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Abstract 

This paper describes an improved image compression 
scheme using backpropagation networks. The new 
scheme is aimed at improving the networks' 
generalisation capabilities, thereby enabling them to 
effectively compress a wide range of novel images. The 
networks operate, and are trained on, residual image 
blocks, thus eliminating the problem of varying 
average image intensities highlighted by Cottrell et al. 

Tabulated experimental results and example 
reconstructed novel images, for the method of [3] and 
the new technique, are presented, which demonstrate 
the improved image compression performance gained 
using this new technique. 

131. 

1: Introduction 

The backpropagation technique described by 
Rumelhart et al. [l] was a very significant 
development in the field of neural networks, and has 
found many applications in a wide range of areas of 
research [2]. The application of a simple three-layer 
backpropagation network for image data compression 
was fnst proposed by Cottrell et al. [3] and 
subsequently studied and developed by others [4,5]. 
Some inherent features of backpropagation network 
image data compression schemes are: (a) the network 
structure is massively parallel, (b) the network is 
adaptive, (c) the network determines the compressed 
features of the original image in a self-organising 
manner during the training stage, and (d) the intrinsic 
generalisation property of the structure enables it to 
process images outside the training set (novel images) 
effectively. 

It has been reported that image compression 
schemes based on backpropagation networks can 
achieve a performance comparable to other existing 
image compression schemes [3,4,5]. Several problems 
with image data compression using backpropagation 
networks have been revealed by these initial studies. 
One main problem is that the performance of the 
system degrades when used to compress images that 
are not statistically consistent with those used for 
training. Thus a primary objective is to improve the 
genemlisation capabilities of the system, hence 
enhancing its performance for a wide range of novel 
images. Cottrell et al. [3] pointed out that one source 
of error in the reconstructed novel images is due to the 
fact that their average intensities differ from those of 
the training images. Although a number of researchers 
[4,5] have studied and commented on the 
backpropagation image compression scheme of 
Cottrell et al., this problem has not yet been fully 
addressed. 

Motivated by studies of the backpropagation 
training algorithm [6] and the applications of 
backpropagation networks to image compression [3], 
we developed an improved image compression scheme, 
operating on residual blocks. Experimental results are 
presented which show that this new scheme exhibits 
enhanced generalisation capabilities, and it is shown 
that performance is improved in terms of the mean 
square error and the visual quality of the reconstructed 
images. 

2: Image Compression using a 
Backpropagation Network 

In this section, we briefly review the basic idea of 
using a backpropagation network to achieve image 
compression. A number of researchers [3,7,8] have 
shown that multilayer perceptron networks are able to 
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learn a transform for reducing signal redundancy, and 
are capable of learning a reverse transform to recover 
the information (with some degradation) from a more 
compact (compressed) form of representation. 

The network shown in Fig. 1 has N input nodes, H 
hidden layer nodes (H<N) and N output nodes. The 
input to the network, X ,  is a vector of dimension N,  and 
in our application, X is an m x n ( N  = m x n )  block of 
pixels extracted from an image. The sum of the inputs, 
sh(i), for node i in the hidden layer is calculated as 

N 

s, ( i )  = w, ( j , i ) x ( j )  + b, ( i )  for 1 I i 5 H (1) 
j=l 

where wh(j,i) is the connection weight from jth input 
node to the ith node in the hidden layer, x(j) is the jth 
input element (pixel .value), and bh(i) is the bias input 
of the ith hidden layer node. 
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Fig. 1 Three-layer Backpropagation Network for 
Image Data Compression 

Similarly, the sum of the inputs to the ith output 
node is calculated as 

H 
so ( i )  = w,(j,i)h( j )  + bo (i) for 1 I i 5 N (2) 

j=l 

where w,O,i) is the connection weight from the jth 
hidden layer node to the ith output node, b,(i) is the 
bias input to the ith output node, and h(j) is the output 
of the jth hidden layer node. A sigmoid function 
defined by equation (3) is applied to sh(i) and s,(i) to 
obtain the output value of the node for the hidden and 
output layers respectively. 

(3) 

where s is the value of the sum of the inputs to a node 
in the layer (hidden or output). 

In order to relate the grey levels of the images 
(usually in the range 0 to 255) to the values produced 
by this function, the grey levels of the images were 
converted linearly from the original range to the range 
0 to 1 [31. 

To train the network, X is used as the input and as 
the desired output, and the backpropagation training 
algorithm [l] is applied. The squared error function, 
minimised during training, is defined as 

(4) 

After training, the network is ready for operational 
use. The image to be compressed is partitioned into 
contiguous, non-overlapped blocks which are presented 
to the network one at a time. The outputs of the hidden 
layer nodes constitute the compressed features of an 
input block. To achieve compression in a practical 
sense, the outputs of the hidden layer nodes are 
quantized. Because the sigmoid function (equation (3)) 
forces all hidden layer node outputs into the range -1 to 
1, a simple quantization scheme can be adopted. For 
the results presented in this paper, a scalar quantizer 
was used for this purpose. 

3: Centralised Backpropagation (CBP) 
Network for Image Compression 

The backpropagation algorithm has a number of 
drawbacks, including a slow rate of convergence and a 
dependence on the initial settings of the weights. 
Although work has been done by other researchers to 
improve the basic algorithm, we investigated one 
particular modification, originally proposed by 
Stometta and Huberman [61. They showed that by 
setting a symmetric dynamic range for input, hidden 
and output layer nodes, the learning rate of the basic 
backpropagation network could be significantly 
improved. It was shown that the use of such a 
symmetric structure also improved the uniformity of 
training, i.e. the network was less sensitive to the initial 
values of the weights. Taking these points further, we 
developed the centralised backpropagation (CBP) 
network structure for image compression applications. 

3.1: Use of Residual Blocks 

Recalling that one of the sources of error in the 
reconstruction of novel images is that their average 
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intensities differ from those of the training images, a 
modification to the basic compression scheme 
described in section 2 may be introduced, whereby the 
block mean value is removed prior to training. The 
block mean value M ,  defined in equation (3, is coded 
separately and added back to each pixel value during 
reconstruction. 

(5) 

where N is the number of pixels in the block. 
Mean removal is a common technique for other 

block based compression methods, such as vector 
quantization [9] and the Karhunen-Loeve Transform 
[lo]. However, the motivation for mean removal when 
using a backpropagation network for image 
compression is to improve the training of the network 
and to enhance its generalisation capabilities to deal 
effectively with a wide range of novel images. 

When applying the backpropagation network to 
perfom image compression, the network should 
operate on residual image blocks. Using residual 
blocks improves the generalisation capabilities of the 
backpropagation network by removing the effect of the 
different average intensities between mining images 
and novel images, since all residual blocks have the 
same average intensity of zero. The reconstruction 
errors arising due to the different average intensities of 
the training and novel images [3] will thus be 
eliminated. 

It was suggested in 161 that training will be 
improved if the input and desired output signals are 
symmetrical about zero: it is therefore appropriate to 
use the network to operate on residual image blocks 
which are inherently symmetrical about zero. If the 
original pixel intensity range is from 0 to 255, the 
residual image will have a pixel intensity range from 
-255 to 255, and by using appropriate scaling we may 
use a symmetrical network structure with a dynamic 
range of -1 to 1 for the input, hidden and output layer 
nodes. 

Fig. 2 shows a comparison of the pixel histograms 
of two images (Fig. 2(a)) and their residual images 
(Fig. 2(b)). The residual image is obtained by 
subtracting the means in each contiguous non- 
overlapped 8x8 block. It is seen that in the original 
images, the grey level distributions of the two images 
differ quite significantly, whilst for the residual images, 
they are both centred about zero. Most of the residual 
image pixels fall in the range of -8 to 8. This was found 
to be generally true for a variety of different images. 

The operation given by equation (6) tends to convert 
the original image pixel values into a set of numbers 
having more structure (less randomness). That is, the 
residual image blocks produced by equation (6) have 
similar first-order statistics. This is important in 
backpropagation network image compression 
applications because less randomness in input data 
means that training demands are reduced, and the 
generalisation capability of the compression scheme is 
improved. 

Lena 

0 64 128 192 255 

(a) Grey Levels of Original Images 

-255 -128 0 128 255 
(b) Grey Levels of Residual Images 

Fig. 2 Pixel Histograms of Original and 
Residual Images 

An m x n  block of image samples, X = {x(l), x(2), 
-., x(N)}, where N = m x n ,  has a block average 
intensity M, calculated according to equation (5 ) .  Its 
corresponding residual block R = {r(l), r(2), e-, r ( W }  
is formed by subtracting the quantized block average 
intensity Me from the pixel values, i.e. 

(6) 

If the original image has an intensity range of 0 to 
255, then the residual image will have an intensity 
range of -255 to 255, and the average intensity of the 
residual image is zero. When the backpropagation 
network is used to code the residual image, the network 
has a symmetric structure similar to that described in 
[6]. The residual image pixels are converted linearly 

r ( j )  = n( j )  - M, for j = 1,2,. . . , N 
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from the range of -255 to 255 to the range of -1 to 1, 
and thus the input, hidden and output layer nodes of 
the network will have a dynamic range of -1 to 1, i.e. 
the network is said to be 'centralised. 

In the training stage, the chosen training images are 
sub-divided into m x n blocks, the block means are 
calculated according to equation (3, and the residual 
blocks are formed using equation (6). These residual 
blocks constitute the training patterns for the network. 
In the operational coding stage, the image to be coded 
is sub-divided into m x n blocks. Each residual block is 
passed through the trained network, and the block 
mean is coded separately using a scalar quantizer. This 
quantized block mean and the quantized hidden node 
outputs of the network constitute the compressed data 
for the block. 

4: Experimental Results 

In this section, we present image data compression 
results using the backpropagation techniques described 
in this paper. The block size used was 8x8 pixels. The 
training samples were 8x8 non-overlapped blocks 
extracted from two 256x256 images (Jazz (Fig. 3(a)) 
and Fisherman (Fig. 3(b))) arbiuarily selected from our 
image library, each with a pixel intensity range of 0 to 
255. Four novel images (F-16, Peppers, Sailboat and 
Lena) were used to test the system. We demonstrate 
that the proposed technique improves the networks' 
generalisation capabilities as compared with the 
original scheme [3]. It should be noted that all residual 
pixels were found to lie in the range of -64 to 64, and 
hence a scale factor of 1/64 was used to convert the 
residual pixel values to the range of - 1 to 1. 

Table 1 shows a comparison of the peak signal-to- 
noise ratio (PSNR) performance, calculated according 
to equation (7), for our new method and the method of 
Cottrell et al. (the chosen benchmark). In all cases, the 
networks were trained for 500 iterations. For our new 
method, the block mean was quantized using an 8-bit 
scalar quantizer and all the hidden node outputs were 
also quantized to 8-bit resolution. It can be seen that 
for images inside and outside the training set, the new 
method provides improved PSNR Performance. The 
improvements achieved for the training images suggest 
that our new method can train the network (to a given 
required performance level) faster, and the 
improvements achieved for the novel images indicate 
that the generalisation capability of our system is 
significantly better than that of the method described in 
[3]. It should be noted that for our method, the block 
mean must be coded, and we therefore use one less 

hidden layer node to achieve the same compression 
ratio as method [3]. 

where L is the total number of pixels in the image, and 
xu) and x,u) are the pixel values of the original and 
reconstructed images respectively. 

Figures 4-7 show the reconstructed images using the 
method of [3] and our new method, for the four novel 
images for a selected bit rate of 1 bit per pixel (bpp). 
Also shown are the difference images between the 
original and the reconstructed images using the two 
methods, where the pixel difference values are 
multiplied by 8 to enable a satisfactory visual 
presentation of comparative performance. 

It is seen from these images that the new centralised 
backpropagation method performs very well in the low 
detail areas of the image, whilst suffering some 
degradation in high detail areas. However this is seen 
to be much less significant when compared with the 
method of [3], where not only the high detail areas but 
also the low detail areas are degraded. 

5: Concluding Remarks 

In this paper we have presented an improved technique 
for image data compression using backpropagation 
networks. It has been shown that the scheme of [3] was 
significantly improved by our modifications. 
Particularly, it can be seen that for the four novel 
images (F-16, Peppers, Sailboat and Lena), the new 
scheme has significantly improved compression 
performance due to its enhanced generalisation 
capabilities. It should be pointed out that, in the 
experiments, no attempt was made to optimise the 
training parameters for the networks, and 
investigations into network size and quantization 
resolution for hidden node outputs were not conducted. 
These points are being addressed by the authors as part 
of the continuing development work in this area of 
research. It should also be noted that this work does 
not compare image compression performance with 
results obtained from established techniques such as 
the Discrete Cosine Transform (DCT), but instead is 
aimed at improving the performance of the 
backpropagation network image compression scheme. 
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Table 1 PSNR Values f o r  Reconstructed Images (2  bpp and 1 bpp) 

(a) Jazz (b) Fisherman 
Fig. 3 Training Images 
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Fig. 4 F-16 Image 
(a)  Original Image 
(6)  Reconstructed Image using Method of (31 
(e) Reconstructed Image using Authors' CBP Method 
(d)  Difference Image between (a )  and (b)  
(e) Difference lmage between (a)  and (e) 
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Fig. 5 Peppers Image 
(a)  Original Image 
(6) Reconstructed Image using Method of [3/ 
(e) Reconstructed Image using Authors' CBP Method 
(d)  Difference Image between (a)  and (b) 
(e) Difference Image between (a) and (e) 
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