
On The Complexity Of Booth RecodingWolfgang J. Paul � Peter-Michael Seidel � yAbstractWe formalize and prove the folklore theoremsthat Booth recoding improves the cost and cy-cle time of `standard' multipliers by certain con-stant factors. We also analyze the number offull adders in certain 4/2-trees.Keywords : multiplier design, booth recod-ing, VLSI model, layout analysis, delay andarea complexity, wire e�ects.1 IntroductionAddition trees are the central part in the designof �xed point multipliers. They produce froma sequence of partial products a carry save rep-resentation of the �nal product [29] [7] [12] [21][11] [8] [30] [25]. Booth recoding [6] [24] [15] [5][1] is a classical method which cuts down thenumber of partial products in an addition treeby a factor of 2 or 3 at the expense of a morecomplex generation of partial products.In general, VLSI designers tend to implementBooth recoding, and a widely accepted rule ofthumb says, that Booth recoding improves boththe cost and the speed of multipliers by someconstant factor around 1/4. In [1] [5] [3] [2][4] however the usefulness of Booth recoding ischallenged altogether. Finally, in an ambitiouscase study of around 1000 concrete designs [3]was performed, and for some technologies withsmall wire delays the fastest multipliers turned�Department 14: Computer Science, Universityof Saarland, 66123 Saarbruecken, Germany. E-mail:fwjp,pmseidelg@cs.uni-sb.de.ySupported by the PhD program "E�ciency andcomplexity of algorithms and computers" of the DFG.

out not to use Booth recoding.In spite of the obvious importance of the con-cept the (potential) bene�ts of Booth recodinghave apparently received no theoretical treat-ment yet. This is probably due to the followingfacts:� the standard models of circuit complexity[31] and VLSI complexity [26] [27] are onlytrusted to be exact up to constant factors.� the standard theoretical VLSI model ig-nores wire delays.� Conway/Mead style rules [16] [9] do con-sider wire delays, but do not invite paperand pencil analysis due to their level of de-tail.� trivial addition trees with linear circuitdepth have nice and regular layouts. ButWallace trees [29] [8] [25] and even 4/2-trees [11] [12] [14] [32] have more irregularlayouts. In the published literature theselayouts tend not to be speci�ed at a levelof detail which permits, say, to read o� thelength of wires readily.In this paper we introduce a VLSI model whichaccounts { in a hopefully meaningful way {for constant factors as well as wire delays andwhich is at the same time simple enough to per-mit the analysis of large circuits. The modeldepends on a parameter � which speci�es theinuence of the wire delays. In this model westudy two standard designs of partial productgeneration and addition trees: the simple lineardepth construction and a carefully chosen vari-ant of 4/2-trees. We show, that Booth encod-ing improves for all reasonable values of � both1



the delay and the area of the resulting VLSIlayouts by constant factors between X and Yminus low order terms which depend on � andthe length n of the operands. For n = 24 andn = 53 (the length of signi�cands in the IEEEoating point format [10]) we specify the gainexactly.The paper is organized in the following way.In section 2 we review Booth recoding as ex-plained in [5] [13]. Section 3 provides a combi-natorial lemma which will subsequently permitto count the number of full adders in certain4/2-trees. In Section 4 we analyze the circuitcomplexity of Booth recoding. In section 5 weintroduce the VLSI model. The detailed circuitmodel from [18] is combined with a linear de-lay model for nets of wires. Section 6 containsthe speci�cation and analysis of layouts. Thelayouts for 4/2-trees follow partly a suggestionfrom [28]. We conclude in section 7 and listsome further work.2 PreliminariesFora = a[n � 1 : 0] = (a[n� 1]; : : : ; a[0]) 2 f0; 1gnwe denote by< a >=Xn�1i=0 a[i] � 2ithe number represented by a, if we inter-pret it as a binary number. Conversely, forp 2 f0; : : : ; 2n � 1g we denote by binn(p) the n-bit binary representation of p.For x 2 f0; 1gn and s 2 f0; 1g we de�nex� s = (x[n� 1]� s; : : : ; x[0]� s):An (n;m)-multiplier is a circuit with n inputsa = a[n� 1 : 0], m inputs b = b[m� 1 : 0] andn +m outputs p = p[n+m� 1 : 0] such that< a > � < b >=< p > holds.
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i,kSFigure 1: Sj;k in carry-save representation2.1 Non-BoothFor j 2 f0; : : :m� 1g and k; h 2 f1; : : :mg wede�ne the partial sumsSj;k = Xj+k�1t=j < a > �b[t] � 2t= 2j �Xk�1t=0 < a > �b[t+ j] � 2t+j< 2j �Xk�1t=0 (2n � 1) � 2t+j< 2j+n+k :Then we haveSj;1 = < a > �b[j] � 2jSj;k+h = Sj;k + Sj+k;hand < a > � < b > = S0;m= S0;m�1 + Sm�1;1:Because Sj;k is a multiple of 2j it has a binaryrepresentation with j trailing zeros. BecauseSj;k is smaller than 2j+n+k it has a binary rep-resentation of length n+ j + k (see Fig. 1).2.2 Booth RecodingIn the simplest form of Booth Recoding (calledBooth-2) the multiplicator is recoded as sug-gested in Fig. 2.With b[m+ 1] = b[m] = b[�1] = 0 andm0 = d(m+ 1)=2e one writes< b >= 2 < b > � < b >=Xm0�1j=0 B2j � 4jwhereB2j = 2b[2j]+ b[2j � 1]� 2b[2j + 1]� b[2j]= �2b[2j + 1] + b[2j] + b[2j � 1]:2
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-<b> Figure 2: Booth digits B2jThe numbers B2j 2 f�2;�1; 0; 1; 2g are calledBooth digits and we de�ne their sign bits s2j bys2j = ( 0 if B2j � 01 if B2j < 0:WithC2j = < a > �B2j 2 f�2n+1 + 2; : : : ; 2n+1 � 2gD2j = < a > �jB2jj 2 f0; : : : ; 2n+1 � 2gd2j = binn+1(D2j)the product can be computed from the sums< a > � < b > = Xm0�1j=0 < a > B2j � 4j= Xm0�1j=0 C2j � 4j= Xm0�1j=0 s2j �D2j � 4j :In order to avoid negative numbers C2j onesums the positive E2j instead.E2j = C2j + 3 � 2n+1E0 = C0 + 4 � 2n+1e2j = binn+3(E2j)e0 = binn+4(E0):This is illustrated in Fig. 3. The additionalterms sum to2n+1(1 + 3 � m0�1Xj=0 4j) = 2n+1(1 + 3 � 4m0 � 13 )= 2n+1+2�m0 :Because 2 �m0 > m these terms are congruentto zero modulo 2n+m. Thus< a > � < b >�Xm0�1j=0 E2j � 4j mod 2n+m:
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2Figure 3: Summation of the E2jLemma 1 The e2j can be computed by< e2j > = < 1s2j ; d2j � s2j > + s2j and< e0 > =< s0s0s0; d0 � s0 > +s0:Proof: follows from the standard subtractionalgorithm for binary numbers. 2By Lemma 1, computation of the numbersF2j = E2j � s2jf2j = binn+3(F2j)f0 = binn+4(F0)is easy, namelyf2j = (1s2j ; d2j � s2j)f0 = (s0s0s0; d0 � s0)Instead of adding the sign bits s2j to the num-bers F2j one incorporates them at the properposition into the representation of F2j+2 as sug-gested in Fig. 4. The last sign bit does not cre-ate a problem, because B2m0�2 is always non-negative. Formally, letg2j = (f2j ; 0s2j�2) 2 f0; 1gn+5g0 = (f2j ; 00) 2 f0; 1gn+6:Then < g2j >= 4� < f2j > +s2j�23
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2m-2’’Figure 4: Partial product constructionand henceXm0�1j=0 E2j � 4j =Xm0�1j=0 < g2j > �4j�1:We de�neS02j;2k = Xj+k�1t=j < g2t > �4t�1:Then we haveS 02j;2 = < g2j > �4j�1S 02j;2(k+h) = S 02j;2(k+h) + S 02(j+k);2handLemma 2 S 02j;2k is a multiple of 22j�2 andS02j;2k < 2n+2j+2k+2. Therefore, at most n +2k + 4 non-zero positions are necesary to rep-resent S 02j;2k in both carry-save or binary form.Proof: easy induction on k. 23 A combinatorial lemmaLet T be a complete binary tree with depth �.We number the levels ` from the leaves to theroot from 0 to �. Each leaf u has a weightW (u). For some natural number k we haveW (v) 2 fk; k+ 1g for all leaves and the weightsare nondecreasing from left to right. Let mbe the sum of the weights of the leaves. For� = 4; m = 53 and k = 3 the leaves could for ex-ample have the weights 3333333333344444. Foreach subtree t of T we de�ne W (t) =P(W (u))where u ranges over all leaves of t. For eachinterior node v of T we de�ne L(v) resp. R(v)

as the weight of the subtree rooted in the leftresp. right son of v. We are interested in thesums H` =XLevel ` L(v)where v ranges over all nodes of level ` and inH =X��1`=0 H`:We showLemma 3 H � (� �m)=2:Proof: By induction on the levels of T oneshows that in each level weights are nondecreas-ing from left to right and their sum ism. Hence2H` � XLevel ` L(v) +XLevel `R(v)= XLevel `W (v)= mand the lemma follows. 2In the above estimate we have replaced eachweight L(v) by the arithmetic mean of L(v) andR(v) hereby overestimating L(v) byh(v) = (L(v) +R(v))=2� L(v)= (R(v)� L(v))=2):For each node v in level ` the 2` leaves of thesubtree rooted in v form a continuous subse-quence of the leaves of T . Hence all nodesin level ` except at most one have weights infk � 2`; (k+ 1) � 2`g. Therefore, in each level `there is at most one node v` such that h(v`) 6= 0.We set h(`) = h(v`), if it exists. Otherwise weset h(`) = 0: It follows thatH = (m � �)=2�X��1`=0 h(`)In the above example we have h0 = 1=2; h1 =1=2; h2 = 3=2; h3 = 5=2 and H = 101. For� = 3; m = 27 and weights 33333444 we haveh0 = 1=2; h1 = 1=2; h2 = 3=2 and H = 38:4



Motorola Not NandNor AndOr XorXnordelay 1 1 2 2cost 1 2 2 4Figure 5: Motorola technology parameters4 GatesIn this section we use a simple gate model [18]to analyze delay and cost of the multiplicationcircuits considering only the inuence of gates.The delay is the maximum gate delay of allpaths from input bits a[i] and b[j] to outputbits p[k]. The cost is computed as the cumu-lative cost of all gates used. For this purposethe basic gate delays and costs can be extractedfrom any design system and will be used for theMotorola technology [19] (Fig. 5).4.1 Partial Product Generation4.1.1 non-BoothOne has to compute and shift the binary rep-resentations of the numbers< a > �b[j] =< a[n� 1]^ b[j]; : : : ; a[0]^ b[j] >The n �m And-gates have a cost of 2 � n �m.As they are used in parallel, they have a totaldelay of 2.4.1.2 BoothThe binary representations of the numbers S 02j;2must be computed (see Fig. 4). These areg2j = (1s2j ; d2j � s2j ; 0s2j�2)g0 = (s0s0s0; d0 � s0; 00)shifted by 2j � 2 bit positions.The d2j = binn+1(< a > �jB2j j) are easilydetermined from B2j and a by

b[i+1:i-1] B[i] b[i+1:i-1] B[i]000 0 100 -2001 1 101 -1010 1 110 -1011 2 111 -0Figure 6: Booth digit representations.d2j = 8><>: (0; : : : ; 0) if B2j = 0(0; a) if jB2j j = 1(a; 0) if jB2j j = 2:For this computation two signals indicatingjB2j j = 1 and jB2j j = 2 are necessary. Wedenote these byb12j = ( 1 if jB2j j = 10 otherwiseb22j = ( 1 if jB2j j = 20 otherwiseand calculate them by the Booth decoder logicBD from Fig. 7a, that can be developed fromFig. 6. A Booth decoder has cost CBD = 11and delay DBD = 3.The selection logic SL from Fig. 7b directseither a[i] or a[i+ 1] or 0 to position i+ 1 andthe inversion depending on s2j yields g2j[i+1].In the �rst 2 (3 for rightmost partial product)and last 2 bit positions this logic is replacedby the simple signal of a sign bit, its inverse,a zero or a one. The selection logic has costCSL = 10 and delay DSL = 4. As m0 boothdecoders are necessary, the decoding logic costsm0 �CBD = 11�m0. The selection logic occurs foreach partial product n + 1-times. Therefore,the selection logics altogether have a cost ofm0 � (n+ 1) � CSL = 10 �m0 � (n+ 1):4.2 Redundant partial product addi-tionWe study two standard constructions for the re-duction of the partial products to a carry save5
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b)Figure 7: a) booth decoder b) selection logicrepresentation of the product: plain multipli-cation arrays and 4/2-trees.Each construction uses k-bit carry saveadders (k-CSA) [11] [12] [21]. They are com-posed of k full adders working in parallel andhence they have cost k � CFA and delay DFA.Cascading two k-CSA's one constructs a k-bit 4/2-adder, i.e. a circuit with 4k inputsa[k � 1 : 0]; b[k� 1 : 0]; c[k� 1 : 0]; d[k� 1 : 0]and 2(k + 1) outputs s[k : 0]; t[k : 0] such that< a >+ < b >+ < c > +< d > �< s > +< t > mod 2n+1holds. The k-bit 4/2-adders constructed in thisway have cost 2k �CFA and delay 2 �DFA.We use the full adders from Fig. 8. For thesefull adders we have CFA = 14 and DFA = 6.4.2.1 Multiplication ArraysIn order to introduce techniques of analysis wereview quite formally the construction of stan-dard multiplication arrays [11] [12]. A carrysave representation of S0;3 can be computed bya single n-CSA (see Fig. 9). ExploitingS0;t = S0;t�1 + St�1;1;one can compute a carry save representationof S0;t from a carry save representation ofS0;t�1 and the binary representation of St�1;1by an n-CSA. This works because both S0;t�1
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bFigure 8: Circuit of a full adder.and St�1;1 can be represented with n + t � 1bits and because the binary representation ofSt�1;1 has t� 1 trailing zeros (see Fig. 10).The m� 2 many n-CSA's which are cascadedthis way have cost n(m � 2) � CFA and delay(m� 2) �DFA. The combined cost and delayfor (non booth) partial product generation andthe multiplication array areC1 = n(m� 2) � CFA + nm �CAND= 16nm� 28nD1 = (m� 2) �DFA +DAND= 6m� 10:With Booth recoding one has only to sumthem0 (representations of) partial products g2j.Each partial product has length n0 = n+ 5 ex-cept g0 which has n0+1 bits. Arguing with thesums S 00;2t in place of the sums S0;t one showsthat (m0 � 2) many (n0)-CSA's su�ce to sumthe partial products in a multiplication arraywith Booth2 recoding. Taking into account thepartial product generation one obtains cost anddelayC 01 = (n0) � (m0 � 2) �CFA ++ (n+ 1)m0 � CSL +m0 �CBD= 24nm0 + 91m0 � 28n� 140D01 = (m0 � 2) �DFA +DSL +DBD= 6m0 � 5:6
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For n = m = 53 we getC02=C2 = 37305=46288 = 80; 6%D02=D2 = 55=62 = 88; 7%and for n = m = 24 we getC02=C2 = 8531=9552 = 89; 3%D02=D2 = 43=50 = 86; 0%:Asymptotically C 02=C2 tends again to 12=16 =75%. Unless m is a power of two, we have � =�0+1 and D2�D02 = 7: Hence D02=D2 tends toone as n grows large.This contradicts the common opinion thatBooth recoding saves a constant fraction of thedelay (independent of n). We try to resolve thiscontradiction in the next section by consideringlayouts.5 VLSI ModelIn the circuit complexity model we could onlyshow, that a constant fraction of the cost issaved by Booth recoding. In order to explain,why Booth recoding also saves a constant frac-tion of the run time we have to consider wiredelays in VLSI layouts.The layouts that we consider consist of sim-ple rectangular circuits S connected by nets N .For circuits S we denote by b(S) the breadth,h(S) the height, C(S) the gate count and D(S)the combinatorial delay of S. We do not con-sider di�erent delays for di�erent inputs andoutputs of the same simple circuit in order tokeep the analysis simple.We require b(S) � h(S) = C(S);i.e. area equals gate count andh(S)=2 � b(S) � 2h(S);i.e. layouts of simple circuits are not too slimor too at. In order to keep drawings simplewe will place pins quite liberally at the borders9
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selection selection
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and Figure 15: shapes of basic circuitsBD and the selection logic SL. We will usetwo geometries for the selection logic. The ge-ometries from Fig. 16 happen to make the lay-outs of addition trees particularly simple. Weplace the pins of the full adder as speci�ed inFig. 14, and we place the pins of the remainingcircuits as suggested by Fig. 15.1 The exactposition of the input pins of AND gates andthe selection logic contributes only marginallyto the run time of addition trees and will notbe considered in the analysis.We will use � = 0:1.6 Layouts and their analysisFirst we specify and analyze the layout of aplain 4/2-tree T with M=4 leaves where partialproducts are generated with simple AND-gates.The tree T has depth � = log(M=4) as well as �levels of interior nodes. The number of interiornodes is M=4� 1. This will then be comparedwith the layout of a tree T 0 with M 0=4 leaveswhere partial products are generated by circuitsSL controlled by Booth recoders BD.All our layouts will consist of a matrix offull adders plus extra circuits and wires. Ev-ery node in the tree is either a 3/2 adder andoccupies one row of the matrix or it is a 4/2adder and occupies 2 consecutive rows of thematrix. Every bit position occupies a columnof the matrix. Between neighboring full adders1Strictly speaking we use three layouts for the selec-tion logic. Two of the layouts only di�er in the positionof the output pin.10



S C(S) b(S) h(S)SL 10 p52p5 2p5p5AND 2 p2 p2FA 14 (2p5 + 2�) 14=b(FA)BD 11 p11 p11Figure 16: Geometries of basic circuitsof the same row we leave a wire channel of ap-propriate width.Inputs a[i] are fed into the layout at the topwith indices increasing from right to left. In-puts b[j] are fed into the layout from the leftwith indices increasing from top to bottom.Outputs are produced at the right border andat the bottom of the layout.Let T� resp. T� be the subtree rooted in theleft resp. right son of a node v. Then, we layoutT� on top of T�. This is followed by a row forv (see Fig. 17). Between the layouts of the twosubtrees we leave space for one wire. This spacewill be �lled with boxes4/2a speci�ed below.It only remains to specify where to place theextra circuits and how to layout the wires. Fortree T it su�ces to specify the three types ofboxes in Fig. 20a to Fig. 20c:� box3: this is one full adder which is part ofa leaf v of the tree with weight L = 3. Thewhole 3/2 adder v has as inputs 3 bits of bwhich are routed in the b-channel b[2 : 0].Every bit a[i] is needed in three consecu-tive bit positions of v; then it is routed tothe next leaf down the tree and one po-sition to the left. Thus, 3 lines of an a-channel a[2 : 0] su�ce to accommodate thea-inputs for v. For all leaves v and all i wefeed input a[i] into a-channel a[i mod 3].Before a[i] can be fed into the channel,bit a[i � 3] has to be removed and routetdown to the next leaf of the tree. This-unfortunately- consumes horizontally dis-

compression
partial product

of right subtree

(4-2 adder)inner node v

compression
partial product

of left subtree

wire
channels

ρ

λΤ

ΤFigure 17: Recursive Partition of the tree lay-out. tance 2�.� box 4: this is one pair of full adders whichis part of a leaf v of the tree with weightL = 4. The whole 4/2 adder v has as in-puts 4 bits of b which are routed in the b-channel b[2 : 0] of the �rst 3/2-adder andin one b-channel of the second 3/2-adder.Similarly 4 a-channels are used. Each sig-nal a[i] is fed into 3 full adders of consec-utive bit positions in the �rst 3/2-adderlevel and then into one full adder in thenext bit position of the second 3/2-adder.After that a[i] is routed down to the nextleaf of the tree.� box 4/2: This is strictly speaking a pair ofboxes which is part of an interior node v ofthe tree with subtrees T� and T�. Box4/2ais inserted between the layout of T� andT�. Box4/2b is added at the bottom ofthe layout of T�. The box consumes twowires in each vertical wire channel, one fora carry output and one for the sum outputof one full adder of the root of T�. We placethe sum lines in the left and the carry linesin the right half the wire channel. It willnot matter in the analysis where we placethem exactly.All boxes have the same width b(box). Becauseeach level of interior nodes contributes 2 linesto the global wire channel we �ndb(box) = b(FA) + (�+ 3) � �11



Box4/2a is placed on top of the b-channel ofthe rightmost leaf of T�. Thus it contributesonly � to the height, and we haveh(box4=2) = 2h(FA) + 7�h(box3) = h(FA) + h(AND) + 7�h(box4) = 2h(FA) + 2h(AND) + 11�The height of the whole layout ish(T ) = (M=4� 1) � h(box42) + (M=4) � h(box3)+ a � (h(box4)� h(box3)):For the size of the nets a[i] we consider� the horizontal extension m � b(box).� the vertical extension. This extends fromthe very top of the layout to the leftmostleaf. Below the leftmost leaf we have �many boxes4/2b.� the m connections from the a-channels tothe AND-gates, each of length up to 3�.Thus for the largest ones of the nets a[i] wehaveja[i]j = m � b(box) + h(T )� � � (h(box4=2� �)�h(FA)� h(AND) + 3m�:For m � n the size of the nets b[i] is dominatedby the size of the nets a[i].The carry in box4 travels horizontally over afull box minus 2/3 of a full adder. Thus wehavejcarry4j = b(box)� 2b(FA)=3+ h(AND) + 4�:Next we determine the accumulated delay froma leaf to the root which follows in each box4/2the following path: sum bit in T� { 1'st fulladder in v { carry output { 2'nd full adder inthe box to the left { sum bit of that adder.We estimate the accumulated length of thewires separately� all wires connected to carry outputs:Carry4=2 = � � (b(box)� 2b(FA)=3 + 3�):

� all wires connected to sum outputs notcounting vertical displacement in theglobal wire channels. In the wire channelsevery one of the distances 2k� occurs ex-actly once.Sum4=2 = � � (4b(FA)=3 + 4�)+ X�k=1 2k�= � � (4b(FA)=3 + 4�)+ � � (�2 + �)� total vertical displacement of the wiresconnected to sum outputs in the wire chan-nels; from the bottom of rightmost leaf (abox4 if m = 53) to the very bottom of thelayout not counting the boxes4/2 on thepath:Channel = h(T )� h(box4)� (log(M=4)) � h(box4=2):The competing paths from the carry output ofT� to the second full adder are faster than thepath considered above for realistic values of �.We now imagine that all a-inputs and b-inputs are the outputs of drivers whose propa-gation delay we ignore. Then the total delay ofthe tree equalsTime(T ) = � � (ja[i]j+ jcarry4j+ Carry4=2+Sum4=2 + Channel)+DAND + 2DFA � (1 + �):Exactly along the same lines one speci�es andanalyzes the layout of the addition tree T 0 withbooth recoding. The tree has M 0=4 leaves anddepth �0 = log(M 0=4).One uses the boxes speci�ed in Fig. 21a toFig. 21c. The selection logic becomes morecomplex and has to be placed in two rows inorder not to exceed the Full adder width. Forthis organization in Box4' an additional hori-zontal input wire must be routed around the12



full adder. Also the channel width changes abit and becomes �0 � �.b(box0) = b(FA) + �0 � � + 4�:This change of width is the only change for theBox4/2'; its height stays the same. In the othertwo boxes there must be 5 input wires per se-lection logic. In Box3' the top selection logic isrotated in order not to waste area. From the�gures one obtains the following equations:h(box4=20) = 2h(FA) + 7�h(box30) = h(FA) + h(SL) + b(SL) + 17�h(box40) = 2h(FA) + 2h(SL) + 26�Most of the other equations only changeslightly:h(T 0) = (M 0=4� 1) � h(box4=20)+ (M 0=4) � h(box30)+a0 � (h(box40)� h(box30))ja0[i]j = m0 � b(box0) + h(T 0)� �0 � (h(box4=20� �)� h(FA) � h(SL) + 4m0�jcarry40j = b(box0)� 2b(FA)=3 + 3�Carry04=2 = �0 � (b(box0)� 2b(FA)=3 + 3�):Sum04=2 = �0 � (4b(FA)=3+ 4�)+X�0k=1 2k�= �0 � (4b(FA)=3+ 4�)+ � � (�02 + �0)Channel0 = h(T 0)� h(box40)� (log(M 0=4)) � h(box4=20):Additionally to these wires we must considerthe wire between one selection logic output inthe upper row and the fulladder input in Box4':jsum40j = h(SL) + b(SL)=2+ 12�:Also the nets b0[i] can become important. Theirdelay in sequence to the booth decoder delayhas to compete against the nets a0[i] and it de-pends on the constant � which one is slower.
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bgFigure 18: Relative delay improvement byBooth recoding for n = m = 53Therefore, we have to consider the length ofthe longest jb0[i]j. It has to reach n0 bit posi-tions and for each connection in the worst caseit crosses all the 9 other selection logic wires.jb0[i]j = n0 � (b(box0) + 10�):With this we can evaluate the delay of the treeT':Time(T 0) = � 0 � (max(ja0[i]j; jb0(i)j+ DBD�0 )+jsum40j+ jcarry40j+ Carry04=2+Sum04=2 + Channel0)+DSL + 2DFA � (1 + �0):In Fig. 18 the relative improvement(TIME(T )� TIME(T 0))=TIME(T )is plotted for n = m = 53 as a function of �.This �gure is surprisingly complex andcounter intuitive. In particular we see gainsdue to Booth recoding decrease with increasing�, i.e. with slower wires. For small values of� until � � :1 the delay of the Booth decoderDBD = 3 plus the delay of the b-nets is largerthan the delay of the a-nets. For small � wehave TIME(T 0) � 55 + 537�13



whereas for large � we haveTIME(T 0) � 52 + 614�:We always haveTIME(T ) = 62 + 710�:This explains why the graph has twobranches. For � = 0 only gate delays countand we haveTIME(T 0)=TIME(T )� 55=62 � 89%:This explains why the branch for the b-netsstarts around 100%�89% = 11%. It remains toexplain why the branch for the a-nets is fallingwith �. For � = 0 the branch starts at 1 �52=62 � 100% � 84% = 16%. For large � thesavings are dominated by wire delays and ap-proach 1�(52+614)=(62+710) � 14% < 16%.Thus the branch falls because the wire delayshave not fallen much due to Booth decoding.The reason for this is the geometry of our par-ticular layouts which are quite wide and notvery high:Denote by wire(T ) resp. wire(T 0) the wiredelays for T and T 0. Then we have for � = 1:wire(T ) � w(T )=2 + 2h(T )wire(T 0) � w(T 0)=2 + 2h(T 0)because a-nets travel horizontally over half thelayout and vertically over almost the full lay-out; the longest paths from the leaves to theroot travel vertically over almost the full layoutwhereas horizontal displacement is logarithmic.We havew(T ) � w(T 0) � 2n � w(box) � 2n � 5:7If we would use as leaves only 4/2{adders,then the tree T would have n=4 leaves eachof height h(box4=2) � 9:9 and around n=4 in-terior nodes, each of height h(box4=2) � 6:7.Thus h(T ) � (n=4) � (9:9 + 6:7) = 4:15n.Similarly we have h(T 0) � (n=8) � (h(box04) +

h(box4=2) � (n=8) � (17:5 + 6:7) = 3:025n.For n = 53 we get wire(T 0) � 623 andwire(T ) � 742.Note that we have h(T )=w(T ) � 1=3 andh(T )=w(T 0) � 1=4. If we make the layoutsmore square 2, say by doubling h and halvingw, then the savings due to Booth recoding in-crease but the layouts become slower !!. Thisincidentally shows, that the common practiceof making the layouts of addition trees roughlysquare is not always a good idea.Asymptotic considerations If n = m andn tends to in�nity the whole layout consistsalmost exclusively of channels. The heightis �(n) which is negligible against the width� � � � n logn + o(n logn). The run time is dom-inated by the term 2�� � n logn due to the de-lay of the horizontal portions of nets ai. Thesame holds for the tree layout without Boothrecoding. Thus even in the VLSI model Boothrecoding { when applied to 4/2-trees { savesasymptotically no constant factor of the delay.However, if n grows large the layouts of plainmultiplication arrays with width and height�(n) become eventually faster than 4/2-trees.Let A resp. A' be the straight forward layoutof a multiplication array without resp. withBooth recoding. With the techniques intro-duced above one easily speci�es and analyzesthese layouts.ThenTime(A) = m(6 + � � 13:5) + o(m)Time(A0) = m(3 + � � 11:3) + o(m):We see that Time(A0)=Time(A) tends to a con-stant fraction, if n = m and n tends to in�n-ity. Figure 6 depicts the relative asymptoticdelay savings by booth decoding depending onthe technology parameter �. Thus asymptot-ically Booth recoding does improve the delayby 27% to 50%. This is, however, of aca-demic interest, because even for very slow wires2This is common practice14
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3. Booth recoding saves between 11% and50% of the delay of partial product gen-eration and addition tree.Moreover we have demonstrated the surprisinge�ect, that the savings of Booth decoding mightdecrease as wires become slower. Empiricalstudies so far have suggested, that Booth recod-ing is particulary helpful if wires are slow [4].Technically the main contribution of the pa-per is the VLSI model from section 5 andthe techniques of analysis of the same section.The detailed yet tractable nature of this modelopens the way for many further investigations.We list just a few� One can systematically study wheredrivers should be placed in order to makenets smaller and hence speed up signalpropagation.� One can analyze hybrid layouts (arrays ofsmall trees) and the layouts of many othermultiplication designs ([1][5] [8][14][17][20][22][23][25][30][32]).� The layouts of various adder and shifterdesigns can be analyzed in a quite realisticway.� It is common practice to 'fold' layouts ofaddition trees into more square layouts.But the formulawire(T ) � w(T )=2 + 2h(T )suggests, that trivial folding of layouts pro-duces slower designs. This clearly needscloser investigation.8 AcknowledgmentsFor helpful and inspiring discussions the au-thors thank Michael Bosch and Guy Even.15
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