
Constraint Propagation and Value Acquisition:
why we should do it Interactively

E.Lamma, P.Mello, M.Milano

DEIS
University of Bologna
V.le Risorgimento, 2
40136 Bologna ITALY

R. Cucchiara

DSI
University of Modena
Via Campi 213/b

41100 Modena ITALY

M.Gavanelli, M. Piccardi

Dip. Ingegneria
University of Ferrara

Via Saragat, 1
44100 Ferrara ITALY

Abstract

In Constraint Satisfaction Problems (CSPs)
values belonging to variable domains should be
completely known before the constraint prop-
agation process starts. In many applications,
however, the acquisition of domain values is a
computational expensive process or some do-
main values could not be available at the be-
ginning of the computation. For this purpose,
we introduce an Interactive Constraint Satis-
faction Problem (ICSP) model as extension of
the widely used CSP model. The variable do-
main values can be acquired when needed dur-
ing the resolution process by means of Interac-
tive Constraints, which retrieve (possibly con-
sistent) information. Experimental results on
randomly generated CSPs and for 3D object
recognition show the e�ectiveness of the pro-
posed approach.

1 Introduction

The Constraint Satisfaction Problem (CSP) formaliza-
tion has been widely used within Arti�cial Intelligence
and related areas. A CSP is de�ned on a �nite set of
variables each ranging on a �nite domain of objects of
arbitrary type and a set of constraints. A solution to a
CSP is an assignment of values to variables which satis-
�es all the constraints. Propagation algorithms [4] (e.g.,
forward checking, look ahead) have been proposed in or-
der to reduce the search space.
A basic hypothesis for a CSP model is that variable

domain values are completely speci�ed at the beginning
of the constraint propagation process. We can consider
the problem solving activity as the result of the coopera-
tion of two software components (depicted in �gure 1): a
generator of domain values GEN and a constraint solver
CS. The classical CSP formalization leads to a sequen-
tial use of this architecture, where GEN produces all
domain values and the CS module processes constrained
data. The generation or the acquisition of variable do-
main values should be completed before the constraints
on variables are imposed and propagated.

However, in many applications the acquisition of do-
main values is a computational expensive process. Thus,
it is not convenient to acquire all domain values, but a
pipelined behaviour is preferable. Take, for example, a
visual system as GEN module. The acquisition of vi-
sual features (such as segments and surfaces) as domain
values for the CS is a computational expensive task.
In other applications, not all values are available at the
beginning of the computation. Thus, it is not possi-
ble to acquire all the domain values at the beginning of
the computation. Suppose we are processing an image
representing a box of possibly overlapped pieces that a
robot should handle one by one. We have no informa-
tion on occluded pieces (and thus on the corresponding
visual features) until the robot has picked up the emerg-
ing pieces occluding the underlying ones.
We argue that interleaving the generation/acquisition

of domain values and their processing could greatly in-
crease the performances of the problem solving strategy
in some cases, and can be the only way of processing in
presence of unknown information. Domain values acqui-
sition can be performed on demand only when values are
e�ectively needed or available, as previously suggested
by Sergot in [11] in the Logic Programming setting.
Furthermore, in many applications the GEN module

is able to focus its attention on signi�cant domain val-
ues (i.e., domain values satisfying some properties) or
even provide consistent values when guided by means of
constraints which we call interactive constraints.
For this purpose, the classical CSP model should be

extended in order to (i) cope with partially or fully un-
known variable domains; (ii) dynamically acquire do-
main values on demand while the constraint propaga-
tion process is in progress; (iii) drive the domain value
acquisition by means of interactive constraints; (iv) in-
crementally process new information without restarting
a constraint propagation process from scratch each time
new information is available. The resulting framework
has been called Interactive Constraint Satisfaction Prob-
lem (ICSP) model.
In this paper, we present the ICSP model and cor-

responding propagation algorithms based on the For-
ward Checking (FC) [4] and Minimal Forward Checking
(MFC) [2] which we call respectively Interactive For-



Figure 1: Two modules architecture

ward Checking (IFC) and Interactive Minimal Forward
Checking (IMFC). If the GEN module is able to focus
on signi�cant domain values or even to provide consis-
tent values when guided by constraints, on average the
number of acquisition greatly decreases with respect to
the standard case. Otherwise, we have the same number
of data acquisition of the standard case.

2 The ICSP model

In this section, we �rst recall some CSP-related concepts.
Then, we present the interactive constraint satisfaction
framework. We focus on binary CSPs. A binary CSP
is a tuple (V;D;C) where V is a �nite set of variables
X1; : : : ; Xn ranging on domains of objects of arbitrary
type D1; : : : ; Dn. We call Di = [vi1 ; : : : ; vin ] the domain
of Xi. C is a �nite set of constraints on pairs of vari-
ables in V . A constraint c on variables Xi and Xj , i.e.,
c(Xi; Xj), de�nes a subset of the cartesian product of
variable domains Di � Dj representing sets of possible
assignments of values to variables. A solution to a CSP
is an assignment of values to variables which satis�es all
the constraints. A constraint c on variables Xi, Xj is
satis�ed by a pair of values vi, vj if (vi; vj) 2 c.
We now extend the CSP de�nition in order to allow

constrained variables to range on partially or completely
unknown domains.

De�nition 2.1 An interactive domain of a variable Xi

Di = [vi1 ; vi2 ; : : : ; vik jX
0
i ] is a set of possible values which

can be assigned to that variable. We refer to Knowni as
the list of values representing the known domain part
[vi1 ; vi2 ; : : : ; vik ], and to UnKnowni as a variable X 0

i

representing a list of not yet available values for vari-
able Xi. Declaratively, the association of a domain to a
variable Xi :: [vi1 ; vi2 ; : : : ; vik jX

0
i] holds i�

Xi = vi1 _Xi = vi2 _ : : : _Xi = vik _Xi :: X
0
i

Both Knowni and UnKnowni can be possibly empty
lists1. Also, for each i, the intersection of Knowni and
UnKnowni is empty: this follows from the fact that the
interactive domain is a set.

The interactive domain of variable Xi can be either
completely known, e.g, Di = [3; 4; 5], or only partially
known, e.g., Di = [3; 4; 5jX 0

i], where X
0
i is a variable

1When both are empty an inconsistency arises.

representing a list of values which will be eventually re-
trieved in the future if needed, or completely unknown,
e.g., Di = X 0

i .
The notion of interactive domains has some similari-

ties with the concept of streams [12] widely used for com-
munication purposes in Concurrent Prolog. A stream is
a communication channel which can be assigned to a
term that contains a message and an additional vari-
able. From this perspective, interactive domains repre-
sent communication channels between the GEN module
and the CS module. The unknown part of the domain
contains a message (one retrieved value) and an addi-
tional variable for future acquisitions.
The strength of the interactive approach concerns the

fact that the CS module can guide knowledge acquisition
(i.e., the GEN module) by means of constraints, called
interactive constraints, and incrementally process new
information without restarting a constraint propagation
process from scratch each time new values are available.
With no loss of generality, we de�ne binary interactive
constraints.

De�nition 2.2 An interactive binary constraint c on
variables Xi and Xj , i.e., c(Xi; Xj), de�nes a possi-
bly partially known subset of the cartesian product of
variable interactive domains Di � Dj representing sets
of possible assignments of values to variables. Declar-
atively, given the domains of Xi :: [vi1 ; : : : ; vin jX

0
i] and

Xj :: [vj1 ; : : : ; vjm jX
0
j ], the constraint c(Xi; Xj) is satis-

�ed i�W
k=1::n;l=1::m c(vik ; vjl) _

W
k=1::n c(vik ; X

0
j) _

W
l=1::m c(X 0

i ; vjl) _ c(X
0
i ; X

0
j)

2

where c(vik ; X
0
j) (resp. c(X

0
i ; vjl)) is satis�ed i� for each

future acquired value v0j for X
0
j (vik ; v

0
j) 2 c.

De�nition 2.3 A binary Interactive CSP (ICSP) is
a tuple (V;D;C) where V is a �nite set of variables
X1; : : : ; Xn, D is set of interactive domains D1; : : : ; Dn

and C is a set of interactive (binary) constraints. A so-
lution to the ICSP is an assignment of values to variables
which is consistent with constraints.

3 Search strategies

In this section, we de�ne the Interactive Forward Check-
ing and the Interactive Minimal Forward Checking pro-
cedures. With no loss of generality, both the algorithms
start by considering an ICSP where all variables range
on a completely unknown domain, i.e., no value is avail-
able for any variable. Thus, all variables initially range
on a completely unknown domain, and are chosen in the
following instantiation order: X1; : : : ; Xi; : : : ; Xn. The
current variable Xi is the variable to be instantiated
and Di is its current interactive domain. We refer to
future connected variables to Xi as the ordered subset of

2With an abuse of notation, we impose the constraint c
on variables representing a list. For the sake of readability,
we have omitted the de�nition of a new variable Xnew :: X 0

i

on which constraints should be imposed.



procedure IFC(V ar, Domain);
begin
for all Xi 2 V ar do

begin
I-label(i);
I-propagation-acquisition(i,future connected vars);

end;
end;

Figure 2: The IFC algorithm

procedure I-label(i);
begin
known[i] := known(Domain[i]); % known part of Var[i]
unknown[i] := unknown(Domain[i]); % unknown part of Var[i]
if unknown[i] 6= [] % Var[i] domain is fully unknown

then begin
collect all unary constraints C on V ar[i];
impose C on unknown[i];
acquire one val(i,C);
end;

if known[i] = []
then fail;
else begin % Now known[i] is surely de�ned

select a value vi from known[i];
assign V ar[i] = vi;
end;

end;

Figure 3: The labeling procedure

Xi+1; : : : ; Xn containing those variables linked to Xi by
means of a constraint.

3.1 Interactive Forward Checking

In standard CSPs, the forward checking strategy [4] in-
terleaves a labeling step which instantiates variable Xi

to a value v in its domain with a constraint propagation
process. This second step removes from the domains of
future connected variables values which are not consis-
tent with v.
The interactive version of the FC (�gure 2) is divided

in two steps as well. A labeling move is used to �nd
an instantiation for the current variable, and a propa-
gation/acquisition step is used to remove (already ac-
quired) values inconsistent with the current labeling, or
to acquire new consistent values.
The labeling step, called I-label (�gure 3), takes as

input the index of the variable Xi to be instantiated and
either selects a value v in its known domain part if it
exists, or retrieves one value v for Xi consistent with the
unary constraints on Xi. I-label then assigns Xi = v.
The propagation/acquisition step (�gure 4) takes as

input the index i of the current variable and the set
of future connected variables. For each future connected
variableXj , a classical FC propagation step is performed
in order to remove inconsistent values if the domain of
Xj is known. Otherwise, an acquisition is performed in
order to retrieve all the values consistent with v. After
the acquisition, the domain of Xj is completely known.
The main di�erence with the classical FC algorithm

is achieved if the GEN module is able to be guided
by means of constraints in order to retrieve consistent
values. For instance, in a visual recognition system
[1], constraints exploiting some form of locality, such as
touches(X1,X2) where X1 and X2 are segments, could

procedure I-propagation-acquisition(i,future connected vars);
begin
for each V arj in future connected vars
do begin

known[j] := known(Domain[j]);
unknown[j] := unknown(Domain[j]);
if known[j] = [vj1 ; : : : ; vjm ]

then begin
for each vjk in known[j] do
if not consistent(vi, vjk )
then begin

remove vjk from known[j];
if known[j] = [] then fail;
end

else begin
impose constraints on unknown[j]
acquire all values(unknown[j])
end;

end ;
end;

Figure 4: The propagation algorithm

guide the knowledge acquisition in order to let the GEN
module to focus only on semantically signi�cant image
parts. If this capability could be exploited, the num-
ber of data acquisition performed by IFC is signi�cantly
smaller than those performed by FC.

3.2 Interactive Minimal Forward Checking

In the previous section, we have described the IFC algo-
rithm which performs, when needed, the acquisition of
all domain values consistent with a given assignment.
As argued in [2], a more e�cient algorithm �nds and

maintains only one consistent value in the domain of
each future variable, suspending forward checks until
other values are required by the search. In the inter-
active version of the MFC we retrieve only one value for
each future connected variable, consistent with a given
assignment. In addition, we impose new constraints on
the unknown part of the domain for eventual future ac-
quisitions. The algorithm is the same as the one de-
scribed in �gure 2. The I-propagation-acquisition
step reported in �gure 5 is di�erent from the IFC since
we acquire only one value by the GEN module and pro-
duce constraints on the unknown domain parts which
will be used in backtracking for acquiring further values.
Posing new constraints on the variables representing the
unknown domain parts is a crucial point in our frame-
work that allows newly acquired data to be processed
without starting the constraint propagation process from
scratch each time new values are available.
As an example, consider the constraint X1 < X2,

where variable X1 is instantiated to 3 and the domain of
variable X2 completely unknown, i.e., X2 :: X 0

2. When
the constraint is checked, a knowledge acquisition is per-
formed for X2. Suppose that value 5 is retrieved. The
domain of X2 becomes X2 :: [5jX"2] and on X"2 a set
of constraints is imposed, stating that X"2 6= 5 and
X"2 > 3. These constraints are taken into account if
value 5 is removed from the domain of X2 during con-
straint propagation. In this case, another consistent
value for X2 is retrieved satisfying the imposed con-
straints on X"2.



procedure I-propagation-acquisition(i,future connected vars);
begin
for each V arj in future connected vars
do begin

known[j] := known(Domain[j]); % contains at most one value
unknown[j] := unknown(Domain[j]);
if known[j] = [vj ]

then begin
if not consistent(vi, vj)
then begin

remove vj from known[j];
impose constraints on unknown[j];
acquire one value(unknown[j]);

end;
else impose constraints on unknown[j]

else begin % the domain of V arj is fully unknown
impose constraints on unknown[j]
acquire one value(unknown[j])
end;

end ;
end;

Figure 5: The IMFC propagation

4 Heuristics

One important issue is the ordering in which variables
are labelled and the ordering in which values are assigned
to each variable. Decisions in these orderings signi�-
cantly a�ect the e�ciency of the search strategy.
As concerns variable selection, a widely used CSP

heuristics, called �rst fail principle, selects �rst the vari-
able with the smallest domain. When coping with par-
tially or fully unknown domains, we cannot know in ad-
vance how many values will be contained in the domain.
Thus, we partially disable variable selection heuristics
which depend on domain size. A general criterion which
can be followed in the interactive framework tends to
minimize knowledge acquisitions. Thus, we �rst select
variables with a completely known domain and among
those, then partially known variables, and �nally, com-
pletely unknown variables.
As concerns the domain value choice, the only heuris-

tic used concerns the selection of a value belonging to
the known part of a domain before the selection of the
unknown part that results in an unguided knowledge ac-
quisition.

5 Experimental Results

In order to test ICSP algorithms, we performed a se-
ries of experiments based on randomly generated CSPs.
Each CSP is de�ned by a 4-tuple < n;m; p; q >, where n
is the number of variables, m is the size of every domain,
p is the probability that a binary constraint is imposed
on a pair of variables (constraint density), and q is the
conditional probability that two values in a constraint
are consistent.
We consider both the number of constraint checks per-

formed by the high-level system and the number of con-
straint checks performed by the low-level system during
interaction. Each time a single value is requested for one
variable domain (function acquire one value), �rst we
check if an already acquired value is consistent w.r.t.
the interactive constraints (and we count the number of

Figure 6: Constraint check ratio FC/IFC

Figure 7: Constraint check ratio MFC/IMFC

constraint checks needed); if the element is not found we
perform acquisition.
Figure 6 shows the ratio of the number of constraint

checks performed by FC and by IFC (the higher the bars,
the better is the interactive approach). The test was
performed generating a number of problems with n = 10,
d = 10, and varying p and q. Each bar is calculated on
the average of 20 problems.
We can see that the number of constraint checks per-

formed by IFC is always less than plain FC and is consid-
erably lower when the constraint tightness is high (i.e.,
low values of q). This depends on the fact that, when
binding a variable, the IFC algorithm acquires only the
values consistent with constraints, so, if the constraint is
tight, only few acquisitions will be performed.
Analogous considerations can be done for Minimal

Forward Checking algorithm: as the constraint tightness
grows, the interactive approach outperforms the non in-
teractive one.
Since in most applications the value extraction is usu-

ally the most expensive task, the comparison based on
the number of extracted values is more signi�cant than
a comparison based on constraint checks. In Figure 9 we
show the percentage of extracted elements for the IMFC
algorithm in problems generated with n = 10, d = 10,
varying p and q from 10% to 90%. We can see that
in more than half of the cases the number of extracted
elements is less than 50% of the number of elements ex-
tracted by CSP methods. The number of acquired values
is very low if the constraints are tight, as every interac-
tive constraint will acquire only few values and this will



Figure 8: IFC percentage of extracted elements.

Figure 9: IMFC percentage of extracted elements.

be enough to demonstrate that the whole problem is in-
consistent.
The number of acquisitions is higher in IFC, because

it extracts all values consistent with an interactive con-
straint (Figure 8). The displayed graph is quite similar
to that in Figure 9, but shows a higher number of acqui-
sitions when q grows. If almost every value in a domain
is consistent w.r.t. the interactive constraints, then it is
likely that every acquisition will lead to a full extraction,
i.e. every acquisition will extract nearly all the d values
which can be assigned to a given variable.

5.1 3D Visual Object Recognition

In this section, we show some results obtained in 3D ob-
ject recognition by using the ICSP framework, [1]. We
model 3D objects by means of constraint graphs: nodes
represent object parts (say surfaces) and constraints ge-
ometric and topological relations among them. A graph
representation of object models has been used in many
di�erent contexts of 2D shapes [9], and extended to the
3D scene recognition [7],[6]. Solving the 3D object recog-
nition problem as a standard CSP involves the extrac-
tion from the image of all surfaces S0 : : : ; Sm which are
put in variable domains D0 : : : Dn. Then, we have to
�nd an assignment of surfaces to variables satisfying all

constraints.
The CSP-based approach for object recognition suf-

fers of a severe limitation in term of e�ciency when ap-
plied to real vision applications: surface extraction is a
time consuming step working on range images. Thus,
useless acquisitions should be avoided and the adop-
tion of ICSP leads to a signi�cant performance improve-
ment. The ICSP-based recognition executes the follow-
ing steps: (i) the constraint solver queries the low-level
image processing system for retrieving an unconstrained
surface (S1); (ii) the interacting constraint propagation
starts, and whenever a variable domain is not known,
new variable values satisfying constraints are requested.
In this case, the GEN module is able to acquire vi-
sual features being guided by spatial constraints such as
get surface touching(Xi) so that only adjacent sur-
faces to Xi are directly computed. This improves the
ICSP performances since variable domains turn to be
smaller and, more important, the visual system focusses
only on signi�cant image parts. Thus, the guided in-
teraction prevents the low-level system from acquiring
many useless surfaces.
Several tests are performed on a speci�c data-base of

range images: we have created a modi�ed version of the
Washington State University database [5] by assembling
several images in order to obtain new ones containing
many di�erent possibly overlapped objects.

Image ICSP CSP Speedup
B 1 (320x320) * 136.60 279.66 2.04
B 2 (320x320) * 129.80 276.07 2.12
B 3 (320x320) 125.01 256.51 2.05
B 4 (320x320) 39.93 263.50 6.59
B 5 (320x320) * 156.50 309.90 1.98
B 6 (320x320) 34.89 301.43 8.63
B 7 (400x400) 178.77 442.51 2.47
B 8 (400x400)* 549.10 518.59 0.94
B 9 (400x400) 215.85 555.76 2.57

Table 1: Computational results

Results in Table 1 refer to a database of 9 images and
describe the time (in seconds) spent for extracting the
�rst 3D object with an L-shape: the CSP and the ICSP
approaches are compared. Some images (marked with
*) do not contain the object. In those cases the whole
image has been explored and all surfaces computed for
both approaches. When all the surfaces are extracted
in the image, the performance gain using an interactive
approach is not particularly high (in one case the ICSP
is even slower since it uses more check points): never-
theless, in images containing the modelled 3D object, a
speedup ranging between 2 to 8 has been obtained.

6 Related Work

The general idea that in many applications it is both
unreasonable and unrealistic to force the user to provide
in advance all information required to solve the problem
was argued by Sergot [11] who proposed an extension of
Prolog allowing interaction with the user. From an al-
gorithmic perspective, our starting points are the FC [4]



and the MFC [2] algorithms. They have been extended
with the notion of interaction between a constraint solver
and a low level module producing constrained data to be
processed.
Dynamic Constraint Satisfaction (DCS) [8] is a �eld

of AI taking into account dynamic changes of the con-
straint store such as the addition, deletion of values and
constraints. The di�erence between DCS and our ap-
proach concerns the way of handling these changes. DCS
approaches propagate constraints as if they work in a
closed world. DCS solvers record the dependencies be-
tween constraints and the corresponding propagation in
proper data structures so as to tackle modi�cations of
the constraint store. In this perspective, we also cope
with changes in the sense that the acquisition of new
variable values can be seen as a modi�cation of the con-
straint store. However, we work in an open world where
domains are left opened thanks to their unknown part.
Unknown domain parts intensionally represent future ac-
quisition, i.e., future changes. Thus, the propagation we
perform is less powerful than that performed by dynamic
approaches, but we do not need to store additional in-
formation for restoring the constraint store consistency
as done by DCS approaches.
Other related approaches concern constraint-based re-

active systems [3]. Reactive programs are programs that
react with their environment, are usually stateful, and
have to make decisions before their consequences are
known. They interleave information accumulation and
decision making activities. Also in our approach data
acquisition and its processing are interleaved. However,
in reactive programs the constraint solver computes a
solution for a given set of (incrementally added) vari-
ables starting from an already committed system state.
Thus, the computation of a single query is performed
with no interaction with the (GEN) system. In our ap-
proach, instead, interactions between the system (the
GEN module) and the constraint solver take place dur-
ing the execution of a single query.
As a �nal remark, in the �eld of programming lan-

guages, concurrent constraint programming [10] repre-
sents a framework which is based on the notions of con-
sistency and entailment for computing with partial in-
formation. Computation emerges from the interaction of
concurrently executing agents communicating by means
of constraints on shared variables. In a sense, the work
on concurrent constraint programming concentrates on
the algorithms without paying attention to the seman-
tics of the external world. With our approach we add
this semantics. Concurrent constraint programming can
be used as an e�ective language for implementing the
interactive constraint solver.

7 Conclusion and Future work

We have presented a model for interactive CSP which
can be used when data on the domain is not completely
known at the beginning of the computation, but can be
dynamically acquired on demand by a low level system.

More important, it is used in order to guide the search
by generating new constraints at each step. We have
implemented the framework by extending the ECLiPSe

CLP(FD) library. We have shown results on randomly
generated CSPs and in the �eld of 3D object recognition.
Future work concerns the extension of other constraint

propagation algorithms, like arc-consistency, to the in-
teractive case. In addition, we are investigating other
�elds such as planning and user interfaces which could
bene�t from the proposed approach.

Acknowledgements

This work has been partially supported by MURST
Project on \Intelligent Agents: Interaction and Knowl-
edge Acquisition".

References
[1] R. Cucchiara, E. Lamma, P. Mello, and M. Milano.

An interactive constraint-based system for selective
attention in visual search. In Proceedings ISMIS'97,
LNAI, 1997.

[2] M.J. Dent and R.E. Mercer. Minimal forward check-
ing. In Proceedings of ICTAI94, 1994.

[3] M. Fromherz and J. Conley. Issues in reactive
constraint solving. In Proceedings of COTIC'97 -
Workshop in CP'97, 1997.

[4] P. Van Hentenryck. Constraint Satisfaction in Logic
Programming. MIT Press, 1989.

[5] A. Hoover, G. Jean-Baptiste, X. Jiang, P.J. Flynn,
H.Bunke, D.B.Goldgof, K. Bowyer, D.W. Eggerf,
A.Fitzgibbon, and R.B. Fisher. An experimen-
tal comparison of range image segmentation algo-
rithms. IEEE Transactions on PAMI, 18(7):673{
689, 1996.

[6] M.Herman and T.Kanade. Incremental reconstruc-
tion of 3D scene from multiple complex image. Ar-
ti�cial Intelligence, 30:289{341, 1986.

[7] M.H.Yang and M.Marefat. Constrained based fea-
ture recognition: handling non uniquitess in feature
interaction. In IEEE International Conference on
Robotics and Automations, 1996.

[8] S. Mittal and B. Falkenhainer. Dynamic constraint
satisfaction problems. In Proc. of AAAI-90, 1990.

[9] J.A. Murder, A.K.Mackworth, and W.S.Havens.
Knowledge structuring and constraint satisfaction:
the MAPSEE approach. IEEE Trans. on PAMI,
10(6):866{879, 1988.

[10] V.A. Saraswat. Concurrent Constraint Logic Pro-
gramming. MIT Press, 1993.

[11] M. Sergot. A query-the-user facility for logic pro-
gramming. In P. Degano and E. Sandewall, editors,
Integrated Interactive Computing Systems, pages
27{41. North-Holland, 1983.

[12] E. Shapiro, editor. Concurrent Prolog - Vol. I. MIT
Press, 1987.


