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Abstract

We formalize and prove the folklore theorems
that Booth recoding improves the cost and cy-
cle time of ‘standard’ multipliers by certain con-
stant factors. We also analyze the number of
full adders in certain 4/2-trees.

Keywords : multiplier design, booth recod-
ing, VLSI model, layout analysis, delay and
area complexity, wire effects.

1 Introduction

Addition trees are the central part in the design
of fixed point multipliers. They produce from
a sequence of partial products a carry save rep-
resentation of the final product [29] [7] [12] [21]
[11] [8] [30] [25]. Booth recoding [6] [24] [15] [5]
[1] is a classical method which cuts down the
number of partial products in an addition tree
by a factor of 2 or 3 at the expense of a more
complex generation of partial products.

In general, VLSI designers tend to implement
Booth recoding, and a widely accepted rule of
thumb says, that Booth recoding improves both
the cost and the speed of multipliers by some
constant factor around 1/4. In [1] [5] [3] [2]
[4] however the usefulness of Booth recoding is
challenged altogether. Finally, in an ambitious
case study of around 1000 concrete designs [3]
was performed, and for some technologies with
small wire delays the fastest multipliers turned
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out not to use Booth recoding.

In spite of the obvious importance of the con-
cept the (potential) benefits of Booth recoding
have apparently received no theoretical treat-
ment yet. This is probably due to the following
facts:

e the standard models of circuit complexity
[31] and VLSI complexity [26] [27] are only
trusted to be exact up to constant factors.

o the standard theoretical VLSI model ig-
nores wire delays.

e Conway/Mead style rules [16] [9] do con-
sider wire delays, but do not invite paper
and pencil analysis due to their level of de-
tail.

o trivial addition trees with linear circuit
depth have nice and regular layouts. But
Wallace trees [29] [8] [25] and even 4/2-
trees [11] [12] [14] [32] have more irregular
layouts. In the published literature these
layouts tend not to be specified at a level
of detail which permits, say, to read off the
length of wires readily.

In this paper we introduce a VLSI model which
accounts — in a hopefully meaningful way —
for constant factors as well as wire delays and
which is at the same time simple enough to per-
mit the analysis of large circuits. The model
depends on a parameter v which specifies the
influence of the wire delays. In this model we
study two standard designs of partial product
generation and addition trees: the simple linear
depth construction and a carefully chosen vari-
ant of 4/2-trees. We show, that Booth encod-
ing improves for all reasonable values of v both



the delay and the area of the resulting VLSI
layouts by constant factors between X and Y
minus low order terms which depend on v and
the length n of the operands. For n = 24 and
n = 53 (the length of significands in the IEEE
floating point format [10]) we specify the gain
exactly.

The paper is organized in the following way.
In section 2 we review Booth recoding as ex-
plained in [5] [13]. Section 3 provides a combi-
natorial lemma which will subsequently permit
to count the number of full adders in certain
4/2-trees. In Section 4 we analyze the circuit
complexity of Booth recoding. In section 5 we
introduce the VLSI model. The detailed circuit
model from [18] is combined with a linear de-
lay model for nets of wires. Section 6 contains
the specification and analysis of layouts. The
layouts for 4/2-trees follow partly a suggestion
from [28]. We conclude in section 7 and list
some further work.

2 Preliminaries

For
a=aln—1:0]=(a[n—-1],...,a[0]) € {0,1}"

we denote by

n—1 . .
<a>= Zi:o ali] -2

the number represented by a, if we inter-
pret it as a binary number. Conversely, for
p€{0,...,2" — 1} we denote by bin,(p) the n-
bit binary representation of p.

For z € {0,1}" and s € {0,1} we define

rds=(z[n—1]Fs,...,z[0]F s).

An (n,m)-multiplier is a circuit with n inputs
a=a[n—1:0], minputs b = b[m —1:0] and
n + m outputs p = p[n +m — 1 : 0] such that
<a>-<b>=<p> holds.
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Figure 1: S} in carry-save representation

2.1 Non-Booth

For j € {0,...m —1} and k,h € {1,...m} we
define the partial sums

k-1
Sik = Zi:j <a>-bt]-2!
, E_1 ,
= 203 <a> bt g]- 2t

, E_1 ,

< . Zt_o (2n _ 1) Lotti

Then we have

Sii = <a>-b[j]-2
Sik+h = Sik+ Sjtkh
and
<a>-<b> = Som
= Som-1+ Sm-1,1-

Because 5; . is a multiple of 27 it has a binary
representation with j trailing zeros. Because
S,k is smaller than 27+7+* it has a binary rep-
resentation of length n + j + k (see Fig. 1).

2.2 Booth Recoding

In the simplest form of Booth Recoding (called
Booth-2) the multiplicator is recoded as sug-
gested in Fig. 2.

With b[m+ 1] =bm]=56-1]=0 and
m’ = [(m+ 1)/2] one writes

m'—1

<b>=2<b>—-<b>=> " By -4
where
By = 2002j]+ b[2j — 1] 2b[2) + 1] - b[2]

= —20[2j + 1]+ b[25] + b[2j — 1].



Figure 2: Booth digits By;

The numbers By; € {—2,—-1,0,1,2} are called
Booth digits and we define their sign bits s9; by

{0 if By >0
82]‘_

1 if By <O0.
With
Oy = <a>-Bye{-2"t 2. . 2m1_2}
Dy; = <a>-|Byle{0,...,2" 2}
dy;j = bing1(Dy;)

the product can be computed from the sums

m’—1 .
<a>-<b> = Y. <a> By A
m’—1 .

— )

= Y ey
T)’L/—l ]

S ST

In order to avoid negative numbers C'5; one
sums the positive Fy; instead.

Eyj = Coj+3-2"1
Ey = Cg+4-27H
e; = bingya(Fay)
e = bingya(Ep).

This is illustrated in Fig. 3. The additional
terms sum to

m'—1 !
, q4m
o1 4+3. 47 ot .
(1433 ) (143 ——)
=0
2n+1—|—2~m"

Because 2 - m’ > m these terms are congruent
to zero modulo 27T, Thus

m'—

1 .
<a>-<b>=> " " Ey-4' mod 2"t

1

. 1 1|0 0 00
R ¥ dy = <a>"Bo‘

, 1 1[0 0 00
= t[ 4= ey
£ 1 00 00
4 + d, = <a>.‘54‘

1 00 00
I%m'-z - d - <a> B
- s 2 | Zm‘—z‘

Figure 3: Summation of the Fy;

Lemma 1 The ey; can be computed by
<eg; > = < 1535,dy; @ sy; > + S5 and
< €eg > =< %Soso,do @ sg > +sp.

Proof: follows from the standard subtraction
algorithm for binary numbers. a

By Lemma 1, computation of the numbers

F2j = EQJ — 82]‘
f2j = bingya(ly))
fo = binn+4(F0)

is easy, namely

fo; =
fo =

(1537, d2; @ s25)

(305050, do @ 50)

Instead of adding the sign bits sy; to the num-
bers F3; one incorporates them at the proper
position into the representation of F5; as sug-
gested in Fig. 4. The last sign bit does not cre-
ate a problem, because By, _o is always non-
negative. Formally, let

(f25,0s2;_2) € {0, 1}n+5
(f2;,00) € {0,1}"5.

925, =
9o

Then

< go; >=4 < fo; > 45259
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Figure 4: Partial product construction

and hence

!

m'—1 - m'—1 .
Y - . 411
Doy B =300 < gy > A

We define

/ J+k=1 t—1
Sk = Zt:j < ga >4
Then we have
i—1
Séj,? = < 92] > ‘4]

/

2j,2(k+h) = Séj,2(k+h)+sé(j+k),2h

and

Lemma 2 Séj,zk is a multiple of 2272 and
Séj 2k < ont2i42642 - Therefore, at most n +
2k + 4 non-zero positions are necesary to rep-

; . .
resent 5y, o1, in both carry-save or binary form.

Proof: easy induction on k. a

3 A combinatorial lemma

Let T be a complete binary tree with depth pu.
We number the levels ¢ from the leaves to the
root from 0 to u. Each leaf u has a weight
W(u). For some natural number k we have
W(v) € {k,k + 1} for all leaves and the weights
are nondecreasing from left to right. Let m
be the sum of the weights of the leaves. For
w=4,m=>53and k = 3 the leaves could for ex-
ample have the weights 3333333333344444. For
each subtree ¢ of 17" we define W (t) = 3 (W (u))
where u ranges over all leaves of t. For each
interior node v of 7" we define L(v) resp. R(v)

as the weight of the subtree rooted in the left
resp. right son of »v. We are interested in the

sums
Hﬁ - ZLevel l L(?])

where » ranges over all nodes of level ¢ and in

We show
Lemma 3 H < (p-m)/2.

Proof: By induction on the levels of T one
shows that in each level weights are nondecreas-
ing from left to right and their sum is m. Hence

2H€ S ZLevel ¥ L(?]) + ZLevel ¥ R(?J)
- ZLevel ¥ W(?J)
= m
and the lemma follows. O

In the above estimate we have replaced each
weight L(v) by the arithmetic mean of L(v) and
R(v) hereby overestimating L(v) by

h(v) = (L(v)+ R(v))/2 = L(v)
= (B(v) = L(v))/2).

For each node v in level £ the 2¢ leaves of the
subtree rooted in v form a continuous subse-
quence of the leaves of T. Hence all nodes
in level ¢ except at most one have weights in
{k 2% (k4 1)-2°}. Therefore, in each level {
there is at most one node vy such that h(vy) # 0.
We set h(l) = h(vg), if it exists. Otherwise we
set h({) = 0. It follows that

H = (m-p)/2 =3 h(0)

In the above example we have hg = 1/2,hy =
1/2,hy = 3/2,hs = 5/2 and H = 101. For
w = 3,m = 27 and weights 33333444 we have
ho=1/2,hy =1/2,hy = 3/2 and H = 38.
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Figure 5: Motorola technology parameters

4 (Gates

In this section we use a simple gate model [18]
to analyze delay and cost of the multiplication
circuits considering only the influence of gates.
The delay is the maximum gate delay of all
paths from input bits a[i] and b[j] to output
bits p[k]. The cost is computed as the cumu-
lative cost of all gates used. For this purpose
the basic gate delays and costs can be extracted
from any design system and will be used for the
Motorola technology [19] (Fig. 5).

4.1 Partial Product Generation
non-Booth

4.1.1

One has to compute and shift the binary rep-
resentations of the numbers

<a>-b[j]=<a[n— 1] Ab[j],...,a[0] Ab[j] >

The n - m And-gates have a cost of 2 -n - m.
As they are used in parallel, they have a total
delay of 2.

4.1.2 Booth

The binary representations of the numbers 53, ,
must be computed (see Fig. 4). These are

(1327, do; B s25,082;_2)

(305050, do B S0,00)

92; =
Jo =
shifted by 25 — 2 bit positions.

The dy; = bin,41(< a > -|Byj|) are easily
determined from By; and a by

| bli+1:-1] | BIi

[

| bli+1:i-1] | B[ |

000 0 || 100 -2
001 114 101 -1
010 11 110 -1
011 2| 111 -0

Figure 6: Booth digit representations.

(0,...,0) if By =0
(0,a) if |By|=1
(a,0) if |By|=2.

dyj =

For this computation two signals indicating
|By;| = 1 and |By;| = 2 are necessary. We
denote these by

bly; = { L if | By;] =1

0 otherwise

b22]‘:{ L if [ By =2

0 otherwise

and calculate them by the Booth decoder logic
BD from Fig. 7a, that can be developed from
Fig. 6. A Booth decoder has cost Cgp = 11
and delay Dgp = 3.

The selection logic 5L from Fig. 7b directs
either a[¢] or a[i + 1] or 0 to position ¢4 1 and
the inversion depending on sq; yields go;[¢ + 1].
In the first 2 (3 for rightmost partial product)
and last 2 bit positions this logic is replaced
by the simple signal of a sign bit, its inverse,
a zero or a one. The selection logic has cost
Csr, = 10 and delay Dgp, = 4. As m' booth
decoders are necessary, the decoding logic costs
m’-Cgp = 11-m'. The selection logic occurs for
each partial product n + 1-times. Therefore,
the selection logics altogether have a cost of

m' - (n+1)-Cs, =10-m' - (n+ 1).
4.2 Redundant partial product addi-
tion

We study two standard constructions for the re-
duction of the partial products to a carry save
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Figure 7: a) booth decoder b) selection logic

representation of the product: plain multipli-
cation arrays and 4/2-trees.

Each construction uses k-bit carry save
adders (k-CSA) [11] [12] [21]. They are com-
posed of k full adders working in parallel and
hence they have cost k- Cry and delay Dgy.

Cascading two k-CSA’s one constructs a k-
bit J/2-adder, i.e. a circuit with 4k inputs
alk —1:0], bk —1:0], ¢[k —1:0], d[k—1:0]
and 2(k + 1) outputs s[k : 0], ¢[k : 0] such that

<a>+<b>+<e>+<d>=
< s>+ <t>mod?2"t!

holds. The k-bit 4/2-adders constructed in this
way have cost 2k - Cpy and delay 2- Dpy.

We use the full adders from Fig. 8. For these
full adders we have C'ry = 14 and Dpy4 = 6.

4.2.1 Multiplication Arrays

In order to introduce techniques of analysis we
review quite formally the construction of stan-
dard multiplication arrays [11] [12]. A carry
save representation of Sy 3 can be computed by
a single n-CSA (see Fig. 9). Exploiting

So,e = Soi—1 + Si—11,

one can compute a carry save representation
of Sp; from a carry save representation of

S0,i—1 and the binary representation of S¢_;
by an n-CSA. This works because both Sg¢—;

carry;

cary axorb sum
out

Figure 8: Circuit of a full adder.

and S;_; 1 can be represented with n 41t —1
bits and because the binary representation of
Si—1,1 has t—1 trailing zeros (see Fig. 10).
The m — 2 many n-CSA’s which are cascaded
this way have cost n(m — 2) - Cry and delay
(m—=2)-Dpa. The combined cost and delay
for (non booth) partial product generation and
the multiplication array are

Ci, = n(m—Q)-CFA—I—nm-CAND
= 16nm — 28n

Dy = (m—2)-Dra+ Danp
= 6m —10.

With Booth recoding one has only to sum
the m/ (representations of ) partial products go;.
Each partial product has length n’ = n 4+ 5 ex-
cept go which has n’ +1 bits. Arguing with the
sums 57, in place of the sums Sy ; one shows
that (m’ — 2) many (n’)-CSA’s suffice to sum
the partial products in a multiplication array
with Booth2 recoding. Taking into account the
partial product generation one obtains cost and
delay

Ci o= () (m =2)-Cra+
+ (n+1)ym'-Csr+m'-Cgp
= 24nm +91m' — 28n — 140
Dy = (m'—2)-Dpa+ Dsp+ Dpp

6m’ — 5.
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Figure 9: Partial compression of 5; 3.

For n = m = 53 we get

C1/C1 = 35457/43460 = 81,6%
D{/Dy = 157/308 = 50,9%.
For n = m = 24 we get
C1/Cy = 8139/8544 = 95,2%
Dy/Dy = 73/134 = 54,5%.

Asymptotically C7/Cy tends to 12/16 = 75%
and D} /Dy tends to 3/6 = 50%.

Thus, if multiplication arrays would yield
the best known multipliers the case for Booth
recoding would be easy and convincing (and
hardly worth a paper).

4.3 Analysis 4/2-trees

The situation changes in two respects when we
consider addition trees with logarithmic delay
like Wallace trees [29] [8] [25] or 4/2-trees [11]
[12] [14] [7] [32]. First, counting gates in such
a tree becomes a somewhat nontrivial problem.
Second, Booth recoding only yields a marginal
saving in time.

4.3.1 Non Booth

We construct a specific family of 4/2 trees
which happens to be accessible to analysis. The

n t-1
—

S
carry orl
St11 (00000000
n n n
n-bit CSA
+ n+l Jr n+l
sum s
carry ot

—
n+l t1

Figure 10: Partial compression of Sp;—; and

St—1,1-

nodes of the tree are either 3/2-adders or 4/2-
adders. The representations of the m par-
tial products So1,...5,-11 will be fed into
the leaves of the tree from right to left. Let
M = 2M°gm] he the smallest power of two
greater or equal to m. Let p = log(M/4). We
will construct the entire addition tree T' by two
parts as shown in Fig. 11.

The lower regular part is a complete binary
tree of depth p — 1 consisting entirely of 4/2-
adders. It has M /8 many 4/2-adders as leaves.
For the top level of the tree we distinguish two
cases. If 3M /4 < m < M we usea = m—3M /4
many 4/2 adders and M /4—a many 3/2 adders.
We arrange the 3/2-adders of the top level of
the tree at the left of the 4/2-adders.

If M/2 < m < 3M/4 we use in the top level
only b = m — M/2 many 3/2-adders (and we
feed m — 3b representations of partial products
directly into the lower part). We arrange the
3/2-adders at the right end of the tree.

For m = 24 we have m > 24, and use 8 3/2
adders as leaves. For m = 53 we have m > 48,
and we use 11 3/2 adders and 5 4/2 adders as
leaves. We only analyze the first case explicitly.

If all 3/2-adders and 4/2-adders in the tree
would consist of exactly n resp. 2n full adders,
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Figure 11: adder tree construction

then the tree would have a total of
F=n-(m-2)

full adders, because every 3/2-adder reduces
the number of partial products by 1 and every
4/2-adder reduces the number of partial prod-
ucts by 2. It remains to estimate the number
of excess full adders in the tree.

Every leaf in the tree which is a 3/2-adder
computes a sum 5; 3. Thus n full adders suffice
(see Fig. 9). A leaf of the tree which is a 4/2-
adder computes a sum 5; 4. It can be simplified
as shown in Fig. 12 such that 2n full adders
suffice. Thus, in the top level of the tree there
are no excess full adders.

Each 4/2-adder u in the lower portion of the
tree performs a computation of the form

Siketh = ik + Sithh,

where a carry save representation of 55 i, is pro-
vided by the right son of v and S;yj is pro-
vided by the left son of u. By the results of sec-
tion 3 we are in the situation of Fig. 13. Hence
node u has 2h excess full adders.

Referring to section 3 we label each leaf u of
the tree with the number of partial products it
sums, i.e. with W(u) = 3 if u is a 3/2-adder
and with W(u) = 4 if it is a 4/2 adder, then

0 0] |
S|,4 0] | |
\ . u : |
n-bit CSA
n n
T
| 0] | . [o
n +n n
n-bit CSA
n +n
| 0]

Figure 12: Partial compression of 5 4.

h = L(u) and for the number F' = 2H of excess
full adders in the tree we have

E = (m-,u)—Q-ZZZ_Olhg
< (m-p)

This implies, that the 4/2-trees constructed
above have nm + o(nm) full adders.

The proof only depends on the fact that for
each interior node u the left son of u sums
less partial products than the right son of .
Hence it applies to many other balanced addi-
tion trees. One hardly dares to state or prove
such a folklore result because it is ‘obviously’
known. Unfortunately we have not been able to
locate it in the literature and we need it later.

With partial product generation we get cost
and delay

Cy = (n-(m—2)+E)-CFA+nm-CAND
16nm + o(nm)
Dy = 2(u+1)-Dpa+ Danp

= 124+ 14.
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4.3.2 Booth

Let M’ = 2M°¢™'l the smallest power of two
greater or equal m' and let ' = log(M'/4).

For m € {24,53} we have 3/4 - M’ < m' <
M'. We proceed as above and only analyze
this case. The standard length of 3/2-adders
and 4/2-adders is now n’ = n + 5 bits; longer
operands require excess full adders. Let E’ be
the number of excess full adders

Considering the sums 5’ instead of the sums
S one shows that the top level of the tree has no
excess full adders. Let H’ be the sum of labels
of left sons in the resulting tree and for all £ let
hj, be the correction term for level (.

Because with Booth recoding successive par-
tial products are shifted by 2 positions, we now
have

E' =4H'
and we get

E = Q(m’ . ,u’) —4. Zﬁh}
2(m’ - p).

Taking into account the partial product gen-
eration one obtains cost and delay

cy, o= (' -(m' =2)+ E") -Cpa

+ (n+1)m'-Csr, +m'-Cgp

= 24nm’ + o(nm')
Dy = 2(W/ +1)-Dra+ Dpp + Dsr.
1200+ 1)+ 7.

IN

For n = m = 53 we get

CL/Cy = 37305/46288 = 80,6%
DY/ Dy = 55/62 = 88,7%
and for n = m = 24 we get
CL/Cy = 8531/9552 = 89,3%
Dy/Dy = 43/50 = 86,0%.

Asymptotically C}/C5 tends again to 12/16 =
75%. Unless m is a power of two, we have p =
' +1and Dy — D} = 7. Hence D/ D; tends to
one as n grows large.

This contradicts the common opinion that
Booth recoding saves a constant fraction of the
delay (independent of n). We try to resolve this
contradiction in the next section by considering
layouts.

5 VLSI Model

In the circuit complexity model we could only
show, that a constant fraction of the cost is
saved by Booth recoding. In order to explain,
why Booth recoding also saves a constant frac-
tion of the run time we have to consider wire
delays in VLSI layouts.

The layouts that we consider consist of sim-
ple rectangular circuits S connected by nets N.
For circuits 5 we denote by b(5) the breadth,
h(5) the height, C'(.9) the gate count and D(5)
the combinatorial delay of 5. We do not con-
sider different delays for different inputs and
outputs of the same simple circuit in order to
keep the analysis simple.

We require

i.e. area equals gate count and

h($)/2 < b(S) < 2h(S),

i.e. layouts of simple circuits are not too slim
or too flat. In order to keep drawings simple
we will place pins quite liberally at the borders
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full adder

b(FA)/6 b(FA)/3

Figure 14: shape of full adder

of the circuits. Input pins are at one side of the
rectangle, output pins are at the opposite side.

Nets consist of horizontal and vertical lines
(wires). They must have a minimal distance 6
from each other and from circuits. Thus a wire
channel for ¢ lines has width (¢ + 1)6. The size
|N| of a net N is the sum of the length of the
lines that constitute the net.

We define the delay of a circuit S driving a
net N as

D(S,N)= D(S)+v-|N|.

The parameter v weights the influence of wire
delay on the total delay. If v 0 only gate
delays count. For a square inverter NOT with
C(S) = 1 we have b(NOT) = h(NOT) = 1.
Suppose we connect the output of such a gate
with a single wire NV of length A(NOT) = 1 and
we have v > 1. Then

v-|N|>1=D(NOT),

i.e. a wire which is as long as the gate con-
tributes to the delay as much as the propa-
This does

not seem reasonable. Therefore, we restrict the

gation delay of the gate or more.

range of v to the interval [0, 1].

We do not restrict the fanout of circuits, but
within limits the parameter v can also be used
to model fanout restrictions. We will consider
only four types of simple circuits 5, namely

AND gates, full adders FA, Booth decoders

10

selection booth

logic

selection

and !
logic

decoder

Figure 15: shapes of basic circuits

BD and the selection logic SL. We will use
two geometries for the selection logic. The ge-
ometries from Fig. 16 happen to make the lay-
outs of addition trees particularly simple. We
place the pins of the full adder as specified in
Fig. 14, and we place the pins of the remaining
circuits as suggested by Fig. 15.! The exact
position of the input pins of AND gates and
the selection logic contributes only marginally
to the run time of addition trees and will not
be considered in the analysis.
We will use § = 0.1.

6 Layouts and their analysis

First we specify and analyze the layout of a
plain 4/2-tree T with M /4 leaves where partial
products are generated with simple AND-gates.
The tree T has depth p = log(M/4) as well as p
levels of interior nodes. The number of interior
nodes is M /4 — 1. This will then be compared
with the layout of a tree T’ with M’/4 leaves
where partial products are generated by circuits
S L controlled by Booth recoders BD.

All our layouts will consist of a matrix of
full adders plus extra circuits and wires. Ev-
ery node in the tree is either a 3/2 adder and
occupies one row of the matrix or it is a 4/2
adder and occupies 2 consecutive rows of the
matrix. FEvery bit position occupies a column
of the matrix. Between neighboring full adders

!Strictly speaking we use three layouts for the selec-
tion logic. Two of the layouts only differ in the position
of the output pin.



(s JCS] b)) [ hs) |
V5 25
SL 10 N 5
AND | 2 V2 V2
FA 14 | (2V5+26) | 14/b(FA)
BD 11 V11 V11

Figure 16: Geometries of basic circuits

of the same row we leave a wire channel of ap-
propriate width.

Inputs a[i] are fed into the layout at the top
with indices increasing from right to left. In-
puts b[j] are fed into the layout from the left
with indices increasing from top to bottom.
Outputs are produced at the right border and
at the bottom of the layout.

Let T resp. T, be the subtree rooted in the
left resp. right son of a node v. Then, we layout
T, on top of T\. This is followed by a row for
v (see Fig. 17). Between the layouts of the two
subtrees we leave space for one wire. This space
will be filled with boxes4/2a specified below.

It only remains to specify where to place the
extra circuits and how to layout the wires. For
tree T it suffices to specify the three types of
bozes in Fig. 20a to Fig. 20c:

¢ box3: this is one full adder which is part of
a leaf v of the tree with weight L = 3. The
whole 3/2 adder v has as inputs 3 bits of b
which are routed in the b-channel b[2 : 0].
Every bit a[i] is needed in three consecu-
tive bit positions of v; then it is routed to
the next leaf down the tree and one po-
sition to the left. Thus, 3 lines of an a-
channel a]2 : 0] suffice to accommodate the
a-inputs for v. For all leaves v and all 7 we
feed input a[i] into a-channel a[¢ mod 3].
Before a[i] can be fed into the channel,
bit a[i — 3] has to be removed and routet
down to the next leaf of the tree. This
-unfortunately- consumes horizontally dis-
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partial product
compression T
of right subtree P

wire
partial product channels

compression T B
of |eft subtree A /

inner nodev (4-2 adder)

Figure 17: Recursive Partition of the tree lay-
out.

tance 24.

e box 4: this is one pair of full adders which
is part of a leaf v of the tree with weight
L = 4. The whole 4/2 adder v has as in-
puts 4 bits of b which are routed in the b-
channel b2 : 0] of the first 3/2-adder and
in one b-channel of the second 3/2-adder.
Similarly 4 a-channels are used. Each sig-
nal a[7] is fed into 3 full adders of consec-
utive bit positions in the first 3/2-adder
level and then into one full adder in the
next bit position of the second 3/2-adder.
After that a[7] is routed down to the next
leaf of the tree.

e box 4/2: This is strictly speaking a pair of
boxes which is part of an interior node v of
the tree with subtrees T, and 7). Box4/2a
is inserted between the layout of 7T}, and
T\. Box4/2b is added at the bottom of
the layout of T\. The box consumes two
wires in each vertical wire channel, one for
a carry output and one for the sum output
of one full adder of the root of T,,. We place
the sum lines in the left and the carry lines
in the right half the wire channel. It will
not matter in the analysis where we place
them exactly.

All boxes have the same width b(boz ). Because
each level of interior nodes contributes 2 lines
to the global wire channel we find

b(box) =b(FA)+ (p+3)-06



Box4/2a is placed on top of the b-channel of
the rightmost leaf of T). Thus it contributes
only ¢ to the height, and we have

h(boxd/2) = 2h(FA)+ 76
h(box3) = h(FA)+ h(AND)+ 76
h(box4) = 2h(FA)+2h(AND)+ 116

The height of the whole layout is

WT) = (M/4—1)-h(boxd2)+ (M/4)- h(box3)

+ a - (h(boxd) — h(box3)).
For the size of the nets a[i] we consider

e the horizontal extension m - b(box).

o the vertical extension. This extends from
the very top of the layout to the leftmost
leaf. Below the leftmost leaf we have p
many boxesd/2b.

e the m connections from the a-channels to
the AND-gates, each of length up to 34.

Thus for the largest ones of the nets afi] we
have

la[]] m - b(box) 4+ h(T) — p - (h(boxd /2 — §)

—h(FA) = h(AN D) + 3mé.

For m < n the size of the nets b[i] is dominated
by the size of the nets a[i].

The carry in box4 travels horizontally over a
full box minus 2/3 of a full adder. Thus we

have
|carryd| = b(box) — 2b(FA)/3+ (AN D)+ 46.

Next we determine the accumulated delay from
a leaf to the root which follows in each box4/2
the following path: sum bit in 7, — 1’st full
adder in v — carry output — 2’nd full adder in
the box to the left — sum bit of that adder.

We estimate the accumulated length of the
wires separately

e all wires connected to carry outputs:

Carryyyy = p - (b(box) — 26(FA)/3 + 36).
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e all wires connected to sum outputs not
counting vertical displacement in the
global wire channels. In the wire channels
every one of the distances 2ké occurs ex-

actly once.
Sumyy = p-(4b(FA)/3446)
m
+ D, 2ké
= p-(4b(FA)/3 +46)
+ 8- (1 +p)

e total vertical displacement of the wires
connected to sum outputs in the wire chan-
nels; from the bottom of rightmost leaf (a
box4 if m = 53) to the very bottom of the
layout not counting the boxes4/2 on the
path:

C'hannel

h(T) — h(box4)
— (log(M/4)) - h(box4/2).

The competing paths from the carry output of
T, to the second full adder are faster than the
path considered above for realistic values of v.

We now imagine that all e-inputs and b-
inputs are the outputs of drivers whose propa-
gation delay we ignore. Then the total delay of
the tree equals

Time(T) = v-(la[i]| + |carryd| + Carryy,

—I—Sum4/2 + C'hannel)
+Danp +2DFa - (14 p).

Exactly along the same lines one specifies and
analyzes the layout of the addition tree 7" with
booth recoding. The tree has M’/4 leaves and
depth p/ = log(M'/4).

One uses the boxes specified in Fig. 21a to
Fig. 21c. The selection logic becomes more
complex and has to be placed in two rows in
order not to exceed the Full adder width. For
this organization in Box4’ an additional hori-
zontal input wire must be routed around the



full adder. Also the channel width changes a
bit and becomes p’ - 6.

b(box") = b(FA)+ u' - & + 46.

This change of width is the only change for the
Box4/2’; its height stays the same. In the other
two boxes there must be 5 input wires per se-
lection logic. In Box3’ the top selection logic is
rotated in order not to waste area. From the
figures one obtains the following equations:

h(boxd/2") = 2h(FA)+ 76
h(box3') = R(FA)+h(SL)+b(SL)+ 176
h(boxd’) = 2h(FA)+ 2h(SL)+ 266
Most of the other equations only change
slightly:
R(T') = (M'/4—1)-h(boxd/2")
+ (M'/4) - h(boz3')
+a’ - (h(boxd") — h(box3"))
l'[d]] = m' -b(boa')+ W(T")
— 1 - (h(boxd /2" — &)
— h(FA) = h(SL)+ 4m'é
|carryd’| = b(box') — 2b(FA)/3+ 36
Carryy,, = p'-(b(box’) — 2b(FA)/3 4 36).
Sumﬁl/2 = - (4b(FA)/3+ 46)
+y 0 2k
= u' - (4b(FA)/3+ 46)
+ 8- (0?4 )
Channel' = R(T") — h(boz4d")

— (log(M'/4)) - h(boxd/2).

Additionally to these wires we must consider
the wire between one selection logic output in
the upper row and the fulladder input in Box4’:

|sumd’| = h(SL)+ b(SL)/2+ 126.

Also the nets b'[¢] can become important. Their
delay in sequence to the booth decoder delay
has to compete against the nets «'[¢] and it de-
pends on the constant v which one is slower.
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1-Time(T’) /Time(T) [%)] for n=m=53

21 Wllh b-net and BD influence

with a-net influence

— total delay savings
by booth recoding

0 0.2 0.4 0.6 08

nu

Figure 18: Relative delay improvement by
Booth recoding for n = m = 53

Therefore, we have to consider the length of
the longest [0'[¢]]. Tt has to reach n’ bit posi-
tions and for each connection in the worst case
it crosses all the 9 other selection logic wires.

0[i]] = n' - (b(boa") + 106).

With this we can evaluate the delay of the tree
T

Dpp
v )
+|sumd’| + |carryd’| + Carryfl/Q

Time(T') = v'-(max(|a'[i]],|0'(3)] +

+Sumy j, + Channel’)
+Dsr, 4+ 2Dpa - (14 4').
In Fig. 18 the relative improvement
(TIME(T)—TIME(T")/TIME(T)

is plotted for n = m = 53 as a function of v.

This figure is surprisingly complex and
counter intuitive. In particular we see gains
due to Booth recoding decrease with increasing
v, i.e. with slower wires. For small values of
v until v & .1 the delay of the Booth decoder
Dpp = 3 plus the delay of the b-nets is larger
than the delay of the a-nets. For small v we
have

TIME(T') ~ 55 + 537



whereas for large v we have
TIME(T) ~ 52 + 614v.
We always have
TIME(T)= 624 710v.

This explains why the graph has two
branches. For v = 0 only gate delays count

and we have
TIME(T’)/TIME(T) ~ 55/62 ~ 89%.

This explains why the branch for the b-nets
starts around 100%—89% = 11%. It remains to
explain why the branch for the a-nets is falling
with v. For v = 0 the branch starts at 1 —
52/62 =~ 100% — 84% = 16%. For large v the
savings are dominated by wire delays and ap-
proach 1 —(524+614)/(624710) = 14% < 16%.
Thus the branch falls because the wire delays
have not fallen much due to Booth decoding.
The reason for this is the geometry of our par-
ticular layouts which are quite wide and not
very high:
Denote by wire(T) resp. wire(T’) the wire
delays for 7" and T”. Then we have for v = 1:
wire(T) =
wire(T")

w(T)/2 + 2h(T)
w(T")/2 + 2h(T")

4

because a-nets travel horizontally over half the
layout and vertically over almost the full lay-
out; the longest paths from the leaves to the
root travel vertically over almost the full layout
whereas horizontal displacement is logarithmic.

We have
w(T) ~ w(T'") ~ 2n - w(box) ~ 2n - 5.7

If we would use as leaves only 4/2-adders,
then the tree T" would have n/4 leaves each
of height h(boz4/2) ~ 9.9 and around n/4 in-
terior nodes, each of height h(boz4/2) ~ 6.7.
Thus A(T) (n/4) - (9.9 + 6.7) = 4.15n.
Similarly we have h(1') ~ (n/8) - (h(box'4) +

~
~

14

~
~

h(box4/2) (n/8) - (17.5 + 6.7) 3.025n.
For n 53 we get wire(T") ~ 623 and
wire(T) = 742.

Note that we have A(T)/w(T) ~ 1/3 and
MT)/w(T") ~ 1/4. If we make the layouts
more square 2, say by doubling A and halving
w, then the savings due to Booth recoding in-
crease but the layouts become slower !l. This
incidentally shows, that the common practice
of making the layouts of addition trees roughly
square is not always a good idea.

Asymptotic considerations If n = m and
n tends to infinity the whole layout consists
almost exclusively of channels. The height
is O(n) which is negligible against the width
6-v-nlogn + o(nlogn). The run time is dom-
inated by the term 2v¢é - nlogn due to the de-
lay of the horizontal portions of nets a;. The
same holds for the tree layout without Booth
recoding. Thus even in the VLSI model Booth
recoding — when applied to 4/2-trees — saves
asymptotically no constant factor of the delay.
However, if n grows large the layouts of plain
multiplication arrays with width and height
O(n) become eventually faster than 4/2-trees.
Let A resp. A’ be the straight forward layout
of a multiplication array without resp. with
Booth recoding. With the techniques intro-
duced above one easily specifies and analyzes
these layouts.
Then

Time(A) =m(6 + v -13.5) 4 o(m)
Time(A") = m(3+v-11.3) 4 o(m).

We see that Time(A’)/Time( A) tends to a con-
stant fraction, if n = m and n tends to infin-
ity. Figure 6 depicts the relative asymptotic
delay savings by booth decoding depending on
the technology parameter v. Thus asymptot-
ically Booth recoding does improve the delay
by 27% to 50%. This is, however, of aca-
demic interest, because even for very slow wires

2 .. .
This is common practice



rel. asymptotic delay improvement
° [%] by Booth recoding

0

Figure 19: Relative asymptotic delay improve-
ment by Booth recoding.

(v =1)we have TIME(A") < TIME(T") only
for n > 108.

We denote by AREA(V) the area occupied
by VLSI-layout V. From the results on circuit
complexity one infers

AREA(A) = 23.9 - m? 4 o(m?)
AREA(A) = 15.5-m* + o(m?).

Asymptotically the area savings by Booth re-
coding tend to 1 — ARFA(A")JAREA(A) ~
35.1%. For n = 53 Booth recoding saves 1 —

ARFEA(T")JAREA(T) =~ 15.1% of the area us-
ing the tree layout.

7 Conclusions

We have investigated formal versions of three
folklore theorems about fixed point multiplica-
tion namely:

1. Balanced addition trees in n-bit Multipli-
ers have n? + O(nlogn) full adders. This
required the combinatorial argument from
section 3.

2. Booth recoding saves between 15% and
35% of the cost of partial product genera-
tion and addition tree.
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3. Booth recoding saves between 11% and
50% of the delay of partial product gen-
eration and addition tree.

Moreover we have demonstrated the surprising
effect, that the savings of Booth decoding might
decrease as wires become slower. Empirical
studies so far have suggested, that Booth recod-
ing is particulary helpful if wires are slow [4].

Technically the main contribution of the pa-
per is the VLSI model from section 5 and
the techniques of analysis of the same section.
The detailed yet tractable nature of this model
opens the way for many further investigations.
We list just a few

e One systematically study where
drivers should be placed in order to make
nets smaller and hence speed up signal
propagation.

Can

e One can analyze hybrid layouts (arrays of
small trees) and the layouts of many other
multiplication designs ([1][5] [8][14][17][20]
[22][23][25][30][32]).

e The layouts of various adder and shifter
designs can be analyzed in a quite realistic
way.

e It is common practice to fold’ layouts of
addition trees into more square layouts.
But the formula

wire(T) = w(T)/2 + 2h(T)
suggests, that trivial folding of layouts pro-
duces slower designs. This clearly needs
closer investigation.
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