
Algorithms for Discrete and Continuous Multicommodity Flow

Network Interdiction Problems

Churlzu Lim

J. Cole Smith

Department of Systems and Industrial Engineering

The University of Arizona

Tucson, AZ 85721

The authors gratefully acknowledge financial support from the Air Force Office of Scientific

Research (F49620-03-1-0477), and from the Office of Naval Research (N66001-01-1-8925).

The authors also thank two anonymous referees and an Associate Editor for their remarks,

which improved the presentation of this paper.

Abstract

We consider a network interdiction problem on a multicommodity flow network,

in which an attacker disables a set of network arcs in order to minimize the maxi-

mum profit that can be obtained from shipping commodities across the network. The

attacker is assumed to have some budget for destroying (or “interdicting”) arcs, and

each arc is associated with a positive interdiction expense. In this paper, we exam-

ine problems in which interdiction must be discrete (i.e., each arc must either be left

alone or completely destroyed), and in which interdiction can be continuous (the ca-

pacities of arcs may be partially reduced). For the discrete problem, we describe a

linearized model for optimizing network interdiction that is similar to previous studies

in the field, and compare it to a penalty model that does not require linearization con-

straints. For the continuous case, we prescribe an optimal partitioning algorithm along

with a heuristic procedure for estimating the optimal objective function value. We

demonstrate on a set of randomly generated test data that our penalty model for the

discrete interdiction problem significantly reduces computational time when compared

to that consumed by the linearization model.

1 Introduction
In the network interdiction problem, a leader (also called as an interdictor), partially or

fully destroys arcs of some network in order to block the follower ’s (also called evader or

enemy) flows, delay the delivery length of a supply, detect a stealth traverse, or decrease

the follower’s profit function. When the partial destruction of an arc is allowed, we refer

to this action as continuous interdiction; otherwise, we call it discrete interdiction. We are

particularly concerned with a multicommodity network flow interdiction problem in which

revenue is generated by the successful shipment of commodities, and costs are incurred due

to arc-flow expenses (see Wood [34] for example). In this problem, the follower makes a

profit by delivering multiple commodities to certain destinations. On the other hand, the

leader attempts to minimize the follower’s profit by destroying arcs, subject to a budget

limitation on the maximum (weighted) number of arcs that can be interdicted. We consider

both discrete and continuous interdiction actions in this paper.

The network interdiction problem has been studied for more than four decades with broad

applicability to military and homeland security operations. Without considering interdiction

costs, Wollmer [33] proposed an algorithm that discretely interdicts a prescribed number of

arcs in a network in order to minimize the follower’s maximal flow. Introducing interdiction

costs for a planar graph, McMasters and Mustin [26] generalized this approach to solve a

typical military operational problem, in which a daily air strike is planned for interdicting

1

an enemy’s supply lines. For a similar situation in which no assumption of graph planarity

is made, Ghare et al. [16] proposed a branch-and-bound method. This problem was fur-

ther studied by Wood [34], who provided an integer programming formulation for a discrete

interdiction problem. This work also contributed an extension of the model to allow for con-

tinuous interdiction, multiple sources and sinks, undirected networks, multiple interdiction

resources, and multiple commodities. In particular, the continuous interdiction algorithm

exploits the fact that dual variables must be binary-valued at optimal dual extreme point

solutions in the context of maximum flows. Since the problem studied in this paper lacks

this binary dual extreme point structure, we must explore a different approach.

Fulkerson and Harding [15] considered maximizing the shortest source-sink path in the

presence of arc-extension costs that have an equivalent context as interdiction costs. They

provided a minimum cost network flow formulation for this problem that can be solved via

network optimization procedures. Instead of restricting the leader’s budget, Golden [18]

introduced a length constraint for the shortest path while minimizing the total interdiction

cost. He presented a minimum cost network flow problem formulation for this problem. More

recently, Israeli and Wood [19] proposed two decomposition algorithms for solving a discrete

interdiction case using so-called super-valid inequalities and set covering master problems.

Washburn and Wood [32] considered the case in which the follower selects a single path to

traverse, while the leader tries to locate a single sentry device on an arc in order to maximize

the probability of detecting the follower’s travel. Starting with a two-person zero-sum game

formulation, they provided a corresponding maximum flow network problem and an optimal

solution recovery scheme for the original game problem. The deterministic interdiction

problem of [34] was extended to a stochastic network interdiction problem by Cormican et

al. [11], in which the leader minimizes the expected maximum flow of the network under

uncertain interdiction success and arc capacities. They provided a two-stage stochastic

integer program, and proposed a sequential approximation algorithm for its solution.

Aside from military and homeland security applications, network interdiction models have

been used in other areas. Assimakopoulos [5] presented an interdiction model for preventing

hospital infections, in which the node set consists of sources, carriers, and entry-points of

infecting organisms. Anandalingam and Apprey [3] considered conflict resolution problems

that allow multiple followers to react to the leader’s decision simultaneously and hierarchi-

cally as leaders and followers. They proposed penalty function approaches for solving these

problems and presented an application to a water conflict resolution problem for a river that

runs through two countries. In this case study, the United Nations plays a role as the leader

(or arbitrator) and two countries act as the followers.

2

Linear multicommodity flow models are well known and have been widely used in practice

due to their broad applicability. Assad [4] and Kennington [20] provided early comprehen-

sive surveys on the solution of multicommodity flow problems and their variants. Some

important approaches to solving large-scale versions of these problems include dual-ascent

[7] and primal-dual algorithms [8], decomposition strategies [23], and basis partitioning ap-

proaches [25]. The use of interior-point algorithms for solving multicommodity flow problems

is addressed in [24]. Whereas most network interdiction studies are concerned with a single

commodity network flow, multicommodity flows are more appropriate in certain situations,

as noted in [34]. It is easy to construct scenarios in which an enemy is transporting multiple

items through a network, but the best practical use of this research might arise in cases

where the follower is trying to ascertain the worst-case scenario that can possibly befall the

network under consideration. For instance, multicommodity flow networks are prevalent

in airline operations, supply chain networks, and telecommunications applications, and the

survivability of these networks is often of paramount importance. One can evaluate the

robustness of a multicommodity network by modeling an intelligent leader as a malicious

enemy using the techniques developed herein.

In this paper, we consider the case in which the leader minimizes the follower’s profit in a

multicommodity flow network. While Wood’s approach in [34] forms the basis for our line

of investigation, we expand on this research in the specific context of multicommodity flow

networks, and provide new insights into methods for solving such problems in both discrete

and continuous interdiction scenarios.

The remainder of this paper is organized as follows. In Section 2, a formal description of

this problem is presented. We first discuss the discrete interdiction case in Section 3 and

propose two formulations for its solution. One formulation is an extension of the discussion

in Wood [34] that provided a linearization approach for minimizing the follower’s maximum

flow, while the second introduces a penalty to the follower’s objective function that eliminates

the leader’s variables from the follower’s constraints. In Section 4, we consider the continuous

interdiction case and present two approaches for optimally solving this problem. One is based

on the bilinear programming formulation that can be solved via various solution techniques

in the literature, and the other method exploits a tailored partitioning technique that permits

an implicit enumeration algorithm. We also propose a heuristic method for solving relatively

large-scale problems that are intractable via an exact solution approach. In Section 5, we

display detailed computational results for the proposed methods, and we conclude our study

in Section 6.

3

2 Problem Description
In this section, we formally describe the multicommodity flow network interdiction problem

(MFNIP). Consider a directed graph G(N, A), where N and A denote index sets of nodes

and arcs, respectively. Suppose that the follower has a set K of commodities to deliver

from their supply nodes to their demand nodes. Each commodity k ∈ K can have multiple

supply nodes, whose set is denoted by Sk. Likewise, let Dk be the set of demand nodes for

commodity k. The maximum supply at node l ∈ Sk is sk
l , and the maximum demand at

node l ∈ Dk is denoted by dk
l . For simplicity, we can create dummy arcs with no flow costs

or rewards, and very large interdiction costs. This set of arcs allows us to claim that all

supplies must be exhausted and all demands must be supplied.

We use a single index h ∈ A to index our arcs. Each arc has a finite flow capacity uh > 0.

The follower receives rewards when delivering commodities to designated destinations. How-

ever, conveying commodities through an arc incurs a flow cost. For a compact presentation

of these rewards and flow costs, we will use a unified value rk
h. All values rk

h for each h ∈ A

and k ∈ K include a (negative) flow cost component when one unit of commodity k is con-

veyed through this arc. If the to-node of h ∈ A is a demand node of commodity k, a positive

reward is added to the flow cost when one unit flow of commodity k is made. Finally, note

that a positive flow of commodity k on an arc h whose from-node is one of destinations of

commodity k implies that the follower uses this destination as a transhipment node to deliver

commodity k to another demand node. Hence, we take back the reward that was gained

when this commodity was delivered to the from-node by subtracting this reward from rk
h.

The leader destroys arcs in order to minimize the follower’s optimal reward, subject to a

budget of B. The complete interdiction of arc h ∈ A incurs a cost of bh. We denote the

leader’s and follower’s decision variables by xh and yk
h, respectively. Variables xh ∀h ∈ A

denote the percentage of arc h destroyed by the leader (i.e., the capacity of arc h is reduced

by xh × 100%, where xh = 1 represents the complete interdiction of h). Follower variables

yk
h represents the follower’s flow of commodity k ∈ K through arc h ∈ A after interdiction is

completed. Let e denote a vector of |A| ones, and let eh denote a unit coordinate vector of

length |A| with a one in the hth position, ∀h ∈ A. Let f(h) and t(h) denote the from-node

and to-node of arc h ∈ A, respectively. Also, we will use FS(i) ≡ {h ∈ A : f(h) = i} and

RS(i) ≡ {h ∈ A : t(h) = i} to denote forward- and reverse-stars of each node i ∈ N . Finally,

let T denote a transpose operator. Now, we may formally state MFNIP as follows.

4

MFNIP:

Minimize
x∈X

maximize
∑

h∈A

∑

k∈K

rk
hy

k
h (1a)

subject to
∑

i∈FS(l)

yk
i −

∑

j∈RS(l)

yk
j = 0 ∀k ∈ K, ∀l ∈ N \ (Sk ∪Dk) (1b)

∑

i∈FS(l)

yk
i −

∑

j∈RS(l)

yk
j = sk

l ∀k ∈ K, ∀l ∈ Sk (1c)

∑

i∈FS(l)

yk
i −

∑

j∈RS(l)

yk
j = −dk

l ∀k ∈ K, ∀l ∈ Dk (1d)

∑

k∈K

yk
h ≤ uh(1− xh) ∀h ∈ A (1e)

yk
h ≥ 0 ∀h ∈ A, ∀k ∈ K, (1f)

where

X ≡
{

x ∈ R|A| :
∑

h∈A

bhxh ≤ B, 0 ≤ xh ≤ 1 ∀h ∈ A

}
. (1g)

The leader’s budget constraint appears in X. The follower’s problem, given fixed values

of x-variables, is a multicommodity flow problem. Constraints (1b-d) enforce commodity

flow balance conditions at each node. The primary difficulty in solving MFNIP arises in the

capacity constraints (1e), where the leader controls arc capacities. Note that if bT e ≤ B,

there exists an optimal solution in which xh = 1 ∀h ∈ A. Also, if bh ≤ 0 for some h ∈ A, we

can always fix xh = 1. Therefore, without loss of generality, we assume that bT e > B and

bh > 0 ∀h ∈ A.

3 Discrete Interdiction
In this section, we assume that arcs are completely destroyed if interdicted, i.e.,

x ∈ XI ≡
{

x :
∑

h∈A

bhxh ≤ B, xh ∈ {0, 1} ∀h ∈ A

}
. (2)

Replacing X by XI from MFNIP, we call the resulting problem BMFNIP (binary MFNIP).

We present two mixed-integer programming formulations for this problem in the following

subsections, in which we exploit the assumption of binariness of the x-variables to overcome

the computational difficulties associated with nonlinear programming.

3.1 Integer Bilinear Reformulation
In this subsection, we reformulate BMFNIP as a mixed-integer bilinear programming prob-

lem. Recall that given any leader solution x̂, the follower’s (or inner) problem is a mul-

ticommodity flow problem. Since each constraint in (1b), (1c), and (1d) corresponds to a

5

node l ∈ N and commodity k ∈ K, let πk
l denote the dual variable associated with one of

these constraints. Furthermore, let φh denote the dual variable associated with (1e) for an

arc h ∈ A. Then, we have the following linear dual of the inner problem.

Minimize
∑

k∈K

∑

l∈Sk

sk
l π

k
l −

∑

k∈K

∑

l∈Dk

dk
l π

k
l +

∑

h∈A

uhφh −
∑

h∈A

uhx̂hφh (3a)

subject to πk
f(h) − πk

t(h) + φh ≥ rk
h, ∀k ∈ K, ∀h ∈ A (3b)

πk
l unrestricted ∀k ∈ K, ∀l ∈ N, φh ≥ 0 ∀h ∈ A. (3c)

Let Θ denote the dual feasible region constrained by (3b) and (3c). Then, BMFNIP can be

formulated as the following mixed-integer bilinear programming problem:

IBLP: Minimize
∑

k∈K

∑

l∈Sk

sk
l π

k
l −

∑

k∈K

∑

l∈Dk

dk
l π

k
l +

∑

h∈A

uhφh −
∑

h∈A

uhxhφh (4a)

subject to x ∈ XI and (π, φ) ∈ Θ. (4b)

IBLP can be solved via standard linearization techniques (see [1, 10, 17, 21, 28] for exam-

ple). One of the simplest techniques is as follows. For each bilinear term xhφh ∀h ∈ A, where

xh is binary and φh is a nonnegative variable with an upper bound of φh, we substitute this

product as a single variable wh = xhφh. To enforce this relationship, we add the following

constraints to the problem:

wh − φh ≤ 0 (5a)

wh − φhxh ≤ 0. (5b)

If xh = 0, then wh cannot be positive, while if xh = 1, then wh is restricted to be no more

than φh. Since the w-variables only appear in the objective function of IBLP, and since their

objective coefficients are negative, then wh will take on its maximum permissible value, which

is given by xhφh. Hence, we need not include the two sets of lower-bounding constraints,

φh + φhxh − wh ≤ φh and wh ≥ 0 ∀h ∈ A, that would usually be required to establish the

desired linearization.

Remark 1. Note that in order to apply this linearization technique, we must obtain upper

bounds on φh ∀h ∈ A. Recall that φh is a shadow price of the arc capacity constraint

yh ≤ uh(1 − xh). Increasing an arc capacity by one unit permits at most one more unit

of flow through the network. Since rk
h ≥ 0 only when the to-node of arc h is a demand

node of commodity k, a simple upper bound on φh can be set as M = maxk∈K{Mk}, where

M
k

= maxh∈RS(Dk){rk
h} for k ∈ K.

6

However, a well-known consideration in improving the tightness of mixed-integer pro-

gramming formulations is to use the smallest valid upper bound values obtainable. An

intermediate tightening scheme considers each individual commodity k ∈ K and forms a

corresponding graph Gk(N, A) in which the distance (or flow cost) of each arc h ∈ A is set

as rk
h. Note that the length of a simple path from a supply node i ∈ Sk to a demand node

j ∈ Dk in the graph Gk represents the profit obtained by delivering one unit of commod-

ity k through this simple path. Let LP k
ij denote the length of a longest simple path, i.e.,

the maximum unit profit when delivering one unit of commodity k from the supply node

i to the demand node j. (This path can be determined in polynomial time due to the ab-

sence of positive-cost cycles in Gk, ∀k ∈ K.) If no path from i ∈ Sk to j ∈ Dk exists, we

simply put LP k
ij = −∞. Then, the total reward increment gained by delivering one more

unit of commodity k is at most M̂k = maxi∈Sk, j∈Dk

{
max{LP k

ij, 0}
}
. Therefore, we have

M̂ = maxk∈K{M̂k} as a valid upper bound on φh ∀h ∈ A.

The strongest possible tightening scheme that we practically recommend attempts to

determine the largest increase in the objective function value due to an increase specifi-

cally in the capacity of arc h ∈ A when routing commodity k ∈ K between each origin

node i ∈ Sk to each destination node j ∈ Dk. However, it is not possible to polynomi-

ally determine the longest simple path between i and j that uses h ∈ A using arc costs

rk
h as given in graph Gk (even without positive-cost cycles), unless P = NP (see [13]).

Instead, we find the length of the longest path from i to f(h) in Gk (LP k
i,f(h)), and the

length of the longest path from t(h) to j in Gk (LP k
t(h),j). We accordingly compute M̃k

h =

maxi∈Sk, j∈Dk

{
max{LP k

i,f(h) + rk
h + LP k

t(h),j, 0}
}

, and if necessary, M̃h = maxk∈K{M̃k
h} ∀h ∈

A and M̃ = maxh∈A{M̃h}.
It is not hard to prove that M ≥ M̂ ≥ M̃ ; however, the amount of computations required

to compute M is less than that required to compute M̂ , which is slightly less than that

required to compute M̃ . We will investigate the computational implications of the use of

these bounds in Section 5. 2

Using any of the foregoing upper bounds on φ as discussed in Remark 1 together with the

simple linearization scheme in (5a,b), we can linearize IBLP as follows.

ILP: Minimize
∑

k∈K

∑

l∈Sk

sk
l π

k
l −

∑

k∈K

∑

l∈Dk

dk
l π

k
l +

∑

h∈A

uhφh −
∑

h∈A

uhwh (6a)

subject to x ∈ XI (6b)

(π, φ) ∈ Θ (6c)

Constraints (5a, b) ∀h ∈ A. (6d)

7

This problem is a linear mixed-integer programming problem that has |N ||K|+2|A| contin-

uous and |A| binary variables, and |A|(|K|+ 2) + 1 structural constraints.

3.2 Penalty Formulation
In this subsection, we present an equivalent reformulation to BMFNIP in which the leader’s

variables appear only in the objective function of the follower’s problem and serve to penalize

the follower’s use of interdicted arcs. Letting Mk
h be some large constant value, consider the

following nonlinear penalty formulation:

NPF:

Minimize
x∈XI

maximize
∑

h∈A

∑

k∈K

(rk
h −Mk

hxh)y
k
h (7a)

subject to
∑

k∈K

yk
h ≤ uh ∀h ∈ A (7b)

Flow balance constraints (1b, c, d, f). (7c)

Lemma 1. Let Mk
h > M̃k

h as described in Remark 1, and for any x̂ ∈ XI , let y(x̂) be

an optimal solution to the follower’s problem in NPF. Then for any x̂ ∈ XI we have that

y(x̂)k
h = 0 ∀k ∈ K if x̂h = 1.

Proof. If y(x̂)k
h > 0 for some k ∈ K, then we have a positive flow of commodity k along

paths that contain arc h. Note that the cumulative reward of one unit of commodity k flow

along any path using arc h cannot exceed M̃k
h . Since Mk

h > M̃k
h , a strictly better feasible

solution exists in which y(x̂)k
h = 0, and in which flows are moved from paths containing arc

h to the dummy arcs in the network that represent the shortage of commodity flows. This

completes the proof. 2

Proposition 1. Let Mk
h > M̃k

h . Given any x̂ ∈ XI , let BMFNIP(x̂) and NPF(x̂) denote the

follower’s problems in BMFNIP and NPF, respectively. Then, BMFNIP(x̂) has an optimal

solution y(x̂) if and only if y(x̂) is optimal to NPF(x̂). Moreover, the optimal objective

function value to BMFNIP(x̂) matches that of NPF(x̂).

Proof. We first show that the optimal objective value to NPF(x̂) is no more than the

optimal objective value to BMFNIP(x̂). Let y(x̂) be an optimal solution to BMFNIP(x̂)

with objective value v?. Since NPF(x̂) is a relaxation of BMFNIP(x̂), y(x̂) is also feasible to

NPF(x̂). Also, we have
∑

h∈A

∑
k∈K(rk

h −Mk
h x̂h)y(x̂)k

h = v? since
∑

h∈A

∑
k∈K rk

hy(x̂)k
h = v?

and Lemma 1 guarantees that
∑

h∈A

∑
k∈K Mk

h x̂hy(x̂)k
h = 0. Hence, the optimal objective

value to NPF(x̂) does not exceed v?.

8

Next, we show that the optimal objective value for BMFNIP(x̂) is no more than the optimal

objective value to NPF(x̂), and thus, that these values are equal. Let y(x̂) be an optimal

solution to NPF(x̂) having objective value v?. Since Lemma 1 guarantees that y(x̂)k
h = 0 for

x̂h = 1, y(x̂) is a feasible solution to BMFNIP(x̂) with objective value
∑

h∈A

∑
k∈K rk

hy(x̂)k
h =

v?, which provides a lower bound on the optimal objective value of BMFNIP(x̂). This

completes the proof. 2

Remark 2. Observe that if Mk
h = M̃k

h for each h ∈ A and k ∈ K, we can only guarantee

that the optimal objective function value for NPF matches that of BMFNIP. From the proof

of Proposition 1, a feasible solution can be obtained by simply decreasing follower flows on

interdicted arcs and restoring the remaining flows on the graph (perhaps via dummy arcs)

to satisfy the flow balance constraints. Hence, we can use M̃k
h as our values of Mk

h , ∀h, k.

Naturally, if M̃k
h has not been computed, we can validly use any upper bound on M̃k

h in its

place, such as M̂k or M
k

as given in Remark 1. 2

Given x̂ ∈ XI , NPF(x̂) is a linear program with a bounded feasible region. Hence, there

exists an extreme point optimal solution to NPF(x̂). A key feature of this problem is that the

feasible region of NPF(x) does not change for different values of x. Hence, when solving NPF,

we could directly apply the Benders cutting plane algorithm, in which the master program is a

mixed-integer programming problem having binary variables x and an additional continuous

variable, and the corresponding subproblem is a continuous multicommodity flow problem.

However, note that we would need to solve a mixed-integer master problem in which Benders

cuts are added at each iteration. Therefore, the cutting plane algorithm tends to be slow

for this type of problems (see [27]). (We observed a slow convergence of this behavior in a

preliminary computational investigation.)

Instead of solving NPF via the cutting plane method, we investigate the dual of NPF(x̂):

Minimize
∑

k∈K

∑

l∈Sk

sk
l π

k
l −

∑

k∈K

∑

l∈Dk

dk
l π

k
l +

∑

h∈A

uhφh (8a)

subject to πk
f(h) − πk

t(h) + φh ≥ rk
h −Mk

h x̂h, ∀k ∈ K, ∀h ∈ A (8b)

πk
l unrestricted ∀k ∈ K, ∀l ∈ N, φh ≥ 0 ∀h ∈ A. (8c)

9

Releasing x̂ as variables x, we have the following mixed-integer linear programming problem

that is equivalent to NPF.

PF: Minimize
∑

k∈K

∑

l∈Sk

sk
l π

k
l −

∑

k∈K

∑

l∈Dk

dk
l π

k
l +

∑

h∈A

uhφh (9a)

subject to πk
f(h) − πk

t(h) + φh + Mk
hxh ≥ rk

h, ∀k ∈ K, ∀h ∈ A (9b)

πk
l unrestricted ∀k ∈ K, ∀l ∈ N, φh ≥ 0 ∀h ∈ A (9c)

x ∈ XI . (9d)

Constraints (9b) have the interpretation of deactivating a dual constraint corresponding to

an arc h ∈ A when arc h has been interdicted. Observe that this strategy cannot simply

be applied to the continuous interdiction case, since Proposition 1 does not generally hold

true for x ∈ X. Unlike IBLP as given in (4), we do not need linearization processes for

solving PF. Note that this problem has |N ||K| + |A| continuous and |A| binary variables,

and |A||K|+1 structural constraints. This is a slightly smaller formulation than ILP, which

has |A| additional continuous variables and 2|A| additional constraints, due to the need for

linearization. The relative tightness of these two formulations is established in the following

proposition.

Proposition 2. Consider the linear programming relaxation to ILP (called ILPLP) and

the linear programming relaxation to PF (called PFLP), and let ν(•) denote the optimal

objective function value of problem •. Then if the upper bounds to φh, ∀h ∈ A in ILP and the

values Mk
h , ∀h ∈ A, k ∈ K are all equal to some constant value µ, then ν(ILPLP) = ν(PF).

Proof. Consider any solution (x̂, π̂, φ̂, ŵ) to ILPLP. A solution (x̃, π̃, φ̃) to PFLP can be

constructed as follows. First, set x̃ = x̂ and π̃ = π̂. Observe that for any optimal solution

to ILPLP, we have ŵh = min{φ̂h, µx̂h} ∀h ∈ A. If φ̂h ≤ µx̂h for h ∈ A, then set φ̃h = 0.

In this case, note that all constraints (9b) corresponding to h, ∀k ∈ K, are satisfied since

π̃k
f(h) − π̃k

t(h) + µx̃h ≥ π̂k
f(h) − π̂k

t(h) + φ̂h ≥ rk
h. Also, the contribution of uh(φ̂h − ŵh) to the

objective of ILPLP and the contribution of uhφ̃h to the objective of PFLP are both zero. On

the other hand, if φ̂h > µx̂h, then set φ̃h = φ̂h−µx̂h. Constraints (9b) are easily shown to be

satisfied for this h and all k ∈ K as well by definition of φ̃h, and uh(φ̂h − ŵh) is contributed

to both objective functions. Hence, ν(PF) ≤ ν(ILP). To see that ν(PF) = ν(ILP), consider

an optimal solution (x̃, π̃, φ̃) to PFLP, and note that a feasible solution (x̂, π̂, φ̂, ŵ) with the

same objective function value to ILPLP can be obtained by setting x̂ = x̃, π̂ = π̃, φ̂ = φ̃+µx̃,

and ŵ = µx̃. A similar argument reveals that this is a feasible solution to ILPLP with the

same objective function value. This completes the proof. 2

10

Remark 3. Proposition 2 indicates that the two formulations for BMFNIP are equally

tight when a constant upper bound of µ is used for each formulation. This situation would

arise if we decide to use M as determined by Remark 1. However, suppose we use the

tightest possible bounds available, which are M̃h for h ∈ A as upper bounds to φh in ILP,

and M̃k
h for Mk

h in PF. Since M̃h ≥ M̃k
h for each h ∈ A and k ∈ K, the linear programming

relaxation to PF becomes at least as tight as the linear programming relaxation to ILP. The

key observation regarding these two models is that not only is PF smaller than ILP (in terms

of the number of variables and constraints), but it permits the use of upper bounds on each

individual combination of h ∈ A and k ∈ K, thereby permitting us to tighten the feasible

region beyond what can be accomplished by a similar strategy for ILP. 2

4 Continuous Interdiction
In this section, we examine exact and heuristic procedures for solving MFNIP as given in (1).

Since the leader’s variables are continuous, we can no longer resort to standard linearization

procedures to solve the interdiction problem by a single integer program. Hence, it appears

that the continuous interdiction problem is actually more difficult to solve than the discrete

interdiction problem. However, since bT e > B by assumption, we can state the following

proposition without proof, which will ultimately allow us to decompose MFNIP into a series

of linear integer programming problems.

Proposition 3. There exists an optimal solution (x?, y?) to MFNIP such that bT x? = B.

Hence, from now on, we replace the knapsack inequality in X by an equality, and denote

this restricted feasible region by XC (i.e., XC ≡ {x : bT x = B, 0 ≤ x ≤ e}). We examine

exact and heuristic methods for MFNIP in the subsequent subsections.

4.1 Exact Algorithm for MFNIP
Applying the same approach as in Section 3.1, we have the following (continuous) bilinear

program.

BLP: Minimize g(x, π, φ) (10a)

subject to x ∈ XC and (π, φ) ∈ Θ, (10b)

where g(x, π, φ) is stated in (4a). Note that fixing x yields a linear program in terms of

(π, φ), and vice versa. Hence, the problem BLP has an optimal solution (x?, π?, φ?) such

that x? and (π?, φ?) are extreme points of XC and Θ, respectively (see [29] for example).

11

BLP can be solved via various algorithms for disjointly constrained bilinear programming

problems (see [2, 6, 22, 29, 31] for examples). One notable algorithm is presented by Alarie

et al. [2], who combine the concavity cuts of Tuy [30] with the branch-and-bound method

of Audet et al. [6]. In the first phase of this approach, concavity cuts (sometimes referred

as Tuy cuts) are generated at a nondegenerate extreme point of XC in order to remove a

part of the cone defined by binding constraints, in the hope that these cuts eliminate as

many ineligible extreme points as possible. If this phase cannot find an optimal solution, a

branch-and-bound phase is executed to complete the procedure.

While this procedure converges in finite time to an optimal solution, it suffers from two

primary drawbacks. One, the procedure is computationally slow due to the necessary identifi-

cation of adjacent extreme points and elimination of suboptimal extreme points via concavity

cuts. Two, the cutting plane generation phase of the procedure is practically quite difficult

to implement. While this algorithm is one of the best alternatives available for general bi-

linear programming problems, we develop an alternative approach for the specific class of

problems encountered in this paper.

As an alternative strategy, we present a partitioning algorithm that partitions MFNIP

into |A| subproblems. First, consider the following lemma.

Lemma 2. Consider the polyhedral set XC . Then, for each extreme point x̂ of XC , there

exists a single basic variable x̂r such that x̂r ∈ [0, 1], while all other variables are nonbasic

at their lower bounds of zero or upper bounds of one.

Proof. See [12]. 2

From Lemma 2, if we designate xr as a basic variable that can have any value between 0

and 1, then the remaining |A| − 1 nonbasic variables must have binary values in order for

this point to be an extreme point of XC . Suppose that xr is designated as a basic variable,

and consider the following subproblem.

SP: Minimize g(x, π, φ) (11a)

subject to bT x = B (11b)

0 ≤ xr ≤ 1 (11c)

xh ∈ {0, 1} ∀h ∈ A \ {r} (11d)

(π, φ) ∈ Θ. (11e)

From the equality in (11b), we have

xr =
B −∑

h∈A\{r} bhxh

br

. (12)

12

Substituting xr in (11a) with (12) and noting that B− br ≤
∑

h∈A\{r} bhxh ≤ B, we have the

following mixed-integer bilinear program, which does not contain the continuous variable xr.

SP(r): Minimize
∑

k∈K

∑

l∈Sk

sk
l π

k
l −

∑

k∈K

∑

l∈Dk

dk
l π

k
l +

∑

h∈A

uhφh −
n∑

h∈A\{r}
uhxhφh

+

(
urφr

br

) ∑

h∈A\{r}
bhxh − Burφr

br

(13a)

subject to
∑

h∈A\{r}
bhxh ≥ B − br (13b)

∑

h∈A\{r}
bhxh ≤ B (13c)

xh ∈ {0, 1} ∀h ∈ A \ {r} (13d)

(π, φ) ∈ Θ. (13e)

Using the linearization method in (5) to replace the nonlinear terms xhφh with wh ∀h ∈
A \ {r}, and xhφr with vh ∀h ∈ A \ {r}, we have the following linear mixed-integer program.

MILP(r): Minimize
∑

k∈K

∑

l∈Sk

sk
l π

k
l −

∑

k∈K

∑

l∈Dk

dk
l π

k
l +

∑

h∈A

uhφh −
∑

h∈A\{r}
uhwh

+

(
ur

br

) ∑

h∈A\{r}
bhvh − Burφr

br

(14a)

subject to Constraints (13b)− (13e) (14b)

wh − φh ≤ 0 ∀h ∈ A \ {r} (14c)

wh − φhxh ≤ 0 ∀h ∈ A \ {r} (14d)

φr + φrxh − vh ≤ φr ∀h ∈ A \ {r} (14e)

vh ≥ 0 ∀h ∈ A \ {r}. (14f)

Once again, the lower bounds on wh, ∀h ∈ A\{r}, have been removed from the formulation.

Similarly, in the linearization of vh = φrxh, ∀h ∈ A\{r}, we need not state the upper bound-

ing constraints on vh, since these variables appear only in the objective function multiplied

by a positive number, and in the bounding constraints. Hence, the equations vh ≤ φrxh and

vh ≤ φr that would normally be included in a linearization are removed in this formulation.

Note that given a solution to SP(r), the value of xr can be recovered by (12). Let

[x(r), π(r), φ(r)] and z(r) denote an optimal solution and optimal objective value of SP(r),

13

respectively. Then, r? ∈ argminr∈A{z(r)} yields an overall optimal solution x(r?) and objec-

tive value z(r?). The partitioning algorithm for the continuous interdiction problem is given

as follows.

Partitioning Algorithm (PA)

Step 0. Let R = A. Set the incumbent solution (x, π, φ) as a blank vector and the incum-

bent objective value as v = ∞.

Step 1. If R = ∅, terminate the algorithm with the incumbent solution. Otherwise, select

any r ∈ R and put R = R \ {r}.
Step 2. Solve MILP(r) and obtain the optimal solution (x̂, π̂, φ̂) with objective function

value v̂. If v̂ < v, then set v = v̂ and (x, π, φ) = (x̂, π̂, φ̂). Return to Step 1.

Remark 4. Note that when solving MILP(r), the incumbent objective value v can be

used as an initial upper bound of the subproblem. Hence, if we have a relatively small

incumbent objective value in early stages of the procedure, the solution time for the remaining

subproblems could be reduced since the subproblems can be fathomed quickly using this

upper bound. Accordingly, we can make an ordering of the subproblems as follows. For each

r ∈ A, we solve a linear programming (LP) relaxation of MILP(r) to obtain its optimal value

vLP (r). Then, we create a sequence of indices r1, . . . , r|A| so that vLP (ri) ≤ vLP (rj) if i < j.

The partitioning algorithm is implemented in the order of this sequence, in anticipation of

improving the upper bound v as quickly as possible. We call this approach the Ordered

Partitioning Algorithm (OPA), and investigate its efficacy in our computational study. 2

4.2 Heuristic for Continuous Interdiction Problems
When we apply the aforementioned partitioning algorithm, we may have to solve |A| mixed-

integer programming problems in order to find an exact solution in the worst case. Therefore,

these methods may not be suitable for solving large-scale problems. Hence, we suggest the

following heuristic method for relatively large-scale problems.

The heuristic approach that is tailored to this problem is to start with no interdiction

performed and obtain the follower’s objective. We can then examine what happens to the

follower’s optimal solution by interdicting each arc, one at a time. If an arc cannot be

fully interdicted, then we examine the impact on the follower’s optimal solution when the

remaining budget is spent on interdicting the arc. A logical choice for interdiction would

then be an arc ĥ ∈ A that exhibits best ratio of objective decrease to budget consumed

when interdicted. (This ratio is denoted by σ in the formal description below.) This process

continues until the budget has been exhausted. This algorithm is formally described as

follows.

14

Heuristic Algorithm (HA)

Step 0. Initialize xh = 0 ∀h ∈ A, define the remaining budget as B = B, and define the

candidate set of arcs that can be interdicted as A = A.

Step 1. Set σ = 0, R = A, and solve the follower’s problem given x. Let v be the optimal

objective value of the follower’s problem.

Step 2. If R = ∅, go to Step 4. Otherwise, choose any h ∈ R and proceed to Step 3.

Step 3. Set xh = min{bh, B}/bh. Solve the follower’s problem to obtain the optimal

objective value vh. If (v − vh)/min{bh, B} > σ, put ĥ = h and σ = (v − vh)/min{bh, B}.
Reset xh = 0 and return to Step 2.

Step 4. Fix xĥ = min{bĥ, B}/bĥ, update B = B − min{bĥ, B}, and remove ĥ from A. If

B = 0, terminate with the heuristic solution x. Otherwise, return to Step 1.

5 Computational Study
In this section, we describe the results of a computational study of our proposed algorithms.

In order to generate interdiction problems, we randomly generated linear multicommodity

flow instances using a popular generator called Mnetgen1 (see [9, 14]). Since MFNIP is

substantially more difficult to solve than linear multicommodity flow instances, our test

instances are smaller than those analyzed in [9, 14]. The first set (S1) of test problems

contains nine network topologies, and the second set (S2) consists of six topologies. We

investigate the performance of ILP and PF on the instances in S1, and analyze PA, OPA,

and the heuristic HA on the instances in S2. Each topology is characterized by |N | and |K|.
For S1, we have |N | ∈ {16, 32, 64} and |K| ∈ {21, 22, ..., |N |/4}, while in S2, we examine

combinations of |N | ∈ {8, 12, 16} and |K| ∈ {2, 4}. As in [9, 14], half of N are designated

as supply nodes, and the other half are demand nodes. Also, we select flow costs from the

interval [1, 10], and set the length of the longest chain in a network as |N |/2. After creating

these linear multicommodity flow problems, we randomly generate rewards and interdiction

budgets, and set the interdiction costs equal to the arc capacities. Specifically, the budget

value B is selected between 20% and 50% of the total arc capacity in the corresponding

network. Moreover, since instances generated by Mnetgen have only flow costs, we randomly

generate rewards large enough so that even the delivery through the longest chain incurs

positive profit (recall that these values together with flow costs are incorporated into the

unit flow profits rk
i). We generate ten instances for each topology, and report the average

performance of our algorithms over these instances. These test problems are summarized in

Table 1.

1http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html.

15

In the above test instances, there always exists an arc that directly connects a supply

node to a demand node since each node in the network is either a supply or a demand node

for all commodities. Hence, to examine the performance of our algorithms on networks that

contain transshipment nodes, we also generated two additional sets of random instances from

grid network topologies, in which the left-most and right-most nodes in the grid are set as

origin and destination nodes, respectively. Furthermore, each commodity has a single origin-

destination pair corresponding to the left-most and right-most nodes on a common row of

the grid. Thus, the number of transshipment nodes in a origin-destination path is at least

the number of columns in the grid minus two. The first set (G1) of test problems contains six

network topologies, while the second set (G2) consists of three topologies. Similar to S1 and

S2, test problems in G1 are used to investigate ILP and PF, while those in G2 are for PA,

OPA, and HA. For each topology, we generated five instances with flow costs and supplies

generated from ranges [5,10] and [5,15], respectively. For test problems in G2, a single flow

cost per arc is assigned regardless of commodity, while different rewards are generated for

demand nodes. Furthermore, for test instances in G1, arc capacities and interdiction costs

are independently generated on the intervals [10,20] and [5,10], whereas arc capacities for

instances in G2 are selected from the set {10, 20, 30} and interdiction costs are set equal to

the capacities. The rewards and interdiction budget are randomly generated to guarantee

that there exists a path that yields a positive profit to the follower for each commodity, and

to ensure that the leader cannot simultaneously interdict all arcs in any origin-destination

cut-set. These test problems are summarized in Table 2.

All algorithms were coded in C++ using CPLEX 8.1 Concert Technology with a default

solution setting, and were run on a Sun Fire 280R server with 900 Mhz UltraSPARC-III

CPU.

5.1 Computational Results for Discrete Interdiction
In this subsection we summarize computational results for discrete interdiction. For both ILP

and PF, we experiment with three upper bounds on φh including M , M̂ and M̃h. Further-

more, we employ three tighter penalty values M
k
, M̂k, and M̃k

h for PF. Our first experiment

analyzes the efficiency of these nine mixed-integer programming models, including the pre-

processing time required to find the various M -values. Table 3 displays the average CPU

times (in seconds) required to solve instances in S1 using each of these nine implementations.

A time limit for solving a single instance is set as 7200 seconds, and exceeding this limit is

considered as a failure. If there exists any failure when solving an instance of a topology, the

number of instances of that topology solved within the time limit is displayed in parentheses

16

Table 1: Summary of Test Problems from General Network Topologies.

Set Topology Number of Nodes (|N |) Number of Commodities (|K|)
DTP1 16 2

DTP2 16 4

DTP3 32 2

DTP4 32 4

S1 DTP5 32 8

DTP6 64 2

DTP7 64 4

DTP8 64 8

DTP9 64 16

CTP1 8 2

CTP2 8 4

CTP3 12 2
S2

CTP4 12 4

CTP5 16 2

CTP6 16 4

Table 2: Summary of Test Problems from Grid Network Topologies.

Set Topology Number of Rows Number of Columns Number of Arcs

GTP1 4 6 80

GTP2 4 10 136

GTP3 6 6 127
G1

GTP4 6 10 220

GTP5 8 6 136

GTP6 8 10 240

GTP7 4 6 44

G2 GTP8 4 8 102

GTP9 4 10 99

17

instead of an average CPU time. For example, ILP in conjunction with the upper bound M

terminates within 7200 seconds for six out of ten instances on topology DTP8.

As expected, Table 3 shows that PF consumes less CPU time than does ILP. For example,

when solving instances in DPT7, the procedure PF along with M consumes only an average

of 7.67% of CPU time that was required by ILP with the same upper bound M . Moreover,

ILP does not yield optimal solutions for many of the DTP8 and DTP9 instances within the

7200 second time limit. We also observe that a tighter bound plays a beneficial role when

solving relatively large-scale problems. For example, the average solution time consumed by

ILP in concert with M̃h is about 50% of the average CPU time of ILP with M for solving

DTP7. However, the advantage of a tighter bound is reduced when implementing PF. Fur-

ther tightened bounds (or penalties) M
k
, M̂k, and M̃k

h exhibit slightly faster CPU times than

those of M , M̂ , and M̃h, as shown in columns 5–10 in Table 3. While the reduction of com-

putational effort is insignificant for small-sized topologies such as DTP1–DTP7, we observe

greater benefits for larger-scale instances in DTP8 and DTP9. Overall, the PF procedure

with the tightest bound M̃k
h yields the most promising performance. This advantage occurs

despite the fact that the test instances have |N |/2 supply and |N |/2 demand nodes, and

hence the computation of these bounds can become expensive. However, the time required

to compute these bounds is small compared to the time required to solve the mixed-integer

programs. In particular, it takes less than one second to compute the M -values for DTP1–

DTP5, and computing M̃h for the largest instances DTP9 consumes only 11.4 seconds on

average.

When these formulations are tested on grid networks, the use of the tightest possible

bounds in these models becomes even more important (see Table 4). Without time limits,

we experimented with using M̂ and M̃h for ILP and M̂k and M̃k
h for PF. For ILP, using the

tighter bound M̃h consumes 17% of CPU time required when using M̂ on average. When

M̃k
h is employed, PF consumes 7% of the CPU time required for the weaker bound M̂k on

average. Also, we observe that the relative computational improvement of using PF with

M̃k
h over M̂k seems to increase as the difficulty of the problem instance increases. This

improvement is most dramatic on the GTP6 instances, in which PF along with M̃k
h uses

only an average 5% of the CPU time consumed by PF with M̂k.

Based on these observations, we recommend using PF in concert with the tightest bound

M̃k
h , especially for the solution of large-scale problems. Furthermore, we expect that this

tighter bound greatly enhances the performance of PF when the problem has relatively a

large number of transshipment nodes.

18

Table 3: Average CPU Times for Solving Instances in S1.

ILP PF

Topology
M M̂ M̃h M M̂ M̃h M

k
M̂k M̃k

h

DTP1 0.31 0.31 0.33 0.19 0.16 0.18 0.18 0.17 0.18

DTP2 0.6 0.62 0.66 0.33 0.3 0.34 0.32 0.31 0.32

DTP3 11.7 13.0 10.6 2.6 2.3 2.2 2.3 2.3 2.2

DTP4 10.5 9.7 10.2 2.4 2.5 2.5 2.3 2.1 2.4

DTP5 20.9 22.1 19.3 8.2 7.6 6.9 6.9 6.8 7.1

DTP6 69.3 73.5 61.3 5.1 5.2 5.8 4.9 5.0 5.8

DTP7 226.9 198.4 114.7 17.4 17.8 19.0 19.4 18.5 18.9

DTP8 (6) (6) (2) 288.8 231.3 214.6 236.9 222.8 190.7

DTP9 (1) (2) (0) 1352.4 1337.6 1274.1 1342.3 1197.2 1197.2

Table 4: Average CPU Times for Solving Instances in G1.

ILP PF

Instance
M̂ M̃h M̂k M̃k

h

GTP1 14.7 7.9 4.0 4.0

GTP2 55.1 38.6 36.3 10.2

GTP3 847.2 46.2 137.8 13.6

GTP4 1356.3 367.8 367.2 57.2

GTP5 831.7 40.8 17.4 15.0

GTP6 7879.8 1355.2 3144.6 165.2

19

Table 5: Average CPU Times for Solving Instances in S2.

PA OPA

Topology
M M̂ M̃h M M̂ M̃h

CTP1 8.43 7.92 5.58 8.47 7.88 5.60

CTP2 3.61 3.42 3.20 3.73 3.53 3.28

CTP3 59.65 53.25 38.79 58.80 52.08 37.32

CTP4 194.32 172.69 131.98 190.73 170.44 125.08

CTP5 1029.09 1064.39 653.41 1321.80 1049.91 627.43

CTP6 (9) (9) 1234.04 (9) (9) 1232.14

5.2 Computational Results for Continuous Interdiction
For the continuous interdiction problem, we implemented PA and OPA in conjunction with

different upper bounds, M , M̂ , and M̃h. In Table 5, we report average CPU times for each

topology, which include bound computing and ordering times in addition to subproblem

solution times. Our first observation is that tighter upper bounds consistently help reduce

computational effort. Since continuous test topologies are smaller than discrete ones, bound

computation times are negligible (all bounds are obtained within 0.05 seconds in every case).

Note that both PA and OPA in conjunction with M and M̂ fail to solve one instance in

CTP6 within the time limit, whereas PA and OPA with M̃ terminates within the time

limit in all ten instances. When considering only solved problems in CTP6, we observe that

employing M̃h over M reduces CPU times by 41% for both PA and OPA on average. The

overall effectiveness of OPA on improving the fathoming process is slight, which is explained

by our observation that each subproblem MILP(r), for each r ∈ A, solved in OPA tends to

yield very similar optimal objective values.

We also report average CPU times for solving instances taken from grid networks in Table

6. Note that among tested topologies, GTP8 is most difficult to solve due to the large number

of arcs as well as its relatively high arc density. Similar to the observation above, the use

of tighter bounds reveals a modest computational advantage over the use of relatively loose

bounds, and OPA provides no significant computational advantage or disadvantage over the

use of PA.

Finally, we observed that the proposed heuristic method HA consumes less than one second

for solving all instances. Furthermore, HA yields optimal solutions for 19 instances out of

60 CTP instances. Nonetheless, we observed fairly large optimality gaps for other instances

20

Table 6: Average CPU Times for Solving Instances in G2.

PA OPA

Instance
M̂ M̃h M̂ M̃h

GTP7 39.4 34.6 39.4 36.0

GTP8 1056.8 959.4 989.4 981.0

GTP9 282.0 247.6 284.4 249.6

when applied to the general network topologies. Average optimality gaps are 86.0%, 13.2%,

30.7%, 75.4%, 31.9%, and 33.9% for topologies CTP1–CTP6, respectively. However, when

this heuristic is applied to instances from grid network topologies GTP7–GTP9, HA yields

average optimality gaps of just 6.1%, 1.6%, and 5.3% for topologies GTP7–GTP9. We

thus conclude that HA performs well when applied to problems having a relatively simple

network structure, but is inconsistent for more complex topologies such as those generated

by Mnetgen.

6 Conclusions
In this paper, we proposed two mixed-integer programming formulations, ILP and PF, for the

discrete interdiction problem by exploiting upper bounds on the follower’s marginal profit.

While ILP employs standard linearization techniques to linearize bilinear terms that appear

in the objective function of the follower’s dual problem, we demonstrated how to avoid this

nonlinearity in PF via an equivalent bilevel program in which the interdictor’s decision does

not perturb the follower’s feasible region. We also proved that two formulations are equally

tight in the sense that linear programming relaxations yield the same optimal objective value

when the same bound on the marginal profit is used. However, since tighter upper bounds

can be obtained efficiently, we can tighten PF beyond ILP, and our computational study

confirms the substantial computational savings that result from this tightening.

For continuous interdiction, we devised a partitioning algorithm, which uses the fact that

an extreme point of the interdictor’s feasible region has at most one fractional value. Our

computational results demonstrate that the continuous interdiction problem is difficult to

solve by our algorithm, and hence becomes intractable as the problem size increases even

for problems having a relatively simple structure. Hence, we proposed a heuristic technique

that often seems to find the optimal solution within a second and yields small optimality

gaps for grid-structured problems. However, the routine appears to be much less reliable for

21

the general topologies generated by Mnetgen.

The most pressing need for future research seems to regard the identification of more

effective algorithms for addressing the continuous interdiction problem. A future study

might address the continued development of heuristics for the continuous interdiction case,

and also for large-scale discrete interdiction instances. Another possible avenue would be

to investigate special structures inherent in the continuous bilinear interdiction problem,

and explore possibilities for exploiting these special structures within more general global

optimization methods for continuous bilinear programming. These topics are left for future

research.

References
[1] Adams, W.P. and Forrester, R.J. (2005) A simple recipe for concise mixed 0-1 lineariza-

tions. Operations Research Letters, 33(1), 55–61.

[2] Alarie, S., Audet, C., Jaumard, B. and Savard, G. (2001) Concavity cuts for disjoint

bilinear programming. Mathematical Programming, 90(2), 373–398.

[3] Anandalingam, G. and Apprey, V. (1991) Multi-level programming and conflict resolu-

tion. European Journal of Operational Research, 51(2), 233–247.

[4] Assad, A.A. (1978) Multicommodity network flows - a survey. Networks, 8(1), 37–91.

[5] Assimakopoulos, N. (1987) A network interdiction model for hospital infection control.

Computers in Biology and Medicine, 17(6), 413–422.

[6] Audet, C., Hansen, P., Jaumard, B. and Savard, G. (1999) A symmetrical linear maxmin

approach to disjoint bilinear programming. Mathematical Programming, 85(3), 573–592.

[7] Barnhart, C. (1993) Dual-ascent methods for large-scale multicommodity flow problems.

Naval Research Logistics, 40(3), 305–324.

[8] Barnhart, C. and Sheffi, Y. (1993) A network-based primal-dual heuristic for the solution

of multicommodity network flow problems. Transportation Science, 27(2), 102–117.

[9] Cappanera, P. and Fragioni, A. (2003) Symmetric and asymmetric parallelization of a

cost-decomposition algorithm for multi-commodity flow problems. INFORMS Journal

on Computing, 15(4), 369–384.

[10] Chang, C.T. (2000) An efficient linearization approach for mixed-integer problems.

European Journal of Operational Research, 123(3), 652–659.

22

[11] Cormican, K.J., Morton, D.P. and Wood, R.K. (1998) Stochastic network interdiction.

Operations Research, 46(2), 184–196.

[12] Dantzig, G.B. (1955) Upper bounds, secondary constraints, and block triangularity in

linear programming. Econometrica, 23(2), 174–183.

[13] Fortune, S., Hopcroft, J. and Wyllie, J. (1980) The directed subgraph homeomorphism

problem. Theoretical Computer Science, 10, 111–121.

[14] Fragioni, A. and Gallo, G. (1999) A bundle type dual-ascent approach to linear multi-

commodity min cost flow problems. INFORMS Journal on Computing, 11(4), 370–393.

[15] Fulkerson, D.R. and Harding, G.C. (1977) Maximizing minimum source-sink path sub-

ject to a budget constraint. Mathematical Programming, 13(1), 116–118.

[16] Ghare, P.M., Montgomery, D.C. and Turner, W.C. (1971) Optimal interdiction policy

for a flow network. Naval Research Logistics Quarterly, 18(1), 37–45.

[17] Glover, F. (1975) Improved linear integer programming formulations of nonlinear integer

problems. Management Science, 22(4), 455–469.

[18] Golden, B. (1978) A problem in network interdiction. Naval Research Logistics Quar-

terly, 25(4), 711–713.

[19] Israeli, E. and Wood, R.K. (2002) Shortest-path network interdiction. Networks, 40(2),

97–111.

[20] Kennington, J.L. (1978) A survey of linear cost multicommodity network flows. Oper-

ations Research, 26(2), 209–236.

[21] Kettani, O. and Oral, M. (1990) Equivalent formulations of nonlinear integer problems

for efficient optimization. Management Science, 36(1), 115–119.

[22] Konno, H. (1976) Cutting plane algorithm for solving bilinear programs. Mathematical

Programming, 11(1), 14–27.

[23] Mamer, J.W. and McBride, R.D. (2000) A decomposition-based pricing procedure for

large-scale linear programs: an application to the linear multicommodity flow problem.

Management Science, 46(5), 603–709.

[24] McBride, R.D. (1985) Advances in solving the multicommodity flow problem. Interfaces,

28(1), 32–41.

23

[25] McBride, R.D. (1985) Solving embedded generalized network flow problems. European

Journal of Operational Research, 21, 82–92.

[26] McMasters, A. and Thomas, M. (1970) Optimal interdiction of a supply network. Naval

Research Logistics Quarterly, 17, 261–268.

[27] Nemhauser, G.L. and Wolsey, L.A. (1988) Integer and combinatorial optimization, John

Wiley & Sons, New York, NY.

[28] Sherali, H.D. and Adams, W.P. (1999) A reformulation-linearization technique for solv-

ing discrete and continuous nonconvex problems, Kluwer Academic Publishers, Dor-

drecht.

[29] Sherali, H.D. and Shetty, C.M. (1980) A finitely convergent algorithm for bilinear

programming problems using polar cuts and disjunctive face cuts. Mathematical Pro-

gramming, 19, 14–31.

[30] Tuy, H. (1964) Concave programming under linear constraints. Soviet Mathematics,

5(1), 1437–1440.

[31] Vaish, H. and Shetty, C.M. (1976) The bilinear programming problem. Naval Research

Logistics Quarterly, 23(2), 303–309.

[32] Washburn, A. and Wood, R.K. (1995) Two-person zero-sum games for network inter-

diction. Operations Research, 43(2), 243–251.

[33] Wollmer, R. (1964) Removing arcs from a network. Operations Research, 12(6), 934–

940.

[34] Wood, R.K. (1993) Deterministic network interdiction. Mathematical and Computer

Modelling, 17(2), 1–18.

24

