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Abstract

The paper proposes an approach for stable extraction of
the skeleton of a polygonal surface and detection of sur-
face features, ridges and ravines, corresponding to skeletal
edges. The approach adapts the three-dimensional Voronoi
diagram technique [3] for skeleton extraction, explores the
singularity theory for ridge and ravine detection [8], and
combines several filtering methods for skeleton denoising
and for selecting perceptually salient ridges and ravines.

Rather than extract the skeleton as a CW-complex, we
approximate it by a two-sided surface. It allows us to
use standard mesh editing tools for skeleton denoising and
achieve stable extraction of the ridges and ravines.

Keywords: polygonal surface, 3D Voronoi diagram,
skeleton, ridges and ravines.

1. Introduction

The skeleton of a 3D surface is the closure of the set
of points with more than one closest point on the surface.
Mathematically speaking, given an oriented surface, the
skeleton is formed by the set of singularities of the signed
distance function from the surface [6]. Thus we distinguish
two skeletons of an oriented surface, the inner skeleton and
the outer skeleton (one of them may be empty, for example,
for a surface bounding a convex figure).

In this paper, we develop an approach for stable extrac-
tion of the skeleton of a surface approximated by polygonal
mesh and detection of surface features (ridges and ravines)
corresponding to skeletal edges, see Fig. 1. Our approach
adapts the three-dimensional Voronoi diagram technique [3]
for skeleton extraction, explores the singularity theory for
ridge and ravine detection [8], and combines several filter-
ing methods for skeletal noise reduction and for selecting
perceptually salient ridges and ravines.

The skeleton (or medial axis) was originally invented by
Blum [13, 12] for 2D shapes and since than has been ex-

Fig. 1. Mannequin head model, its inner skeleton, andsurfa
e features, ridges (white) and ravines (bla
k)
orresponding to skeletal edges.
tensively used for image processing and pattern recognition
purposes. The skeleton provides us with symmetry-based
shape representation and has been also studied in connec-
tion with human shape perception theories [12], [20].

In 3D, the skeleton has been recently studied in connec-
tion with a research on shape organization [15], analysis of
3D images [17], and used for shape manipulation purposes
[22, 11].

Robust skeletonizing 3D shapes represented by polygo-
nal meshes is a difficult problem because small shape per-
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turbations may result in large changes of the skeleton struc-
ture. Several algorithms based on the 3D Voronoi diagram
were recently proposed [23, 3, 2, 4] (see also references
therein). The skeleton was reconstructed as a polygonal
CW-complex and many tricks were proposed in order to ex-
tract the skeleton topology correctly and achieve computa-
tional stability [23, 4].

Our approach for skeleton extraction is also based on the
3D Voronoi diagram. However, in contrast to the previous
works, we do not extract the skeleton as a CW-complex.
Instead we approximate the skeleton by a two-sided surface.
It allows us to use standard mesh editing tools for skeleton
denoising.

Mathematically speaking, the skeleton of a surface in
3D is a CW-complex, a geometric figure constructed from
curvelinear polygons (cells) by gluing and pasting them to-
gether along their edges such that vertices are sewn to ver-
tices and whole edges are sewn to whole edges. The skele-
ton can be defined as the set of singularities of the distance
function from the surface [6]. For a generic surface, the
skeleton consists of points whose small neighborhoods on
the skeleton are topologically equivalent to a disk (inner
skeleton point), a half-disk (skeletal edge point), a disc sewn
with a quarter-disk, a disc sewn with a half-disk, and a disc
sewn with three quarter-disks [6]. See Fig. 2.

complex
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Fig. 2. Singularities of distan
e fun
tion from generi
surfa
e for CW-
omplex whi
h has �ve types of topo-logi
ally di�erent points.
The skeletal edges correspond to surface curves, ridges

and ravines, at which the surface bends sharply [6], see
Fig. 3. The ridges and ravines form a subset of the extrema
of the principal curvatures along their principal directions
[25, 5, 8]

The ridges and ravines are important surface descriptors.
Detection of them is difficult because of their non-local na-
ture. Several methods were proposed for detection of their
local counterparts defined via curvature extrema on surfaces
approximated by triangle meshes [19, 9, 24]. However cur-
vature extrema detection is not a simple task because it
involves estimation of high-order surface derivatives and
work is in progress to achieve stable detection of curvature
extrema surface features [21]. So there is a need in a sim-
ple and reliable method for stable detection of ridges and
ravines on polygonal surfaces.

skeleton su
rfa

ce

skeletal edges   ridge
(ravine)

Fig. 3. It is natural to de�ne ridges and ravines assurfa
e 
urves 
orresponding to skeletal edges.
In this paper, we propose such a method. After extracting

the skeleton (skeletal surface) we use the Laplacian smooth-
ing scheme for skeleton denoising and a statistical analysis
of the skeletal edges for selecting perceptually salient ridges
and ravines.

2. Voronoi Vertices and Skeleton

Given a set of points called sites innD space, the
Voronoi diagram of the set is a partition of the space into re-
gions (Voronoi regions), each of which consists of the space
points closer to one particular site than to any other site.
Each Voronoi region is a convex polytope, and its vertices
are called Voronoi vertices. Each Voronoi vertex is equidis-
tant fromn+1 or more original points. Let us recall that the
skeleton of a hypersurface innD is the closure of the set of
points with more than one closest point on the hypersurface.

Thus we can expect that if the original points are uni-
formly and densely distributed along a given hypersurface,
the Voronoi vertices will provide a good approximation of
the skeleton. It turns out to be true in2D, see Fig. 4 for
a set of points uniformly distributed along a2D curve and
associated Voronoi diagram. However innD, only a sub-

Fig. 4. Voronoi diagram of set of points uniformlydistributed along 
urve.
set of the Voronoi vertices approximate the skeleton [3, 2].
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The left image of Fig. 5 depicts a set of points distributed
uniformly along an ellipsoid and the Voronoi vertices of the
set. The skeleton of an ellipsoid consists of an ellipse and its
inner part located inside the ellipsoid. Thus many Voronoi
vertices are not located near the skeleton.

Fig. 5. Left: Points uniformly distributed along ellip-soid and asso
iated Voronoi verti
es. Right: Pointsuniformly distributed along ellipsoid and Voronoipoles.
A simple procedure for selecting proper Voronoi vertices

of a given set of points distributed along a surface was pro-
posed in [3]. For each point let us consider its associated
Voronoi region and select the Voronoi poles, two vertices
of the region farthest from the point, one on either side. It
turns out that the poles are located near the skeleton of the
surface. Moreover if the initial set of points is dense enough
the poles provide a good approximation of the skeleton [3]
(for a rigorous mathematical study see [2]).

The right image of Fig. 5 shows the Voronoi poles asso-
ciated with a set of points uniformly distributed along an
ellipsoid. Note how good the poles approximate the skele-
ton.

The skeleton of a closed surface consists of two parts.
Consequently, the Voronoi poles form two clouds of points.
Fig. 6 shows the clouds of points formed by the inner and
outer Voronoi poles for the Cyberware Venus head model.

3. Skeleton Reconstruction from Voronoi Poles

We now want to reconstruct the skeleton from the set
of Voronoi poles. Unfortunately popular computational ge-
ometry algorithms for shape reconstruction from a cloud
of points [3, 10, 7, 1] do not provide us with a reliable
reconstruction of the skeleton because of its CW-complex
nature. For example, Fig. 7 presents reconstruction of the
inner skeleton of the Mannequin head model by the Crust
algorithm. The algorithm fails to reconstruct the skeleton
properly near non-manifold points. The anti-crust algorithm
developed for 2D skeleton reconstruction [16] (see also ref-
erences therein) also produces poor results in 3D. Moreover
fairing of the skeleton given as a CW-complex would be a
complex procedure [18].

Fig. 6. Cyberware Venus head model and 
louds ofpoints formed by inner and outer Voronoi poles (dif-ferent s
ales are used).

Fig. 7. Re
onstru
tion of inner skeleton of Mannequinhead model by Crust algorithm. Note many holesnear non-manifold skeleton points.
All this motivates us to give up with CW-complex skele-

ton representation and instead to reconstruct the skeletonas
a two-sided surface (with possible self-intersections). Our
idea is extremely simple. Given a surface approximated by a
triangle mesh, two Voronoi poles are connected by an edge
if and only if their corresponding mesh vertices are con-
nected by a mesh edge, see Fig. 8. So each mesh triangle
corresponds to a triangle made by associated Voronoi poles.

Fig. 9 shows the inner skeleton of the Mannequin head
model. The skeleton is reconstructed as a two-sided surface.

A good approximation of the skeleton by the Voronoi
poles is achieved when the original mesh is dense enough.
So for sparse meshes we use several rounds of the Loop sub-
division in order to obtain a sufficiently dense mesh. Fig. 10
demonstrates how the skeleton reconstruction quality de-
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an original surface

a skeleton of the surface

original points

Voronoi polesFig. 8. Two Voronoi poles are 
onne
ted by an edgeif and only if their 
orresponding mesh verti
es are
onne
ted by a mesh edge.

Fig. 9. Mannequin head inner skeleton re
onstru
tedfrom Voronoi poles as two-sided surfa
e.
pends on the mesh density of the original surface.

4. Detection of Ridges and Ravines

Given a surface and its skeleton, we want to detect
surface features, ridges and ravines, corresponding to the
skeletal edges, as seen in Fig. 3. Since we reconstructed
the skeleton as a two-sided polygonal surface (skeletal sur-
face), the ridges and ravines correspond to sharp edges of
the skeletal surface.

Let t1 andt2 be triangles of the skeletal surface sharing
a common edgee. We orient the skeletal surface by the unit
normal directed toward the original surface. Letn1 and n2
be the orientation normals att1 and t2, respectively. See
Fig. 11.

We considere as a sharp edge if�, the angle between the
normals, satisfies�1 � 
os� = n1 � n2 � T;
whereT is a threshold.

Fig. 10. Left: Original mannequin head point dataset(689 points) and inner skeleton re
onstru
ted fromVoronoi poles. Right: mannequin head point datasetafter two Loop subdivisions (10,883 points) and innerskeleton.
Fig. 11. Edge e is sharp if n1 � n2 is 
lose to �1 where
n1 and n2 are orientation normals of two adja
enttriangles t1 and t2 sharing e.
We use a statistical approach in order to chooseT . Con-

sider the histogram of
os� over all the inner edges of
the skeletal surface. For example, Fig. 12 presents the his-
togram corresponding to the inner skeletal surface of the
mannequin head model. As expected, the skeletal surface
mostly consists of flat parts connected by sharp edges. Let
us define the thresholdT analysing the histogram of
os�.
For example, one can chooseT such that for 3 percent of
edges�1 � 
os� < T . Fig. 13 visualizes only those
edges of the inner skeleton of the mannequin head model
for which�1 � 
os� < T3%.

In order to improve the connectivity between sharp edges
we use a hysteresis thresholding idea introduced in [14]. We
choose two thresholdsT3% andT5% at the 3rd and 5th per-
centiles of the edge-sharpness data for the entire skeletal
surface, i.e.,T5% is chosen so that for5 percent of edges
os� is below that value. Let us call the edges satisfying
os� < T3% the strong sharp edges and the edges satisfy-
ing 
os� < T5% the weak sharp edges. We keep a con-
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Fig. 12. Histogram of 
os� for inner skeleton of man-nequin head model.

Fig. 13. 3% edges from left side of histogram of 
os�.
nected chain of weak sharp edges only if the chain contains
at least one strong sharp edge. Fig. 14 demonstrates how the
hysteresis thresholding improves the connectivity of sharp
edges.

Since the skeleton is very sensitive to small perturba-
tions of the geometry of the original surface, we smooth
the skeletal surface by the Laplacian smoothing flow which
repeatedly and simultaneously moves each mesh vertex by
a displacement equal to a positive scale factor times the dif-
ference between the average of the neighboring vertices and
the vertex itself.

Laplacian smoothing improves the appearance of the
skeletal surface, as seen in Fig. 15.

Unfortunately Laplacian smoothing destroys sharp edges
of the skeletal surface, as seen in Fig. 16. So we have
to strengthen the hysteresis thresholding conditions, see
Fig. 17.

In order to achieve stable detection of perceptually
salient ridges and ravines we use also another filtering pro-

Fig. 14. Hysteresis thresholding with T3% and T5% isused to a
hieve better 
onne
tivity of sharp edges.

Fig. 15. Mannequin head inner skeleton smoothed byLapla
ian smoothing 
ow.
cedure based on a simple statistical analysis of the distances
between the vertices of sharp edges and their corresponding
vertices on the original surface. Local curvature analysis
[5, 9] shows that the most salient ridges and ravines of the
surface correspond to skeletal edges closest to the surface.
So we specify a thresholdTdist and keep only those ver-
tices of sharp skeletal edges, for which the distance is be-
low Tdist. We computeTdist independently for the inner
and outer skeletons. To chooseTdist for the inner skele-
ton, we construct the histogram of the distances computed
for the vertices of the edges of the inner skeleton and se-
lectTdist such that40% percent of distance is belowTdist.
Fig. 18 demonstrate advantages of this simple distance fil-
tering scheme.

Although we demonstrated our technique using a sim-
ple mannequin head model, it works well for much more
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Fig. 16. Histogram of 
os� for inner skeleton of man-nequin head model smoothed by Lapla
ian smoothing
ow.

Fig. 17. Hysteresis thresholding with T1% and T3% isused to dete
t sharp edges of smoothed inner skeletonof mannequin head model.
complex meshes. Fig. 19 shows ridges and ravines detected
on the Stanford bunny model and Cyberware Venus head
model.

5. Conclusion

We proposed an approach for stable extraction of the
skeleton of a surface approximated by polygonal mesh and
detection salient ridges and ravines. Our method for skele-
ton extraction is based on the 3D Voronoi diagram. How-
ever, in contrast to the previous works, we do not extract
the skeleton as a CW-complex. Instead we approximate the
skeleton by a two-sided surface. It allows us to use stan-
dard mesh editing tools for skeleton denoising. We also
apply statistical filtering methods for selecting perceptually
salient ridges and ravines.

Fig. 18. Ridges (white) and ravines (bla
k) dete
tedon mannequin head model after hysteresis threshold-ing was applied to sele
t sharp skeletal edges. Left:no surfa
e smoothing was done. Middle: Lapla
iansmoothing was applied. Right: Lapla
ian smoothingand distan
e-based �ltering were used; 40% distan
ethreshold is used for inner skeletal edges and 50%distan
e threshold is used for outer skeletal edges.

Fig. 19. Salient ridges (white) and ravines (bla
k) de-te
ted on 
omplex polygonal models.
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