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Abstract support long recording periods, their logging requirements should

be minimal. Third, to provide an effective debugging environment,

RS . . their replay speed should be similar to the initial execution speed.
greatly help in finding concurrency bugs. For highest ef'fectlvenesE1na|| thev should reauire onlv modest hardware support
replay schemes should (i) record at production-run speed, (ii) keep Y. they q y pport.

their logging requirements minute, and (iii) replay at a speed similar While existing schemes for hardware-assisted deterministic re-
to that of the initial execution. In this paper, we propose a newlay have made major strides in these directions, they still fall short
substrate for deterministic replay that provides substantial advancafsour goals in some axes. First, they require Sequential Consis-
along these axes. In our proposal, processors execute blocksterficy (SC) [6, 7, 15] — a strict consistency model whose typical
instructions atomically, as in transactional memory or speculativienplementations have relatively low performance and, therefore,
multithreading, and the system only needs to record the comnutn distort the timing of bugs relative to production-run execution.
order of these blocks. We call our scherdeLorean Our results  The exception is RTR [16], which introduces an algorithm to record
show that DeLorean records execution at a speed similar to thatwhder Total Store Order (TSO). However, the impact of this algo-
Release Consistency (RC) execution and replays at about 82% ofiithim on execution speed or log size is not evaluated. Secondly,
speed. In contrast, most current schemes only record at the spesgsting schemes capture shared-memory dependences by logging
of Sequential Consistency (SC) execution. Moreover, DelLoreafem individually [15] or in groups [6, 16]. For this, they need to
only needs 7.5% of the log size needed by a state-of-the-art schenigy about one byte per processor per kilo-instruction after compres-
Finally, DeLorean can be configured to need only 0.6% of the logion, which limits the duration of the recorded interval. Finally, it
size of the state-of-the-art scheme at the cost of recording at 86%ijgfunclear how fast these schemes replay.

RC's execution speed — still faster than SC. In this configuration,
the log of an 8-processor 5-GHz machine is estimated to be 0an¥.
about 20GB per day. !

In this paper, we presemelLorean a new approach to deter-
nistic replay that provides substantial advances in some of these
axes. Delorean uses a new execution substrate: one where pro-
1. Introduction cessors execute Iarge_ blocl_<s qf instructiqns atomically, separated
by processor checkpoints, like in transactional memory or thread-

Debugging multithreaded codes is challenging because concigvel speculation. To capture a multithreaded execution, DeLorean
rency bugs are typically exercised only under certain timing condbnly needs to record the totatder in which blocks from different
tions, and their effects often manifest only after many instructiongrocessors commit — not individual shared-memory dependences.
With the growing popularity of multicores, it is crucial to find ef- This results in a substantial reduction in log size compared to pre-
fective debugging techniques for multithreaded codes. vious schemes. Moreover, since the memory accesses of a proces-

One such technique is hardware-assisted deterministic replaysgr can overlap and reorder within and across the same-processor
multithreaded programs. The idea is to record in a log how memomjocks, DelLorean can record execution at the speed of the most
accesses interleave during an initial multithreaded execution. Lategggressive consistency models used today — and replay at a com-
the log is used to replay the execution, recreating the same meparable speed. While the hardware used is not standard in today’s
ory access interleaving — hopefully illuminating what brought thesyrrent systems, the required changes are mostly concentrated in
execution to a buggy state. Recent schemes for hardware-assiqi%lmemory system and are arguably simple.
deterministic replay include FDR [15], BugNet [7], RTR [16] and
Strata [6].

We argue that schemes for deterministic replay have four d

DeLorean offers different execution modes that provide differ-
§_nt trade-offs between performance and log size. One mode, called

sirable traits. First, to capture the timing of production-run bug rderOnly, records execution at the speed of Release Consistency

accurately, they should record at production-run speeds. Second, %C) execution and replays at about _82% of RC speed. Thisis in
contrast to most other schemes, which only record at SC execu-
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CCR-0325603 and CNS-0720593. only needs 1.3 bits of memory-ordering log per processor per kilo-
instruction, which is 16% of the log size needed by the state-of-the-
art RTR design [16]. Moreover, by reorganizi@gderOnlys log




according to the Strata [6] design, we further reduce the log size thuce artificial dependences so that Netzer’s TR can eliminate other
7.5% of RTR’s. dependences. Figure 1(b) illustrates RTR. The code has depen-
A second execution mode call®icoLogreduces the memory- dencesl:Wa—2:Ra and 1:Wb—2:Wh RTR introduces artificial
ordering log to 0.05 bits per processor per kilo-instruction, whicldependencé:Wb—2:Ra which is recorded. Now, RT eliminates
is 0.6% of the log size of RTR [16]. In this mode, the log of an 8-the need to record the other two dependences. RTR also saves space
processor 5-GHz machine is estimated to be only about 20GB pley representing recurring dependences with a vector notation.
day. This mode has a lower execution speed — 86% of RC’s exe- The second contribution of Xet al's work is a recording algo-
cution speed, which is still higher than typical SC speed. Overall, dthm for a TSO machine [16]. It extends FDR’s algorithm as fol-
block-based replay scheme such as DeLorean has great potentidbtws. There is hardware in the processor that detects when a load
enhance the debugging of production-run multithreaded codes. has violated SC. In this case, the dependence that FDR would log
This paper is organized as follows. Section 2 gives a bacKassuming SC) is not logged. Instead, the hardware logs the value
ground; Sections 3 and 4 introduce DeLorean and its implemenead by the load, which is later fed to the replayer. Supporting TSO

tation; and Sections 5 and 6 evaluate DeLorean. is significant because TSO is used in real machines. However, the
authors do not evaluate the impact of the new algorithm on execu-
2. Background tion speed or on log size [16].

. S We refer to Xuet al's work [16] as the RTR system, and dis-
2.1. Hardware-Assisted Deterministic Replay tinguish between the Base (no TSO) and Advanced (TSO) sup-
Several hardware-based schemes have been proposed for depert. The Base RTR support logs about 1B per processor per kilo-
ministic multiprocessor replay. Bacon and Goldstein [1] capturethstruction (compressed).
dependences between concurrent threads by logging the coherencd he Strata [6] replay scheme records dependences differently
messages in the bus of a multiprocessor using an attached bodfén FDR/RTR. Rather than logging individual dependences with
The Flight Data Recorder (FDR) [15] is a full-system recorder foa pair of instruction counts, each Strata log entry (a “Stratum”) is
directory-based multiprocessors under SC. Like Bacon and Gold-vector of as many counters as processors. Each counter is the
stein’s scheme [1], FDR observes coherence messages between prgnber of memory operations issued by the corresponding proces-
cessors. It improves on the former scheme notably by implemersior since the last stratum was logged. A stratum is logged before
ing a hardware version of Netzer's Transitive Reduction (TR) opa processor issues the second access of an inter-processor depen-
timization [8]. TR eliminates the need to record dependences thdence. Figure 1(c) shows a reference trace with the pdatiarfd
are transitively implied by others. SJ) where strata are logged. Right before the second reference of
Figure 1(a) illustrates TR. Procesd®t writes locationsa and ~ the dependenckWa—2:Rais issued, Strata logs the memory ref-
b, and laterP2 accesse® anda. The dependenc&:Wa—2:Ra erence counts of all 3 processors. The same process is repeated
does not need to be recorded because it is transitively implied iiight before the second reference of the depend@rités—1:Wh
1:Wa—1:Wh, 1:Wb—2:Wh, and2:Wb—2:Ra Consequently, FDR The other two dependences in the figure do not require the creation
only records1:Wb—2:Wh FDR saves the processor ID and in-0f a new stratum: each of them already has its two references in
struction count of the two instructions in a Memory Races Lodlifferent strata regions.

buffer. Strata works with directory- and snoop-based systems — both
under SC. Strata can choose to ignore WAR dependences when
P1 P2 P1 P2 P1 P2 P3 building the log. In this case, WAR dependences are uncovered
1:Wa 1:Wa l:Wa._ 2:We, 3:Wa at replay at the cost of slowing down the replay with multiple re-
1"’“’\ 1"”% S0 ~Z:Ra >< executions [6]. The compressed log for 4 processors is 2.2KB per
2:Wb “*2:Ra
2 iRa 2:0b g — 2:Wb/ 3:Re 1M memory references.
W
2:Ra 2.2. Comparison of HW-Assisted Full-System Re-
@ () © play Schemes

Columns 2-5 of Table 1 show our estimation of how FDR [15],
RTR [16], and Strata [6] measure along the four axes that Section 1
argued are key for replay schemes: initial execution speed, log size,
replay speed, and hardware needed. Note that, under log size, we

FDR augments each cache block with the count of the last irconsider only the memory-ordering log. This is because the other
struction that accessed it. FDR increases the area of the cacheddys, such as input and DMA logs, are less critical [16] and are
6.25% and generates a compressed log size of 2MB per 1GHz prmandled similarly by the schemes.
cessor per second [15]. FDR, Strata, and Base RTR have been shown to affect execution

BugNet [7] reuses FDR’s hardware to replay user code arspeed negligibly. Consequently, we list as their execution speed that
shared libraries. It efficiently records the output of all load in-of the memory consistency model supported, namely SC. Advanced
structions by compressing them with a hardware-based dictionaRTR supports TSO but its execution speed has not been measured.
scheme. The log size for Base RTR and Strata is smaller than for FDR;

Xu et al.[16] extend FDR in several ways. For the purpose ofhere is no information for Advanced RTR. There is also no infor-
our paper, we focus on two extensions. The first one is the Regmation on the replay speed of these schemes, but we estimate that,
lated Transitive Reduction (RTR). The idea is to judiciously introin their current shape, replay is significantly slower than the initial

Figure 1. Key insights of previous work on deterministic replay:
FDR (a), RTR (b), and Strata (c).



DeLorean inOrderOnlymode: | DeLorean inPicoLogmode:
Property FDR RTR Strata Non-Predefined Chunk Predefined Chunk
Base [ Advanced Commit Interleaving Commit Interleaving
Initial Execution Speed SC SC TSO? SC RC 0.86x RC
Memory-Ordering Log Size Medium Small Not reported Small Very small Tiny
Replay Speed Not reported | Not reported Not reported Not reported 0.82xRC 0.72xRC
Hardware Needed Cache hier Cache hier | Cache hier + proc| Very little BulkSC/IT/TCC (Mem hier) | BulkSC/IT/TCC (Mem hier)

Table 1. Comparing the main issues in hardware-assisted, full-system replay schemes.

execution. In the case of Strata, there are three reasons: (i) the jmgcessor and the chunk size) and the log is updated infrequently
strata likely act as synchronization barriers for replaying procegehunks can be thousands of instructions long). Furthermore, in
sors, (ii) the presence of WARs (if not recorded) requires multiplan aggressive design, we can predefine when to finish a chunk and
replays of the same stratum region, and (iii) the replay under direstart a new one, and even the chunk commit order. In this case, we
tory schemes needs a prepass to combine the multiple logs. In gectically eliminate the need to log at all.

case of FDR and RTR, every dependence requires a communica-In the rest of this section, we examine the design space in
tion between two replaying processors. Moreover, the conservatiehunk-based systems, present our proposed chunk-based architec-
dependences introduced by RTR may potentially cause processore called DelLorean, and then put it in the context of conventional
stalls. Finally, all the schemes require changes in the cache hieeplayers.

archy, with Advanced RTR requiring changes in the processor as . .
well. Strata has very few hardware requirements. 3.2. Design Space in Chunk-Based Systems

In a chunk-based system, the memory-ordering log does not
store individual or groups of dependences; it only needs to store
the total order of chunk commits. In the simplest design, each log
entry contains the ID of the processor committing the chunk and the

Recent proposals on systems with all-the-time softwarechunk size — measured in number of retired instructions.
annotated transactions such as TCC [5], checkpointed multiproces- We can reduce the log size by either reducing the number of
sors with all-the-time hardware-based transactions such as Impligititries or reducing the size of each entry. To reduce the number of
Transactions (IT) [13], or high-speed SC implementations such atries, we can increase the chunk size — i.e., include more instruc-
BulkSC [2] have described an environment where processors caiibns in each chunk. However, increasing the chunk size beyond a
tinuously execute blocks of consecutive dynamic instructions atongertain point is counter-productive. First, we may hurt performance
ically and in isolation. Such an environment can also be supportétcause long chunks increase the chances of inter-chunk conflicts
in systems with thread-level speculation or with coarse-grain memand resulting squashes. Second, we may be unable to increase the
ory ordering support such as ASO [14]. In this environment, the ugeffective chunk size. Indeed, a long chunk may access more lines
dates made by a block of instructions (which we will caCaunk  mapping to a cache set than ways the cache has — risking the cache
only become visible when the chunk commits. Moreover, wheaverflow of speculatively updated lines. Before this happens, the
two concurrently-executing chunks conflict — there is a data deshunk has to be forcefully finished and committed.
pendence across the two chunks — one of the chunks is typically To reduce the size of each log entry, we can omit the chunk
squashed and retried. The net effect is that the interleaving betwesipe or the ID of the committing processor from the entry. To be
the memory accesses of different processors appears to@aigur able to omit the chunk size, we need to make “chunking” — i.e.,
at chunk boundaries. the decision of when to finish a chunk — deterministic. We can

In this environment, recording the execution for replay involveaiccomplish this in different ways. One could be to finish chunks
logging the sequence of chunk commits. This provides two fundat software annotation points — perhaps similar to what is done in
mental advantages over conventional recorders. The first one is tiatnsactional memory systems. Another is to finish chunks when
we can record and replay executions where the memory accessesertain number of memory operations or instructions have been
issued by a processor within a chunk (and in fact across chunks [Zpmmitted — like it is done in BulkSC or IT.
are fully reordered and overlapped. Recording under such condi- In reality, there may be events that truncate a currently-running
tions has been a major stumbling block for this area’s research, aokunk and force it to commit before it has reached its “expected”
is recognized by Xet al.[16] as an open problem. The significancesize. This is fine as long as the event reappears deterministically
of this is that both execution and replay can now proceed at a speiecthe replay. An example is an uncached load to an I/O port. The
similar to that of a highly-relaxed memory consistency model sucbhunk is truncated but its log entry does not need to record its ac-
as RC. This enables the recording of access interleavingsién tual size because the uncached load will reappear in the replay and
production runs |t also enables high-speed deterministic replay. Inruncate the chunk at the same place.
our view, this has major implications on improved code debugging There are, however, a few events that truncate a currently-
techniques. running chunk and are not deterministic — e.g., cache overflow as

The second fundamental advantage is that the memory-orderidigcussed above. We will examine these rare events in Section 4.2.
log is now very small. Indeed, rather than recording individuaWhen one such event occurs, the log is augmented with informa-
dependences, or even groups of them such as in Strata [6] atiwh on: (i) what chunk gets truncated and (ii) its size. With this
RTR [16], the log in a chunk-based system only needs to record tligformation, the exact chunking can be reproduced during replay.
total orderin which chunks from different processors commit. This  To be able to omit the ID of the committing processor from the
means that each log entry is short (naively, the ID of the committintpg entry, we need to “predefine” the chunk commit interleaving.

3. Chunk-Based Execution & Replay
3.1. Motivation



I I Non-Deterministic Chunking [ Deterministic Chunking I

Name: Order&Size Name: OrderOnly

Execution:  Arbiter logs committing processors Execution:  Arbiter logs committing processors
Non- Processors log chunk sizes Replay: Arbiter consumes Proc-Interleaving log
Predefined Replay: Arbiter consumes Proc-Interleaving log Arbiter enforces order in Proc-Interleaving log
Chunk Arbiter enforces order in Proc-Interleaving log Processors execute chunks normally
Commit Processors consume private Chunk-Size log
Interleaving Processors chunk according to private Chunk-Size log

o ) #dyn. insts__ . #dyn. insts .

Log sizex (log (# of procg + log (maxchunksizg) x chunksize Log size= log (# of procg x chunksize
Predefined Name: PicoLog
Chunk Execution:  Arbiter enforces predefined commit order
Commit — Replay: Arbiter enforces predefined commit order
Interleaving Processors execute chunks normally

Log size~ 0 bits

Table 2. Execution modes in chunk-based systems.

This can be accomplished by enforcing a given commit policy —3.3. DeLorean: A Chunk-Based Execution-Replay
e.g., pick processors round-robin, allowing them to commit one Architecture
chunk at a time. The drawback is that, by delaying the commit

of completed chunks until their turn, we may slow down execution DelLorean is our architecture for chunk-based execution-replay
and replay. (Figure 2). It takes a machine that supports a chunk-based execu-

. tion environment with a generic network and an arbiter for chunk
Based on all these ways to reduce the log size, we havelxree it as in BulkSC [2] or Scalable TCC [3], and augments it with

ecution Modesn chunk-based systems (Table 2). In the followingye three typical mechanisms for replay: the memory-ordering log,
discussion, we assume that the machine hasrbiter module that = input logs, and system checkpointing.

observes the order of chunk commits. The arbiter can be associated
with the bus controller in a bus-based machine or be an indepe»

. . . . . ~ OBasel
dent module in a machine with a generic network as in BulkSC [Z gpo; oran-only structures
or Scalable TCC [3] OStructures also found in other multiprocessor replay proposals
. . . . Node 0 Node N-1
In the Order&SizeMode (top left), chunking is not determin-
istic and the chunk commit interleaving is not predefined. Durin Proc + Caches Sl Proc + Caches
execution, the arbiter logs the sequence of committing process o Network H
IDs in aProcessor InterleavingPl) log. In addition, processors log °"“(L'é},s'“ FiiL s C"?LE};S'“
the size of the chunks they commit in the per-proce€¥amk Size 2 _ 2
(CS) log. During replay, each processor generates chunks that Dy §‘§ s
sized according to its CS log, and the arbiter enforces the comn ®tes Nk

order present in the Pl log. The combination of a single Pl log and
per-processor CS logs constitutes the memory-ordering log. The
table shows. the estimate_d size of the memory-ordering log, where The memory-ordering log consists of the Pl and CS logs. They
max chunksizeandchunksizere the maximum and average Chunkreplace the Memory Races Log Buffer in FDR [15] and RTR [16],
size, respectively. and the Strata Log in Strata [6]. They are configured differently de-
In the OrderOnly Mode (top right), the commit interleaving is pending on which of the three execution modes of Table 2 is desired
not predefined, but chunking is deterministic. Therefore, there is- allowing for different trade-offs between speed and log size. For
no need to log the chunk size. During execution, the arbiter logsach execution mode, Table 3 lists the log entry formats and the
the committing processor IDs in the Pl log; during replay, it useime when the logs are updated.
the Pl log to enforce the same commit interleaving. The log size is

Figure 2. DeLorean architecture.

smaller because we only have the Pl log. In reality, each processor PlLog CSLog
also keeps a very small CS log where, for each of its few chunks that || Execution |[Log Entry[ When —['Log Entry When
LS. . e Mode Format | Updated| Format Updated
were truncated non- deterministically, it records both the position in Orderaszel[procD[Chunk [ size ok
the sequence of chunks committed by the processor and the size. Commit Commit
. . . . P OrderOnly || procID Chunk | chunkiID, size Chunk
In the PlcoLpg Mode (l?ottgm nght)z chunklng is determlnlstlg Commit Truncation
and the commit interleaving is predefined. During both execution PicoLog - - chunkiD, size | Chunk
and replay, the arbiter enforces a given commit order. There is no Truncation

Pl log. Each processor keeps the very small CS log discussed for.

OrderOnly. The memory-ordering log is largely eliminated Table 3. Pl and CS logs in each mode. The Pl log can be
¥ y glog 9ely ’ reorganized based on Strata to reduce its size (Section 4.3).

Note that a mode where the chunking is not deterministic but the
chunk commit interleaving is predefined (bottom left) is unattrac- In theOrder&SizeandOrderOnlymodes, when the arbiter gives
tive. We save log space in the arbiter only to use more in the preaommit permission to a processor during execution, it also saves the
Cessors. processor'procID in the Pllog. During replay, the arbiter uses the



sequence oprocIDs in the PI log to give commit permissions to very small and the execution time is largely unaffected. In theory,

processors in the correct order. however, squashing can noticeably slow down an application. This
We can reorganize the Pl log according to the Strata [6] desigasue is not present in conventional replay schemes.
and reduce its size by half (Section 4.3). The minuscule log is the combination of two facts: DeLorean

In the Order&Sizemode, when a processor gets permission t@eeds few log entries and each entry is small. For this discussion,
commit a chunk during execution, it records the number of dynamigonsider theDrderOnlymode. DeLorean naturally combines mul-
instructions in the chunksfize) inits CS log. In theDrderOnlyand  tiple dependences between two processors into a single dependence
PicoLog modes, the processor only updates its CS log when the- something that RTR does at a smaller scale by creating stricter
chunk to be committed has been truncated non-deterministically. tfependences artificially. This is shown in Figure 3(a), wiadirthe
this case, it stores the processor-local sequence order of the chyfpendences between the instructions in the chunks execulst! by
(chunkID) and itssize. During replay, each processor uses itsandP5 (shown with arrows in the figure) are combined intsiragle
CS log to determine when it needs to terminate each chur®rgin pj log entry. Moreover, as shown in the figure, such log entry is
der&Siz9, or only those that were truncated non-deterministicaII)Simp|y P4s ID.
in the initial execution (ir0DrderOnlyandPicolLog.

The input logs are similar to those in previous replay schemel"Dependence e
As shown in Figure 2, they include one shared ID§/A log) and
two per-processor logénterruptandl/O logs). The DMA log logs
the data that the DMA writes to memory. During the initial execu-
tion, the DMA acts like another processor in that, before it update| psp | PSID
memory, it needs to get commit permission from the arbiter. Whe
the arbiter grants permission, the DMA writes to memory and
copy of the data is saved in the DMA log. Moreover, the arbite Time
creates an entry in the Pl log with the DMAS®ocID. Note that, in (a) (b) ©
thePicoLogmode, there is no Pl log. In this case, the arbiter records
the “commit slot” of the DMA operation, namely the current value Figure 3. Comparing DeLorean to RTR and Strata.
of a counter that counts the total number of chunk commits since = . . .
recording started. Later, during replay, when the arbiter finds the Similarly, like Strata, DeLorean naturally combines multiple de-
DMA's procID in its Pl log — or, in thePicoLogmode, when the pendences across several processors into a single one. Indeed, as

arbiter's count of chunk commits matches a saved DMA comm#Nown in Figure 3(b), when a chunk finishes, it is liksiagle-

slot — the data in the next entry of the DMA log is consumed. ~ Processostratum: in the figure, the three dependences are summa-
The per-processor Interrupt log stores, for each interrupt, tH&#€d into asinglelog entry, which issimply P3s ID. Unlike Strata,

time it is received, its type, and its data. Time is recorded as tH80ugh. DeLorean is unable to combine executions from multiple

processor-locathunkID of the chunk that initiates execution of PrOCessorsintoasingle stratum. This is shown in Figure 3(c), where

the interrupt handler. The per-processor /0 log records the valul¥® chunk-commit log entries fd?4 and P6 are not combined as

obtained by I/ loads. Section 4.2 provides more details. they would in Strata. However, while a Strata log entry is very wide
Like previous replay schemes, Delorean includes system it is a vector of as many reference counters as processors the

checkpointing support, possibly with schemes such as ReVive [§j2chine has —a DelLorean log entry is only a processor ID.

or SafetyNet [12]. We do not focus on this issue. Interestingly, we can reorganize DelLorean’s log according to
As a summary, the last two columns of Table 1 compare Deatrata’s design and save space. This is shown in Section 4.3.

Lorean inOrderOnlyandPicoLogmodes to existing schemes. The

memory-ordering log is either very small or practically nil. We will 3-4-2- Replay

see that DelLorean executes at a speed similar to that of RC exe- op advantage of DelLorean’s replay over previously-proposed

cution in OrderOnly mode and only modestly slower RicoLog  gcnemes is its high speed: all processors execute concurrently, with
mode. Replay speed will also be shown tq be high. The hardwaé%ch processor fully reordering and overlapping its memory ac-
needed is that of a chunk-based system like BulkSC, IT, or TC%esses. Chunk commit involves a fast check with the arbiter, which

which modifies the memory higrarchy more than thg convention:fg overlapped with the computation of the next chunk, as in BulkSC.
schemes. Processor modifications are largely confined to SUpqufuitively, therefore, replay speed is likely to be high.

ing checkpointing. . .
In comparison, the processors in the other schemes replay at
3.4. DeLorean in the Context of Other Replayers =~ most at SC speed (or TSO in Advanced RTR). Moreover, they re-
» ) quire more communication between the replaying processors: FDR
3.4.1. Initial Execution and RTR require a cross-processor communication for each depen-

Recall that the advantages of DeLorean in the initial executiofiénce in the log, while Strata requires the replaying processors to
are that: (i) it records an environment where memory accesses fnchronize in a barrier at every log stratum. Finally, as discussed
order and overlap substantially, delivering a performance similar # Section 2.2, Strata has other potential sources of replay overhead.
that of a relaxed-consistency machine, and (ii) its log is minuscule. In practice, replay is likely to proceed on top of a hypervisor
The first advantage comes at the cost of potential squash and k&yer. A detailed analysis of replay requires considering virtualiza-
execution of code sections. In most cases, the squash frequencyios issues that are beyond our scope.

P4 P5 P4 P5 P6 P7 P4 P5 P6
Pl Log Pl Log




4. Delorean Implementation from PO (messagd). At that point, it grants permission to commit
to PO (3) and propagates its commB)( The rest of the operation

1% as in the initial execution but without logging. In addition Om-
&%r&Size processors use the information in their CS log to decide
when to finish each chunk.

implementation choices, exceptional events, and an optimization
further reduce the log size.

4.1. Implementation Choices and Operation 4.2. Exceptional Events

Fundamentally, a chunk-based execution-replay system needs . L .
. ) . - In DeLorean, the same instruction in the initial and the replayed
support for speculative tasking and cross-task address disambigua-

tion — the support needed for transactional memory and threa%g(ecutlon must see exactly the same full-system architectural state.

level speculation. Such support can be implemented in softwar nly then can the stream of committed instructions be guaranteed

. . . tQ be the same in both runs. This means, for example, that the two
hardware, or in a hybrid way. Moreover, there are multiple degrees : :
- . . ; . runs perform the same number of spins on a spinlock, and the same
of freedom, including whether conflict detection and version man- )
umber of system calls and I/O operations.

agement are done lazily or eagerly. In addition, the network can l?e L -
g Y gerly On the other hand, it is likely that structures that are not visible

a bus or generic. If generic, we need an arbiter module — Whicth th ft h as th h db h dict il tai
can be designed in a distributed manner to avoid bottlenecks [2]. 0 the software such as the cache and branch predictor will contain

DeLorean can be implemented in any of these ways. In this p ifferent state in the two runs. This is because, in the two runs,

per, we choose to implement DeLorean using the signature-bast § relative timing of some events may be different, the number of

BulkSC [2]. A reason is that signatures enable fast and eﬁicieﬁpunkhsqu?jghtes may se different, and structures like the cache and
memory disambiguation, and an additional log optimization (Seégranc predictor may diverge. L
tion 4.3). Moreover, chunks are automatically created by the hard- Unfortunately, chunk construction is affected by the cache state

ware, eliminating any need to add software annotations to the ap- through cache overflow that requires finishing the chunk — and

plication to indicate when the current chunk should finish. Speci Dy the branch predic_tor — through wrong-p_ath speculative loads
ically, a chunk inOrderOnly and PicoLog modes finishes when that may cause spurious dependences and induce chunk squashes.

the processor has committed a certain fixed number of instructio@nsequently, we need to be careful that chunks are still replayed

since the chunk started. We call such chunk size the standard ch ermlnlstlgally. . )

size. Finally, we use a generic network with a directory and a single 1 NiS Section addresses this problem. Table 4 lists the excep-
arbiter module. Appendix A overviews BulkSC. tional Qvents that mlght_ affect chunk_ construction (_junng the initial

With this support, Figure 4 summarizes DeLorean’s operatior?xecunon' In the following, we consider each one in turn.

During the initial execution iOrder&Sizemode, when a processor
such asPO0 or P1 finishes a chunk, it sends its ID and signature
to the arbiter (messagdsand?2). Suppose that the arbiter grants
permission toPO first (message). In this case, the arbiter logs
POs ID (4) and propagates the commit operation to the rest of th

Do Not Truncat Truncate a Chunk
a Chunk Deterministically [ Non-deterministically
1) Interrupts 1) Reach limit number 1) Attempt to overflow

2) Traps of instructions the cache
£ 2) Uncached accesse®) Repeated chunk collisign

machine §). While this is in progress, if the arbiter determines (e.g., /O initiation) |  (Not for PicoLogand
that both chunks can commit in parallel, it sends a commit grant 3) Special system not during replay)

P1 (6), logsP1's ID (7), and propagates the comm&)( As each W instructions

processor receives commit permission, it logs the chunk Siaad Table 4. Exceptional events that may affect chunk construction.

10). In OrderOnly; steps9 and10 are skipped. IfPicoLog steps,

7,9 and10 are skipped, and the arbiter grants commit permissioq.2 1. Interrupts and Traps

to processors according to a predefined order policy, irrespective of ) . o .

the order in which it receives their commit requests. In all cases, An interrupt during the initial execution does not truncate the

a processor does not stall when requesting commit permission;CiiI"ent chunk (Table 4). If the interrupt has low priority, the pro-
continues executing its next chunk(s) cessor waits until the current chunk completes; if the interrupt has

high priority or the current chunk has recently started, the processor

commit Directory + all caches squashes the current chunk. In either case, after this, the processor
(5) starts a new chunk while initiating execution of the interrupt han-
ProcPO| ® V(g o Proc P1 dler. Moreover, an entry in the Interrupt log is created with: (i) the
0. PO o Arbiter s F1s D ID of the new chunk — namely, the number of chunks committed
® (3)°x % (s) by this processor up to now plus one — and (ii) the interrupt’s type
Chunk O) iS1ID) @ é] Chunk andDda_té. lay. i laved in th in all
Sze Gs Log PO ID oS Lon sie uring replay, |nterrgpts are replayed in the same way in a
Pl Log 9 execution modes. Specifically, each processor keeps a count of the

) , ) chunks it has committed so far. When such count is one lower than
Figure 4. Delorean’s operation.

. . . . 1In PicoLogmode, if the interrupt has high priority, the processor can
During replay, suppose th& finishes its chunk first, and the request that the arbiter commit the chunk that handles the interrupt immedi-

arbiter receives messagéeforel. The arbiter checks its P110g (0r ately — rather than for the processor to wait until it is its turn to commit. If

its predefined order policy iRicoLog and does not grant permis- s, the arbiter records the “commit slot” of the interrupt chunk like it does
sion to commit toP1. Instead, it waits until it receives the requestfor DMA requests (Section 3.3), to know when to consume it during replay.



the chunk ID in the next entry of its Interrupt log, the processostill, it will be truncated to preserve determinism. It is also possible
starts a new chunk by consuming the Interrupt log entry. that, during replay, a chunk unexpectedly attempts to cause over-
A trap does not truncate the current chunk (Table 4). Instead, tllew and has to be committed sooner than in the initial execution.
current chunk simply continues to grow, now executing instructionk this case, the processor, as it commits the shorter chunk, requests
from the trap handler. In addition, the trap is not logged, since the arbiter to let it commit a second chunk immediately after. This
will deterministically reappear during replay. Consider, for examsecond chunk has the rest of the original chunk.
ple, a page fault trap. The instruction that caused it will cause it The second non-deterministic event, repeated chunk collision,
again in the replay because the memory state is the same — sieurs when, during the initial execution, a chunk is repeatedly
wrong-path speculative loads cannot trigger the fault, and squasheguashed by other chunks. The simplest solution proposed in [2]
chunks cannot modify memory state. The TLB state may be diffeis to progressively reduce the size of the chunk until it can com-
ent during replay, but we assume TLBs managed in hardware. mit. This final size is not deterministic. Consequently, the proces-
sor records in its CS log the truncated size of the chunk and, in
OrderOnly, the chunkID as well. Note that repeated chunk colli-
There are certain events that truncate the chunk that is currentlsion cannot occur ifPicoLog This is because a chunk can only be
executing in the processor and that will reappear deterministicalgquashed by a committing chunk andPitcoLog there is a prede-
during replay (Table 4). They include the trivial case when the nunfined chunk commit order.
ber of instructions committed by the chunk reaches the size limit. During replay, processors use their CS log to truncate chunks
More importantly, they include instructions that are hard to undehat were truncated due to collisions in the initial execution. Note
in a speculative environment, like uncached accesses (such as thegg, during replay, chunks may suffer a different set of collisions.
that initiate 1/O operations) and special system instructions (such g@wever, the problem of repeated chunk collisions cannot occur
those that change the processor frequency or mask/unmask inte&cause chunks have now a predefined commit order.
rupts). Overall, even in the presence of all these types of exceptional
Following BulkSC [2], when one these hard-to-undo instruceyents, DeLorean’s replay is deterministic. Appendix B outlines a
tions is encountered, the currently-running chunk is truncated, thoof for why DeLorean’s replay is deterministic.
instruction is executed, and a new chunk starts. Typically, the ex-
ecution of the instruction is not initiated until the previous chunig,3, Optimization; Reducing the PI Log Size by
commits, and the subsequent chunk does not start until the instruc- Stratifying It
tion commits. There is no need to log the size of the truncated chunk
in theOrderOnlyandPicoLogmodes because the event will reoccur e can reduce the size of the Pl log @rder&Sizeand Or-
in the replay and truncate the chunk at exactly the same instructid#eOnly by applying Strata’s [6] approach to log construction.
The event itself is not logged either. The only exception is that wepecifically, we design the Pl log to record chunk strata. Each stra-
must log in the 1/O log the value loaded by /O loads. Such valueisim is a vector of counters that tell the number of chunks commit-
will be provided to the I/O loads when they are encountered agafd Per processor since the previous stratum. These chunks have

4.2.2. Deterministic Truncation of a Chunk

in the replay. no cross-processor conflicts — although they may have within-
o ) processor cross-chunk conflicts. Consequently, we need not record
4.2.3. Non-Deterministic Truncation of a Chunk their exact commit sequence because, during replay, those chunks

Finally, there are two events that truncate the currently2MOng them that belong to different processors can be executed and
executing chunk and are not deterministic (Table 4). They are tfgomMitted in any order; those chunks that belong to the same pro-
attempt to overflow the cache and repeated chunk collision. cessor will serialize their commit by construction.

When a chunk accesses more memory lines mapping to a cacheD€éLorean creates a new stratum when the chunk to log next has
set than ways the cache has, there is the danger that speculati8§se properties: (i) it conflicts with chunks committed by other
written data may overflow. Before this happens, execution has Rj0CeSs0rs since the last stratum or (ii) it would overflow the counter
stop. Squashing the chunk and re-executing it does not help ga-chunks committed by this processor since the last stratum. We
cause the problem will typically reoccur. Instead, we need to trurf:all this log optimizatiorstratifyingthe Pl log.
cate the chunk, initiate its commit process, and start a new chunk. Figure 5(a) shows an example of this technique. Assume that
Note that the actual point in the chunk where overflow is detected ibere is a conflict between the chunks from procesSoamd 0
not deterministic. It depends on the actual reordering of loads awehose Pl log entries are connected with an arrow. The other
stores; e.g., a wrong-path speculative load may trigger the atteritunks do not have cross-processor conflicts. Also, assume that
to displace dirty speculative data. Moreover, multiple speculativeach counter in the vector can at most redclThe figure shows
chunks of a thread concurrently running may interfere and caugeat stratuntSlis created when the chunk from proces8as next
the overflow. Consequently, when a chunk is truncated due to & be logged, while52is created when the last chunk from proces-
tempted overflow during initial execution, the processor records igor 1 is next to be logged.
its CS log the truncated size of the chunk andQirderOnly and We implement this optimization without affecting DeLorean’s
PicoLog thechunkID as well. recording speed as follows. Chunks commit as usual. However,

During replay, processors use their CS log to identify whaafter a chunk commits, rather than dumpingpit®cID into the Pl
chunks need to be truncated and at what instruction. It is possilisy, we pass its signatur® to a Stratifier Module(Figure 5(b)).
that, due to timing differences between initial execution and replaf,he Stratifier contains: (i) the vector of chunk counters and (ii)
one such chunk would not have caused overflow during replay -ene Signature Register (SR) per processor. The latter contain the



Baseline Architecture Configuration Preferred DeLorean Configurations

Processor Memory BulkSC Orderé&Size OrderOnly PicoLog
Processors: 8 in a CMP Private wback D-L1: Signature: 2 Kbits Chunk Size:
Frequency: 5.0 GHz 32KB/4-way/32B-lines | Commit arbitration 2000 inst. maximum Chunk Size: Chunk Size:
Fetch/issue/comm width: 6/4/5 Round trip: 2 cycles latency: 30 cyc 259% chunksc2000inst{ 2000 inst. 1000 inst.
l-window/ROB size: 80/176 MSHRs: 8 entries Max. concurrent CS log entry: CS log entry: CS log entry:
LdSt/Int/FP units: 3/3/2 Shared L2: commits: 4 Variable-sized 21bit distance 22bit distance
Ld/St queue entries: 56/56 8MB/8-way/32B-lines # Simultaneous chunkg  1bit if max size 11bit size 10bit size
Int/FP registers: 176/90 Round trip: 13 cyc min per processor: 2 else 12bit Pl log entry: Commit ordering:
Branch penalty: 17 cyc (min) MSHRs: 32 entries # of arbiters: 1 Pl log entry: 4bit proclD round robin

Mem round trip: 300 cyc| # of directories: 1 4bit procID

Table 5. Evaluated architecture configurations.

@ All log buffers are enhanced with compression hardware that
prociD 1 ‘ uses the LZ77 algorithm.
Committed Chunk Info: , .
prociD 1 (prociD, Signature) We compare the speed of DelLorean’s execution and replay to
Szz:g; v two other systems that do not support BulkSC, speculative tasking,
prooiD 0 [Sonflict Stratifier Module or logs. The first one is the CMP of Table 5 under RC with spec-
D3 1 0 22 2 Sk Counters ulative execution across fences and hardware exclusive prefetchin
proc T2 011 Is2 [ 13| signature Registers - ' P g
p| [RrocD 2 I CaERERER i (SR) for stores. We call iRC. The second is the CMP of Table 5 under
F1 LprociD | S T 2 3 an aggressive SC implementation that includes speculative execu-
Pl Log Stratified Pl Log tion of loads and hardware exclusive prefetching for stores. We call
it SC We assume that the performance of the initial execution in
@ ®) FDR [15], Strata [6], and Basic RTR [16] is similar to that®EC
Figure 5. Pl log stratification: example (a) and design (b). Finally, we estimate the performance of Advanced RTR using data

on Processor Consistency (PC) performance.
logical-OR of the signatures of all the chunks from a given proces- As applications, we use SPLASH-2, SPECjbb2000 and
sor committed since the last stratum. When a new chunk arrives @PECweb2005. The SPLASH-2 codes are evaluated without sys-
the Stratifier, if the corresponding counter is at its maximum valuéem references. They run to completion, and include all applications
the system creates a new stratum by dumping the counters into that Volrend (which fails in our infrastructure). SPECjbb2000 and
Pl log. Then, it sets the corresponding SR and count&and 1, SPECweb2005 are evaluated by interfacing the Simics full-system
respectively, and clears the other SRs and counters. Otheigse, simulator as a front-end to our SESC simulator. Therefore, we cap-
logically ANDed with the other processors’ SRs — without updatture system references as well. SPECjbb2000 is configured to use 8
ing the latter. If there is a conflict, the system creates a new stratunarehouses, while SPECweb2005 runs the e-commerce workload.
as above. Otherwis&is logically ORed into the corresponding SR Each runs for over 1 billion instructions after warm-up.

and the corresponding counter is incremented. .
6. Evaluation

5. Evaluation SetUp In our evaluation, we assess Delorean’s log size (Section 6.1)
We use the SESC [11] cycle-accurate execution-driven sim@nd performance (Section 6.2), and characteRieolog (Sec-
lator to evaluate an 8-processor DelLorean Chip MultiprocesséiPn 6.3).
(CMP). The architectural parameters are shown in Table 5. , .
shown in the table, the BulkSC parameters are largely like thos 1. Delorean’s Log Size
in [2]. The table also shows the preferred parameters for De- Figure 6 shows the size of the Pl and CS log©inlerOnlyin
Lorean'sOrder&Size OrderOnlyandPicoLogmodes. Specifically, bits per processor per kilo-instruction. We evaluate configurations
Order&Sizeuses chunks of at most 2,000 instructions, variablewith standard chunk sizes of 1,000, 2,000 and 3,000 instructions.
sized CS log entries (1 bit if the chunk has maximum size or 1Eor each of them, we report the size of both logs with and without
bits otherwise), and 4-bit Pl log entries. The latter encode the IDsompression. In the figure, the CS log contribution is stacked atop
of the 8 processors and the DMA. To model an environment witthe Pl log’s, but it is too small to be seen. The SP2-G.M. bars cor-
variable-sized chunks, we artificially truncate the chunk probabilissespond to the geometric mean of SPLASH-2. For comparison, the
tically: we truncate 25% of the chunks @rder&Size giving them  figure shows a line with the average size of the compressed Mem-
a size between 1 and the maximum size using a uniform probabilitry Races Log in Basic RTR from [16]. We will use this line as a
distribution. reference, although we note that the set of applications measured
OrderOnlyuses 2,000-instruction chunks, 32-bit CS log entriediere and in RTR [16] are different.
(which include 11 bits for the truncated chunk size and, in lieu of The figure shows that our preferred 2,000-ir@tderOnlycon-
chunkID , 21 “distance” bits for the number of chunks committedfiguration uses on average only 2.1 bits (or 1.3 bits if compressed)
by the processor since its most-recent truncated chunk), and 4-pér processor per kilo-instruction to store both the Pl and CS logs.
Pl log entries. PicoLoguses 1,000-instruction chunks, 32-bit CSThis means that these compressed logs use only 16% of the space
log entries, and round-robin processor commit order. In our expethat we estimate is needed by the compressed Memory Races Log
iments with different chunk sizes i@rderOnly and PicoLog we in Basic RTR.
keep the CS log entry size constant, thus changing the distance bits.Figure 6 also shows that the size of the CS log is negligible.
Our simulator models both initial execution and replay. Moreover, as we increase the standard chunk size, the size of the Pl



[0 CS Log (Uncompressed) B CS Log (Compressed)

% 1y D PIL0g (Uncompressed) EIPI Lo (Compressed) Average schemes‘ log sizes to FDR’s. Alternatively, Wg can use thg nym-
s, Soinpressed bers in the Strata paper — which measure different applications
EG (Bezstii;gtzg) than we do and are again for only 4-processor runs. In this case,
2, the Strata paper claims a compressed log size of 2.2KB per mil-
gz lion memory operations for the 4 processors combined. DelLorean
2o

s e LU E needs 364B and 13.7B per processor per million memory opera-
SP2-G.M. sibb2k sweb2005 tions inOrderOnlyandPicoLog respectively. This is 64% and 2%,
respectively, of the space Strata claims to need. However, if, to
speed-up Strata’s replay, we also add WAR dependences in Strata’s
log, Strata’s log size increases by 25% [6]. In addition, since the

size of a Strata log entry is proportional to the number of proces-

log decreases. This is because. there are fgwer chunks to co.mrggrs, Strata’s log size may increase substantially for 8-processor
However, chunks are also more likely to conflict, and the potentlallyuns_ Consequently, this comparison is likely not very accurate.
higher number of squashes may affect performance. '

Figure 7 shows the space required by the CS logitoLog  6.1.1. Stratifying the PI Log
Recall_thatPlcoLog has no PI log. We_ see that t_he .CS log needs Figure 9 compares the size of the Pl log in 2000-ingDr-
0.37 bits or fewer per processor per kilo-instruction in all cases — . ; o . o
. . L derOnlywithout and with stratification. We consider three Stratified

even without compression. Our preferred 1,000-ir&zoLogcon- P! log desians. which differ in the maximum number of committed
figuration needs a compressed log with an average of only 0.05 bgﬁ n?(s aIIlc?we,dW elr rolceséor or st)r(;\t L:n n;mel 13 or 7' The
per processor per kilo-instruction. To put this in perspective, it im: u per p P rafum, namely 2, 3, '

; . . . hars are normalized to the non-stratified design. We can see that
plies that, if we assume an IPC of 1, the combined effect of all elghqt tifving the PI | hile allowing 1 or 3 itted chunk
5-GHz processors is to produce a log of only about 20GB per das.rflcgymc?r eer tr;tgr\mlwv 'ae: (l)(\;vmg ac(: Iﬁ?llrrzaee cc)f inchs ﬁir or
This is a very small log. It is 0.6% of the estimated size neede SS ; P ; Str tum Sthv S};| Ig SP: d ; Sb n ur p f
by the compressed Memory Races Log in Basic RTR. Since the c());:es_;c])_ pe Slt atim, the O% ‘:‘;3 eoc Ie?ses_ y af eB/e .ta\ge 0
log entries are due to chunk truncation caused by attempted cac o. TNIS TESUTS In an average fotaidertnlylog size ot abou

Figure 6. Size of the Pl and CS logs in OrderOnly The numbers
under the bars are the standard chunk sizes in instructions.

. % bits per processor per kilo-instruction, or 7.5% of the estimated
overflow, we see that such an event is rare. OILS per proce per ’
Basic RTR log size. Allowing 7 chunks per processor per stratum
§ 1o 2 CS Log (Uncompressed) M CS Log (Compressed) Average results in wasted space and larger logs in SPECweb2005.
£ compresse
28 log sﬁze in
3 Basic RTR [ PI Log (Compressed) [ Stratified Pl Log (Compressed)
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Figure 7. Size of the CS log in PicoLog Recall that PicoLog v

SP2-G.M. sjbb2k sweb2005
has no Pl log. The numbers under the bars are the standard

chunk sizes in instructions. Figure 9. Size of the Pl log in OrderOnlywithout and with strati-

Figure 8 show©rder&Sizes Pl and CS log sizes. We can see fication. The numbers under the bars are the maximum number
that this execution mode requires larger Pl and CS logs, sometimesOf chunks per processor per stratum.

comparable to Basic RTR log sizes. Our preferred 2,000-instr. com- )
pressed configuration uses, on average, 3.7 bits per processorr%é%' DeLorean’s Performance

kilo-instruction. This is 46% of the estimated space needed by the Figure 10 compares the performancé&k@andSCto that of the

compressed Memory Races Log in Basic RTR. initial execution under each of the three DeLorean modes plus the
01 CS Log (Uncompresssd) BGS Log (Gompressed) StratifiedOrderOnlywith one chunk. For comparison purposes, we
2 [OPILog (Uncompressed) [ PILog (Compressed) Average also show the performance of a BulkSC environment. All bars are
£ 10} compressed .
EH log size in normalized to the performance BC.
8 (estimated) The figure shows that the average performanc®mfer&Size
54 and OrderOnly is only 2-3% lower than that oRC. Moreover,
82 mﬂﬂ some of this reduction is the result of running under BulkSC (which
:,C-” 0 1000 2000 3000 1000 2000 3000 1000 2000 3000 causes some chunk SqUaSheS), as can be seen by Comparing to the
SP2GM. sibb2k sweb2005 BulkSCbar. Consequently, we conclude that DeLorean’s logging
) . ) . support causes negligible slowdown. The figure also shows that
Figure 8. Size of the Pl and CS logs in Order&Size The num- PP 919 9

StratifiedOrderOnlydelivers a performance similar @rderOnly.
Stratification, therefore, has negligible performance impact.

So far, we have roughly compared the per-processor log size The figure also shows th&icoLoghas a lower performance —
of two schemes: DelLorean’s 8-processor runs and Basic RTR’s dn average, execution proceeds at 869R6k speed. This is still
processor runs. To compare to Strata, we can use the fact that béakter tharSC which averages 79% &®C. As we will see in Sec-
the Strata [6] and RTR [16] papers quantitatively compare thetion 6.3,PicoLods lower performance is less caused by load imbal-

bers under the bars are the maximum chunk sizes in instructions.
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Figure 11. Performance of several environments during initial execution and replay. All bars are normalized to RC

ance due to round-robin commit ordering than to chunk squashgsenalties added, the stall of processors waiting to commit, and two
This problem especially affectaytrace . Overall, it can be ar- effects due to keeping several completed but uncommitted chunks:
gued that a performance 14% lower tHa@ is a modest price to additional squashes and cache overflows. However, we believe that,
pay for a deterministic replay system that only logs 0.05 bits peat these speeds, deterministic replay opens up new possibilities in
processor per kilo-instruction — or 20GB per day for the combinedoncurrency debugging.

eight 5-GHz processors (Section 6.1). Stratifying OrderOnlywith one chunk does not appear to hurt
Given that FDR, Strata, and Base RTR have also been Shownr@play performance. Overall, Stratifyin@rderOnly has reduced

have negligible recording overhead, we estimate their performange. log size by half, at some hardware cost, without noticeably im-

with the SCbhar — which is a fairly aggressive implementation Ofpacting the speed of execution recording or replay.

sequential consistency. It is seen in the figure that all DeLorean

execution modes on average outperf@@ typically substantially. .3. Characterizing Picolog
This is because, through chunk-based execution, DeLorean allows
for very aggressive reordering and overlapping of accesses. We perform a sensitivity analysis to determine hBigoLogs

If we estimate the performance of Advanced RTR to be that gferformance changes with (i) the number of processors in the CMP,
the machine supporting TSO, we can compare Advanced RTR {@) the standard chunk size in committed instructions, and (iii) the
DeLorean. TSO's performance is similar to that of Processor Copaaximum number of chunks that a processor may be executing and
sistency (PC). Since our infrastructure does not model TSO or Pgye not yet committed. We called the latter the number of simultane-
we simply note that previous work showed that PC's performancgs chunks per processor in Table 5. Figure 12 shows the resulting
is significantly lower than RC's [4, 10] — hence significantly lower e rformance oPicoLogrelative toRCfor the same number of pro-
than at least that ddrderOnlyandOrder&Size Quantitative com-  cegsors. Because our infrastructure does not support the commer-
parisons are not possible due to the use of different applications. ¢j5| applications on 16 processors, the data in the figure corresponds

6.2.1. Performance During Replay to SPLASH-2 only.

We use our replay simulator to estimate the performance of De- 10

Lorean’s replay. Since replay will likely occur under a virtualized Zos| g—= v =8 Chunksze:

environment, we penalize the replay speed by disabling parallel 208 o000

commit and increasing the commit arbitration latency in the arbiter 07— 3 3 73 3 w0

from 30 to 50 cycles. Moreover, in our simulator, we add random Simultaneous chunks per processor

delays to the replay execution to ensure that the timings are differ- (a) 4 Processors

ent from the initial execution. Specifically, we take the Pl log from L 10 o

the initial execution and use it in 5 different replay runs. In each 2 09 . R Chui;;'fe'

run, we add from 10 to 300-cycle stalls before a randomly-selected S os| &= 5000

30% of the commit operations. We also change the delay of 1.5% S N T I

randomly-selected cache hits to that of cache misses and the same Simultaneous chunks per processor

number of cache misses to cache hits. Finally, we report the average (b) 8 Processors

performance of the 5 runs. L 10 Chunk size:
Figure 11 compares the performanceQrderOnly, Stratified 3 09 _e-500

OrderOnly with one chunk, andPicoLogduring initial execution 208 @M 2000

and replay. All bars are normalized RC. From the figure, we see 07T 3 4 8 16 T

that, on average, botbrderOnlyand StratifiedrderOnlyreplay at Simultaneous chunks per processor

82% of RCs speed, whilePicoLogreplays at 72% oRC. Several (c) 16 Processors

factors contribute to the lower performance of replay, namely the Figure 12. PicolLogperformance relative to RC,



Increasing the number of processors rediRiesLods relative  trace , it can be shown that the squashes are concentrated on a
performance. For example, with one chunk per processor and 10G8w processors, which slow down the passing of the token for ev-
instr. chunks, the performance drops from 87% for 4 processors ¢épyone. As a result, processors complete the chunk before receiving
77% for 16. This is because there are more squashes and becausiegttoken (thaVait for Tokencycles are 1,290) and stall often (the
takes longer for a given processor to get its turn to commit. fraction of stall cycles is 34.0%). Iradix , it can be shown that

The latter can be partly mitigated by increasing the number afguashes are spread over many processors. As a result, processors
simultaneous chunks per processor. These additional chunks keepeive the token before chunk completion (Wait for Complete
the processor busy while the chunk waits for its turn to commitcycles are 1,119) and stall little (the fraction of stall cycles is 0.3%).
However, the figure shows that we quickly get diminishing returns.  Finally, DeLorean induces more network traffic tHR@because
The more chunks we add, the higher the chance for chunk collisioss$ signature traffic chunk squashes. It can be shown that the traffic
and attempted cache overflows. In our baseline design (Table 5), WeOrder&Sizeand OrderOnlyis practically the same as in a plain
used two simultaneous chunks per processor. BulkSC system which, in turn, is on average 9% higher in bytes

Finally, larger chunk sizes have little effect for 4- or 8-processothan inRC[2]. In PicoLog due to the higher squash frequency, the
systems, but hurt performance for 16-processor systems. Largfal network traffic is on average 17% higher tha®irlerOnly.
chunks with many processors tend to induce more conflicts.

Table 6 characterizeBicoLogfor 8 processors. Thearallel 7. Conclusions and Future Work
Commitcolumns show data on the commit process. Ready
Procscolumn shows the average number of processors with fully- This paper has proposed DeLorean, a novel scheme for deter-
executed, ready-to-commit chunks at a given time. On averag@|nistic replay where processors execute groups of instructions
there are 4.2-5.2 such processors. However, not all of them capmically. Delorean has two fundamental advantages over cur-
commit. Indeed, while chunk commits may overlap if there are néent schemes. First, it records at the speed of the most aggressive
conflicts, they are initiated in a round-robin manner. Consequentlfyemory consistency models used today — and also replays at high
if processoii is not ready to commit+1 cannot commit. Théic-  speed. This makes it useful for production-run debugging. Second,
tual Commitcolumn shows the average number of chunks that enfisummarizes the execution interleaving into a truly small log.
up committing at the same time. The average number is 2.6-3.0.  DeLorean’s execution modes offer a trade-off between perfor-
mance and log size. 1®rderOnly, DeLorean records at the speed

Parallel Commit Commit Token Passing of RC execution and replays at 82% of RC speed. In contrast, most
Appl. Ready| Actual Proc | Wait | Wait | Token | Stall h h d | h d of SC . d id
Procs | Commit || Ready| Token | Cplete | Rndtrip | Cycles other schemes record only atthe speed o exe9Ut|0n and provide
(Avg) | (Avg) (%) | (Cyc) | (Cyc) | (Cyc) | (%) no details on replay speed. RTR presents an algorithm for recording
bﬁrTeSk 4.0 24 80.4 | 499 | 230 | 661 4.9 TSO executions but does not evaluate its impact on execution speed
cholesky || 5.3 3.0 84.7 | 750 | 431 | 793 | 29.4 : :
" 25 23 774 | 411 | 478 | 889 25 or log size. Mo_reoveDrderOnIyonIy needs _1.3_b|ts of (_:ompresse_d
fmm 5.1 3.0 84.0 | 739 | 386 788 | 20.4 memory-ordering log per processor per kilo-instruction and, with
lu 3.9 2.3 795 | 487 | 207 | 757 5.4 stratification, only 0.6 bits. We estimate the latter to be 7.5% of the
ocean 3.9 25 78.4 | 1067 | 760 | 1601 | 4.2 . :
radiosity | 49 | 29 || 827 | 670 | 403 | 758 | 9.3 log size needed by Basic RTR.
radix 25 2.3 656 | 524 | 1119 | 3262 | 0.3 In PicoLogmode, DeLorean reduces the memory-ordering log
raytrace 4.6 25 78.4 | 1290 | 691 | 1462 | 34.0 10 0.05 bit d kilo-instructi hich timate |
water-ns || 4.4 25 809 | 541 | 249 | ‘659 04 00. its per processor and kilo-instruction, which we estimate is
water-sp 4.6 2.6 82.1 | 489 | 203 575 2.3 0.6% of the log size in Basic RTR. In this mode, we estimate that
SP2GM.|| 42 | 26 || 793 ] 638 | 403 | 956 | 60 the total memory-ordering log of an 8-processor 5-GHz machine is
sjbb2k 51 3.0 775 | 1634 | 694 | 1841 | 7.2 . o
sweb2005/ 52 29 837 | 1002 | 612 | 1346 | 87 only about 20GB per day. Recording speed decreases to 86% of RC

execution speed — still higher than typical SC speed. Overall, we
conclude that DeLorean greatly enhances the potential of determin-
TheCommit Token Passirgplumns characterize how the “com- istic replay to help debug multithreaded codes.
mit token” is passed around processd?soc Readys the percent-  There are many directions for future work. Three of them stand
age of time that a processor is ready to commit when it acquiregt. The first one is to adapt DeLorean to work in more conven-
the commit token. On average, it is 77-84%. For those processa{gnal multiprocessor environments that do not require hardware
that are ready, thvait for Tokencolumn is the number of cycles for chunk-based execution. The second one relates to the fact that
elapsed from when they completed the chunk until they acquire thgere are a variety of implementations of SC. Specifically, the work
token; for those processors that are not ready\thit for Complete  jnyolves taking current replay schemes, use very aggressive imple-
column is the number of cycles elapsed from when they receive thgentations of SC, and find out how the schemes compare to De-
token until they complete the chunk. Both of these two numberisgrean. The third direction involves combining the best aspects
must be smaller than thEoken Roundtripwhich is the number of qf the different recording approaches (DeLorean, RTR, and Strata)
cycles it takes for the token to circulate through all processors onG@yto a better approach, along the lines described in Section 3.4 and

Such number is about 600-3,300 cycles. Findgll Cyclesshows i pj |og stratification. We are working on these areas.
the fraction of cycles that processors stall because they have com-
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: . ; Theorem Assuming that a system checkpoint was taken at GCC=n, De-
Appendlx A: BulkSC Overview Lorean can deterministically replay an execution for the interval I(n,m).

In BulkSC [2], a processor takes a checkpoint evdrgommitted in-  Proof We use induction om. Start withm=1. The PI log has a single
structions. The instructions between two checkpoints, call€tienk are  entry (say, processaP;) and the system state has been restored to that at
executed speculatively until either they get squashed due to a data depgftC=n. As replay starts, all processors execute, but the arbiter only allows
dence with another chunk, or they all commit at once, after the chunk has to commit. Because no other processor can commit, the system state
completed. BulkSC relies on speculative tasking support such as that neediggk P; observes is the one at the checkpoint. Rsreplays its chunk,
by transactional memory or thread-level speculation to execute dynam@bservation 1 tells us that the path taken by the execution inside the chunk
chunks of instructions atomically and in isolation. will be the same as in the initial execution. Moreover, as per Observation 3,

A processor can have more than one speculative chunk of a thread e e number of instructions in the chunk will also be the same as in the initial
ecuting at a time. Memory accesses by a processor are allowed to fully rexecution. Finally, if the chunk was affected by an external event in the
order and overlap both within chunks and across chunks. However, chunikstial execution, Observation 2 tells us that the event was logged. In the
from one or multiple processors must appear to commit in a total order. iplay of the chunk, we simply reproduce the logged event. Overall, the
practice, for high performance, multiple chunks are allowed to commit corsystem has replayed deterministically.
currently as long as the addresses they have accessed do not overlap. Overwe now assume that the system replayed deterministically for the first
all, BulkSC execution supports SC, although its performance is practically committed chunksk<m) and show that it will also do so for thier1
the same as that of RC execution [2]. commit. At GCC=k, we know that: (i) the next processor in the Pl log (say,

BulkSC requires little modifications to the processor — beyond the abil?;) is the one that executed next in the initial execution; fij)is at the
ity to take regular checkpoints, which is already feasible today — or Lkame instruction as it was in the initial execution; and (jii) the system state
cache arrays. Task speculation and address disambiguation are supportethbyP;'s chunk observes now in the replay is the same as it observed in the
a Bulk Disambiguation Module (BDM) connected to the L1 controller. Thenitial execution. We can use observations 1, 2 and 3 like#1 to show
addresses read and written by a chunk are hash-encoded in hardware thet chunkk+1 is replayed deterministically. Therefore, the system replays
a Read (R) and Write (W) signature in the BDM. Address disambiguatiordeterministically.
chunk commit and chunk squash are implemented with signature operations
supported in the BDM.



