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Abstract—Orthogonal frequency division multiplexing (OFDM)
with pilot symbol assisted channel estimation is a promising tech-
nique for high rate transmissions over wireless frequency-selective
fading channels. In this paper, we analyze the symbol error rate
(SER) performance of OFDM with -ary phase-shift keying
( -PSK) modulation over Rayleigh-fading channels, in the pres-
ence of channel estimation errors. Both least-squares error (LSE)
and minimum mean-square error (MMSE) channel estimators
are considered. For prescribed power, our analysis not only yields
exact SER formulas, but also quantifies the performance loss
due to channel estimation errors. We also optimize the number
of pilot symbols, the placement of pilot symbols, and the power
allocation between pilot and information symbols, to minimize
this loss, and thereby minimize SER. Simulations corroborate our
SER performance analysis, and numerical results are presented
to illustrate our optimal claims.

Index Terms—Channel estimation, error probability, orthogonal
frequency division multiplexing (OFDM), pilots.

I. INTRODUCTION

ORTHOGONAL FREQUENCY DIVISION MULTI-
PLEXING (OFDM) provides an effective and low-

complexity means of eliminating intersymbol interference for
transmissions over frequency-selective fading channels [1],
[2]. Channel state information (CSI) is required for the OFDM
receiver to perform coherent detection, or diversity combining,
if multiple transmit and receive antennas are deployed. In
practice, CSI can be reliably estimated at the receiver by
inserting training (a.k.a. pilot) symbols at the transmitter. Pilot
symbol assisted channel estimation is especially attractive for
wireless links [3], where the channel is time-varying. In [4]–[7]
the channel correlation in the time and frequency domains was
exploited for pilot-based channel estimation in OFDM systems.
Channel estimation using pilot symbols in only one OFDM
block was advocated in [8] and [9]. Interpolating schemes were
investigated in [10], [11], and joint multipath delay and tap
estimation of OFDM channels was studied in [12].

While many channel estimators have been developed for
OFDM, error probability analysis in the presence of channel
estimation errors has received relatively less attention. Only
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recently, BER approximations for -ary phase shift keying
( -PSK) and -ary quadrature amplitude modulation (QAM)
were provided for OFDM with channel estimation errors [13],
[14]. In this paper, we will derive exact symbol error rate
(SER) expressions for pilot assisted OFDM transmissions with

-PSK modulation over Rayleigh-fading channels. Our SER
analysis also quantifies the performance loss due to channel
estimation error and the transmit pilot power. Based on this
SER analysis, we will optimize the design of pilots to minimize
the performance loss caused by channel estimation errors. For
prescribed power, this will lead us to pilots that minimize error
probability. Optimizing pilots for wireless OFDM systems
has been considered recently, based on: maximizing a lower
bound on ergodic capacity [15], [16], or, minimizing the
channel mean-square error (MSE) [17]–[19]. Pilot optimization
for single-carrier transmissions has also been investigated in
[15], [20]–[22] based on these two criteria, and in [23] by
minimizing the Cramér–Rao bound on the channel MSE.
As error probability directly determines the reliability of a
communication link, our use of SER as a criterion is certainly
of practical interest.

The rest of this paper is organized as follows. Section II de-
scribes the system model, and analyzes the average SER perfor-
mance in the presence of channel estimation errors. Pilot sym-
bols are optimized to minimize SER in Section III. Simulations
and numerical results are presented in Section IV, and conclu-
sions are drawn in Section V.

Notation: Superscripts , , and stand for transpose, con-
jugate, and Hermitian transpose, respectively; denotes ex-
pectation. Column vectors (matrices) are denoted by boldface
lower (upper) case letters; represents the identity
matrix; stands for a diagonal matrix with on its diag-
onal; and denotes the trace of matrix . We use

to denote that is a complex Gaussian distributed
vector with mean , and covariance .

II. MODELING AND ERROR PROBABILITY ANALYSIS

In this section, we will present the signal model, and analyze
the SER performance of OFDM in the presence of channel es-
timation errors.

A. Signal Model

The OFDM transmission system under consideration is de-
picted in Fig. 1. Information and pilot symbols are modulated
on a set of subcarriers, and transmitted over a frequency-selec-
tive fading channel through a single transmitter antenna. After
demodulation at the receiver end, where we allow for multiple
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Fig. 1. OFDM transmission system.

antennas, the channel per receive-antenna is estimated using pi-
lots. Based on the estimated channels, the maximum ratio com-
biner (MRC) is employed to yield decision statistics.

Suppose that the frequency-selective channels remain
invariant over an OFDM block, and the length of the cyclic
prefix exceeds the channel order. After demodulation, the
received signal at the th receive-antenna on the th subcarrier
corresponding to pilot symbols can be written as

(1)
where denotes the set of subcarriers on which pilot symbols
are transmitted, is the transmitted power per pilot symbol,

is the channel frequency response of the th antenna
at the th subcarrier, , , is the pilot symbol, and

is complex additive white Gaussian noise (AWGN) with
zero-mean and variance per dimension; and is the
number of receive-antennas. We select pilot symbols of con-
stant modulus, i.e., , . We omitted the block
OFDM symbol index in (1) since block-by-block channel esti-
mation and symbol detection will be considered throughout the
paper.

The received samples corresponding to information symbols
can be expressed as

(2)
where is the transmitted power per information symbol, and

denotes the set of subcarriers on which information symbols
are transmitted. Suppose that the total number of subcarriers is

, and the size of is . For simplicity, we assume that
the size of is , although it is possible that

, when null subcarriers are inserted for spectrum shaping.
Selecting information symbols from -PSK constellations, we
have also that , . The frequency-selective
channel is assumed to be Rayleigh-fading, with channel impulse
response corresponding to the

th receive-antenna, and denoting the number of taps; i.e.,
, , , are uncorrelated com-

plex Gaussian random variables with zero-mean. We assume
that channels associated with different antennas have identical
power delay profiles specified by the variance: , the same

. Channels are normalized so that
. Define the matrix ,

and let be the th column of . Then, ,
is a complex Gaussian random variable with zero-mean and

unit variance. The average signal-to-noise ratio (SNR) per pilot
(information) symbol at each antenna is . The
AWGN variables are assumed to be uncorrelated, ,
and .

Suppose that the set of pilot subcarriers is given by
. Letting contain the

channel frequency response on pilot subcarriers, and defining
, we can relate the fast Fourier transform

(FFT) pair via: . Let the vector
consist of the received pilot samples

per block, and define , and
. From (1), we have

(3)

Given and , we wish to estimate based on (3). While
it may be possible to use pilot samples from different OFDM
blocks to estimate the channel as advocated in [6], we will rely
on pilots from only one block to estimate the channel on a per
block basis as in [8] and [9]. This is particularly suitable for
packet data transmission, where the receiver may receive dif-
ferent blocks with unknown delays.

B. SER With LSE Channel Estimation

If we define ,
then the least-squares error (LSE) estimate of the channel im-
pulse response is given by [24, p. 225]

(4)

where . Using the fact that ,
it follows readily that . The
estimated channel frequency response on the th subcarrier can
then be obtained from (4) as

(5)

where with
. Since the variance of does not depend on the

antenna index , we omitted the index in . For nota-
tional brevity, we also define

(6)

and then . Since and are un-

correlated Gaussian random variables with zero-mean,
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is Gaussian distributed with zero-mean, and variance

. From (5), we see that
is correlated with . Hence, can be written as

, where ,
and is a complex Gaussian random variable with zero-
mean, which is uncorrelated with . Clearly, is
the linear minimum mean-square error (MMSE) estimate
of

, and the variance of is the
corresponding MMSE, which can be found as

.
The output of the th MRC branch for , , can be

expressed as

(7)

Substituting into (7), we obtain

(8)

Since , , are uncorrelated, , the instantaneous
SNR of the MRC output can be found
from (8) as

(9)

Since are independent, identically, (Gaussian)
distributed (i.i.d.), the average SER of , , that we
denote as , can be found in closed form using the SNR

[25, eq. (21)], [26, eqs. (9.19), (5A.17)]. The overall SER
is then given by

(10)

To quantify the performance degradation caused by channel
estimation errors, we define an SNR as

(11)

Since , and , in (11)
is equivalent to in (9) in the sense that the average SER
calculated from is equal to that calculated from . If

denotes the total transmitted power per block, then
. Accounting for pilot power, the average

power per information symbol is , and

(11) can be written as ,
where

(12)

in (12) quantifies the performance degradation caused
by channel estimation errors, and by the power reduction needed
for channel estimation. Substituting into (12), we have

(13)

where is defined in (6). In the ideal case where no pilot sym-
bols are transmitted, and the receiver has perfect CSI, the trans-
mitted power per symbol is , and the SNR at the MRC output
is . Compared to this ideal case, the per-
formance degradation is

(14)

While in (13) reflects the performance degradation
caused by channel estimation errors, and accounts for the
power reduction allocated to pilots, in (14) captures
the performance loss only due to channel estimation errors.
Since , we see from (13) that , which
implies that there is always performance loss. On the other
hand, it may be interesting to compare the SER performance
of pilot symbol assisted channel estimation with that of the
ideal case. If equal power is allocated to pilot and information
symbols , then we can increase to decrease
the variance of channel estimation error ,
and thereby increase . However, with this equal power
allocation, we see from (14) that . If on the
other hand, power is optimally distributed between pilots and
information symbols, it will be shown later that can
be greater than one, which implies that performance may
improve relative to the ideal case. Because depends on
this power allocation, but also on the number and placement of
pilot symbols, we will optimize these parameters in Section III
to maximize , and thus minimize SER.

C. SER With MMSE Channel Estimation

The LSE channel estimator does not depend on the fading
channel’s power delay profile. If this knowledge is available, we
can use the MMSE channel estimator to further improve SER
performance. From (3), the covariance matrix of is given
by ,
where . The
cross-correlation between and is

. Then, the MMSE estimator of is given
by1 [24, p. 391]. The channel estimation
error is given by , which is Gaussian distributed
with zero-mean, and covariance [24, p. 391]

(15)

1We will use the same notation for LSE and MMSE channel estimation, when
there is no confusion.
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where , , so that is invertible. When there are
zero taps in , we can remove these taps from (3), to guar-
antee invertibility of . The estimated channel frequency
response on the th subcarrier can be obtained as

, where with
, and . The estimator

is Gaussian distributed with zero-mean. Since the
orthogonality principle renders uncorrelated with ,

and are also uncorrelated. Thus, the variance of
can be found as .

The output of the th MRC branch for , , can be
written as

(16)

Using the fact that and are uncorrelated, the in-
stantaneous SNR at the MRC output can be found from (16) as

(17)

Similar to (11), we define an SNR equivalent to in (17) as

(18)

From the SNR in (18), and the independent and identical
Gaussian distributions of , we can calculate the
average SER in closed form [25, eq. (21)], [26, eqs. (9.19),
(5A.17)]. Similar to (12), the performance degradation caused
by MMSE channel estimation can be found from (18) as

(19)

Compared to the ideal case, the performance loss is given by

(20)

In the ensuing section, we will optimize pilot symbol parameters
to maximize , and thus minimize the average SER.

III. ERROR PROBABILITY MINIMIZING PILOTS

Based on the SER performance in Section II, we will opti-
mize here the power allocation between pilot and information
symbols, the number of pilots, and the placement of pilot sym-
bols to minimize the average SER.

A. Optimal Pilots for LSE Channel Estimation

As we mentioned in Section II-B, the total transmitted power
per block is . If the power allocated to information sym-
bols is , where , then we have

. The transmitted power allocated to pilot
symbols is ; thus, the transmitted power per

pilot symbol is . Note that
corresponds to having , which we refer to as equal
power allocation. Since , then ,
and the performance degradation in (13) becomes

(21)

where ; and from (14), we have

(22)

If we fix the power allocation and the number of pilot symbols
, it is seen from (21) that is determined by . Since

depends on the placement of pilot symbols [cf. (6)], we next
find the optimal pilot locations to maximize .

But first, let us define the equi-spaced pilot symbols as fol-
lows:

Definition 1 (Equispaced Pilot Symbols): If is an
integer, then we say that the pilot symbols are equispaced, if
and only if the pilot subcarrier index set is

for some .
For equispaced pilot symbols, it is easy to verify that

. Thus, , , and , are
identical. For arbitrarily located pilot symbols however,
may be different for different . Since the average SER
in (10) is dominated by the largest , it is desirable to
maximize the in order to minimize the worst
performance loss. It turns out that the equispaced pilot symbols
are optimal among all possible pilot placements, which is
precisely described by the following lemma (see Appendix for
the proof)

Lemma 1: If is an integer, then for any given
power allocation specified by , the equispaced pilot symbols
are optimal in the sense that the is maximized.

Because equispaced placement of pilot symbols is impossible
when is not an integer, we will later develop a sub-
optimal pilot placement for this case, which will be shown to
have almost identical performance to the equispaced one. Eq-
uispaced and equipowered pilot symbols were shown necessary
and sufficient to minimize in [19]. However, mini-
mizing may not lead to the minimum average SER,
because average SER may be dominated by the SER of subcar-
riers with large estimation errors. Although our result in Lemma
1 is the same as that in [19], we obtain this result by directly min-
imizing the worst SER.

The number of pilot symbols in (21) affects the perfor-
mance loss. The following lemma, which is proved in the Ap-
pendix, characterizes the optimal number of pilot symbols.

Lemma 2: Suppose that is an integer. If the equispaced
pilot symbols are employed when , then for any power
allocation specified by , is optimal in the sense that the
minimum of , , and is maximized.

When is not an integer, may be no longer op-
timal. However, the suboptimal pilot placement scheme we will
develop later has almost the same performance as its optimal
equispaced counterpart. It was shown in [19] that eq-
uispaced pilot symbols minimize the channel MSE
under a transmit power constraint. We here show that
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equispaced pilot symbols actually minimize the SER, and our
proof is different from that in [19].

Having derived the optimal placement and number of pilot
symbols in Lemmas 1 and 2, we next determine the optimal
power allocation between pilot and information symbols. We
first prove the following lemma in the Appendix:

Lemma 3: Given and , in (21) has a unique max-
imum over . The maximum of is achieved at

, if , and at

(23)

if .
Note that for equispaced pilot symbols, are identical,
. If pilot symbols are not equispaced however, is gen-

erally different for different . Since our goal is to maximize the
, the optimal power allocation is summarized

in the following lemma:
Lemma 4: If pilot symbols are not equispaced, then the op-

timal power allocation is specified by , where
. If pilot symbols are equispaced, the

optimal power allocation is given by (23) with , .
This optimal power allocation is applicable to any , and

any placement of pilot symbols. Note that our SER minimizing
power allocation here is different from the power allocation
that minimizes the normalized symbol MSE in [19]. Combining
Lemmas 1, 2, 3, and 4, we summarize our optimal training re-
sults in the following proposition:

Proposition 1: If is an integer, then the SER mini-
mizing pilots are specified by the following conditions: the
number of pilot symbols is ; pilot symbols are equis-
paced; and the power allocation between pilot and information
symbols is given by (23) with , .

If is not an integer, our numerical results in Section IV
show that: setting , using the suboptimal pilot symbol
placement developed in Section III-C, and the power alloca-
tion given by Lemma 4, we can achieve almost the same per-
formance as the optimal pilots specified by Proposition 1.

B. Optimal Pilots for MMSE Channel Estimation

Substituting the expression of and into (19), we obtain

(24)

and from (20), we have

(25)

Our objective is again to find the optimal pilot placement,
number of pilots, and power allocation to minimize the worst
performance loss, or equivalently, to maximize the minimum
of . The following lemma, which is proved in the
Appendix, shows that equispaced pilots also maximize the

:

Lemma 5: If is an integer, then for any power allo-
cation specified by , the equispaced pilot symbols are optimal
in the sense that the is maximized.

With MMSE channel estimation, it is shown in [15] and [16]
that equispaced pilot symbols maximize a lower bound on er-
godic capacity. Here, we prove that equispaced pilot symbols
also minimize the worst SER.

If pilot symbols are equispaced, it is shown in the proof of
Lemma 5 that , . If pilot
symbols are not equispaced, using in (15), we have

(26)

where . Performing
singular value decomposition on , we obtain

, where
contains singular values, and the unitary matrix consists of
the corresponding singular vectors; and then (26) becomes

(27)

where the vector . Substituting the expres-
sion for into (24), we can write as a function
of and . As it is difficult to find the optimal and to
maximize analytically, we resort to numerical search
to find the maximum of . Specifically, letting

, , we can use a one dimen-
sional search, e.g., Golden section search [27, p. 397], to max-
imize with respect to ; and searching over all values
of , we can find the optimal and . Our numerical results in
Section IV will show that the optimal is usually equal to .

If the channel taps are i.i.d and the pilot symbols are equi-
spaced, it is possible to find the optimal and in closed
form. When the channel taps are i.i.d, we have ,

; and using for equispaced pilot
symbols, we obtain from (26) . Then,

in (24) becomes

(28)

Comparing with in (13) with ,
and for equispaced pilot symbols, we deduce that
LSE and MMSE channel estimation incurs the same SER per-
formance loss, even though the two channel estimators come
with different estimation errors. We summarize this result in the
following lemma:

Lemma 6: When the pilot symbols are equispaced, and the
channel taps are i.i.d., MMSE and LSE channel estimators lead
to identical SER performance.

The optimal power allocation in this case can be found from
(23) by setting .
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C. Suboptimal Placement of Pilots

For LSE channel estimation, we show in Lemma 2 that when
is an integer, equispaced pilot symbols are optimal.

However, it may not be possible to guarantee that is an in-
teger in practice, since the channel order may change depending
on the operating environment. For a fixed power per pilot or in-
formation symbol, we can always increase to reduce channel
estimation error, and thereby increase and
as seen from (14) and (20). This in turn improves SER perfor-
mance relative to the ideal case, at the price of reducing trans-
mission rate, which may be affordable in some scenarios. When
we increase to reach a desirable trade off between SER perfor-
mance and transmission rate, it may be difficult to ensure that

is an integer. This motivates our suboptimal scheme for
the placement of pilot symbols, when is not an integer.

In our channel estimation, we first use a linear LSE or MMSE
estimator to obtain an estimate of the channel impulse response,

, from pilot samples on different subcarriers; and then obtain
an estimate of the channel frequency response on the th sub-
carrier, . Note that this two step channel estimator does
not sacrifice optimality of linear LSE or MMSE estimation [9].
We can also view this channel estimator as a linear interpolator
of pilot samples in the frequency domain. Thus, it is reason-
able to place pilot symbols uniformly across subcarriers, which
ensures that the estimated channel frequency response at each
subcarrier has almost the same error. For this reason, we place

pilot symbols with two values of pilot spacings: and ,
when is not an integer. This leads to the following two
equations to be solved for

(29)

where we have pilot spacings equal to , and pilot spac-
ings equal to . Solving these two equations, we obtain

, and , , where
denotes the largest integer less than . We then uniformly inter-
leave these two pilot spacings. For example, supposing ,

, we have , , , which places pi-
lots on subcarrier with indexes in . It
will be shown in Section IV that this suboptimal placement of
pilot symbols has almost the same performance as the equis-
paced pilot symbols.

IV. SIMULATIONS AND NUMERICAL RESULTS

We consider an OFDM system with subcar-
riers corresponding to the -mode in terrestrial digital video
broadcasting (DVB-T) [7]. The frequency selective channel has

zero-mean uncorrelated complex Gaussian random
taps. We adopt an exponential power delay profile, with each
tap having variance , ,
as in [9].

Figs. 2 and 3 depict both simulated and analytical SER versus
SNR per antenna for LSE and MMSE channel estimation, re-
spectively. The number of pilot symbols is , QPSK con-
stellation is adopted, and the SNR is defined as in the ideal case:

. Simulation and analytical results match very
well. The optimal power allocation between pilot and informa-
tion symbols shows about 1 dB advantage relative to the equal

Fig. 2. SER versus SNR (LSE channel estimation).

Fig. 3. SER versus SNR (MMSE channel estimation).

Fig. 4. SER comparison between LSE and MMSE channel estimation.

power allocation. Based on the analytical results in Figs. 2 and
3, Fig. 4 compares the performance of LSE and MMSE estima-
tors. We confirm that both have almost identical performance
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Fig. 5. Channel MSE and transmitted SNR per information symbol versus
number of pilot symbols.

across the SNR region, when the transmitted power is optimally
allocated. With equal power allocation, MMSE estimation has
slightly better performance than LSE estimation in the low SNR
region.

Fig. 5 shows how the number of pilot symbols affect the
channel MSE and the transmitted SNR per information symbol.
In deriving the channel MSE, we assumed equispaced pilot
symbols, even when is not an integer. Hence, the channel
MSE here provides a lower bound when is not an integer.
In Fig. 5 and all remaining figures, we use .
With optimal power allocation, we see that the channel MSE
is almost constant; whereas, with equal power allocation, the
channel MSE decreases with , and is much larger than that of
optimal power allocation when is small. With equal power
allocation, the transmitted SNR per information symbol is
constant; on the other hand, with optimal power allocation,
the transmitted power per information symbol increases with

, and thus SER performance improves. Fig. 6 describes
the performance gain2 under variable power allocation. We
use , and equispaced pilot symbols. We see that
both LSE and MMSE channel estimators exhibit a unique
maximum at optimal power allocation. Figs. 7 and 8 depict
the performance gain versus for LSE and MMSE channel
estimation, respectively. When is not an integer, we use
the suboptimal scheme of Section III-C to place pilot symbols,
and plot , , ,
and . We also plot the performance gain for
equispaced pilot symbols, which serves as an upper bound
on the performance gain, if is not an integer. We draw
several conclusions from Figs. 7 and 8. First, the nonequispaced
placement of pilots using the suboptimal scheme has almost
the same performance as its optimal equispaced counterpart.
Second, with optimal power allocation, the performance gain
is maximized at , and is about 2.3 dB larger than that of
equal power allocation. Note that for LSE channel estimation,
we proved in Lemma 2 that is optimal, when is an

2We here and later use performance gain in dB, with negative gain indicating
performance loss.

Fig. 6. Effect of power allocation on performance loss.

Fig. 7. Performance loss (LSE channel estimation).

Fig. 8. Performance loss (MMSE channel estimation).

integer. For MMSE channel estimation, is not provably
optimal, but the numerical results in Fig. 8 illustrate that
is also optimal. Third, the performance gain relative to the
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ideal case ( and ) can be greater than one with
optimal power allocation, which implies that the SER is smaller
than that of the ideal case even in the presence of channel
estimation errors. This is due to the increase in transmitted
power per information symbol.

V. CONCLUSION

We have analyzed error probability performance of OFDM
with -PSK modulation over Rayleigh-fading channels, in the
presence of channel estimation errors. We derived exact SER
formulas, and quantified the performance loss due to channel
estimation error and transmitted pilot power. Since the number
and placement of pilot symbols, as well as the power allocation
between the pilot and information symbols affect SER perfor-
mance, we optimized these parameters for both LSE and MMSE
channel estimation to minimize SER. The optimal pilot symbols
result in about 2.3 dB performance gain relative to the pilot sym-
bols with equal power allocation for a system with
subcarriers, and a channel with taps having an expo-
nentially decaying power profile.3

APPENDIX

PROOF OF LEMMA 1

From (21), we see that is a monotonically decreasing
function of . Hence, to prove Lemma 1, it is sufficient to prove
that is minimized. By the definition of , we have

(30)

At this point, we need the following lemma proved in [19]:
Lemma 7: For an positive definite matrix with ( ,

)th entry , it holds that

(31)

where the equality is attained if and only if is diagonal.
Since is positive definite, and , using

(30) and Lemma 7, we have

(32)

where the equality holds if and only if is diagonal. If
, , are not identical, then there exits an such that

. For equispaced pilot symbols, we have
, and , . Hence, equispaced placement of pilot

symbols minimizes the . This completes the proof.

3The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U. S. Govern-
ment.

VI. PROOF OF LEMMA 2

To prove the lemma, we let , assume equispaced
pilot symbols for all possible values of , and then show that

is a decreasing function of . Since is an integer,
for , equispaced placement of pilot symbols is fea-
sible. For those values of that is not an integer, eq-
uispaced placement of pilot symbols is impossible; however,
assuming equispaced pilot symbols yields an upper bound on
the . Thus, it is sufficient to prove the lemma
when is a decreasing function of under the assumption
of equispaced pilot symbols.

For equispaced pilots, we have , . Then,
in (21) can be simplified to

(33)

where , , and .
Note that ’s are equal, . Differentiating with
respect to , we obtain

(34)

Since and , we have , and thus,
is a decreasing function of .

VII. PROOF OF LEMMA 3

From (21), we can also write as

(35)

where , . Since
is a monotonically increasing function, the value of

that maximizes also maximizes . From (35),
we have

(36)

Taking derivative of with respect to , we obtain

(37)

The second derivative of with respect to can be
obtained from (37) as

(38)

If , it is clear from (37) that . If
, then , since ; thus,

. If , from the definition of , we
have . Since , we obtain . Hence,

.
Therefore, is less than zero ,
which implies that is a concave function of in the
interval , and a unique maximum exists. Setting the
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first derivative of in (37) equal to zero, we obtain
the optimal at which is maximized

.
(39)

Substituting and into (39), we obtain (23).

VIII. PROOF OF LEMMA 5

It is seen from (24) that is a decreasing function
of ; thus, maximizing amounts to minimizing

. Hence, to prove the lemma, it is sufficient to prove
that is minimized. If pilot symbols are not
equispaced, similar to derivation of (30), we have

(40)

Defining , and using the
matrix inversion lemma [28, p. 19], we obtain

(41)

Using Lemma 7, we have

(42)

where equality holds if and only if is diagonal. Combining
(41) and (42), the second term in (40) becomes

(43)

From Lemma 7, the first term in (40) becomes

(44)
where equality holds if and only if is diagonal. Com-
bining (40), (43), and (44), we obtain

(45)

where equality holds if and only if is diagonal. If ,
, are not identical, then there exits an such that

. If pilot symbols are eq-
uispaced, from (15), we have ,
and then, ,

. Hence, equispaced placement of pilot symbols minimizes
. This completes the proof.
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