient than a proxy iterator, but it is more expensive to
perform, as we cannot reuse the standard iterator object,
but rather must incorporate its code into the itrNext () -style
methods on the List object. And, as with the proxy design, we
must ensure the indirection iterator is only passed into the list
to which it belongs, checking either statically or dynamically.

8) Other Possible Iterator Refactorings: There are more
alternatives to consider for ownership-aware list and iterator
refactorings. The last author discussed the possibilities in detail
in a separate extended paper [23]. For this presentation, we
chose the ones we thought would be most representative and
easy for software engineers to adopt in practice. More efficient
versions include a “magic cookie iterator” [23] that stores an
approriate cached position for each existing iterator of the
current list communicating by a simple unique id or “magic
cookie”.

B. The Map Interface
The Map<K,V> interface is the other major interface

within the collections framework. Maps provide put(K,V)
and V get(K) methods to store and retrieve values V associ-
ated with keys K. Maps are not directly iterable — rather
they provide methods that return three separate dependent
iterable views: Set<K> keySet(); Collection<V> values() and
Set<Map.Entry<K,V>> entrySet(), all of which have their
own iterators that support modification. The key set (and value
collection) contain a set of all the keys (and a bag of all
the values) in the underlying map: the entry set is a set of
objects that each represent a single key-to-value association
and implement the Map.Entry<K,V> interface.

The key encapsulation issue with the core Map implementa-
tions is that the Entry objects avaiable via the entry set are the
very same entry objects that implement the map. Furthermore,
the key and value sets are implemented in terms of the entry
set and the entries it contains. This is a tightly coupled design:
Figure 9 attempts to show these interrelationships.

1) Refactoring HashMap: For this case study, we first
aimed to find a design for maps with a single point of entry

Values
V

Iterator
Entry<K,V>

Iterator
K

Iterator
V

EntrySet
K,V

Entry
K,V

Map
K,V

KeySet
K

*
*

*

*

Fig. 9. Map Interfaces. Dashed lines show conceptual dependencies, while
solid lines show references in most implementations.

that could maintain owner-as-dominator encapsulation over as
much of the map as possible. In partiuclar, the entry objects
storing the key-value mappings need to be protected from
outside access. This is straightforward. The problem then is
that our refactored maps need to preserve the existing collec-
tions’ Map interface, so we could exchange implementations
to benchmark each design. This means that the dependent set
views of a map (the key set, values collection, and entry set);
their iterators; and the entry objects must remain available to
Map clients.

To support these use cases, we again introduce proxies for
these objects as peers of the maps as shown in Figure 10.
Writes to the proxies update the underlying map by calling
put(K,V) through the main map object’s interface, rather than
by being part of the map’s representation themselves. Within
the body of a map implementation (say HashMap) there are
three Entry types: Map.Entry is the common public interface
used by clients, HashMap.Entry is the owned inner class;
and EntryProxy is the (common) peer class. The ownership
discipline ensures the peer entry proxies cannot be confused
with the owned entry objects and vice versa.

As a result, the Entry<K,V> objects are not accessible
outside of the Map<K,V> object that owns them. All three
of the map views (key and entry sets and values collection)
and their respective iterators do not have direct references
to map’s entries. Instead they work with EntryProxy<K,V>
objects that mirror the Entry<K,V> objects encapsulated inside
the map and store the same key-value pair as the mirrored entry
without allowing direct access to the internal structure of the
map. Any modification to such entry proxies will not have
any effect on the map’s internal representation and any code
that relies on modifying the map by manipulating is entries
directly as opposed to using map’s public interface will no
longer work. An important result of our study is that in none
of the benchmarks under consideration have we found any
instances of such manipulation and thus the only reason for
exposing the internal entries behind each map is presumed

Values
V

Iterator
K

Iterator
V

EntrySet
K,V

Map
K,V

KeySet
K

*

EntryProxy
K,V

Iterator
Entry<K,V>

Entry
K,V

Fig. 10. Refactored Map. The Map Entry instances are owned by the Map
object. Dependent views and iterators access the Map only via the Map
object’s interface, and substitute EntryProxies for Entries.

efficiency improvement.
The dependent view iterators are the most challenging

part of this refactoring. All three iterators are subclasses
of the abstract inner class HashIterator<E> which traverses
the HashMap by accessing the underlying table and Entry
objects directly. To restore owner-as-dominator encapsulation,
we refactored the design to introduce a completely external
iterator, similar in style to the ArrayList iterator, that does
not use incoming pointers into the HashMap’s implemen-
tation. This iterator keeps track of the current and next
keys, and uses new K getFirstKey(), K getNextKey(K key), and
hasNextKey(K key) methods on the HashMap to manage the
iteration. The implementation specific code from the original
iterators’ nextEntry() method is refactored to call the map’s
getNextKey() method.

2) LinkedHashMap: The LinkedHashMap class extends
the HashMap class by threading a doubly-linked list between
the table Entry objects to support quick and stable traversal.
Once we had refactored HashMap, the only change Linked-
HashMap required was to ensure the getNextKey() method
traversed the list.

3) Hashtable: The design of the legacy Hashtable class is
broadly similar to HashMap, with the same underlying design
from Figure 9 and the same epidemic of inner classes and
aliases, although the method names and interfaces are not
compatible. Like the other legacy class, Vector, all accesses
to a Hashtable are synchronized. We were able to encapsulate
Hashtable using very similar refactorings to HashMap. Our
refactored implementation also reuses the common Map key-
based traversal methods and the common EntryProxy class.
We had to refactor the existing Hashtable iterators, rather
than reuse the shared implementation, because Hashtables
must support both the Iterator and the legacy Enumeration
interfaces.

4) TreeMap: We originally planned to refactor the
TreeMap class separately, once we had completed the refac-

torings of the various hash-based maps.
Considering the refactored map design (Figure 10) we

realised that we would in fact be able to re-use all the iterator,
view, and entry objects from HashMap, because they can only
communicate with their underlying map via that map’s public
interface: encapsulating the representation has also abstracted
the representation behind that interface (albeit extended with
the various getFirstKey() / getNextKey(K key) methods). In the
same way as the residual public interface of a linked list is the
List interface, the residual public interface of the various map
classes is just this extended Map interface, and so one single,
reusable, common external iterator class suffices to iterate over
any kind of map.

Again, we expect that the narrower interface between an it-
erator and its underlying collection will decrease the efficiency
of the iteration. Calling getNextKey(currentKey) will require
tracing down from the root of the Red-Black tree to the node
holding that key, and this is certainly more work than just
following a pointer directly. We also tried single place caches
(as with LinkedLists, section III-A5), but disabled them for
our tests as the DaCapo xalan benchmark did not tolerate the
resulting behaviour.

5) Owner-as-accessor maps: Finally, we refactored all the
Maps to maintain owner-as-accessor encapsulation rather than
owner-as-dominator. We applied the two refactorings we used
with LinkedList to each Map, in spite of the differences be-
tween Map implementations. We built external proxies for the
various iterators, sets, and entries that simply stored references
to the standard iterators etc., which were treated as internal
to the Maps, just as in the LinkedList proxy iterator (see
Section III-A6 and Figure 7). These proxies were able to be
reused across all the various Map implementations. Then we
built indirection iterators, sets, and entries following the design
of the corresponding indirection objects for the LinkedList
(Section!III-A7).

IV. EXPERIMENTAL METHODOLOGY

To evaluate our refactorings, we performed a number of
benchmark studies comparing the original and refactored
collections: we include three small microbenchmarks and
the three major bechmark suites: DaCapo, SPECjbb2005 and
SPECjvm2008. The refactored collections include: OasD that
implements owners-as-dominators discipline, Proxy that im-
plements owners-as-accessors using a proxy iterator, Proxy
Dynamic that additionally performs a run-time ownership
check, Indirection that implements owners-as-accessors using
an Indirection Iterator, and Indirection Dynamic that addi-
tionally performs a run-time ownership check. In this section
we describe our methodology, and present the results in the
next section.

A. Microbenchmarks

We adopted three microbenchmarks to test collections’
performance, focusing on the cost of iterating over a whole
collection.

1) The IteratorLoops test from the Doug Lea’s JSR166
collections microbenchmarks [24]. This runs a large
number of traversals over partially filled collections with
occasional additions of elements. The result is the time
taken for a single next() step of an iterator.

2) LinkedList iteration: (a) forwards; (b) backwards; (c)
forwards, but with two iterators interleaved, the second
iterator indices after the first iterator. We designed the
last test to disrupt the caching algorithm in the refactored
linked list.

3) The MapMicroBenchmark test from the Doug Lea’s
JSR166 collections microbenchamrsk [24]. This runs a
large number of element-level map operations reflecting
a typical usage of maps in the real world and reports an
average time an operation takes. This works on on table-
based map implementations only (i.e. not TreeMap) and
we evaluated different map sizes in increasing order.

To make sure that our numbers were not disturbed by Java’s
garbage collector or just-in-time compiler, we warmed up the
VM before timing the tests. We set the the �XX+PrintGC and
�XX+PrintCompilation VM options and carefully checked our
traces that compilation and collection did not occur during
timed runs. Every microbenchmark was run 25 times and the
results analysed.

B. DaCapo Benchmarks
The DaCapo benchmark suite [25] is a well-established

benchmark suite representative of typical Java loads. We
included every benchmark in DaCapo in our study: avrora,
batik, eclipse, fop, h2, jython, luindex, lusearch, pmd, sunflow,
tomcat, tradebeans, tradesoap, and xalan. The DaCapo bench-
marks come with data sets of different sizes. We used the
large size for each benchmark where it was available. The
fop and luindex do not include a large size, so for these two
benchmarks we used the default size.

We carried out 5 runs of 30 iterations of each benchmark,
of which the last 5 are used, resulting in 25 data points for
each benchmark in each condition [26].

C. SPECjbb2005 Benchmark
SPECjbb2005 is a Java Server Benchmark capturing

the common types of server side Java applications today.
SPECjbb2005 is well-known for making a heavy use of
collections and was thus considered essential to be included
in our study. Following the other benchmarks in our paper, we
ran SPECjbb2005 on a default set of 16 warehouses 25 times
and report the averages of these runs for different collections
implementations.

D. SPECjvm2008 Benchmark
SPECjvm2008 is a Java Virtual Machine Benchmark that

measures the performance of a typical Java Runtime Environ-
ment using a selection of real life applications focusing on
core Java functionality. We included it for completeness as a
more traditional macrobenchmark with a caveat that DaCapo
was designed to improve on the number of shortcomings of
SPEC-style benchmarking [25].

0"

10"

20"

30"

40"

50"

60"

70"

80"

ArrayList" HashMap" HashSet" Hashtable" LinkedHashMap" LinkedHashSet" LinkedList" TreeMap" TreeSet" Vector"

Original" OasD"
Proxy" Proxy"D."
IndirecIon" IndirecIon"D."

Fig. 11. Microbenchmark 1: IteratorLoops (single iteration time in
nanoseconds)

E. Execution Environment
Our choice of Java Development Kit (JDK) version and

thus Java Collections Framework implementation was driven
by the latest version of DaCapo Benchmark Suite [25]: v9.12,
released in December 2009. DaCapo was built using Java
v1.5.0 and this is the version of JDK and Java Collections
Framework that we used: in particular the 1.5.0 22 version as
the latest Java v1.5.0 version available on the Oracle web site.
We executed all the tests on the Java HotSpot(TM) Server VM
(build 1.5.0 22-b03, mixed mode). We compiled the modified
collection implementations with javac version v1.5.0 22. This
choice of JDK version meant that we had to omit one of the
SPECjvm2008 sub-benchmark (xml.transform) that requires a
later version of Java.

For the purposes of our measurements we placed the mod-
ified collections and the same classes that were unmodified
in the “ownership” and “original” folders and then utilised
the Java �Xbootstrappath/p: option to place our classes in the
beginning of the JVM boot class path.

We ran all our tests on a Ubuntu Linux v11.4 machine using
v2.6.38-8 SMP kernel with the SMP option selected in the
kernel, configured to only use 7 of the 8 cores available in our
Dell OptiPlex 790 (Intel Core 2 i7-2600 CPU 3.40 GHz with
4GB of RAM). We used the Linux taskset command to set
the CPU affinity of our Java Virtual Machine to the unused
core to minimise disturbance from the rest of the operating
system.

V. RESULTS

A. Microbenchmarks
1) IteratorLoops: Figure 11 shows the results of the

IteratorLoops benchmark from JSR166 benchmarks for all
the collections in the original and five ownership refactored
variants. The figure plots the mean time (in nanoseconds) for
1 iteration step (i.e. a call to next).

We can observe that owners-as-dominators refactored im-
plementations were slower per iteration by a factor of three,
except for Hashtable and TreeMap (and hence TreeSet), which
are slower by factors of seven or eight. In the case of Hashtable
the fact that every method is synchronized, including helper
methods to get next key or check for modifications, seems
to have played a major part. In the case of the tree-based
collections, it is indeed much slower to search for the next

1"

10"

100"

1000"

10000"

100000"

Or
igi
na
l"(F
)"

Or
igi
na
l"(B
)"

Or
igi
na
l"(D
)"

Oa
sD
"(F
)"

Oa
sD
"(B
)"

Oa
sD
(D
)"

Pro
xy"
(F)
"

Pro
xy"
(B)
"

Pro
xy"
(D
)"

Pro
xy"
D."
(F)
"

Pro
xy"
D."
(B)
"

Pro
xy"
D."
(D
)"

Ind
ire
c:
on
"(F
)"

Ind
ire
c:
on
"(B
)"

Ind
ire
c:
on
"(D
)"

Ind
ire
c:
on
"D.
"(F
)"

Ind
ire
c:
on
"D.
"(B
)"

Ind
ire
c:
on
"D.
"(D
)"

10000"

20000"

30000"

40000"

50000"

60000"

70000"

80000"

90000"

100000"

Fig. 12. Microbenchmark 2: Linked List Iteration (single iteration time in
nanoseconds). Note that the time (y-axis) scale is logarithmic.

0"

20"

40"

60"

80"

100"

120"

140"

160"

Original" OasD" Proxy" Proxy"D." Indirec:on" Indirec:on"D."

HashMap" Hashtable" LinkedHashMap"

Fig. 13. Microbenchmark 3: MapMicroBenchmark (nanoseconds per
element operation (averaged across get, put etc) across different element types)

entry from the root of the tree, rather than following an
incoming pointer.

However, observe that all four of the owners-as-accessors
refactored implementations were not significantly different
from the original collections.

2) List Iteration: Figure 12 presents a microbenchmark
comparing between the original and refactored versions of
the linked list: note the log scale on the y-axis. The graph
again shows the time for a single next call. The “disruptive”
benchmark for owners-as-dominators version shows linear
performance for a single step, (thus O(N2) overall) while
the other iterators (including all owners-as-accessors imple-
mentations) behave linearly for different collection sizes (i.e.
O(N) overall as expected). As collection sizes get larger, the
amortised time for the refactored collections approaches that
of the original collections.

3) Map Iteration: Figure 13 presents results of the Map-
MicroBenchmark benchmark from JSR166 benchmarks for
three different kinds of maps: HashMap, LinkedHashMap, and
Hashtable. We used the default parameters for the microben-
chark and map sizes and report the averaged results for the
largest map size. Observe that owners-as-dominators performs
only 20% slower than the original while all four of the owners-
as-accessors perform with no more than 3-5% slowdown.

Benchmark Original OasD Proxy Proxy D. Indirection Indirection D. Number Percent
DaCapo (Time in ms; lower is better)

avrora 23003 300 22781 415 22816 236 22867 179 22948 389 22873 323 219049309 78.08%
batik 2516 34 2517 19 2520 25 2519 19 2519 25 2528 30 26507124 31.37%

eclipse 53793 1031 53480 936 53716 1010 53812 1329 53554 1406 53608 738 355465429 33.63%
fop 393 27 397 29 394 20 397 23 396 23 399 20 1874892 18.07%
h2 24133 580 24238 593 24141 517 24188 380 23967 320 23934 375 90175446 8.04%

jython 15041 215 15476 100 15725 107 15719 53 15837 110 17050 145 159700109 7.49%
luindex 705 18 687 23 714 22 713 19 710 40 718 51 327466 36.66%
lusearch 7251 184 7334 105 7181 189 7120 198 7226 299 7325 78 11979688 5.45%

pmd 3944 47 3992 39 4046 59 4065 72 4005 64 4054 67 10712544 36.55%
sunflow 22656 518 22560 365 23365 126 22970 711 22851 523 22331 207 171198077 <0.01%
tomcat 7576 108 7641 135 7687 134 7736 111 7733 88 7661 118 16726923 13.95%

tradebeans 27952 409 27556 494 28258 506 28142 275 27998 328 28020 340 1621619 33.00%
tradesoap 64476 1251 65193 1549 65042 1712 65119 1463 64390 1378 65111 1499 1631193 32.82%

xalan 26604 384 26692 318 26383 247 26173 258 26125 251 26310 291 61153799 13.23%
SPECjbb2005 (Throughput; higher is better)

SPECjbb2005 29598 405 14062 181 28825 860 28540 619 28959 764 28394 641 35542855 4.87%
SPECjvm2008 (Time in ms; lower is better)

compress 46.56 0.81 46.77 0.59 46.71 0.59 46.82 0.42 46.83 0.42 46.84 0.57 199478 20.21%
crypto.aes 18.49 0.18 18.40 0.13 18.46 0.10 18.48 0.18 18.42 0.10 18.48 0.19 254853 22.00%
crypto.rsa 35.04 0.25 34.89 0.28 34.92 0.31 34.95 0.36 34.94 0.25 34.95 0.27 6535358 11.18%

crypto.signverify 53.06 0.27 52.97 0.31 53.11 0.29 53.16 0.36 53.09 0.38 53.12 0.29 3290783 2.13%
derby 21.55 0.48 21.63 0.40 21.56 0.50 21.73 0.43 21.59 0.38 21.61 0.33 89061937 3.04%

mpegaudio 15.08 0.05 15.10 0.05 15.08 0.06 15.11 0.05 15.10 0.06 15.07 0.06 209089 20.32%
fft.large 23.61 0.27 23.53 0.30 23.49 0.27 23.43 0.28 23.55 0.24 23.51 0.38 168290 23.78%
fft.small 82.75 4.49 84.24 5.21 84.98 3.94 83.35 4.01 84.46 4.70 83.57 4.26 439646 9.22%
lu.large 6.98 1.44 6.69 1.24 6.72 1.22 7.05 1.39 6.34 0.96 7.02 1.42 166728 23.92%
lu.small 107.98 0.87 107.61 0.92 107.48 0.75 107.58 0.84 107.94 0.70 107.82 0.85 642713 6.39%

monte carlo 15.33 1.49 15.33 1.48 15.65 0.10 15.67 0.11 15.63 0.03 15.29 1.47 179253 22.58%
sor.large 13.01 0.02 13.01 0.02 13.01 0.01 13.02 0.02 12.99 0.05 13.01 0.01 167449 23.92%
sor.small 57.47 0.11 57.47 0.10 57.49 0.10 57.47 0.12 57.43 0.07 57.44 0.10 193425 21.16%

sparse.large 11.51 0.23 11.97 1.22 11.70 0.28 11.82 0.80 11.71 0.34 11.77 0.36 166691 23.98%
sparse.small 43.87 0.11 43.79 0.12 43.80 0.18 43.83 0.11 43.85 0.18 43.80 0.15 182676 22.17%

serial 33.22 0.98 32.46 0.96 33.27 0.81 33.04 0.92 32.88 1.31 33.31 0.89 51123977 5.68%
sunflow 20.51 0.50 20.48 0.50 20.55 0.32 20.42 0.52 20.22 0.63 20.51 0.47 42506559 0.12%

xml.validation 63.38 1.09 63.01 0.96 63.36 1.03 63.19 1.42 63.75 1.39 63.23 1.03 10318760 3.33%
TABLE I

FULL RESULTS TABLE (FORMAT: MEAN|SD; STATISTICALLY SIGNIFICANTLY DIFFERENT VALUES SHOWN IN BOLD)

B. DaCapo, SPECjbb2005, and SPECjvm2008

Table I presents the results of the DaCapo, SPECjbb2005,
and SPECjvm2008 benchmarks. For each benchmark, for stan-
dard and refactored collections, the time taken was recorded
for 25 runs. We wanted to test whether the mean time taken
differed between the original and five ownership versions,
while controlling for the different times needed for different
benchmarks. We show the average times across all runs and
include a standard deviation for all DaCapo benchmarks. For
SPEC benchmarks we report a throughput in either “bops”
or “operations per minute” and again include the standard
deviation alongside the mean across 25 runs.

Usually one would use Analysis of Variance to test the null
hypothesis that the mean time taken did not differ between
the standard and refactored collections. However, ANOVA as-
sumes the data are normally distributed and that the variances
of time taken are the same in all 2⇥ 14 = 28 groups. In our
data, these assumptions did not hold for all benchmarks. Data
transformation did not solve this problem. We therefore used
non-parametric methods (which do not require normality nor
equality of variances) – in particular the Asymptotic p-value
of the Mann-Whitney U test – separately for each benchmark,
to determine whether we could reject the null hypothesis that

the mean time taken for the standard and refactored collections
was the same. To perform these tests, we used PASW Statistics
18 Release 18.0.0 (Jul 30 2000), hosted by Microsoft Windows
Server 2003 Standard Edition Service Pack 2, running on an
Intel Xeon 5130 2.00GHz with 4GB of RAM.

Table I includes the results of the Mann-Whitney test,
showing the refactored results with a statistically significant
difference from the performance of the original collections in
bold. We reject a null hypothesis at significance level p < 0.05.
We can reject the null hypotheses that the means are the
same for the refactored implementations for 40 of the 165
refactored benchmarks: for the others, we were unable to show
a statistically significant difference. We refer the interested
reader to a technical report accompanying this paper [21] that
contains the obtained p-values and clustering results.

Finally, we also measured the number of objects instantiated
during each benchmark run and the percentage of them that
were collections from the java. util package [27]. Having
observed a significant slowdown for the SPECjbb2005 in the
case of owners-as-dominators, we have also measured the time
this benchmark spent in the methods of java. util collections
as the percentage of objects was low (4.87%). We used
�Xrunhprof:cpu=times to obtain such timings and found that

the original version spent 7.79% of its time in the collections
methods and the owners-as-dominators spent 13.94% of its
time in the collections methods (almost all of it in TreeMap).
We hypothesise that the lack of caching used in our owners-
as-dominators map implementations caused this and we can
see a number of ways in which this can be improved similar
to the way linked lists can be made faster with caching.

VI. DISCUSSION AND RELATED WORK

The results we have presented in the previous section have
at least two alternative interpretations. First, incoming aliases
into collection implementations are absolutely necessary in
specific cases, as refactoring to an encapsulated interface
means collection operations’ runtime performance will be five
to ten times slower than otherwise. Second, incoming aliases
into collection implementations are clearly unnecessary in
general, as the largest significant slowdown in the DaCapo
experiment was less than 2%. The truth, no doubt, lies
somewhere between these extremes.

The reasons for the microbenchmark results, at least, seem
clear: more general (and reusable) interfaces are also by
necessity less efficient. Our refactorings imposed additional
hash lookups, and additional list and tree traversals, when an
incoming pointer could take the program directly to exactly
the right place without any such overhead.

The reasons for the macrobenchmark results are less clear.
Perhaps there is a small effect, but the variability introduced
by a JITting VM, garbage collector, the underlying operating
system mean the effect is lost in the noise. Arguably, how-
ever, most programs would not be affected by such a small
overhead. Perhaps collections do not make up a significant
portion of the DaCapo benchmarks execution time? This is
certainly the case for sunflow and luindex, although as Table I
illustrates, most of the benchmarks create tens of thousands
of collection objects, and some benchmarks create millions.
The DaCapo benchmarks have been selected to model realistic
Java workloads [25]: if they are a reasonably accurate gauge
of the use of collections in Java programs, then we would not
expect significantly higher runtime impacts upon other Java
applications.

a) Evaluating Ownership: There have been a number
of implementation studies evaluating ownership types [28],
[11] — some quite extensive [29]. Generally these studies
were undertaken in the context of validating a particular
type system proposal and the performance evaluation did not
specifically concentrate on the costs of various ownership-
friendly designs. Many of these studies used the collections
library as an example, and were able to check the whole of the
collections library, albeit with varying amounts of annotation,
depending on the system. The AJ collections reimplementation
in particular included some performance analysis using a
selection of Java applications and SPECjbb benchmark — they
found that a tuned version of AJ collections performed only
marginally slower than the standard Java version (Figure 22
in [11], which aligns well with our findings.

These studies differ from the approach we have adopted
here because they were mostly based on more flexible (i.e.
less encapsulating) ownership disciplines — confining objects
within regions rather than per-object ownership [30], or by
permitting incoming pointers in some circumstances [28]. The
problem is that these supposedly “benign” incoming references
can drastically reduce encapsulation.

There have been surprisingly few stand-alone case studies
evaluating ownership per se. The closest research to this
work is Stefan Nägeli who studied how ownership affected
design patterns and the Swing GUI library [31], and Cele
and Stureborg [32] who implemented three medium-sized pro-
grams while respecting an strong ownership discipline. Both
studies found that ownership could help structure programs,
but could also be a cause of refactoring and redesign: this
chimes with our experience. Neither study considered the
potential performance cost of the encapsulation enforced by
ownership.

b) Inversion of Control: Many of the problems we en-
countered, particularly with the Map iterators, can be under-
stood in terms of inversion of control: we would have had
no problem writing an “internal iterator” method for each
collection implementation to iterate over all their elements.
Because these methods are encapsulated within each collection
class, there is no need (or temptation) to breach encapsulation.
The reason, of course, is that in an internal iterator, control and
data flow are both efferent, flowing from the collection to the
iterator . By contrast, an in external iterator, data flow remains
efferent, but control flow is afferent: the external iterator calls
in to the collection that hands each element back in turn.

CLU-style generators [33] (as popularised in Python, Ruby,
and C]) are an alternative solution to this problem: programs
are written as if they used simple internal iterators — with
all the benefits for encapsulation that implies — and then the
generator construct inverts the control flow.

c) Further Work: The Java collections continue to
evolve. We chose to work with the version 5 collections
because that was the version that worked with DaCapo.
Repeating this study once closures support is integrated into
the main Collection APIs (and once benchmarks have evolved
to rely upon those APIs) could address some of the hypotheses
above regarding inversion of control.

VII. CONCLUSION

In this paper we present the first experimental evaluation
of the cost of ownership types. We examined the use and
breaches of encapsulation in the core classes of the Java
Collections Framework. We refactored those classes as nec-
essary to fit the owner-as-dominator and owner-as-accessor
encapsulation disciplines. We measured the overhead of these
refactorings that showed encapsulation reduces iteration per-
formance by factors of 2 to 8. Finally, we compared the per-
formance of the DaCapo, SPECjbb, and SPECjvm benchmark
suites, gaining statistically significant results for a number
of benchmarks, SPECjbb owners-as-dominators demonstrating
the largest slowdown. Owners-as-accessors slowed down no

more than 3% for all benchmarks, even with dynamic owner-
ship checking.

We hope these results may encourage object-oriented de-
signers to consider object encapsulation more carefully when
designing their programs — especially their use of incoming
aliases to circumvent encapsulation — and to ask themselves:
are their incoming aliases really necessary?

ACKNOWLEDGMENTS

Thanks to Dalice Sim, VUW Statistical Consultant, for the
statistical analysis; to Doug Lea, Tony Hosking, and Andy
Georges, for advice about DaCapo and Collections; to Shane
Markstrum for help with JavaCOP; and to Christo Fogelberg,
and Andrew Walbran for work on the encapsulated collections;
and to the anonymous reviewers of previous versions of this
paper. This work is partly supported by the Royal Society of
NZ Marsden Fund.

REFERENCES

[1] D. Clarke, J. Potter, and J. Noble, “Ownership types for flexible alias
protection,” in OOPSLA. Vancouver, Canada: ACM Press, Oct. 1998,
pp. 48–64.

[2] J. Potter, J. Noble, and D. Clarke, “The ins and outs of objects,” in
Australian Software Engineering Conference. Adelaide, Australia: IEEE
Press, November 1998.

[3] T. Zhao, J. Baker, J. Hunt, J. Noble, and J. Vitek, “Implicit ownership
types for memory management,” Science of Computer Programming,
vol. 71, no. 3, pp. 213–241, 2008.

[4] D. Clarke, M. Richmond, and J. Noble, “Saving the World from
Bad Beans: Deployment-Time Confinement Checking,” in OOPSLA.
Anaheim, CA: ACM Press, 2003, pp. 374–387.

[5] W. Dietl and P. Müller, “Universes: Lightweight ownership for JML,”
Journal of Object Technology, vol. 4, no. 8, pp. 5–32, 2005, http://www.
jot.fm/issues/issue 2005 10/article1.

[6] S. Srinivasan and A. Mycroft, “Kilim: Isolation-typed actors for Java,”
in ECOOP, 2007.

[7] B. Bloom, J. Field, N. Nystrom, J. stlund, G. Richards, R. Strnisa,
J. Vitek, and T. Wrigstad, “Thorn: robust, concurrent, extensible script-
ing on the JVM,” in OOPSLA, 2009, pp. 117–136.

[8] P. Haller and M. Odersky, “Capabilities for uniqueness and borrowing,”
in ECOOP, 2010, pp. 354–378.

[9] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek, “Streamflex: high-
throughput stream programming in Java,” in OOPSLA, 2007.

[10] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian, “A
Type and Effect System for Deterministic Parallel Java,” in OOPSLA,
2009.

[11] J. Dolby, C. Hammer, D. Marino, F. Tip, M. Vaziri, and J. Vitek, “A
data-centric approach to synchronization,” ACM Trans. Program. Lang.
Syst., vol. 34, no. 1, p. 4, 2012.

[12] J. Noble, J. Vitek, and J. Potter, “Flexible Alias Protection,” in ECOOP,
vol. 1445. Springer-Verlag, Jul. 1998, pp. 158–185.

[13] J. Aldrich and C. Chambers, “Ownership domains: Separating aliasing
policy from mechanism,” in ECOOP, vol. 3086. Oslo, Norway:
Springer-Verlag, Jun. 2004, pp. 1–25.

[14] P. Müller and A. Poetzsh-Heffter, “Programming Languages and Fun-
damentals of Programming,” Fernuniversität Hagen, Tech. Rep., 2001,
poetzsh-Heffter, A. and Meyer, J. (editors).

[15] D. Gordon and J. Noble, “Dynamic ownership in a dynamic language,”
in DLS Proceedings, 2007, pp. 9–16.

[16] S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, and
J. Noble, “JavaCOP: Declarative pluggable types for Java,” TOPLAS,
vol. 32, no. 2, 2010.

[17] N. R. Cameron, J. Noble, and T. Wrigstad, “Tribal ownership,” in
OOPSLA, 2010, pp. 618–633.

[18] M. Naftalin and P. Wadler, Java Generics and Collections. O’Reilly
Media, Inc., 2006.

[19] J. Bloch, The Java Tutorials — Collections, Oracle Corporation, 2011,
http://download.oracle.com/javase/tutorial/collections/.

[20] Oracle Corporation, “Java collections framework overview,” http://
download.oracle.com/javase/1.5.0/docs/guide/collections/overview.html,
2011, accessed September 2011.

[21] A. Potanin, M. Damitio, and J. Noble, “Ownership and collections:
The statistical analysis,” ECS, VUW, http://ecs.victoria.ac.nz/Main/
TechnicalReportSeries, Tech. Rep. ECSTR12-22, 2012.

[22] J. Östlund and T. Wrigstad, “Multiple aggregate entry points for own-
ership types,” in ECOOP, ser. LNCS, vol. 7313, 2012, pp. 156–180.

[23] J. Noble, “Iterators and encapsulation,” in TOOLS Europe. IEEE Press,
2000, pp. 431–442.

[24] D. Lea, “Jsr166 loops benchmarks,” http://gee.cs.oswego.edu/cgi-bin/
viewcvs.cgi/jsr166/src/test/loops/, 2012.

[25] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanovic, T. VanDrunen, D. von Dincklage, and B. Wiedermann,
“The DaCapo benchmarks: Java benchmarking development and analy-
sis,” in OOPSLA, Oct. 2006, pp. 169–190.

[26] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous Java
performance evaluation,” in OOPSLA. Montreal, Quebec, Canada:
ACM Press, Oct. 2007, pp. 57–76.

[27] S. Nelson, D. J. Pearce, and J. Noble, “Profiling object initialization for
java,” in Third International Conference on Runtime Verification, ser.
RV 2012. Springer-Verlag, September 2012, pp. 292–307.

[28] Y. Zibin, A. Potanin, S. Artzi, A. Kiezun, and M. D. Ernst, “Object and
reference immutability using Java generics,” in Foundations of Software
Engineering, 2007.

[29] J. Aldrich, V. Kostadinov, and C. Chambers, “Alias Annotations for
Program Understanding,” in OOPSLA. Seattle, WA, USA: ACM Press,
Nov. 2002, pp. 311–330.

[30] C. Grothoff, J. Palsberg, and J. Vitek, “Encapsulating Objects with
Confined Types,” TOPLAS, vol. 29, no. 6, 2007.

[31] S. Nägeli, “Ownership in design patterns,” Master’s thesis, Software
Component Technology Group, Department of Computer Science, ETH
Zurich, 2006.

[32] G. Cele and S. Stureborg, “Ownership types in practice,” Master’s thesis,
Department of Computer and Systems Sciences, Stockholm University,
Jan. 2005.

[33] B. Liskov and J. V. Guttag, Abstraction and Specification in Program
Development. MIT Press/McGraw-Hill, 1986.

avrora batik eclipse fop h2 jython luindex lusearch pmd sunflow tomcat tradebeans tradesoap xalan
large large large default large large default large large large large large large large

instances 69 19581 379942 70896 21786 2861339 1360 630387 1313504 225 385901 169892 7174701 53623
max�size 26 23 301 821 80660 4901 23 23 7971 23 217 195 195 23
avrg�size 4.88 0.18 1.07 31.37 45.70 242.64 1.91 2.67 1.22 1.49 2.54 8.64 1.93 1.57
itr 38 4713 79509 5208 21796 58658 32 30 478847 58 286199 125632 2748582 84
listItr 10 0 360 24680 0 360393 3 0 33120 1 2 34132 11008 0
clone 0 0 0 0 0 0 10 0 0 0 3 3 32157 0

instances 36 2987 13306 2539 58 10003 46 176 2089 98 402835 9009 2313696 192182
max�size 0 3 564 564 564 564 564 0 0 5 564 564 564 2
avrg�size 0.00 1.62 282.50 1.13 282.50 282.50 189.00 0.00 0.00 5.00 8.29 13.57 0.43 0.67
itr 0 11 0 1533 0 0 0 0 0 1 3517 79 192949 0
listItr 0 0 0 2942 0 0 1 0 0 0 4 0 0 0
enum�elmt 0 148 4 2 4 2 2 0 0 0 10 201 193063 3
clone 0 770 0 0 0 0 8 0 0 0 0 0 0 0

instances 880665 18813 51 53001 1 6 6 1 62179 5 24137 14970 143703 2
max�size 37 11 1 832 1 1 6 1 28 1 1 98 98 1
avrg�size 1.24 0.25 1.00 2.53 1.00 0.50 3.39 1.00 2.13 1.00 0.60 1.13 1.09 1.00
itr 3878507 30100 1 896 1 2 18 1 374926 1 5 2349 2438 1
listItr 3878507 30113 1 16176 1 2 18 1 374926 1 5 2395 2484 1
clone 0 0 0 0 0 0 0 0 0 0 0 0 0 0

instances 0 0 0 0 0 0 0 0 0 0 0 0 0 0
max�size 0 0 0 0 0 0 0 0 0 0 0 0 0 0
avrg�size 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
itr 0 0 0 0 0 0 0 0 0 0 0 0 0 0
clone 0 0 0 0 0 0 0 0 0 0 0 0 0 0

instances 18 2759 117408 184 1698765 3263025 39 135 335139 36 11727 1335733 1223071 35
max�size 0 17 7847 7 1 22 6 0 19 22 34 256 256 0
avrg�size 0.00 11.87 1.41 3.42 0.23 0.75 2.48 0.00 6.43 2.18 0.15 1.21 0.28 0.00
itr 0 1719 167229 205 56 5441 23 0 7 11 167285 70003 695845 0
clone 0 0 249 0 0 0 0 0 0 0 0 0 0 0

instances 0 0 924 0 0 1 0 0 0 1 1 5442 5442 0
max�size 0 0 35 0 0 22 0 0 0 22 22 45 45 0
avrg�size 0.00 0.00 10.02 0.00 0.00 22.00 0.00 0.00 0.00 22.00 22.00 1.65 1.30 0.00
itr 0 0 924 0 0 1 0 0 0 1 1 28631 60753 0
clone 0 0 0 0 0 0 0 0 0 0 0 0 0 0

instances 0 0 2 10 0 0 0 0 573 10 1 1830 1830 0
max�size 0 0 63 0 0 0 0 0 402 0 0 242 242 0
avrg�size 0.00 0.00 63.00 0.00 0.00 0.00 0.00 0.00 1.02 0.00 0.00 0.87 0.87 0.00
itr 0 0 1 0 0 0 0 0 571 0 0 1772 1772 0
clone 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Collection

TreeSet

PriorityQueue

Data

ArrayList

Vector

LinkedList

HashSet

LinkedHashSet

avrora batik eclipse fop h2 jython luindex lusearch pmd sunflow tomcat tradebeans tradesoap xalan
large large large default large large default large large large large large large large

Collection Data

instances 23 2004 68257 114 41 1030 38 26 891 33 1518 3302 453584 170123
max�size 0 47 515 76 54 390 0 0 5 0 483 893 893 192
avrg�size 0.00 7.00 8.68 11.46 30.43 2.68 0.00 0.00 1.11 0.00 1.74 18.18 1.09 7.20
itr 0 1439 30504 1 7 1 0 0 104 0 98 163 162 1
itr�key 0 1 11 0 6 0 0 0 0 0 0 9 9 0
itr�value 0 2 29176 0 0 0 0 0 0 0 74 0 0 0
itr�entry 0 1436 1317 1 1 1 0 0 104 0 24 154 153 1
enum 0 8 1312 12 0 839 0 0 1 0 6787 337 96753 85008
enum�key 0 8 1312 12 0 794 0 0 1 0 6756 327 96743 85008
enum�elmt 0 0 0 0 0 45 0 0 0 0 31 10 10 0
clone 0 752 5 2 2 0 0 0 0 0 6 65 65 10

instances 290 8309 196992 11807 1827552 3264459 165 1364 363559 969 35442 2956757 3552090 110216
max�size 35 67 7847 67 67 519 67 130 580 402 483 952 952 192
avrg�size 17.10 8.32 1.90 3.18 3.31 2.72 4.66 2.98 19.97 18.66 0.21 3.53 1.26 191.36
itr 69 10632 187996 501 78 8166 47 260 231173 44 171109 372010 1160362 34120
itr�key 42 5592 169948 342 58 5446 26 129 230027 29 170593 95095 658889 117
itr�value 27 76 11573 72 18 936 3 129 572 4 454 4188 164429 1
itr�entry 0 4964 6476 87 2 1784 18 2 574 11 62 272726 337045 34002
clone 0 2088 1013 0 0 54 0 0 0 0 5 4 4 34000

instances 6 8 946 7 43 863 7 136 13 12 17 8840 8840 8
max�size 0 67 200 67 67 70 67 130 200 67 84 133 133 67
avrg�size 0.00 32.25 11.38 28.75 28.75 4.83 38.33 80.33 9.48 36.50 17.89 1.97 1.54 6.41
itr 2 4 952 4 4 2267 3 3 608 8 17 40248 72386 117
itr�key 2 2 945 2 2 3 1 1 604 3 14 29007 61145 115
itr�value 0 0 1 0 0 672 0 0 0 1 1 866 866 0
itr�entry 0 2 6 2 2 1592 2 2 4 4 2 10375 10375 2
clone 0 0 0 0 0 0 0 0 0 0 0 0 0 0

instances 0 2 3 12 0 18 0 0 573 10 40 3486 3498 0
max�size 0 33 64 0 0 0 0 0 402 0 20 242 242 0
avrg�size 0.00 22.00 49.18 0.00 0.00 0.00 0.00 0.00 1.02 0.00 6.17 1.13 1.13 0.00
itr 0 2 10 0 0 0 0 0 571 0 38 8792 8804 0
itr�key 0 2 1 0 0 0 0 0 571 0 5 1772 1773 0
itr�value 0 0 0 0 0 0 0 0 0 0 33 36 47 0
itr�entry 0 0 9 0 0 0 0 0 0 0 0 6984 6985 0
clone 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HashMap

LinkedHashMap

TreeMap

Hashtable

1

 6 August, 2012

James Noble:

For each benchmark (14 different benchmarks), for each “test” (6 different tests,
standard, owners, memento, memento dynamic, no proxy, and no proxy dynamic), the
time taken was recorded for 25 runs. We wanted to test whether the mean time taken
differed between standard and each of the other tests, while controlling for the
different times needed for different benchmarks. The actual means + standard
deviations were:

Descriptive Statistics

Dependent Variable:Times (ms)

test Bench Mean Std. Deviation N

standard avrora 23002.80 299.673 25

batik 2515.56 34.420 25

eclipse 53793.08 1030.629 25

fop 392.52 27.157 25

h2 24133.48 580.308 25

jython 15041.32 215.103 25

luindex 705.32 18.416 25

lusearch 7250.92 184.212 25

pmd 3943.96 46.644 25

sunflow 22655.68 517.895 25

tomcat 7575.60 108.105 25

tradebeans 27951.68 408.908 25

tradesoap 64475.84 1251.264 25

xalan 26604.28 383.737 25

Total 20003.00 18783.548 350

owners avrora 22781.04 415.494 25

batik 2517.16 19.146 25

eclipse 53480.28 936.434 25

fop 396.84 29.054 25

h2 24238.08 593.387 25

jython 15475.64 99.539 25

luindex 687.40 22.873 25

lusearch 7334.04 104.926 25

pmd 3992.04 38.828 25

sunflow 22559.80 364.581 25

tomcat 7640.52 134.604 25

tradebeans 27556.40 493.813 25

tradesoap 65193.32 1548.789 25

2

xalan 26692.32 318.249 25

Total 20038.92 18838.867 350

memento avrora 22815.60 236.415 25

batik 2519.76 25.186 25

eclipse 53716.24 1009.544 25

fop 393.72 20.126 25

h2 24141.40 517.154 25

jython 15725.00 106.620 25

luindex 713.92 22.057 25

lusearch 7181.08 189.265 25

pmd 4046.20 59.333 25

sunflow 23365.40 126.337 25

tomcat 7687.12 133.845 25

tradebeans 28258.32 505.726 25

tradesoap 65041.92 1712.479 25

xalan 26383.48 247.099 25

Total 20142.08 18860.387 350

mem dynamic avrora 22867.28 178.693 25

batik 2518.96 19.182 25

eclipse 53811.68 1328.635 25

fop 397.00 23.071 25

h2 24188.28 379.774 25

jython 15719.44 53.046 25

luindex 712.52 19.339 25

lusearch 7120.20 197.800 25

pmd 4064.64 72.432 25

sunflow 22970.00 710.582 25

tomcat 7735.64 110.630 25

tradebeans 28142.32 274.980 25

tradesoap 65119.48 1462.600 25

xalan 26173.08 257.892 25

Total 20110.04 18873.821 350

no proxy avrora 22947.88 389.192 25

batik 2519.40 25.426 25

eclipse 53553.80 1405.639 25

fop 396.12 22.720 25

h2 23967.12 319.725 25

jython 15837.28 109.988 25

luindex 710.48 40.050 25

lusearch 7226.04 298.639 25

3

pmd 4005.32 64.303 25

sunflow 22851.36 522.582 25

tomcat 7733.08 88.124 25

tradebeans 27998.20 327.537 25

tradesoap 64389.96 1377.639 25

xalan 26124.64 251.450 25

Total 20018.62 18703.768 350

no proxy dynamic avrora 22873.32 322.942 25

batik 2528.40 30.092 25

eclipse 53608.12 738.360 25

fop 399.16 19.861 25

h2 23934.00 374.680 25

jython 17050.08 145.138 25

luindex 718.36 50.717 25

lusearch 7324.84 78.230 25

pmd 4053.52 67.293 25

sunflow 22330.64 207.213 25

tomcat 7660.68 117.922 25

tradebeans 28020.00 339.848 25

tradesoap 65110.96 1498.743 25

xalan 26310.32 290.756 25

Total 20137.31 18807.353 350

Total avrora 22881.32 321.387 150

batik 2519.87 26.039 150

eclipse 53660.53 1087.214 150

fop 395.89 23.607 150

h2 24100.39 478.450 150

jython 15808.13 628.730 150

luindex 708.00 32.418 150

lusearch 7239.52 200.989 150

pmd 4017.61 71.907 150

sunflow 22788.81 555.301 150

tomcat 7672.11 127.433 150

tradebeans 27987.82 450.989 150

tradesoap 64888.58 1493.342 150

xalan 26381.35 357.949 150

Total 20075.00 18789.044 2100

4

Once again, we had a problem in that the data did not meet the traditional assumptions
of normal distribution and equality of variances between groups. We therefore used
the Mann-Whitney test to compare “tests” (i.e., standard vs each of the others) within
each benchmark. This test essentially does a two-sample t test on the ranks of the
data instead of the data itself.

Bench = avrora

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 30.34 758.50

owners 25 20.66 516.50

Total 50

Mann-Whitney U = 191.5, Z = -2.348, p = 0.019. We conclude that owners has a

significantly lower mean than standard for benchmark avrora.

Standard vs Memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 30.32 758.00

memento 25 20.68 517.00

Total 50

Mann-Whitney U = 192.0, Z = -2.338, p = 0.019. We conclude that memento has a

significantly lower mean than standard for benchmark avrora.

Standard vs Mem Dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 29.40 735.00

mem dynamic 25 21.60 540.00

Total 50

5

Mann-Whitney U = 215.0, Z = -1.892, p = 0.059. We conclude that the mean

difference in time for Mem dynamic vs standard is not statistically significant, but

shows a trend towards statistical significance (since p < 0.10).

Standard vs No Proxy

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 26.08 652.00

no proxy 25 24.92 623.00

Total 50

Mann-Whitney U = 298.0, Z = -0.281, p = 0.778. We conclude that there is no

difference in the mean time for no proxy vs standard.

Standard vs No proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 28.00 700.00

no proxy dynamic 25 23.00 575.00

Total 50

Mann-Whitney U = 250.0, Z = -1.213, p = 0.225. We conclude that there is no

difference in the mean time for no proxy dynamic vs standard.

Bench = batik

Standard vs Owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 23.68 592.00

owners 25 27.32 683.00

Total 50

Mann-Whitney U = 267.0, Z = -0.883, p = 0.377. We conclude that there is no

difference in the mean time for owners vs standard.

6

Standard vs Memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 23.84 596.00

memento 25 27.16 679.00

Total 50

Mann-Whitney U = 271.0, Z = -0.806, p = 0.420. We conclude that there is no

difference in the mean time for memento vs standard.

Standard vs Mem Dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 23.20 580.00

mem dynamic 25 27.80 695.00

Total 50

Mann-Whitney U = 255.0, Z = -1.116, p = 0.264. We conclude that there is no

difference in the mean time for mem dynamic vs standard.

Standard vs No Proxy

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 23.72 593.00

no proxy 25 27.28 682.00

Total 50

Mann-Whitney U = 268.0, Z = -0.864, p = 0.388. We conclude that there is no

difference in the mean time for no proxy vs standard.

Standard vs No proxy dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 21.36 534.00

no proxy dynamic 25 29.64 741.00

Total 50

7

Mann-Whitney U = 209.0, Z = - 2.010, p = 0.044. We conclude that there is a

statistically significant difference in the mean time for no proxy dynamic vs standard.

Bench = eclipse

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 27.80 695.00

owners 25 23.20 580.00

Total 50

Mann-Whitney U = 255.0, Z = - 1.116, p = 0.265. We conclude that there is not a

statistically significant difference in the mean time for owners vs standard.

Standard vs Memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 25.92 648.00

memento 25 25.08 627.00

Total 50

Mann-Whitney U = 302.0, Z = - 0.204, p = 0.839. We conclude that there is not a

statistically significant difference in the mean time for memento vs standard.

Standard vs mem dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 26.40 660.00

mem dynamic 25 24.60 615.00

Total 50

Mann-Whitney U = 290.0, Z = - 0.437, p = 0.662. We conclude that there is not a

statistically significant difference in the mean time for mem dynamic vs standard.

8

Standard vs No proxy

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 29.76 744.00

no proxy 25 21.24 531.00

Total 50

Mann-Whitney U = 206.0, Z = - 2.067, p = 0.039. We conclude that there is a

statistically significant difference in the mean time for no proxy vs standard.

Standard vs No proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 26.06 651.50

no proxy dynamic 25 24.94 623.50

Total 50

Mann-Whitney U = 298.5, Z = - 0.272, p = 0.786. We conclude that there is no a

statistically significant difference in the mean time for no proxy dynamic vs standard.

Bench = fop

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 24.56 614.00

owners 25 26.44 661.00

Total 50

Mann-Whitney U = 289.0, Z = - 0.456, p = 0.648. We conclude that there is no a

statistically significant difference in the mean time for owners vs standard.

9

Standard vs memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 24.80 620.00

memento 25 26.20 655.00

Total 50

Mann-Whitney U = 295.0, Z = - 0.340, p = 0.734. We conclude that there is not a

statistically significant difference in the mean time for memento vs standard.

Standard vs Mem dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 23.70 592.50

mem dynamic 25 27.30 682.50

Total 50

Mann-Whitney U = 267.0, Z = - 0.873, p = 0.384. We conclude that there is not a

statistically significant difference in the mean time for mem dynamic vs standard

Standard vs No Proxy

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 24.08 602.00

no proxy 25 26.92 673.00

Total 50

Mann-Whitney U = 277.0, Z = - 0.689, p = 0.491. We conclude that there is not a

statistically significant difference in the mean time for no proxy vs standard

10

Standard vs no proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.56 564.00

no proxy dynamic 25 28.44 711.00

Total 50

Mann-Whitney U = 239.0, Z = - 1.427, p = 0.154. We conclude that there is not a

statistically significant difference in the mean time for no proxy dynamic vs standard

Bench = h2

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 24.16 604.00

owners 25 26.84 671.00

Total 50

Mann-Whitney U = 279.0, Z = - 0.650, p = 0.516. We conclude that there is not a

statistically significant difference in the mean time for owners vs standard

Standard vs Memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 25.00 625.00

memento 25 26.00 650.00

Total 50

Mann-Whitney U =300.0, Z = - 0.243, p = 0.808. We

conclude that there is not a statistically significant difference

in the mean time for memento vs standard

11

Standard vs mem dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 23.60 590.00

mem dynamic 25 27.40 685.00

Total 50

Mann-Whitney U = 265.0, Z = - 0.922, p = 0.357. We conclude that there is not a

statistically significant difference in the mean time for mem dynamic vs standard

Standard vs No proxy

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 26.50 662.50

no proxy 25 24.50 612.50

Total 50

Mann-Whitney U = 287.5, Z = - 0.485, p = 0.628. We conclude that there is not a

statistically significant difference in the mean time for no proxy vs standard

Standard vs No proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 27.32 683.00

no proxy dynamic 25 23.68 592.00

Total 50

Mann-Whitney U = 267.0, Z = - 0.883, p = 0.377. We conclude that there is not a

statistically significant difference in the mean time for no proxy dynamic vs standard

12

Bench = jython

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 14.00 350.00

owners 25 37.00 925.00

Total 50

Mann-Whitney U = 25.0, Z = - 5.579, p < 0.0005. We conclude that there is a
statistically significant difference in the mean time for owners vs standard.

Standard vs memento
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 13.00 325.00

memento 25 38.00 950.00

Total 50

Mann-Whitney U = 0.000, Z = - 6.064, p < 0.0005. We conclude that there is a
statistically significant difference in the mean time for memento vs standard.

Standard vs mem dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 13.00 325.00

mem dynamic 25 38.00 950.00

Total 50

Mann-Whitney U = 0.000, Z = - 6.065, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for mem dynamic vs standard

13

Standard vs No Proxy
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 13.00 325.00

no proxy 25 38.00 950.00

Total 50

Mann-Whitney U = 0.000, Z = - 6.064, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for no proxy vs standard

Standard vs No proxy dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 13.00 325.00

no proxy dynamic 25 38.00 950.00

Total 50

Mann-Whitney U = 0.000, Z = - 6.065, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for no proxy dynamic vs standard

Bench = luindex

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 31.82 795.50

owners 25 19.18 479.50

Total 50

Mann-Whitney U = 154.5, Z = - 3.067, p =0.002. We conclude that there is a

statistically significant difference in the mean time for owners vs standard

14

Standard vs memento
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.78 569.50

memento 25 28.22 705.50

Total 50

Mann-Whitney U = 244.5, Z = - 1.320, p =0.187. We conclude that there is not a

statistically significant difference in the mean time for memento vs standard

Standard vs Mem dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.96 574.00

mem dynamic 25 28.04 701.00

Total 50

Mann-Whitney U = 249.0, Z = - 1.233, p =0.218. We conclude that there is not a

statistically significant difference in the mean time for mem dynamic vs standard

Standard vs no proxy

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 25.58 639.50

no proxy 25 25.42 635.50

Total 50

Mann-Whitney U = 310.5, Z = - 0.039, p =0.969. We conclude that there is not a

statistically significant difference in the mean time for no proxy vs standard

15

Standard vs no proxy dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 24.06 601.50

no proxy dynamic 25 26.94 673.50

Total 50

Mann-Whitney U = 376.5, Z = - 0.699, p =0.485. We conclude that there is not a

statistically significant difference in the mean time for no proxy dynamic vs standard

Bench = lusearch

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 23.06 576.50

owners 25 27.94 698.50

Total 50

Mann-Whitney U = 251.5, Z = - 1.184, p =0.237. We conclude that there is not a

statistically significant difference in the mean time for owners vs standard

Standard vs memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 30.32 758.00

memento 25 20.68 517.00

Total 50

Mann-Whitney U = 192.0, Z = - 2.338, p =0.019. We conclude that there is a

statistically significant difference in the mean time for memento vs standard

16

Standard vs mem dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 29.96 749.00

mem dynamic 25 21.04 526.00

Total 50

Mann-Whitney U = 201.0, Z = - 2.163, p =0.031. We conclude that there is a

statistically significant difference in the mean time for mem dynamic vs standard

Standard vs no proxy

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 26.52 663.00

no proxy 25 24.48 612.00

Total 50

Mann-Whitney U = 287.0, Z = - 0.495, p =0.631. We conclude that there is not a

statistically significant difference in the mean time for no proxy vs standard

Standard vs no proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 23.80 595.00

no proxy dynamic 25 27.20 680.00

Total 50

Mann-Whitney U = 270.0, Z = - 0.825, p =0.410. We conclude that there is not a

statistically significant difference in the mean time for no proxy dynamic vs standard

17

Bench = pmd

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 18.48 462.00

owners 25 32.52 813.00

Total 50

Mann-Whitney U = 137.0, Z = - 3.406, p =0.001. We conclude that there is a

statistically significant difference in the mean time for owners vs standard

Standard vs memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 15.12 378.00

memento 25 35.88 897.00

Total 50

Mann-Whitney U = 53.0, Z = - 5.036, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for memento vs standard

Standard vs mem dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 14.64 366.00

mem dynamic 25 36.36 909.00

Total 50

Mann-Whitney U = 41.0, Z = - 5.268, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for mem dynamic vs standard

18

Standard vs no proxy
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 18.46 461.50

no proxy 25 32.54 813.50

Total 50

Mann-Whitney U = 136.5, Z = - 3.415, p =0.001. We conclude that there is a

statistically significant difference in the mean time for no proxy vs standard

Standard vs no proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 15.70 392.50

no proxy dynamic 25 35.30 882.50

Total 50

Mann-Whitney U = 67.5, Z = - 4.755, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for no proxy dynamic vs standard

Bench = sunflow

Standard vs Owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 26.48 662.00

owners 25 24.52 613.00

Total 50

Mann-Whitney U = 288.0, Z = - 0.475, p =0.635. We conclude that there is not a

statistically significant difference in the mean time for owners vs standard

19

Standard vs memento
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 15.42 385.50

memento 25 35.58 889.50

Total 50

Mann-Whitney U = 60.5, Z = - 4.890, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for memento vs standard

Standard vs mem dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 21.60 540.00

mem dynamic 25 29.40 735.00

Total 50

Mann-Whitney U = 215.0, Z = - 1.892, p =0.059. We conclude that there is not a

statistically significant difference in the mean time for mem dynamic vs standard,

although there is a trend towards statistical significance (p < 0.10).

Standard vs No proxy

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.52 563.00

no proxy 25 28.48 712.00

Total 50

Mann-Whitney U = 238.0, Z = - 1.446, p =0.148. We conclude that there is not a

statistically significant difference in the mean time for no proxy vs standard.

20

Standard vs no proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 30.24 756.00

no proxy dynamic 25 20.76 519.00

Total 50

Mann-Whitney U = 194.0, Z = - 2.299, p =0.021. We conclude that there is a

statistically significant difference in the mean time for no proxy dynamic vs standard.

Bench = tomcat

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.66 566.50

owners 25 28.34 708.50

Total 50

Mann-Whitney U = 241.5, Z = - 1.378, p =0.168. We conclude that there is not a

statistically significant difference in the mean time for owners vs standard.

Standard vs memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 19.46 486.50

memento 25 31.54 788.50

Total 50

Mann-Whitney U = 161.5, Z = - 2.930, p =0.003. We conclude that there is a

statistically significant difference in the mean time for memento vs standard.

21

Standard vs mem dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 16.84 421.00

mem dynamic 25 34.16 854.00

Total 50

Mann-Whitney U = 96.0, Z = - 4.201, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for mem dynamic vs standard.

Standard vs no proxy
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 16.24 406.00

no proxy 25 34.76 869.00

Total 50

Mann-Whitney U = 81.0, Z = - 4.492, p < 0.0005. We conclude that there is a

statistically significant difference in the mean time for no proxy vs standard.

Standard vs no proxy dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 20.94 523.50

no proxy dynamic 25 30.06 751.50

Total 50

Mann-Whitney U = 198.5, Z = - 2.212, p =0.027. We conclude that there is a

statistically significant difference in the mean time for no proxy dynamic vs standard.

22

Bench = tradebeans

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 31.32 783.00

owners 25 19.68 492.00

Total 50

Mann-Whitney U = 167.0, Z = - 2.823, p =0.005. We conclude that there is a

statistically significant difference in the mean time for owners vs standard.

Standard vs memento
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 20.96 524.00

memento 25 30.04 751.00

Total 50

Mann-Whitney U = 199.0, Z = - 2.202, p =0.028. We conclude that there is a

statistically significant difference in the mean time for memento vs standard.

Standard vs mem dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.44 561.00

mem dynamic 25 28.56 714.00

Total 50

Mann-Whitney U = 236.0, Z = - 1.484, p =0.138. We conclude that there is not a

statistically significant difference in the mean time for mem dynamic vs standard.

23

Standard vs no proxy
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 25.08 627.00

no proxy 25 25.92 648.00

Total 50

Mann-Whitney U = 302.0, Z = - 0.204, p =0.839. We conclude that there is not a
statistically significant difference in the mean time for no proxy vs standard

Standard vs no proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 24.74 618.50

no proxy dynamic 25 26.26 656.50

Total 50

Mann-Whitney U = 293.5, Z = - 0.369, p =0.712. We conclude that there is not a
statistically significant difference in the mean time for no proxy dynamic vs standard

Bench = tradesoap

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.60 565.00

owners 25 28.40 710.00

Total 50

Mann-Whitney U = 240.0, Z = - 1.407, p =0.160. We conclude that there is not a
statistically significant difference in the mean time for owners vs standard

Standard vs memento
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.60 565.00

memento 25 28.40 710.00

Total 50

24

Mann-Whitney U = 240.0, Z = - 1.407, p =0.160. We conclude that there is not a
statistically significant difference in the mean time for memento vs standard. (Note
that the stats are exactly the same for owners and memento – I double checked it).

Standard vs mem dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.18 554.50

mem dynamic 25 28.82 720.50

Total 50

Mann-Whitney U = 229.5, Z = - 1.610, p =0.107. We conclude that there is not a
statistically significant difference in the mean time for mem dynamic vs standard.

Standard vs no proxy
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 25.74 643.50

no proxy 25 25.26 631.50

Total 50

Mann-Whitney U = 306.5, Z = - 0.116, p =0.907. We conclude that there is not a
statistically significant difference in the mean time for no proxy vs standard.

Standard vs no proxy dynamic

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 22.20 555.00

no proxy dynamic 25 28.80 720.00

Total 50

Mann-Whitney U = 230.5, Z = - 1.601, p =0.109. We conclude that there is not a
statistically significant difference in the mean time for no proxy dynamic vs standard.

25

Bench = xalan

Standard vs owners

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 24.08 602.00

owners 25 26.92 673.00

Total 50

Mann-Whitney U = 277.0, Z = - 0.689, p =0.491. We conclude that there is not a
statistically significant difference in the mean time for owners vs standard.

Standard vs memento

Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 30.56 764.00

memento 25 20.44 511.00

Total 50

Mann-Whitney U = 186.0, Z = - 2.455, p =0.014. We conclude that there is a
statistically significant difference in the mean time for memento vs standard.

Standard vs mem dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 33.52 838.00

mem dynamic 25 17.48 437.00

Total 50

Mann-Whitney U = 112.0, Z = - 3.890, p < 0.0005. We conclude that there is a
statistically significant difference in the mean time for mem dynamic vs standard.

Standard vs no proxy
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 33.92 848.00

no proxy 25 17.08 427.00

Total 50

Mann-Whitney U = 102.0, Z = - 4.084, p < 0.0005. We conclude that there is a
statistically significant difference in the mean time for no proxy vs standard.

26

Standard vs no proxy dynamic
Ranks

 test N Mean Rank Sum of Ranks

Times (ms) standard 25 31.48 787.00

no proxy dynamic 25 19.52 488.00

Total 50

Mann-Whitney U = 163.0, Z = - 2.901, p =0.004. We conclude that there is a
statistically significant difference in the mean time for no proxy dynamic vs standard.

1

 17 August, 2012

James Noble:

SPECjbb2005 data.

For each “test” (6 different tests, standard, OasD, mem, memdyn, noproxy, noprodyn),
the time taken was recorded for 25 runs. We wanted to test whether the mean time
taken differed between standard and each of the other tests The actual means +
standard deviations were:

Report

bops (the higher the better)

1=std 2=OasD 3=mem

4=mem dyn 5=no proxy

6=no pro dyn Mean N Std. Deviation Median

1 29597.96 25 404.619 29557.00

2 14061.68 25 180.795 14047.00

3 28825.24 25 859.751 28724.00

4 28540.36 25 619.492 28561.00

5 28959.00 25 764.066 29017.00

6 28393.68 25 640.569 28326.00

Total 26396.32 150 5581.431 28615.00

The first analysis we did was a one-way Analysis of Variance. This tests the
hypothesis that the mean bops are not different for the different “tests”. It assumes
the data are normally distributed, which they probably are not, but enables us to look
at pairwise differences.

The ANOVA table is:

Tests of Between-Subjects Effects

Dependent Variable:bops (the higher the better)

Source Type III Sum of

Squares df Mean Square F Sig.

Corrected Model 4.586E9 5 9.172E8 2378.857 .000

Intercept 1.045E11 1 1.045E11 271059.943 .000

@1std2OasD3mem4memd

yn5noproxy6noprodyn

4.586E9 5 9.172E8 2378.857 .000

Error 55523288.160 144 385578.390
Total 1.092E11 150
Corrected Total 4.642E9 149

a. R Squared = .988 (Adjusted R Squared = .988)

2

Thus there is a highly significant difference in mean bops by “test” (F(5, 144) =

2378.857, p < 0.0005). We conclude that at least one group mean is different from

the others.

We did Post Hoc tests to compare between the “tests”, to see which means were

different from which. These are best summarized by the Table of homogeneous

subsets, defined by the Tukey multiple comparisons test.

bops (the higher the better)

 1=std 2=OasD 3=mem

4=mem dyn 5=no proxy

6=no pro dyn N

Subset

1 2 3 4

Tukey HSDa,b 2 25 14061.68

6 25 28393.68

4 25 28540.36 28540.36

3 25 28825.24 28825.24

5 25 28959.00

1 25 29597.96

Sig. 1.000 .144 .169 1.000

This table tells us that test 1 (std) has the highest mean bops (29597.96), and that mean is significantly different

from the means of all the other tests (at least at the p = 0.05) level. Also, test 2 (OasD) has the lowest mean

number of bops (14061.68), and that mean is significantly lower than all the other means. Tests 6, 4, and 3 have

significantly higher means that test 2, and tests 4, 3, and 5 have significantly lower means than test 1, but these

two groups overlap somewhat.

Since we are not sure that the data are normally distributed, we also did a Mann Whitney U test to compare test 1

(std) to each of the other tests with respect to mean bops. The results were:

Comparison Mann-Whitney Z statistic p-value

Std vs #2 -6.063 P< 0.0005

Std vs #3 -3.764 P< 0.0005

Std vs #4 -5.268 P< 0.0005

Std vs #5 -3.580 P< 0.0005

Std vs #6 -5.151 P< 0.0005

Therefore, we conclude that std is highly significantly different from the other “tests”.
As can be seen from the previous table, std has a significantly higher mean bops than
an of the other “tests”.

1

 17 August, 2012

James Noble:

SPECjvm2008 data.

For each benchmark, for each “test” (6 different tests, standard, OasD, mem, memdyn,
noproxy, noprodyn), the time taken was recorded for 20 runs. We wanted to test
whether the mean time taken differed between standard and each of the other tests,
while controlling for the different times needed for different benchmarks. The actual
means + standard deviations were:

Descriptive Statistics

Dependent Variable:ops / m

Benchmarks 1=std 2=OasD 3=mem

4=mem dyn 5=no proxy

6=no pro dyn Mean Std. Deviation N

composite

dimension2

1 28.8960 .24977 20

2 28.8215 .23723 20

3 28.9465 .18624 20

4 28.9565 .21137 20

5 28.8520 .23869 20

6 28.9355 .22795 20

Total 28.9013 .22704 120

compress

dimension2

1 46.5630 .81382 20

2 46.7700 .58969 20

3 46.7125 .58660 20

4 46.8180 .41703 20

5 46.8295 .42384 20

6 46.8425 .56901 20

Total 46.7559 .57773 120

crypto.aes

dimension2

1 18.4875 .18293 20

2 18.4005 .12668 20

3 18.4580 .10309 20

4 18.4790 .18373 20

5 18.4180 .10108 20

6 18.4780 .19061 20

Total 18.4535 .15335 120

crypto.rsa

dimension2

1 35.0405 .25287 20

2 34.8915 .28470 20

3 34.9205 .30734 20

4 34.9470 .35726 20

2

5 34.9350 .25353 20

6 34.9495 .27113 20

Total 34.9473 .28765 120

crypto.signverify

dimension2

1 53.0635 .27031 20

2 52.9720 .31095 20

3 53.1110 .29483 20

4 53.1590 .36172 20

5 53.0855 .37848 20

6 53.1160 .29204 20

Total 53.0845 .31903 120

derby

dimension2

1 21.5525 .47931 20

2 21.6325 .39820 20

3 21.5610 .49668 20

4 21.7260 .42820 20

5 21.5930 .37649 20

6 21.6060 .32716 20

Total 21.6118 .41682 120

mpegaudio

dimension2

1 15.0840 .05394 20

2 15.1010 .05360 20

3 15.0845 .05969 20

4 15.1065 .05244 20

5 15.0985 .06243 20

6 15.0740 .05734 20

Total 15.0914 .05665 120

scimark.fft.large

dimension2

1 23.6140 .27118 20

2 23.5255 .30384 20

3 23.4870 .26956 20

4 23.4270 .27995 20

5 23.5515 .24195 20

6 23.5095 .37904 20

Total 23.5191 .29359 120

scimark.fft.small

dimension2

1 82.7520 4.49351 20

2 84.2425 5.20987 20

3 84.9800 3.93504 20

4 83.3460 4.00923 20

5 84.4565 4.70209 20

6 83.5695 4.26497 20

Total 83.8911 4.42605 120

scimark.lu.large
dimension2

1 6.9805 1.43579 20

2 6.6895 1.23541 20

3

3 6.7240 1.22455 20

4 7.0515 1.38741 20

5 6.3365 .95588 20

6 7.0200 1.41898 20

Total 6.8003 1.28465 120

scimark.lu.small

dimension2

1 107.9805 .87217 20

2 107.6050 .91727 20

3 107.4815 .75228 20

4 107.5785 .84388 20

5 107.9375 .69587 20

6 107.8180 .85447 20

Total 107.7335 .83047 120

scimark.monte_carlo

dimension2

1 15.3275 1.48834 20

2 15.3345 1.48320 20

3 15.6495 .09556 20

4 15.6725 .11130 20

5 15.6310 .03059 20

6 15.2920 1.47193 20

Total 15.4845 1.04053 120

scimark.sor.large

dimension2

1 13.0100 .01522 20

2 13.0095 .01791 20

3 13.0135 .01424 20

4 13.0190 .01651 20

5 12.9920 .05207 20

6 13.0130 .01490 20

Total 13.0095 .02653 120

scimark.sor.small

dimension2

1 57.4675 .10770 20

2 57.4665 .10287 20

3 57.4855 .10385 20

4 57.4650 .12275 20

5 57.4340 .07177 20

6 57.4405 .09665 20

Total 57.4598 .10144 120

scimark.sparse.large

dimension2

1 11.5115 .22951 20

2 11.9650 1.21889 20

3 11.7015 .28268 20

4 11.8150 .80475 20

5 11.7080 .34080 20

6 11.7715 .35921 20

Total 11.7454 .64785 120

4

scimark.sparse.small

dimension2

1 43.8685 .10835 20

2 43.7890 .12363 20

3 43.7950 .18280 20

4 43.8275 .11097 20

5 43.8450 .18205 20

6 43.8045 .14684 20

Total 43.8216 .14548 120

serial

dimension2

1 33.2225 .97814 20

2 32.4590 .95790 20

3 33.2670 .80898 20

4 33.0365 .91651 20

5 32.8775 1.30508 20

6 33.3110 .89162 20

Total 33.0289 1.01212 120

sunflow

dimension2

1 20.5120 .50088 20

2 20.4835 .49570 20

3 20.5525 .31598 20

4 20.4190 .52098 20

5 20.2170 .63115 20

6 20.5085 .47015 20

Total 20.4487 .49992 120

xml.validation

dimension2

1 63.3805 1.09099 20

2 63.0110 .95878 20

3 63.3640 1.02952 20

4 63.1920 1.41898 20

5 63.7475 1.39470 20

6 63.2260 1.02589 20

Total 63.3202 1.16537 120

Total

dimension2

1 36.7534 26.05233 380

2 36.7458 26.13193 380

3 36.8576 26.18187 380

4 36.7917 26.01006 380

5 36.8182 26.26357 380

6 36.8045 26.08697 380

Total 36.7952 26.09261 2280

5

Once again, we had a problem in that the data did not meet the traditional assumptions
of normal distribution and equality of variances between groups. We therefore used
the Mann-Whitney test to compare “tests” (i.e., standard vs each of the others) within
each benchmark. This test essentially does a two-sample t test on the ranks of the
data instead of the data itself. The results are summarized in the following table:

Benchmark “test” ANOVA, F Mann-Whitney U
composite overall F = 1.180, p = 0.324
 2 vs std T = -0.075, p = 0.300 Z = -0.650, p = 0.516
 3 vs std T = 0.050, p = 0.482 Z = -0.771, p = 0.441
 4 vs std T = 0.061, p = 0.399 Z = -0.812, p = 0.417
 5 vs std T = -0.044, p = 0.540 Z = -0.406, p = 0.685
 6 vs std T = 0.039, p = 0.582 Z = -0.717, p = 0.473
compress overall F = 0.662, p = 0.653
 2 vs std T = 0.207, p = 0.263 Z = -0.717, p = 0.473
 3 vs std T = 0.150, p = 0.418 Z = -0.108, p = 0.914
 4 vs std T = 0.255, p = 0.169 Z = -0.555, p = 0.579
 5 vs std T = 0.267, p = 0.150 Z = -0.920, p = 0.357
 6 vs std T = 0.280, p = 0.132 Z = -1.231, p = 0.218
Crypto.aes overall F = 1.110, p = 0.359
 2 vs std T = -0.087, p = 0.075 Z = -1.450, p = 0.147
 3 vs std T = -0.029, p = 0.543 Z = -0.163, p = 0.871
 4 vs std T = -0.009, p = 0.861 Z = -0.041, p = 0.968
 5 vs std T = -0.069, p = 0.048 Z = -1.097, p = 0.273
 6 vs std T = -0.009, p = 0.845 Z = -0.122, p = 0.903
Crypto.rsa overall F = 0.602, p = 0.698
 2 vs std T = -0.149, p = 0.107 Z = -1.664, p = 0.096
 3 vs std T = -0.120, p = 0.193 Z = -1.055, p = 0.291
 4 vs std T = -0.094, p = 0.310 Z = -0.988 p = 0.323
 5 vs std T = -0.105, p = 0.253 Z = -1.448, p = 0.148
 6 vs std T = -0.091, p = 0.323 Z = -1.083, p = 0.279
Crypto.signverify overall F = 0.793, p = 0.557
 2 vs std T = -0.091, p = 0.368 Z = -0.839, p = 0.402
 3 vs std T = 0.048, p = 0.640 Z = -0.812, p = 0.417
 4 vs std T = 0.096, p = 0.348 Z = -0.974, p = 0.330
 5 vs std T = 0.022, p = 0.829 Z = -0.108, p = 0.914
 6 vs std T = 0.052, p = 0.605 Z = -0.433, p = 0.665
derby overall F = 0.449, p = 0.813
 2 vs std T = 0.080, p = 0.550 Z = -0.798, p = 0.429
 3 vs std T = 0.008, p = 0.949 Z = -0.271, p = 0.787
 4 vs std T = 0.173, p = 0.196 Z = -1.434, p = 0.152
 5 vs std T = 0.040, p = 0.762 Z = -0.460, p = 0.646
 6 vs std T = 0.054, p = 0.689 Z = -0.555, p = 0.579
mpegaudio overall F = 0.966, p = 0.442
 2 vs std T = 0.017, p = 0.345 Z = -1.044, p = 0.296
 3 vs std T =0.001, p = 0.978 Z = -0.122, p = 0.903
 4 vs std T = 0.022, p = 0.212 Z = -1.234, p = 0.217
 5 vs std T = 0.014, p = 0.420 Z = -0.759, p = 0.448
 6 vs std T = -0.010, p = 0.578 Z = -0.911, p = 0.362
Scimark.fft.large overall F = 0.911, p = 0.477
 2 vs std T = -0.088, p = 0.343 Z = -1.001, p = 0.317
 3 vs std T = -0.127, p = 0.175 Z = -1.569, p = 0.117

6

 4 vs std T = -0.187, p = 0.047 Z = -2.097, p = 0.036
 5 vs std T = -0.062, p = 0.503 Z = -0.622, p = 0.534
 6 vs std T = -0.105, p = 0.264 Z = -0.920, p = 0.358
Scimark.fft.small overall F = 0.670, p = 0.647
 2 vs std T = 1.490, p = 0.293 Z = -1.109 p = 0.267
 3 vs std T = 2.228, p = 0.117 Z = -1.718 p = 0.086
 4 vs std T = 0.594, p = 0.674 Z = -0.568, p = 0.570
 5 vs std T = 1.704, p = 0.229 Z = -0.947, p = 0.344
 6 vs std T = 0.817, p = 0.563 Z = -0.730, p = 0.465
Scimark.lu.large overall F = 0.910, p = 0.477
 2 vs std T = -0.291, p = 0.476 Z = -0.677, p = 0.499
 3 vs std T = -0.256, p = 0.530 Z = -0.311, p = 0.756
 4 vs std T = 0.071, p = 0.862 Z = -0.257, p = 0.797
 5 vs std T = -0.644, p = 0.116 Z = -1.597, p = 0.110
 6 vs std T = 0.040, p = 0.923 Z = -0.421, p = 0.674
Scimark.lu.small overall F = 1.253, p = 0.289
 2 vs std T = -0.376, p = 0.153 Z = -1.109, p = 0.267
 3 vs std T = -0.499, p = 0.059 Z = -1.935, p = 0.053
 4 vs std T = -0.402, p = 0.127 Z = -1.299, p = 0.194
 5 vs std T = -0.043, p = 0.870 Z = -0.460, p = 0.646
 6 vs std T = -0.162, p = 0.535 Z = -0.676, p = 0.499
Scimark.monte_carlo overall F = 0.611, p = 0.691
 2 vs std T = 0.007, p = 0.983 Z = -0.095, p = 0.924
 3 vs std T = 0.322, p = 0.334 Z = -0.354 p = 0.723
 4 vs std T = 0.345, p = 0.301 Z = -1.404, p = 0.160
 5 vs std T = 0.304, p = 0.362 Z = -0.476, p = 0.634
 6 vs std T = -0.035, p = 0.915 Z = -1.413, p = 0.158
Scimark.sor.large overall F = 2.575, p = 0.030
 2 vs std T = 0.000, p = 0.951 Z = -0.138, p = 0.891
 3 vs std T = 0.003, p = 0.667 Z = -0.625, p = 0.532
 4 vs std T = 0.009, p = 0.270 Z = -2.065, p = 0.039
 5 vs std T = -0.018, p = 0.029 Z = -1.720, p = 0.085
 6 vs std T = 0.003, p = 0.713 Z = -0.636, p = 0.525
Scimark.sor.small overall F = 0.702, p = 0.623
 2 vs std T = -0.001, p = 0.975 Z = -0.068, p = 0.946
 3 vs std T = 0.018, p = 0.578 Z = -0.636, p = 0.525
 4 vs std T = -0.002, p = 0.938 Z = -0.108, p = 0.914
 5 vs std T = -0.033, p = 0.302 Z = -0.853, p = 0.394
 6 vs std T = -0.027, p = 0.405 Z = -0.474, p = 0.635
Scimark.sparse.large overall F = 1.068, p = 0.382
 2 vs std T = 0.453, p = 0.029 Z = -2.301, p = 0.021
 3 vs std T = 0.190, p = 0.355 Z = -2.570, p = 0.010
 4 vs std T = 0.303, p = 0.141 Z = -1.773 p = 0.076
 5 vs std T = 0.197, p = 0.339 Z = -1.908, p = 0.056
 6 vs std T = 0.260, p = 0.206 Z = -2.408, p = 0.016
Scimark.sparse.small overall F = 0.912, p = 0.476
 2 vs std T = -0.079, p = 0.087 Z = -2.194, p = 0.028
 3 vs std T = -0.073, p = 0.114 Z = -1.245, p = 0.213
 4 vs std T = -0.041, p = 0.376 Z = -1.286, p = 0.198
 5 vs std T = -0.023, p = 0.611 Z = -0.054, p = 0.957
 6 vs std T = -0.064, p = 0.168 Z = -1.624, p = 0.104
serial overall F = 2.133, p = 0.066
 2 vs std T = -0.763, p = 0.016 Z = -2.083, p = 0.037

7

 3 vs std T = 0.044, p = 0.887 Z = -0.365, p = 0.715
 4 vs std T = -0.186, p = 0.553 Z = -0.555, p = 0.579
 5 vs std T = -0.345 p = 0.272 Z = -0.785, p = 0.433
 6 vs std T = 0.088, p = 0.778 Z = -0.108, p = 0.914
sunflow overall F = 1.196 p = 0.315
 2 vs std T = -0.028, p = 0.857 Z = -0.474, p = 0.636
 3 vs std T = 0.041, p = 0.797 Z = -0.487, p = 0.626
 4 vs std T = -0.093, p = 0.556 Z = -0.839, p = 0.402
 5 vs std T = -0.295, p = 0.064 Z = -1.488, p = 0.137
 6 vs std T = -0.003, p = 0.982 Z = -0.419, p = 0.675
Xml.validation overall F = 0.907, p = 0.479
 2 vs std T = -0.370, p = 0.319 Z = -1.461, p = 0.144
 3 vs std T = -0.017, p = 0.964 Z = -0.406, p = 0.685
 4 vs std T = -0.188, p = 0.611 Z = -0.406, p = 0.685
 5 vs std T = 0.367, p = 0.369 Z = -1.055, p = 0.291
 6 vs std T = -0.155, p = 0.676 Z = -0.730, p = 0.465

So, in this table, for each benchmark, we have the results of two analyses.

The first one, Analysis of Variance (ANOVA), assumes the data are normally
distributed. It tests, first, whether the mean bops differs at all between any of the
different “tests” (std, etc). that is the F statistic, with its p-value. Next, I did a contrast
between std and each of the other “tests”. For each of these comparisons, we have
a t statistic and its p-value. So, for xml.validation, the overall F test shows no
difference between means (p = 0.479 > 0.05), and none of the pairwise comparisons
with std are significant.

The last column gives the results of the non-parametric tests (not assuming
normality). We did the Mann-Whitney U test, which is also called the Wilcoxon rank
sum test. Here we don’t have an overall comparison (like the F test), we just have
the 5 pairwise comparisons, each with a Z statistic and its p-value.

There’re a lot of p-values here. The best thing is to look for patterns. Where there
are differences are they more likely to occur with different benchmarks, or with
different “tests”.

