A 3D Voronoi-based Skeleton and Associated Surface Features
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Abstract

The paper proposes an approach for stable extraction of
the skeleton of a polygonal surface and detection of sur-
face features, ridges and ravines, corresponding to skkelet
edges. The approach adapts the three-dimensional Voronoi
diagram technique [3] for skeleton extraction, explores th
singularity theory for ridge and ravine detection [8], and
combines several filtering methods for skeleton denoising
and for selecting perceptually salient ridges and ravines.

Rather than extract the skeleton as a CW-complex, we €
approximate it by a two-sided surface. It allows us to
use standard mesh editing tools for skeleton denoising and
achieve stable extraction of the ridges and ravines.

Keywords. polygonal surface, 3D Voronoi diagram,
skeleton, ridges and ravines.

1. Introduction

The skeleton of a 3D surface is the closure of the set
of points with more than one closest point on the surface.
Mathematically speaking, given an oriented surface, the
skeleton is formed by the set of singularities of the signed
distance function from the surface [6]. Thus we distinguish
two skeletons of an oriented surface, the inner skeleton and ~ Fig. 1. Mannequin head model, its inner skeleton, and
the outer skeleton (one of them may be empty, for example, ~surface features, ridges (white) and ravines (black)
for a surface bounding a convex figure). corresponding to skeletal edges.

In this paper, we develop an approach for stable extrac-
tion of the skeleton of a surface approximated by polygonal tensively used forimage processing and pattern recognitio
mesh and detection of surface features (ridges and ravinespurposes. The skeleton provides us with symmetry-based
corresponding to skeletal edges, see Fig.1. Our approactghape representation and has been also studied in connec-
adapts the three-dimensional Voronoi diagram technigle [3 tion with human shape perception theories [12], [20].
for skeleton extraction, explores the singularity theawy f In 3D, the skeleton has been recently studied in connec-
ridge and ravine detection [8], and combines several filter- tion with a research on shape organization [15], analysis of
ing methods for skeletal noise reduction and for selecting 3D images [17], and used for shape manipulation purposes
perceptually salient ridges and ravines. [22, 11].

The skeleton (or medial axis) was originally invented by ~ Robust skeletonizing 3D shapes represented by polygo-
Blum [13, 12] for 2D shapes and since than has been ex-nal meshes is a difficult problem because small shape per-




turbations may result in large changes of the skeletonstruc ~ skeletal edges

ture. Several algorithms based on the 3D Voronoi diagram

were recently proposed [23, 3, 2, 4] (see also references

therein). The skeleton was reconstructed as a polygonal

CW-complex and many tricks were proposed in order to ex- skeleton
tract the skeleton topology correctly and achieve computa- -

tional stability [23, 4].

Our approach for skeleton extraction is also based on the
3D Voronoi diagram. However, in contrast to the previous
works, we do not extract the skeleton as a CW-complex.
Instead we approximate the skeleton by a two-sided surface.
It allows us to use standard mesh editing tools for skeleton
denoising.

Mathematically speaking, the skeleton of a surface in ) )
3D is a CW-complex, a geometric figure constructed from ' this paper, we propose such a method. After extracting
curvelinear polygons (cells) by gluing and pasting them to- Fhe skeleton (skeletal surface)'wle use the Lap.latl:lan smooth
gether along their edges such that vertices are sewn to verind scheme for skeleton denoising and a statistical arslysi
tices and whole edges are sewn to whole edges. The skele2f the skeletal edges for selecting perceptually salieiges
ton can be defined as the set of singularities of the distanceand ravines.
function from the surface [6]. For a generic surface, the
skeleton consists of points whose small neighborhoods on2. \Voronoi Vertices and Skeleton
the skeleton are topologically equivalent to a disk (inner

skeleton point), a half-disk (skeletal edge point), a désers Given a set of points called sites imD space, the
with a quarter-disk, a disc sewn with a half-disk, and a disc Voronoi diagram of the set is a partition of the space into re-
sewn with three quarter-disks [6]. See Fig. 2. gions (Voronoi regions), each of which consists of the space

points closer to one particular site than to any other site.
Each Voronoi region is a convex polytope, and its vertices

are called Voronoi vertices. Each Voronoi vertex is equidis
<> tant fromn + 1 or more original points. Let us recall that the
complex skeleton of a hypersurface inD is the closure of the set of
- points with more than one closest point on the hypersurface.

Thus we can expect that if the original points are uni-
formly and densely distributed along a given hypersurface,
the Voronoi vertices will provide a good approximation of
the skeleton. It turns out to be true D, see Fig. 4 for
a set of points uniformly distributed along2d curve and
associated Voronoi diagram. HowevernitD, only a sub-

Fig. 3. It is natural to define ridges and ravines as
surface curves corresponding to skeletal edges.

Fig. 2. Singularities of distance function from generic
surface for CW-complex which has five types of topo-
logically different points.

The skeletal edges correspond to surface curves, ridges
and ravines, at which the surface bends sharply [6], see
Fig. 3. The ridges and ravines form a subset of the extrema
of the principal curvatures along their principal directso
[25, 5, 8]

The ridges and ravines are important surface descriptors.
Detection of them is difficult because of their non-local na-
ture. Several methods were proposed for detection of their
local counterparts defined via curvature extrema on susface
approximated by triangle meshes [19, 9, 24]. However cur-
vature extrema detection is not a simple task because it
involves estimation of high-order surface derivatives and
work is in progress to achieve stable detection of curvature
extrema surface features [21]. So there is a need in a sim-
ple and reliable method for stable detection of ridges and
ravines on polygonal surfaces. set of the Voronoi vertices approximate the skeleton [3, 2].

Fig. 4. Voronoi diagram of set of points uniformly
distributed along curve.



The left image of Fig. 5 depicts a set of points distribute
uniformly along an ellipsoid and the Voronoi vertices of th
set. The skeleton of an ellipsoid consists of an ellipse &nd
inner part located inside the ellipsoid. Thus many Voron
vertices are not located near the skeleton.

Fig. 6. Cyberware Venus head model and clouds of

points formed by inner and outer Voronoi poles (dif-
ferent scales are used).

Fig. 5. Left: Points uniformly distributed along ellip-
soid and associated Voronoi vertices. Right: Points
uniformly distributed along ellipsoid and Voronoi
poles.

A simple procedure for selecting proper Voronoi vertices
of a given set of points distributed along a surface was pro-
posed in [3]. For each point let us consider its associated
Voronoi region and select the Voronoi poles, two vertices
of the region farthest from the point, one on either side. It
turns out that the poles are located near the skeleton of the
surface. Moreover if the initial set of points is dense erfoug
the poles provide a good approximation of the skeleton [3]
(for a rigorous mathematical study see [2]).

The right image of Fig. 5 shows the Voronoi poles asso-
ciated with a set of points uniformly distributed along an
ellipsoid. Note how good the poles approximate the skele-  Fig. 7. Reconstruction of inner skeleton of Mannequin
ton. head model by Crust algorithm. Note many holes

The skeleton of a closed surface consists of two parts. near non-manifold skeleton points.

Consequently, the Voronoi poles form two clouds of points.
Fig. 6 shows the clouds of points formed by the inner and
outer Voronoi poles for the Cyberware Venus head model.

. . All this motivates us to give up with CW-complex skele-
3. Skeleton Reconstruction from Voronoi Poles ton representation and instead to reconstruct the skedeton

We now want to reconstruct the skeleton from the set & two-sided surface (Wlth pOSSible Self'intersectionsm! (0]

of Voronoi poles. Unfortunately popular computational ge- ideais extremely simple. Given a surface approximated by a
ometry algorithms for shape reconstruction from a cloud triangle mesh, two Voronoi poles are connected by an edge
of points [3, 10, 7, 1] do not provide us with a reliable if and only if their corresponding mesh vertices are con-
reconstruction of the skeleton because of its CW-complex nected by a mesh edge, see Fig.8. So each mesh triangle
nature. For example, Fig.7 presents reconstruction of thecorrespondsto a triangle made by associated Voronoi poles.
inner skeleton of the Mannequin head model by the Crust ~ Fig. 9 shows the inner skeleton of the Mannequin head
algorithm. The algorithm fails to reconstruct the skeleton model. The skeleton is reconstructed as a two-sided surface
properly near non-manifold points. The anti-crust aldorit A good approximation of the skeleton by the Voronoi
developed for 2D skeleton reconstruction [16] (see also ref poles is achieved when the original mesh is dense enough.
erences therein) also produces poor results in 3D. MoreoverSo for sparse meshes we use several rounds of the Loop sub-
fairing of the skeleton given as a CW-complex would be a division in order to obtain a sufficiently dense mesh. Fig. 10
complex procedure [18]. demonstrates how the skeleton reconstruction quality de-



an original surface

@ original points

O Voronoi poles

Fig. 8. Two Voronoi poles arexcon
if and only if their corresponding mesh vertices are

connected by a mesh edge.
a skeleton of the surface

Fig. 10. Left: Original mannequin head point dataset
(689 points) and inner skeleton reconstructed from
Voronoi poles. Right: mannequin head point dataset
after two Loop subdivisions (10,883 points) and inner
skeleton.

Fig. 9. Mannequin head inner skeleton reconstructed

. . Fig. 11. Edge € is sharp if Ny - Ny is close to —1 wh
from Voronoi poles as two-sided surface. ' geceis S_ arp 1. 17 T2 18 close to W ere
Ny and Ny are orientation normals of two adjacent

triangles ¢; and 75 sharing e.

pends on the mesh density of the original surface.

. . . We use a statistical approach in order to chdBs€on-
4. Detection of Ridges and Ravines sider the histogram ofos ¢ over all the inner edges of
Given a surface and its skeleton. we want to detect the skeletal surface. For example, Fig. 12 presents the his-

surface features, ridges and ravines, corresponding to thd®9ram corresponding to the inner skeletal surface of the
skeletal edges, as seen in Fig.3. Since we reconstructed’@n€quin head model. As expected, the skeletal surface

the skeleton as a two-sided polygonal surface (skeletal sur mostly consists of flat parts connected by sharp edges. Let

face), the ridges and ravines correspond to sharp edges ofS define the thresholfl analysing the histogram ebs ¢.
the skeletal surface. For example, one can choo%esuch that for 3 percent of

Lett; andt, be triangles of the skeletal surface sharing €996s—1 < cos¢ < T. Fig.13 visualizes only those
a common edge. We orient the skeletal surface by the unit ©d9€s of the inner skeleton of the mannequin head model

normal directed toward the original surface. Lrgt and n, forwhich —1 < cos ¢ < Tsy.

be the orientation normals &t andt., respectively. See In order to improve the connectivity between sharp edges
Fig. 11. we use a hysteresis thresholding idea introduced in [14]. We
We consider as a sharp edgedf, the angle between the ~ ch00se two thresholdg,y; andTsy, at the 3rd and Sth per-
normals, satisfies centiles of the edge-sharpness data for the entire skeletal
surface, i.e.I5y is chosen so that foF percent of edges
—1<cos¢p=n;-ny<T, cos ¢ is below that value. Let us call the edges satisfying
cos ¢ < Tyy the strong sharp edges and the edges satisfy-
whereT is a threshold. ing cos ¢ < Tsy the weak sharp edges. We keep a con-
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Fig. 12. Histogram of cos ¢ for inner skeleton of man-
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nequin head model.

Fig. 14. Hysteresis thresholding with T3e; and Tsq is
used to achieve better connectivity of sharp edges.
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Fig. 13. 3% edges from left side of histogram of cos¢.

Fig. 15. Mannequin head inner skeleton smoothed by

) ] ) ) Laplacian smoothing flow.
nected chain of weak sharp edges only if the chain contains

at least one strong sharp edge. Fig. 14 demonstrates how the

hysteresis thresholding improves the connectivity of ghar

edges. cedure based on a simple statistical analysis of the dietanc
Since the skeleton is very sensitive to small perturba- petween the vertices of sharp edges and their corresponding

tions of the geometry of the original surface, we smooth yertices on the original surface. Local curvature analysis

the skeletal surface by the Laplacian smoothing flow which [5 9] shows that the most salient ridges and ravines of the

repeatedly and simultaneously moves each mesh vertex bysyrface correspond to skeletal edges closest to the surface

a displacement equal to a positive scale factor times the dif gg we specify a threshold,;,; and keep only those ver-

ference between the average of the neighboring vertices andices of sharp skeletal edges, for which the distance is be-

the vertex itself. low Tyis. We computeTy;s, independently for the inner
Laplacian smoothing improves the appearance of theand outer skeletons. To choo%g; for the inner skele-
skeletal surface, as seen in Fig. 15. ton, we construct the histogram of the distances computed

Unfortunately Laplacian smoothing destroys sharp edgesfor the vertices of the edges of the inner skeleton and se-
of the skeletal surface, as seen in Fig.16. So we havelect Ty;s: such that0% percent of distance is beloW;st .
to strengthen the hysteresis thresholding conditions, seerig. 18 demonstrate advantages of this simple distance fil-
Fig. 17. tering scheme.

In order to achieve stable detection of perceptually  Although we demonstrated our technique using a sim-
salient ridges and ravines we use also another filtering pro-ple mannequin head model, it works well for much more
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Fig. 16. Histogram of cos ¢ for inner skeleton of man-
nequin head model smoothed by Laplacian smoothing
flow.

Fig. 18. Ridges (white) and ravines (black) detected
on mannequin head model after hysteresis threshold-
ing was applied to select sharp skeletal edges. Left:
no surface smoothing was done. Middle: Laplacian
smoothing was applied. Right: Laplacian smoothing
and distance-based filtering were used; 40% distance
threshold is used for inner skeletal edges and 50%
distance threshold is used for outer skeletal edges.

Fig. 17. Hysteresis thresholding with 770, and T3¢ is
used to detect sharp edges of smoothed inner skeleton

of mannequin head model.

complex meshes. Fig. 19 shows ridges and ravines detectel §
on the Stanford bunny model and Cyberware Venus head {
model. =

5. Conclusion

We proposed an approach for stable extraction of the
skeleton of a surface approximated by polygonal mesh and
detection salient ridges and ravines. Our method for skele-
ton extraction is based on the 3D Voronoi diagram. How-
ever, in contrast to the previous works, we do not extract
the skeleton as a CW-complex. Instead we approximate the
skeleton by a two-sided surface. It allows us to use stan-
dard mesh editing tools for skeleton denoising. We also
apply statistical filtering methods for selecting percefitu
salient ridges and ravines.

Fig. 19. Salient ridges (white) and ravines (black) de-
tected on complex polygonal models.
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